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Introduction

 Distinguished characteristic of the domain:
 relationship-rich data

 relationships are first-class citizens in graph databases

 Graph databases are focused on:

 efficiently store and query highly connected data

 Two basic types of graph data stores:
 one graph

 collections of graphs

 Application areas: geospatial processing, social 
networks analysis, biology systems, traffic networks, 
healthcare, retail, semantic associations, etc.

 Our examples: mostly inspired by Neo4j1

1http://neo4j.com
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Graph data model

 (labelled) property graph model
 entities (nodes)

 properties (attributes)

 labels (types)

 relationships (edges)
 direction, 

 start node,

 end node

 identifiers

Entities and relationships can hold any number of 
properties, nodes and edges can be tagged with 
labels. Both nodes and edges are defined by a 
unique identifier. 
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Graph data model

 In graph-theoretic notions:

labelled and directed attributed multigraphs
 Example:
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Person

name: Johnny Depp
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name: Jon Voight

age: 77

profession: actor

Car

Model: Golf 

Type: GT



Graph data model

 hypergraphs
 hyperedge connects an arbitrary set of nodes
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Equivalent multigraph
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Multigraph with more semantics
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More formally

Definition: Database graph G = (V, E, N, Σ, φ, λ, A, Att) is labelled 

and directed attribute multigraph, where V is finite set of nodes with 

identifiers drawn from an infinite alphabet N, E is a set of edges 

and φ is an incidence function mapping from E into V × V. Edge 

labels are drawn from the finite set of symbols Σ, λ is a function 

from E into Σ labelling edges. A is a set of attributes (properties) 

represented by couples (Ai, valueij). Att is a mapping assigning to 

each node/edge a subset (event. empty) of attributes from A. 

Identifiers of nodes are called also labels (node labels).

Note: The definition accepts database graphs with different 

attribute sets for nodes/edges of the same types. It occurs in 

practice, especially in GDBMS without schema. Often attribute 

domains are defined. Then valueij ϵ dom(Ai).
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Why graph databases?

 Traditional solutions:
 Relational databases – SQL with joins

 Relational databases – SQL with Common Table 
Expressions
 relatively simple for trees and acyclic graphs

 more complicated in cyclic graphs

 Datalog – is able, e.g., to cover conjunctive regular 
path queries
 less implementations, appropriate rather for small graphs

 Trend: `renaissance' for Datalog (e.g. DATOMIC2 –
distributed DBMS with ACID, joins, …)

 XML databases
 require XML data model for graphs

2http://www.datomic.com/
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Why graph databases?

 Graph databases are focused on:
 be flexible in usage data models behind graphs 

used,

 exceptional performances for local reads, by 
traversing the graph.

 Graph databases are often included among 
NoSQL databases

 Trend: graph databases + graph-based 
analytics on 
 Big Graphs

 large, unstructured datasets 
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Graph database technology

 Graph storage

 Graph querying

 Scalability

 Transaction processing

 Terminology: 
 Graph Database Management Systems (GDBMS) 

 Graph Databases (GDB) /* rather for OLTP */ 

 graph processing tools /* rather for OLAP*/

 today: notions GDBMS and „graph database“ are used 
interchangeable (see the NoSQL world)
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Graph storage

 index-free adjacency: every node is directly linked 
to its neighbour node
 appropriate for local graph queries 

 data structures:
 lists

 bitmaps (+compression)

 graph-based indices:
 indexing methods: path-based, graph based, tree-based

 strategy for query processing: filtering-verification fashion

 non-native solutions:
 column store in Virtuoso Universal Server

 other DBMS as back-end storage, e.g., MySQL in 
FlockDB (stores adjacency lists)
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Graph-based indices

Example (Sasha et al, 2002):

 assumption: undirected graphs, no edge labels

 index based on paths

 Do enumeration of all paths of the length <= L of all graphs in 

DB,

 For each path store the number of its occurrences in all graphs 

in DB into the hash table. 
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Graph-based indices

 Query:
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Graph querying

 Query capabilities come from the associated 
graph model 

 Types of queries:                                 B
 k-hop queries               A

2-hop distance 
between A and B

 point querying - looking for a node based on its 
properties or through its identifier 

 finding tuples of points – nodes connected by paths
 conjunctive queries with regular path(s)

 subgraph and supergraph queries

 breadth-first/depth-first search, 

 path and shortest path finding, 
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Graph querying

 least-cost path (see algorithm Dijkstra, A*)

 finding cliques or dense subgraphs, 

 finding strong connected components

 tree pattern queries

 Other types of queries:
 approximate matching in Big Graphs

 structural similarity queries
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Graph querying

guery graph q q as a subgraph

(exact) match

q as a supergraph query

q as a similarity query

(requires a similarity measure)
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Example

English German Language

Teacher

Town

BeataEveJamesJohn

Brno KolínPrague

Teaches

Is_born_in

Teachers teach languages, teachers are born in 
towns 
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Example

English German

Prague

x

Query: Find teachers born in Prague who teach 
English and German.

where x is a variable.
This is a language with graph patterns (e.g., G, 
GraphLog) 

TeachesTeaches

Is_born_in

Query Languages 2 19



Matching in two subgraphs

English German

BeataEveJamesJohn

Brno KolínPrague

Language

Teacher

Town

Teaches

Is_born_in
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Matching in two subgraphs

English German

BeataEveJamesJohn

Brno KolínPrague

Language

Teacher

Town

Teaches

Is_born_in
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Graph querying

Let Σ be an alphabet of edge labels. 

 A conjunctive query over Σ is an expression of the form

Q(z1,…zn) ← (x1, a1, y1),…,(xm, am, ym), m ≥ 1

where xi and yi are node variables or constants, ai  Σ, zi is an xj or 

yj, 

 A conjunctive regular path query over Σ is an expression of the 

form

Q(z1,…,zn) ← (x1, r1, y1),…,(xm, rm, ym), m ≥ 1,

where ri is a regular expression over Σ and zi is an xj or yj, 1 ≤ j ≤ 

m.

Ex.: node types: Teacher, Language, Town; 

edge types: Teaches, Is_born_in, Has_a_nationality, 

Lives_in, and Is_located_in
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Graph querying

Q(x, y) ← (x, Teaches, German), (x, Teaches, English),

(x, Has_a_nationality | ((Is_born_in | Lives_in).Is_located_in*), y) 
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English

John

German

James

Brno Prague

Teaches

Is_born_in

Teaches
Teaches

Is_born_in
Is_located_in

Czech Republic

Query: Find teachers teaching English 

and German and places associated to 

them



Graph querying
 A extended conjunctive regular path query over Σ

Example: Find x and y, where the path from y to x is 
the same as from y to Rohnovi? 

ans(x, y) ← (James, π, y), (x, π, y), (Σ*π)

where π is a path variable, Σ* denotes any sequence 
of edge labels.

Note: usable in RDF for comparing of semantic 
associations. This is the relationship between the 
paths.
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Graph querying
 A extended conjunctive regular path query over Σ

Example: Find x and y, where the path from y to x is 
the same as from y to Rohn? 

ans(x, y) ← (James, π, y), (x, π, y), (Σ*π)

where π is a path variable, Σ* denotes any sequence 
of edge labels.

Note: usable in RDF for comparing of semantic 
associations. This is the relationship between the 
paths.
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Graph querying
 Powerful query languages

Examples:
 Cypher (in Neo4j GDBMS) – declarative, inspired by the SQL   

 Gremlin – rather procedural graph Language

 Issues:
 often iterative computation for complex queries – not 

easy, e.g., with Map Reduce
 Subgraph isomorphism problem is NP-complete

 Maximum common subgraph problem is NP-complete;

 Maximum common subgraph isomorphism problem is NP-hard

 Evaluation of query with simple regular path is NP-Complete 
Problem

 complex calculation of the query result – a transformation 
of the original graph

 graph visualization 
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Example

 Neo4j
 data: nodes and relationships + identifiers + properties 

in a key-value form, 

 values: primitive or an array of one primitive type, 

 nodes cannot reference themselves directly

 graph processing: mostly random data access 

 high-level query language Cypher

 advanced query features: built-in graph algorithms
 shortestPath

 allSimplePaths

 allPaths

 dijkstra (optionally with cost_property and default_cost 
parameters) 
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Example

Inspired by SQL:

CREATE: creates a node, a relationship; e.g.
 Example: CREATE (n: Person {name: 'Jane'}) // Person is a label, n is a 

variable for the new node

identifiers - names assigned to parts of a graph: n, A, r, name, 
person

Note: it is actually a variable

START: (optional) entry points in a graph (by index or ID) for a 
graph pattern

 Ex.: START n = node (*), START n = node (3),

START n = node: Person (name = ‘Jane')

MATCH: graph pattern, bound to the START entry points, is 
specified by one or more paths separated by ","

Notation: nodes: (a) or () (anonymous nodes)

edges - ->, <- -, - -
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Example

 related nodes (without direction) pomocí - -

 related nodes entering to (coming out) with  - - > (< - -)

 relationships entering  to (coming out) with a variable, or by the name 
of the relationship (labeled edge), e.g., 

(a) - [r] -> (b)

(a) - [:friend] -> (b)

(a) - [*] -> (b), /* path lenghts is arbitrary*/

(a) - [*1..4] -> (b), /* path lenghts is max. 4 */

(a) - [:is_father_of | playing_in*1..2] -> (b), 

(a)-->()-->(b)

joint paths, e.g.,

(a)- - > (b) - - > (c), 

Functions: e.g. nodes(p) (relationships(path) ) returns all nodes 
(relationships) on the path p
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Example

 WHERE: filtering criteria (AND, OR, NOT, comparison, 
regular expression, …) 

 RETURN: answer form

 ORDER BY: (similar to SQL) DESC, …

 LIMIT: output limit (number of rows)

 Aggregation functions: COUNT, SUM, AVG, MAX, MIN, 
COLLECT

 Advanced querying: embedded graph algorithms

 shortestPath

 allSimplePaths

 allPaths

 dijkstra (optimally with cost_property and default_cost parameters) 
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Examples in Cypher
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Person

‘name’= ‘Jon Voight’

Person

‘name’= ‘Simon West’

Person

‘name’= ‘Jonny Depp’

Film

‘name’= ‘Lara Croft: Tomb Raider’

Film

‘name’= ‘The tourist’

directed plays_in

plays_in

directed

plays_in is_father_of

Person

‘name’= ‘F.H. von Donnersmarck’

Person

‘name’= ‘Angelina Jolie’

plays_in

Query1:  Find films related to Angelina Jolie

START x=node:Person(name =‘Angelina Jolie’)

MATCH (x)- ->(film)

RETURN film.name



Examples in Cypher
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Query2: Find actors, who play in the same film as a douther Jon Voight

MATCH actor1-[:plays_in]->film<-[:plays_in]-()<-[:is_father_of]-actor2

WHERE actor2.name = ‘Jon Voight’

RETURN actor1.name

Person

‘name’= ‘Jon Voight’

Person

‘name’= ‘Simon West’

Person

‘name’= ‘Jonny Depp’

Film

‘name’= ‘Lara Croft: Tomb Raider’

Film

‘name’= ‘The tourist’

directed plays_in

plays_in

directed

plays_in is_father_of

Person

‘name’= ‘F.H. von Donnersmarck’

Person

‘name’= ‘Angelina Jolie’

plays_in



Examples in Cypher
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Query2: Find actors, who play in the same film as a douther Jon Voight
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Example in Cypher
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Query2: Find actors, who play in the same film as a douther Jon Voight

MATCH actor1-[:plays_in]->film<-[:plays_in]-()<-[:is_father_of]-actor2

WHERE actor2.name = ‘Jon Voight’

RETURN actor1.name

Person

‘name’= ‘Jon Voight’
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directed plays_in
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directed
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Person

‘name’= ‘F.H. von Donnersmarck’

Person

‘name’= ‘Angelina Jolie’

plays_in



Scalability

 Scaling for:
 large datasets – no problem – graphs of order 1010 in 

Neo4j

 read performance – no problem  – e.g., Neo4j is focused 
on read performance

 write performance – no problem in the case of vertical 
scaling, but when horizontal scaling is necessary

 Example:  
 Titan2 is a highly scalable OLTP GDBMS optimized for 

thousands of users concurrently accessing and updating 
one Big Graph.

2 http://thinkaurelius.github.io/titan/
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Scalability

 Sharding (or graph partitioning) - distributing it 
across multiple machines

 Issues: 
 much more difficult than scaling the simpler data in other 

NoSQL databases

 Goal: to avoid having relationships that span machines 
as much as possible  minimum point-cut problem (NP-
hard)

In practice: connected graphs can mutate rapidly and 
unpredictably at runtime
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Transaction processing

GDB are often optimized and focused on 
 CRUD (create, read, update, delete) operations, 

 query processing - reporting, data warehousing, and 
real-time analytics, 

 batch mode analytics or data discovery. 

 not all GDB are fully ACID

 BASE properties often considered in the context 
of NoSQL DB - variant not too appropriate for 
graphs

 partitioning and replication strategies to maximise
the locality of the processing 

 Example: Neo4j uses master-slave replication
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Categories of graph databases

Examples of GDBMSs:

 general purpose GDBMS
 distributed: Sparksee (originally DEC), InfiniteGraph,

Titan, GraphBase

 centralized: Neo4j

 special GDBMS
 Web-oriented: InfoGrid, FlockDB

 multimodel: OrientDB (graph + documents + SQL)

 hypergraphs: HyperGraphDB

 triplestores: AllegroGraph …

 low-level platforms 
 Pregel, Giraph
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Triplestores

 Storage for RDF data: subject (with) - predicate
(P) – object (O)

 logical level: a table, sometimes other columns are 
added: graph name (N), ID

 Examples: AllegroGraph, BrightStarDB, Bigdata, 
SparkleDB

 More advanced: AllegroGraph, GraphDB™
support reasoning and ontology modelling

 hybrid solution: Virtuoso Universal Server (RDF 
data, relations, XML, text)

 General observation: not yet suitable for storing 
truly large data sets efficiently
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Pregel and Giraph

 Bulk Synchronous Processing (BSP) model is 
used to the design, analysis and implementation 
of parallel algorithms there.
 powerful generalization of MapReduce (MR)

 Pregel - a system for large-scale graph 
processing on distributed cluster of commodity 
ma-chines. It is based on BSP.

 Giraph extends Pregel. It utilizes Apache MR 
framework implementation to process graphs.
 Now: for Currently used at Facebook to analyze the 

social graph

 Pregel and Giraph do not use a graph database 
for storage.
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RDBMS vs. Graph databases

 Example by E. Eifrem (CEO of Graph Database 
company Neo) about testing speed of the “friends 
of friends” query
 three levels depth: GDB beat the relational one by a 

factor of 150, 

 four levels depth: the GDB bested the relational one by 
a factor of 1000.
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DB-Engines Ranking of GDBMSs
See http://db-engines.com/en/ranking/graph+dbms

31 systems in ranking, April 2019

Score

1. Neo4j 49.49

2. Microsoft Azure Cosmos DB 26.28 /multi-model/

3. OrientDB 6.19 /multi-model/

4. Arrango 4.29 /multi-model/

5. Virtuoso                                                   3.31 /multimodel/

6. Amazone Neptune 1.39 /multi-model/

7. JanusGraph 1.38

8. Giraph 1.20

9. Dgraph 1.08

10. GraphDB 0.97 /multi-model/
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 Graph database schema

specifies: structure + property definitions 

+ integrity constraints (IC)
 Examples of properties:  

• Name for Language, Birth_year, #T_ID for Teachers

• Room for Teaches

 „weak“ GDB schema 

 does not contain cardinalities,

• Does teacher teach more languages?

• Can be a language taught by more teachers?

 does not contain dependencies among properties,

 contains partially: property domains, simple property constraints.

Graph databases modelling

Language

Teacher

Town

Teaches

Is_born_in
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 Graph conceptual schema

Graph databases modelling

Language

Teacher

Town

Is_taught

Teaches

Language

Teacher

Town
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Is_born_in

Is_birthplace_of

Is_born_in

Is_birthplace_of

Is_taught

Teaches



Graph database modelling
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 Graph conceptual schema

variant with min-max ICs

Language

Teacher

Town

(1,n)

(0,n)

(1,n)

(0,1)

Is_taught

Teaches

Is_born_in

Is_birthplace_of
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 Graph conceptual schema

variant with ISA-hierarchiees and weak entities

Graph database modelling

Language

Teacher

Town

Is_taught

Teaches

Is_born_in

Is_birthplace_of

Person

Street

ISA

Has

Query Languages 2
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 Associated graph database schema

variant with ISA-hierarchies and weak entities

Graph database modelling

Person

Street

ISA

Has

Language

Teacher

Town

Teaches

Is_born_in
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 (database) integrity constraint using a pattern

 Ex.: GDBMS GRAD (has a database model, schema-

less)

IC: Each teacher teaching German is born after 1980. 

Graph database modelling

Name: German

Birth_year: > 1980

Language

Teacher

Teaches
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 Transforms the graph conceptual schema into an 

equivalent (or nearly equivalent) graph database 

schema.

 The resulted schema is not given uniquely. It is 

necessary to decide: 
 for edge direction of a given relationship type,

 for the edge label.

 For ISA entities and weak entities it necessary to 

consider different keys of participated entity types 

(they are inherited from higher hierarchy members 

and from strong entity types).

Mapping: conceptual  database
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The approach of Neo4j:

 Neo4j is schema-less.

 some possibilities of IC definitions:
 CREATE CONSTRAINT ON (Teacher:Teacher) 

ASSERT Teacher.#T_ID IS UNIQUE,

 CREATE CONSTRAINT ON (Teacher:Teacher) 

ASSERT exists(Teacher.Birth_year),                                                                    

i.e. all nodes with a certain label have a certain property.

 CREATE CONSTRAINT ON ()-[teaches:Teaches]-() 

ASSERT exists(teaches.Room),                                                                                   

i.e. all relationships with a certain type have a certain property. 

Query Languages 2
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Schemas and practice

The approach of OrientDB: the role of graph database 

schema can be precisely specified
 schema-full - enables strict-mode at a class-level and sets all 

fields as mandatory.

 schema-less - enables classes with no properties. Default is 
non-strict-mode, meaning that records can have arbitrary 
fields.

 schema-hybrid - enables classes with some fields, but allows 
records to define custom fields. This is also sometimes called 
schema-mixed.

 Graph database schema can sometimes be 

disadvantageous, e.g., in dynamic environment, in quickly 

changing application domain, etc.
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Limitations of graphs databases

 Functionality restrictions

 Big Analytics requirements

 Other challenges
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Functionality restrictions

 Declarative querying: Most commercial GDB cannot 
be queried using a declarative language. 

 Data partitioning: Most graph databases do not 
include the functionality to partition and distribute data 
in a computer network. It is difficult to partition a graph 
in a way that would not result in most queries having 
to access multiple partitions.

 Vectored operations: They support a procedure which 
sequentially writes data from multiple buffers to a 
single data stream or reads data from a data stream to 
multiple buffers. It seems that it is not the case in 
GDBs today.

Query Languages 2 54



Functionality restrictions

 Model restrictions: 
 data schema and ICs definitions are restricted in GDBs.  

Therefore, data inconsistencies can quickly reduce their 
usefulness. 

 graph model itself can be restricted. For example, Neo4j 
nodes cannot reference themselves directly. Sometimes self-
reference can be required.

 Querying restrictions: For example, FlockDB
overcomes the difficulty of horizontal scaling the graph 
by limiting the complexity of graph traversal. 
 does not allow multi-hop graph walks, so it cannot do a full 

"transitive closure". 

 enables very fast and scalable processing of 1-hop queries.
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Big Analytics requirements

 High cost of some queries: Most real-world graphs are highly 
dynamic and often generate large volumes of data at a very 
rapid rate. A challenge is how to store the historical trace 
compactly while still enabling efficient execution of point queries 
and global or neighbourhood-centric analysis tasks. 

 Real time processing: graph data discovery takes place 
essentially in batch environments, e.g., in Giraph. Some 
products aimed at data discovery and complex analytics that will 
operate in real-time. 

 Indexes size: path-based and graph-based approaches suffer 
from large index size, substantial index construction overhead 
and expensive query processing cost

 Graph extraction: how to efficiently extract a graph, or a 
collection of graphs, from non-graph data stores. 
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Big Analytics requirements

 Complex graph algorithms are needed in practice. The ideal GDB 
should understand analytic queries that go beyond k-hop queries 
for small k. 
 Experiment1: networks with 256 million edges + 4 fundamental graph 

algorithms + 12 GDBMS. The most popular GDBMS have reached the worst 
results in these tests. 

 Parallelisation: when the data is too big to handle on one server. 
What to do when the data does not all fit into the memory 
available. Due to the fact that partitioning a graph is a problem, 
most GDBs do not provide shared nothing parallel queries on 
very large graphs. 

 Heterogeneous and uncertain graph data: important when data 
sets need to be semantically integrated in order to be effectively 
queried or analysed.

1 McColl, R., et al: A Performance Evaluation of Open Source Graph Databases. Proc. of PPAA ’14, 
pp. 11-18. ACM, NY (2014)
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Other challenges

 Design of GDB: Similarly to traditional databases, some 
attempts to develop design models and tools occur in last 
time. See, e.g., starting from a conceptual schema in ER-
model.

 More user-friendly querying. Due to their complex 
schemas and a variety of information descriptions, it 
becomes very hard to formulate a query that can be 
properly processed by the existing systems.

 Graph pattern matching: new semantics and algorithms for 
graph pattern matching over distributed graphs are in 
development.

 Developing heuristics for some hard graph problems: 
 Example: partitioning of large-scale dynamic graph data for efficient 

distributed processing (the classical graph partition problem is NP-
hard)
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Other challenges

 Keyword Search on Graph Representation of Data: 
Problem: to find a (closely) connected set of nodes 
that together match all given keywords. How to extend 
it to ontologies?

 Visualization: Improvement of human-data interaction 
is fundamental, particularly a visualization of large-
scale graph data, and of query and analysis results.

 Need for benchmarks: 
 The benchmarks built, e.g., for RDF data, are mostly focused 

on scaling and not on querying. 

 Benchmarks covering a variety of graph analysis tasks are 
missing. They would help towards evaluating and comparing 
the expressive power and the performance of different graph 
databases and frameworks. 
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Other challenges

 Graph streams processing: with goal to compute 
properties of a graph without storing the entire graph. 

 Compressing graphs: matching without 
decompression is possible. Combining parallelism 
with compressing or partitioning is also very inter-
esting.
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Conclusions

 Technological trends: 
 Usage of graphics processors (GPUs)

 Overcome the problem to run graphical DB on a single 
machine

 parallelization of graph databases

 Usual question: 

What to choose?
 There is no single answer: everything depends on how 

the data will be used.

 If necessary, two separate persistence solutions can 
coexist for each use case (polyglot persistence).
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