
Query languages 1 1

Query languages 1 (NDBI001)

Information retrieval

Jaroslav Pokorný

MFF UK, Praha

pokorny@ksi.mff.cuni.cz

Query languages 1 2

Information retrieval systems - development

Resources:

 creating texts directly in computer

 a need - searching, not only browsing

 indexing not always possible

 development of large storages (CD ROM, WORM)

 development of communications (Internet)

1970 19801950 1960 1990 2000

systems of processing

external attributes systems of

fulltexts processing digital

libraries

Query languages 1 3

Content

1. Introduction

2. Measuring the relevance

3. Boolean model

4. Vector space model

5. Relevance feedback

6. Thesaurus

7. Conclusions

Query languages 1 4

Text retrieval

query - request formulated in a language is given by a text

pattern (word, expression, a substring of a word, phrase, or

a whole text) or by several patterns (conjunctive query)

More generally: Boolean expression

answer (set of hits) - texts matching a query

hit relevance – the degree to which the hit matches the user

request. The notion of relevance is imprecise, context- and

user-dependent.

 answer restriction: - maximum M

- maximum M most relevant

- set a threshold

Query languages 1 5

Text retrieval

Field: Information Retrieval

IR is all about retrieval, what you want, when
what you want, is hidden in mass of what you do
not want.

More precisely: find for a query relevant documents

Field: Information Filtering

Assign to a document D profiles in such way, that
D is for them relevant.

Query languages 1 6

IR - basic architecture

Subsystems: text disclosure (1)

text delivery (2)

(1) see information services

secondary information versus fulltext

query refinement

indexer searcher

inquirer

search engine

input of document,

description of document

(choice of descriptors)

output

request,

refinement

historical model

Query languages 1 7

IR - basic architecture

Subsystems: text disclosure (1)

text delivery (2)

(1) see information services

secondary information versus fulltext

query refinement

indexer

inquirer

search engine

input of document,

description of document

(choice of descriptors)

output

request

current model

Query languages 1 8

Measuring the relevance

Recall R

#retrieved relevant documents
R =

#relevant documents in collection

Precision P

#retrieved relevant documents
P =

#retrieved documents

Query languages 1 9

Trade-off between R and P

P
1

R 1

precision-recall curve

Query languages 1 10

Boolean model

 Document representation: a set of terms

 Querying:
- formally: by Boolean expressions

- technique: exact match

 Determining terms - practice:
 removal of stop-words from sets of terms

result: reduction 30-50% (C.J. van Rijsbergen)

 linguistic processing (tokenization)

Query languages 1 11

Boolean model

One of possible syntaxes:
<term>

<attribute_name> = <attribute_value> /comparison/

<function_name>(<term>), /function application /

X AND Y retrieve D, containing both X and Y.

X OR Y retrieve D, containing either X or Y.

X XOR Y retrieve D, containing either X or Y but not X AND Y

NOT Y retrieve D, not containing Y
X adj Y retrieve D, that contain X followed by Y
X (n)words Y retrieve D, that contain X followed by Y at the maximum

distance n words
X sentence Y retrieve D, in which X and Y occur in the same

sentence

Query languages 1 12

Boolean model

. will match arbitrary character.

* character followed by * will match arbitrary number of occurrences
(including 0) of this character. E.g., xy* will match x, xy, xyy etc.

+ character followed by + will match arbitrary number of occurrences
(except empty) of this character. E.g., xy+ will match xy, xyy, xyyy
etc.

[] characters in [] will match arbitrary one character, which is
in brackets, but not another. E.g., [xyz] will match x, y or z.

[^] starting the string in [] by ^ means negation (not). E.g., [^xyz] will
match arbitrary character except of x, y, or z.

[-] - among characters in [] denotes a range of characters. E.g., [a-x]
will match arbitrary character from a to x.

Query languages 1 13

Boolean model: P versus R

 By query refinement in Boolean model we can obtain

higher P, but lower R.

Ex.: experiment (Blair, Maron,1985) - 40000 legal texts

Goal: not only high P, but R as well.

Results: P  80%, R  20%

 the synonym problem – too general language, it is not possible

to capture it by thesaurus.

Ex.: accident, disaster, collision, „something happened“, …

 automatic indexing does not eliminate these problems

Query languages 1 14

Boolean model: problems

What affects the relationship P and R?

Problems with manual indexing:

indeterminacy

 in indexing influence of indexer

 in selection of terms for query influence of inquirer

Ex.: p1, p2 probabilities, that the inquirer uses terms t1, t2

q1, q2 probabilities, that the terms t1, t2 se vyskytují in D

 p, that the inquirer selects t1, t2 and D with t1, t2 is retrieved, is

p1* p2 * q1 * q2

E.g., R = 0,6 * 0,7 * 0,5 * 0,6 = 0,126  R < 13%

 for i=5, pi = qi = 0,5  R = 0,1%

 if there is 1000 relevant D, only 1 is retrieved!

Query languages 1 15

Boolean model: problems

prediction criterion – how to ensure a match between selection of

terms for query and for documents (today: similarity of

ontologies)

– method: elimination of indeterminacy

maximum criterion – to handle up to 20-50 hits

 problems with fulltext collections:

– collection size (versus maximum criterion)

– selection of terms for query

u revaluation of elimination of indexers

u indeterminacy of inquirer remains

– unilateral behavior of inquirer -

tendency to change the last decision and retain the first steps

Query languages 1 16

Boolean model: problems

C

D

A
B

E

A  B  C  E

A  B  C  D

hit

Query languages 1 17

Boolean model: problems

Indeterminacy of the inquirer’s selection of search terms

Solution:

 lookup D with high relevance for inquirer (D is known + it is

known, that it occurs on collection),

 terms for query are retrieved from D,

 omitting terms resp. replacing them by disjunctions.

 decreasing the inquirer indeterminacy

Query languages 1 18

Boolean model: problems

Solution of unilateral behavior of inquirer by weighting:

Ex.: terms probability (weight)

Author: Pokorný 0,3

Date: 1995-1999 0,7

Journals: CW 0,2

Artificial Intelligence 0,5

ERCIM News 0,2

Descriptors: XML 0,6

database 0,8

query language 0,9

The total number of conjunctive queries is 255.

Query languages 1 19

Boolean model: problems

Products of probabilities for

2 terms 3 terms max. for 1, 2, ...

pdo * pda = 0,72 pdo * pda * pdat = 0,5 0,9

pdo * pdat = 0,63 pdo * pdat * pxm = 0,38 0,72

pda * pdat = 0,56 pdo * pda * par = 0,4 0,5

… … 0,3

0,15

Algorithm: - create groups for all combinations

- calculate maxima for groups

- is the maximum criterion met?

- offer to the inquirer

Query languages 1 20

Boolean model: other problems

 Non-intuitive results
– A AND B AND C AND D AND E

D not containing only one of given terms will be not
retrieved.

– A OR B OR C OR D OR E

D containing only one from given terms are seen as equally
important as documents containing all given terms.

 It does not allow output size control.

 all Ds satisfying a query are conceived as equally
important, it is not possible to sort them by their
similarity.

Query languages 1 21

Boolean model: other problems

 It is difficult to realize automatic relevance feedback,

i.e. to modify automatically a query based on D

marked in answer as relevant.

 Expressive power of Boolean model is restricted.

Any set {D} of documents describable by terms, can

be, in principle, retrieved by an appropriate Boolean

query. However, in practice it is not guaranteed for

any set {D} satisfying user’s needs, to formulate

simply Boolean query.

 more art than science.

Query languages 1 22

What next?

Thesis:

Classic Boolean systems can be extended by a function

influencing maximum criterion; however, it is not

possible to increase P and R simultaneously without

additional information.

Query languages 1 23

Overview of IR models

non-overlapping lists

proximal nodes

Structured models

Retrieval:

ad hoc

filtering

Browsing

U

s

e

r

T

a

s

k

Classic models

Boolean

vector space

probabilistic

Set theoretic

fuzzy

extended Boolean logic

Probabilistic

Inference networks

Belief networks

Algebraic

Generalized vector space

Latent Semantic Indexing

Neural networks

browsing

flat

structure guided

hypertext

Query languages 1 24

Vector space model

Assumption: collection D of m documents, n different terms
t1...tn

Each document Di  D is represented by a vector

Di = (wi1, wi2, ..., win), where wij  <0;1>

where wij is the weight of a term tj for document Di.

D is representable by term-document matrix

w11 w12 ... w1n

w21 w22 ... w2n

D = ...

...

wm1w m2 ... w mn

Query languages 1 25

Vector space model

 Querying: we regard query as a short document
- formally: by a query vector

- partial match querying

technique: by a similarity function (coefficient)

query expression Q in vector model

Q = (q1, q2, ..., qn), where qj <0;1>.

Problem: how to calculate similarity

 It is possible to rank the retrieved documents in the order
of presumed relevance.

 It is possible to enforce a certain threshold so that the
size of the retrieved set can be controlled.

Query languages 1 26

Vector space model

Angle versus distance
 Why not a distance?

 Experiment: we take a document D and append it to itself. The
document D′ will be created.
 “Semantically” D and D′ have the same content.

 Euclidean distance in the space between points D and D′ would be
large.

 The angle between D and D′ (as vectors) is 0, which corresponds to
maximal similarity.

 Key idea: rank documents according to angle between D and
query vector.

 Appropriate: cosine – monotonically decreasing function for
the interval [0o, 180o]

D

Q



term1

term2

term3

Query languages 1 27

Vector space model

coefficient similarity (angl. similarity) query Q and
document Di

(a) Sim(Q,Di) = k=1,..,n(qk * wik) (dot product)

(b) Sim(Q,Di) = k=1,..,n(qk * wik)/(k=1,..,n(wik)
2 * k=1,..,n(qk)

2)

(cosine measure)

Denominator in (b) is a normalization factor,

(c) Sim(Q,Di) = 2k=1,..,n(qk * wik)/(k=1,..,n(wik)
2 + k=1,..,n(qk)

2)

(Dice coefficient)

Postulate: the more two vectors that represent documents are
„near“, the more the documents are similar

Query languages 1 28

Vector space model

Remark: binary vector space model (i.e., the only non-zero wik in

Di and Q are equal to 1).

For all three cases Sim =

  Q  Di

 ( Q  Di)( Q *  Di)

 2( Q  Di)( Q +  Di)

Advantage: R and P can be increased up to 20%.

Query languages 1 29

Vector space model

Pragmatic approach: one-word terms + appropriate method of

weighting

Term Frequency

TFij the frequency of tj in Di (the number of times that tj
occurs in Di.

Normalized Term Frequency

NTFij the frequency of tj in Di given as

((TFij/max TFik)+1)/2

where max is over all terms in i-th row of matrix D.

Disadvantage: term with high TF is in many Di  low P

Query languages 1 30

Vector space model

IDF inverse document frequency

IDF for term tj is defined as

IDFj = log(m/DFj) + 1

where m is the number of documents in D and DFj (document

frequency) is a frequency tj in D, i.e. the number of documents

containing term tj.

IDF is decreasing with the increasing number of documents

containing the term.

Remark:

 for document ranking the base of the log is immaterial.

 IDF is really inverse w.r.t. DF.

Query languages 1 31

Vector space model

 Behavior:

term occurs in all documents  log(1) = 0 (term is one of the stop

words)

term occurs only in 1 document 

IDF = log m +1

Ex.: IDF = 2 for m = 10 je, IDF = 5 for m = 10 000, etc.

Query languages 1 32

Vector space model

 A typical weighting is tf-idf weighting:

wij = TFij * IDFj or TDij = NTFij * IDFj

Notation in literature: tf-idf, tf.idf, tf x idf

Remark: it is not worthwhile to maintain too small wij (approaching
the threshold).

 The best weights in Q:

qk = (0,5 + (0,5* TFk)/max TF) * IDFk

where TFk is term frequency of tk in Q, max TF is maximum
frequency of a term in Q and IDFk is IDF of term tk in D.

 Experimentally, tf-idf has been found to work well.

Query languages 1 33

Vector space model

Special cases for Q and D:

 only a set of terms is given  qk = IDFk

 approximation of long queries  qk = TFk

 short documents  approximation weights by 0, 1

 long documents  retrieval unit is passage

Query languages 1 34

Vector space model: problems

 Assumption: independency of terms (synonymy still not

solved)

 Missing syntactic information (phrase structure, word order,

proximity information)

 Missing semantics (e.g. word sense)

 History: part of the SMART system (1970)

Today: Apache Lucene – combines vector space and Boolean

model

Query languages 1 35

Vector space model in Boolean system -

example of implementation

Assumptions:

 index file with inverted lists

 in inverted lists TFji (we model wji)

 a file containing IDFj

 file SCORE[1:m]

 term weights of query terms are equal to 1

Algorithm:

(1) podle query terms přistupuj inverted lists.

(1.1) Oprav sums in SCORE

(2) Sort SCORE and return, e.g., 20 nejvyšších.

Query languages 1 36

Vector space model in Boolean system -

example implementation

.

.

tj

.

.

i,TFij k,TFkj ...

inverted list

for term tj

SCORE[1:m]

file of indexes

i si

… tj,IDFj …

file of inverse frequencies

Query languages 1 37

Vector space model and signatures -

example implementation

Assumptions:

 Dj has bj blocks, query has Q terms

 signature file - there is a signature for each block

 file containing IDFi (we model qi in this way (DF is enough)

 file SCORE[1:20] (maintains the 20 higest)

Algorithm: For all D do:

(1) Vynuluj POM.

(2) signature of each from b text blocks D compare with Q query signatures.

Results store into POM.

(3) For each ti query calculate bci = j=1…bmaxPOM[i,j]

(4) Calculate s = i=1…Q(bci qi)/b

Query languages 1 38

Vector space model and signatures -

example implementation

SCORE[1:20]

signature file

i si

… ti,qi …

file of inverse frequences

1 0 … 1 1 0 … 1

POM[1:Q; 1:max]

1

2

i

Q



b1



bj

max  bj  1

POM[i,k] = 1  ti  blockk, bj  k  1

Query languages 1 39

Indexing complexity by vector space

model

 Vectors construction and indexing document

with n units is O(n).

 indexing m such documents is O(m n).

 calculation of IDFs can be done in the same

pass

 calculation of vector lengths is also O(m n).

  total time complexity is O(m n)

Query languages 1 40

Example 1 – Text extender

SELECT journal, date, title

FROM ARTICLES

WHERE CONTAINS(article_text, ‘(“database” AND

(“SQL”  “SQL92”) AND NOT “dBASE”)‘) = 1;

Other functions: NO_OF_MATCHES (how often the search criteria are

found in each text documen), RANK (rank value in answer based on a
measure).

SELECT journal, title

FROM ARTICLES

WHERE NO_OF_MATCHES (article_text, ‘database‘) > 10;

SELECT journal, date, titul, RANK(article_text, ‘(“database” AND
(“SQL”  “SQL92”))’) AS relevant

FROM ARTICLES

ORDER BY relevant DESC;

possibility

of different

implementations

Query languages 1 41

Example 2 – Fulltext in MySQL 5.1

Types of FT retrieval:
– Boolean

– FT with index

CREATE TABLE ARTICLES (

journal TEXT

article_text VARCHAR(200)

FULLTEXT (journal, article_text)

) engine=MyISAM

SELECT *

FROM ARTICLES

WHERE MATCH(journal, article_text)

AGAINST('database' IN NATURAL LANGUAGE MODE);

Result sorting: implicitly by relevance

FULLTEXT is an index type

storage machine

other: InnoDB,…

Query languages 1 42

Example 2 – Fulltext in MySQL 5.1

Types of FT retrieval:
– Boolean

– FT with index

SELECT *

FROM ARTICLES

WHERE MATCH(journal, article_text)

AGAINST('+database –relational' IN BOOLEAN MODE);

Result sorting :

– + (AND), - (NOT), no operator (OR)

– implicitly no sorting

Query languages 1 43

Techniques for “intelligent” IR

1. relevance feedback

- direct feedback

- pseudo feedback

2.query expansion

- by „natural“ thesaurus

- „artificial“ thesaurus

Advantages: increase R, only rarely P.

Query languages 1 44

Relevance feedback

Intuition:

 vectors of relevant document and query are similar

 vectors of non-relevant document and query are not

similar;

 query reformulation based on the answer to query

 Assumptions: query vector

answer contains: relevant D1
r ,…, Dmr

r

non-relevant D1
n ,…, Dmn

n

q

Query languages 1 45

Relevance feedback

=  + i=1…mr - i=1…mn

for =1 Rocchio 71

=  +  i=1…mr -  i=1…mn

for = =  =1 Ide 71

=  +  i=1…mr - 

where , ,  are appropriate constants

q ’ q


mr
Di

r


mn
Di

n

q ’ q Di
r Di

n

q ’ q Di
r D1

n

Query languages 1 46

Relevance feedback - incrementally

REPEAT

1. System retrieves D with maximal SIM(Q,D);

2. User marks D as relevant or non-relevant;

3. IF D is relevant THEN D goes to the output list;

4. is modified by ;

UNTIL 

Query modification:

j+1 =  +  Dj Dj is relevant

 -  Dj Dj is non-relevant

Remark: a D that has not yet been selected is always
selected.

q D

q qj

qj

Query languages 1 47

Relevance feedback – other possibilities

reweighting terms: increasing term weights in

relevant documents and decreasing term

weights in non-relevant documents

pseudo-feedback: consider the first k

documents as relevant and then do relevance

feedback (query reformulation).

Query languages 1 48

Extending query by thesaurus

 Thesaurus (in Latin treasure, treasury)

provides synonym information and

about semantically related words and

phrase.

 Ex.: Eurovoc – for law and legislation,

is from 2005 also for Czech.

Query languages 1 49

Thesaurus

Expressions using thesaurus (standard ISO-2788)

NT('text') NARROWER TERM one level narrower term

NT('text',n) n levels narrower terms

NT('text',*) all narrower terms

BT('text') BROADER TERM one level broader term

BT('text',n) n levels broader term

BT('text',*) all broader terms

TT('text') TOP TERM

SYN('text') SYNONYMS

PT('text') PREFERRED TERM

RT('text') RELATED TERMS

Query languages 1 50

Thesaurus

Other relationships:

USE – to a given term assigns its preferred term,

UF (USE FOR) – to a given term assigns its synonymous

(non-preferred) term

SN (scope note) - note attached to the given term

Other standard (for text collections):

ANSI Z39.58 Common Command Language for Online

Interactive Information Retrieval – developer by institution

NISO (National Information Standards Organization).

Remark: real languages are only similar to these standards

Query languages 1 51

Example: Wordnet

 Lexical database of semantic relationships

between words (of English, …, Czech).

 developed by Prof. George Miller and his

team at Princeton university.

 150,000 English words.

 Nouns, verbs, adjectives, and adverbs are

grouped into cca 110,000 set of synonyms

called synsets.

Query languages 1 52

Example: Wordnet

Examples of conceptual relations among synsets:
 antonyms (have oposite meanings): wet  dry, young  old

 semantically similar to: dry  parched

 reason: killing  death

 holonymy : chapter  text (be part of)

 meronymy: computer  cpu (has as a part)

 hyponymy (subordinate notions): tree  plant (specialization)

 hyperonymy (superordinate notions): fruit  apple
(generalization)

Query languages 1 53

Example: Wordnet

 Measuring semantic similarity and correlations
introduced for WordNet by Pederson, et al in r.
2005 – (software WordNet::Similarity)

 similarity coefficients
 based on paths lengths:

Lch, wup, Path

 based on information content:

res, lin, jcn

 relatedness measures
 hso, lesk, vector

Query languages 1 54

Conclusion

Current (new) applications:

 text classification

 text extraction (summarization)

 digital libraries

 Web retrieval

 multilingual environment

 spam detection

 text plagiarism detection

