
Query languages 2 (NDBI006)

Graph Databases

J. Pokorný

MFF UK

1Query Languages 2

Content

 Introduction

 Graph database technology

 Categories of graph databases

 Limitations of graphs databases

 Modelling graph databases

 Conclusions

 References

Query Languages 2 2

Introduction

 Distinguished characteristic of the domain:
 relationship-rich data

 relationships are first-class citizens in graph databases

 Graph databases are focused on:

 efficiently store and query highly connected data

 Two basic types of graph data stores:
 one graph

 collections of graphs

 Application areas: geospatial processing, social
networks analysis, biology systems, traffic networks,
healthcare, retail, semantic associations, etc.

 Our examples: mostly inspired by Neo4j1

1http://neo4j.com

Query Languages 2 3

Graph data model

 (labelled) property graph model
 entities (nodes)

 properties (attributes)

 labels (types)

 relationships (edges)
 direction,

 start node,

 end node

 identifiers

Entities and relationships can hold any number of
properties, nodes and edges can be tagged with
labels. Both nodes and edges are defined by a
unique identifier.

Query Languages 2 4

Graph data model

 In graph-theoretic notions:

labelled and directed attributed multigraphs
 Example:

Query Languages 2 5

Person

name: Johnny Depp

Person

name: Jon Voight

age: 77

profession: actor

Car

Model: Golf

Type: GT

Graph data model

 hypergraphs
 hyperedge connects an arbitrary set of nodes

Query Languages 2 6

Driver

Name: Ivan

Driver

Name: Jane

Car

Model: Golf

Type: GT

Car

Model: Škoda

Type: Rapid

Car

Model: Škoda

Type: Citigo

Owns

Equivalent multigraph

Query Languages 2 7

Driver

Name: Ivan

Driver

Name: Jane

Car

Model: Golf

Type: GT

Car

Model: Škoda

Type: Rapid

Car

Model: Škoda

Type: Citigo

O
w

n
s

O
w

n
s

O
w

n
s

Owns
Owns

Owns

Multigraph with more semantics

Query Languages 2 8

Driver

Name: Ivan

Driver

Name: Jane

Car

Model: Golf

Type: GT

Car

Model: Škoda

Type: Rapid

Car

Model: Škoda

Type: Citigo

O
w

n
s

O
w

n
s

R
s
p
o
n
s
ib

le
:T

R
U

E

O
w

n
s

Owns
Responsible:TRUE Owns

Responsible: TRUEOwns

More formally

Definition: Database graph G = (V, E, N, Σ, φ, λ, A, Att) is labelled

and directed attribute multigraph, where V is finite set of nodes with

identifiers drawn from an infinite alphabet N, E is a set of edges

and φ is an incidence function mapping from E into V × V. Edge

labels are drawn from the finite set of symbols Σ, λ is a function

from E into Σ labelling edges. A is a set of attributes (properties)

represented by couples (Ai, valueij). Att is a mapping assigning to

each node/edge a subset (event. empty) of attributes from A.

Identifiers of nodes are called also labels (node labels).

Note: The definition accepts database graphs with different

attribute sets for nodes/edges of the same types. It occurs in

practice, especially in GDBMS without schema. Often attribute

domains are defined. Then valueij ϵ dom(Ai).

Query Languages 2 9

Why graph databases?

 Traditional solutions:
 Relational databases – SQL with joins

 Relational databases – SQL with Common Table
Expressions
 relatively simple for trees and acyclic graphs

 more complicated in cyclic graphs

 Datalog – is able, e.g., to cover conjunctive regular
path queries
 less implementations, appropriate rather for small graphs

 Trend: `renaissance' for Datalog (e.g. DATOMIC2 –
distributed DBMS with ACID, joins, …)

 XML databases
 require XML data model for graphs

2http://www.datomic.com/

Query Languages 2 10

Why graph databases?

 Graph databases are focused on:
 be flexible in usage data models behind graphs

used,

 exceptional performances for local reads, by
traversing the graph.

 Graph databases are often included among
NoSQL databases

 Trend: graph databases + graph-based
analytics on
 Big Graphs

 large, unstructured datasets

Query Languages 2 11

Graph database technology

 Graph storage

 Graph querying

 Scalability

 Transaction processing

 Terminology:
 Graph Database Management Systems (GDBMS)

 Graph Databases (GDB) /* rather for OLTP */

 graph processing tools /* rather for OLAP*/

 today: notions GDBMS and „graph database“ are used
interchangeable (see the NoSQL world)

Query Languages 2 12

Graph storage

 index-free adjacency: every node is directly linked
to its neighbour node
 appropriate for local graph queries

 data structures:
 lists

 bitmaps (+compression)

 graph-based indices:
 indexing methods: path-based, graph based, tree-based

 strategy for query processing: filtering-verification fashion

 non-native solutions:
 column store in Virtuoso Universal Server

 other DBMS as back-end storage, e.g., MySQL in
FlockDB (stores adjacency lists)

Query Languages 2 13

Graph-based indices

Example (Sasha et al, 2002):

 assumption: undirected graphs, no edge labels

 index based on paths

 Do enumeration of all paths of the length <= L of all graphs in

DB,

 For each path store the number of its occurrences in all graphs

in DB into the hash table.

Query Languages 2 14

B

A

C

B

B

A

C

B

D

E

C

A B

B

C

g1 g2 g3

key g1 g2 g3

h(CA) 1 0 1

…

h(ABCB) 2 2 0

Graph-based indices

 Query:

Query Languages 2 15

B

A

C

B

B

A

C

B

D

E

C

A B

B

C

g1 g2 g3

key g1 g2 g3

h(CA) 1 0 1

…

h(ABCB) 2 2 0

B

A C

AB:1
AC:1
BAC:1

Candidates
= {g1, g3}

verification

 Find candidates with index,

 eliminate graphs, where the number

of occurrences of a path is smaller

than in the query graph,

 execute and verify, i.e. check

isomorphism.

Graph querying

 Query capabilities come from the associated
graph model

 Types of queries: B
 k-hop queries A

2-hop distance
between A and B

 point querying - looking for a node based on its
properties or through its identifier

 finding tuples of points – nodes connected by paths
 conjunctive queries with regular path(s)

 subgraph and supergraph queries

 breadth-first/depth-first search,

 path and shortest path finding,

Query Languages 2 16

Graph querying

 least-cost path (see algorithm Dijkstra, A*)

 finding cliques or dense subgraphs,

 finding strong connected components

 tree pattern queries

 Other types of queries:
 approximate matching in Big Graphs

 structural similarity queries

Query Languages 2 17

Graph querying

guery graph q q as a subgraph

(exact) match

q as a supergraph query

q as a similarity query

(requires a similarity measure)

Query Languages 2 17

Example

English German Language

Teacher

Town

BeataEveJamesJohn

Brno KolínPrague

Teaches

Is_born_in

Teachers teach languages, teachers are born in
towns

Query Languages 2 18

Example

English German

Prague

x

Query: Find teachers born in Prague who teach
English and German.

where x is a variable.
This is a language with graph patterns (e.g., G,
GraphLog)

TeachesTeaches

Is_born_in

Query Languages 2 19

Matching in two subgraphs

English German

BeataEveJamesJohn

Brno KolínPrague

Language

Teacher

Town

Teaches

Is_born_in

Query Languages 2 20

Matching in two subgraphs

English German

BeataEveJamesJohn

Brno KolínPrague

Language

Teacher

Town

Teaches

Is_born_in

Query Languages 2 21

Graph querying

Let Σ be an alphabet of edge labels.

 A conjunctive query over Σ is an expression of the form

Q(z1,…zn) ← (x1, a1, y1),…,(xm, am, ym), m ≥ 1

where xi and yi are node variables or constants, ai  Σ, zi is an xj or

yj,

 A conjunctive regular path query over Σ is an expression of the

form

Q(z1,…,zn) ← (x1, r1, y1),…,(xm, rm, ym), m ≥ 1,

where ri is a regular expression over Σ and zi is an xj or yj, 1 ≤ j ≤

m.

Ex.: node types: Teacher, Language, Town;

edge types: Teaches, Is_born_in, Has_a_nationality,

Lives_in, and Is_located_in

Query Languages 2 23

Graph querying

Q(x, y) ← (x, Teaches, German), (x, Teaches, English),

(x, Has_a_nationality | ((Is_born_in | Lives_in).Is_located_in*), y)

Query Languages 2 24

Lives_in

English

John

German

James

Brno Prague

Teaches

Is_born_in

Teaches
Teaches

Is_born_in
Is_located_in

Czech Republic

Query: Find teachers teaching English

and German and places associated to

them

Graph querying
 A extended conjunctive regular path query over Σ

Example: Find x and y, where the path from y to x is
the same as from y to Rohnovi?

ans(x, y) ← (James, π, y), (x, π, y), (Σ*π)

where π is a path variable, Σ* denotes any sequence
of edge labels.

Note: usable in RDF for comparing of semantic
associations. This is the relationship between the
paths.

Query Languages 2 25

Graph querying
 A extended conjunctive regular path query over Σ

Example: Find x and y, where the path from y to x is
the same as from y to Rohn?

ans(x, y) ← (James, π, y), (x, π, y), (Σ*π)

where π is a path variable, Σ* denotes any sequence
of edge labels.

Note: usable in RDF for comparing of semantic
associations. This is the relationship between the
paths.

Query Languages 2 26

path labeling

is from E*

Graph querying
 Powerful query languages

Examples:
 Cypher (in Neo4j GDBMS) – declarative, inspired by the SQL

 Gremlin – rather procedural graph Language

 Issues:
 often iterative computation for complex queries – not

easy, e.g., with Map Reduce
 Subgraph isomorphism problem is NP-complete

 Maximum common subgraph problem is NP-complete;

 Maximum common subgraph isomorphism problem is NP-hard

 Evaluation of query with simple regular path is NP-Complete
Problem

 complex calculation of the query result – a transformation
of the original graph

 graph visualization

Query Languages 2 27

Example

 Neo4j
 data: nodes and relationships + identifiers + properties

in a key-value form,

 values: primitive or an array of one primitive type,

 nodes cannot reference themselves directly

 graph processing: mostly random data access

 high-level query language Cypher

 advanced query features: built-in graph algorithms
 shortestPath

 allSimplePaths

 allPaths

 dijkstra (optionally with cost_property and default_cost
parameters)

Query Languages 2 28

Example

Inspired by SQL:

CREATE: creates a node, a relationship; e.g.
 Example: CREATE (n: Person {name: 'Jane'}) // Person is a label, n is a

variable for the new node

identifiers - names assigned to parts of a graph: n, A, r, name,
person

Note: it is actually a variable

START: (optional) entry points in a graph (by index or ID) for a
graph pattern

 Ex.: START n = node (*), START n = node (3),

START n = node: Person (name = ‘Jane')

MATCH: graph pattern, bound to the START entry points, is
specified by one or more paths separated by ","

Notation: nodes: (a) or () (anonymous nodes)

edges - ->, <- -, - -

Query Languages 2 29

querying

by example

Example

 related nodes (without direction) pomocí - -

 related nodes entering to (coming out) with - - > (< - -)

 relationships entering to (coming out) with a variable, or by the name
of the relationship (labeled edge), e.g.,

(a) - [r] -> (b)

(a) - [:friend] -> (b)

(a) - [*] -> (b), /* path lenghts is arbitrary*/

(a) - [*1..4] -> (b), /* path lenghts is max. 4 */

(a) - [:is_father_of | playing_in*1..2] -> (b),

(a)-->()-->(b)

joint paths, e.g.,

(a)- - > (b) - - > (c),

Functions: e.g. nodes(p) (relationships(path)) returns all nodes
(relationships) on the path p

Query Languages 2 30

Example

 WHERE: filtering criteria (AND, OR, NOT, comparison,
regular expression, …)

 RETURN: answer form

 ORDER BY: (similar to SQL) DESC, …

 LIMIT: output limit (number of rows)

 Aggregation functions: COUNT, SUM, AVG, MAX, MIN,
COLLECT

 Advanced querying: embedded graph algorithms

 shortestPath

 allSimplePaths

 allPaths

 dijkstra (optimally with cost_property and default_cost parameters)

Query Languages 2 31

Examples in Cypher

Query Languages 2 32

Person

‘name’= ‘Jon Voight’

Person

‘name’= ‘Simon West’

Person

‘name’= ‘Jonny Depp’

Film

‘name’= ‘Lara Croft: Tomb Raider’

Film

‘name’= ‘The tourist’

directed plays_in

plays_in

directed

plays_in is_father_of

Person

‘name’= ‘F.H. von Donnersmarck’

Person

‘name’= ‘Angelina Jolie’

plays_in

Query1: Find films related to Angelina Jolie

START x=node:Person(name =‘Angelina Jolie’)

MATCH (x)- ->(film)

RETURN film.name

Examples in Cypher

Query Languages 2 33

Query2: Find actors, who play in the same film as a douther Jon Voight

MATCH actor1-[:plays_in]->film<-[:plays_in]-()<-[:is_father_of]-actor2

WHERE actor2.name = ‘Jon Voight’

RETURN actor1.name

Person

‘name’= ‘Jon Voight’

Person

‘name’= ‘Simon West’

Person

‘name’= ‘Jonny Depp’

Film

‘name’= ‘Lara Croft: Tomb Raider’

Film

‘name’= ‘The tourist’

directed plays_in

plays_in

directed

plays_in is_father_of

Person

‘name’= ‘F.H. von Donnersmarck’

Person

‘name’= ‘Angelina Jolie’

plays_in

Examples in Cypher

Query Languages 2 34

Query2: Find actors, who play in the same film as a douther Jon Voight

MATCH actor1-[:plays_in]->film<-[:plays_in]-()<-[:is_father_of]-actor2

WHERE actor2.name = ‘Jon Voight’

RETURN actor1.name

Person

‘name’= ‘Jon Voight’

Person

‘name’= ‘Simon West’

Person

‘name’= ‘Jonny Depp’

Film

‘name’= ‘Lara Croft: Tomb Raider’

Film

‘name’= ‘The tourist’

directed plays_in

plays_in

directed

plays_in is_father_of

Person

‘name’= ‘F.H. von Donnersmarck’

Person

‘name’= ‘Angelina Jolie’

plays_in

Example in Cypher

Query Languages 2 35

Query2: Find actors, who play in the same film as a douther Jon Voight

MATCH actor1-[:plays_in]->film<-[:plays_in]-()<-[:is_father_of]-actor2

WHERE actor2.name = ‘Jon Voight’

RETURN actor1.name

Person

‘name’= ‘Jon Voight’

Person

‘name’= ‘Simon West’

Person

‘name’= ‘Jonny Depp’

Film

‘name’= ‘Lara Croft: Tomb Raider’

Film

‘name’= ‘The tourist’

directed plays_in

plays_in

directed

plays_in is_father_of

Person

‘name’= ‘F.H. von Donnersmarck’

Person

‘name’= ‘Angelina Jolie’

plays_in

Scalability

 Scaling for:
 large datasets – no problem – graphs of order 1010 in

Neo4j

 read performance – no problem – e.g., Neo4j is focused
on read performance

 write performance – no problem in the case of vertical
scaling, but when horizontal scaling is necessary

 Example:
 Titan2 is a highly scalable OLTP GDBMS optimized for

thousands of users concurrently accessing and updating
one Big Graph.

2 http://thinkaurelius.github.io/titan/

Query Languages 2 36

Scalability

 Sharding (or graph partitioning) - distributing it
across multiple machines

 Issues:
 much more difficult than scaling the simpler data in other

NoSQL databases

 Goal: to avoid having relationships that span machines
as much as possible  minimum point-cut problem (NP-
hard)

In practice: connected graphs can mutate rapidly and
unpredictably at runtime

Query Languages 2 37

Transaction processing

GDB are often optimized and focused on
 CRUD (create, read, update, delete) operations,

 query processing - reporting, data warehousing, and
real-time analytics,

 batch mode analytics or data discovery.

 not all GDB are fully ACID

 BASE properties often considered in the context
of NoSQL DB - variant not too appropriate for
graphs

 partitioning and replication strategies to maximise
the locality of the processing

 Example: Neo4j uses master-slave replication

Query Languages 2 38

Categories of graph databases

Examples of GDBMSs:

 general purpose GDBMS
 distributed: Sparksee (originally DEC), InfiniteGraph,

Titan, GraphBase

 centralized: Neo4j

 special GDBMS
 Web-oriented: InfoGrid, FlockDB

 multimodel: OrientDB (graph + documents + SQL)

 hypergraphs: HyperGraphDB

 triplestores: AllegroGraph …

 low-level platforms
 Pregel, Giraph

Query Languages 2 39

Triplestores

 Storage for RDF data: subject (with) - predicate
(P) – object (O)

 logical level: a table, sometimes other columns are
added: graph name (N), ID

 Examples: AllegroGraph, BrightStarDB, Bigdata,
SparkleDB

 More advanced: AllegroGraph, GraphDB™
support reasoning and ontology modelling

 hybrid solution: Virtuoso Universal Server (RDF
data, relations, XML, text)

 General observation: not yet suitable for storing
truly large data sets efficiently

Query Languages 2 40

Pregel and Giraph

 Bulk Synchronous Processing (BSP) model is
used to the design, analysis and implementation
of parallel algorithms there.
 powerful generalization of MapReduce (MR)

 Pregel - a system for large-scale graph
processing on distributed cluster of commodity
ma-chines. It is based on BSP.

 Giraph extends Pregel. It utilizes Apache MR
framework implementation to process graphs.
 Now: for Currently used at Facebook to analyze the

social graph

 Pregel and Giraph do not use a graph database
for storage.

Query Languages 2 41

RDBMS vs. Graph databases

 Example by E. Eifrem (CEO of Graph Database
company Neo) about testing speed of the “friends
of friends” query
 three levels depth: GDB beat the relational one by a

factor of 150,

 four levels depth: the GDB bested the relational one by
a factor of 1000.

Query Languages 2 42

DB-Engines Ranking of GDBMSs
See http://db-engines.com/en/ranking/graph+dbms

31 systems in ranking, April 2019

Score

1. Neo4j 49.49

2. Microsoft Azure Cosmos DB 26.28 /multi-model/

3. OrientDB 6.19 /multi-model/

4. Arrango 4.29 /multi-model/

5. Virtuoso 3.31 /multimodel/

6. Amazone Neptune 1.39 /multi-model/

7. JanusGraph 1.38

8. Giraph 1.20

9. Dgraph 1.08

10. GraphDB 0.97 /multi-model/

Query Languages 2 43

http://db-engines.com/en/ranking/graph+dbms

44

 Graph database schema

specifies: structure + property definitions

+ integrity constraints (IC)
 Examples of properties:

• Name for Language, Birth_year, #T_ID for Teachers

• Room for Teaches

 „weak“ GDB schema

 does not contain cardinalities,

• Does teacher teach more languages?

• Can be a language taught by more teachers?

 does not contain dependencies among properties,

 contains partially: property domains, simple property constraints.

Graph databases modelling

Language

Teacher

Town

Teaches

Is_born_in

Query Languages 2

45

 Graph conceptual schema

Graph databases modelling

Language

Teacher

Town

Is_taught

Teaches

Language

Teacher

Town

Query Languages 2

Is_born_in

Is_birthplace_of

Is_born_in

Is_birthplace_of

Is_taught

Teaches

Graph database modelling

Query Languages 2 46

 Graph conceptual schema

variant with min-max ICs

Language

Teacher

Town

(1,n)

(0,n)

(1,n)

(0,1)

Is_taught

Teaches

Is_born_in

Is_birthplace_of

47

 Graph conceptual schema

variant with ISA-hierarchiees and weak entities

Graph database modelling

Language

Teacher

Town

Is_taught

Teaches

Is_born_in

Is_birthplace_of

Person

Street

ISA

Has

Query Languages 2

Is_in

48

 Associated graph database schema

variant with ISA-hierarchies and weak entities

Graph database modelling

Person

Street

ISA

Has

Language

Teacher

Town

Teaches

Is_born_in

Query Languages 2

49

 (database) integrity constraint using a pattern

 Ex.: GDBMS GRAD (has a database model, schema-

less)

IC: Each teacher teaching German is born after 1980.

Graph database modelling

Name: German

Birth_year: > 1980

Language

Teacher

Teaches

Query Languages 2

50

 Transforms the graph conceptual schema into an

equivalent (or nearly equivalent) graph database

schema.

 The resulted schema is not given uniquely. It is

necessary to decide:
 for edge direction of a given relationship type,

 for the edge label.

 For ISA entities and weak entities it necessary to

consider different keys of participated entity types

(they are inherited from higher hierarchy members

and from strong entity types).

Mapping: conceptual  database

Query Languages 2

51

The approach of Neo4j:

 Neo4j is schema-less.

 some possibilities of IC definitions:
 CREATE CONSTRAINT ON (Teacher:Teacher)

ASSERT Teacher.#T_ID IS UNIQUE,

 CREATE CONSTRAINT ON (Teacher:Teacher)

ASSERT exists(Teacher.Birth_year),

i.e. all nodes with a certain label have a certain property.

 CREATE CONSTRAINT ON ()-[teaches:Teaches]-()

ASSERT exists(teaches.Room),

i.e. all relationships with a certain type have a certain property.

Query Languages 2

Schemas and practice

Schemas and practice

The approach of OrientDB: the role of graph database

schema can be precisely specified
 schema-full - enables strict-mode at a class-level and sets all

fields as mandatory.

 schema-less - enables classes with no properties. Default is
non-strict-mode, meaning that records can have arbitrary
fields.

 schema-hybrid - enables classes with some fields, but allows
records to define custom fields. This is also sometimes called
schema-mixed.

 Graph database schema can sometimes be

disadvantageous, e.g., in dynamic environment, in quickly

changing application domain, etc.

Query Languages 2 52

Limitations of graphs databases

 Functionality restrictions

 Big Analytics requirements

 Other challenges

Query Languages 2 53

Functionality restrictions

 Declarative querying: Most commercial GDB cannot
be queried using a declarative language.

 Data partitioning: Most graph databases do not
include the functionality to partition and distribute data
in a computer network. It is difficult to partition a graph
in a way that would not result in most queries having
to access multiple partitions.

 Vectored operations: They support a procedure which
sequentially writes data from multiple buffers to a
single data stream or reads data from a data stream to
multiple buffers. It seems that it is not the case in
GDBs today.

Query Languages 2 54

Functionality restrictions

 Model restrictions:
 data schema and ICs definitions are restricted in GDBs.

Therefore, data inconsistencies can quickly reduce their
usefulness.

 graph model itself can be restricted. For example, Neo4j
nodes cannot reference themselves directly. Sometimes self-
reference can be required.

 Querying restrictions: For example, FlockDB
overcomes the difficulty of horizontal scaling the graph
by limiting the complexity of graph traversal.
 does not allow multi-hop graph walks, so it cannot do a full

"transitive closure".

 enables very fast and scalable processing of 1-hop queries.

Query Languages 2 55

Big Analytics requirements

 High cost of some queries: Most real-world graphs are highly
dynamic and often generate large volumes of data at a very
rapid rate. A challenge is how to store the historical trace
compactly while still enabling efficient execution of point queries
and global or neighbourhood-centric analysis tasks.

 Real time processing: graph data discovery takes place
essentially in batch environments, e.g., in Giraph. Some
products aimed at data discovery and complex analytics that will
operate in real-time.

 Indexes size: path-based and graph-based approaches suffer
from large index size, substantial index construction overhead
and expensive query processing cost

 Graph extraction: how to efficiently extract a graph, or a
collection of graphs, from non-graph data stores.

Query Languages 2 56

Big Analytics requirements

 Complex graph algorithms are needed in practice. The ideal GDB
should understand analytic queries that go beyond k-hop queries
for small k.
 Experiment1: networks with 256 million edges + 4 fundamental graph

algorithms + 12 GDBMS. The most popular GDBMS have reached the worst
results in these tests.

 Parallelisation: when the data is too big to handle on one server.
What to do when the data does not all fit into the memory
available. Due to the fact that partitioning a graph is a problem,
most GDBs do not provide shared nothing parallel queries on
very large graphs.

 Heterogeneous and uncertain graph data: important when data
sets need to be semantically integrated in order to be effectively
queried or analysed.

1 McColl, R., et al: A Performance Evaluation of Open Source Graph Databases. Proc. of PPAA ’14,
pp. 11-18. ACM, NY (2014)

Query Languages 2 57

Other challenges

 Design of GDB: Similarly to traditional databases, some
attempts to develop design models and tools occur in last
time. See, e.g., starting from a conceptual schema in ER-
model.

 More user-friendly querying. Due to their complex
schemas and a variety of information descriptions, it
becomes very hard to formulate a query that can be
properly processed by the existing systems.

 Graph pattern matching: new semantics and algorithms for
graph pattern matching over distributed graphs are in
development.

 Developing heuristics for some hard graph problems:
 Example: partitioning of large-scale dynamic graph data for efficient

distributed processing (the classical graph partition problem is NP-
hard)

Query Languages 2 58

Other challenges

 Keyword Search on Graph Representation of Data:
Problem: to find a (closely) connected set of nodes
that together match all given keywords. How to extend
it to ontologies?

 Visualization: Improvement of human-data interaction
is fundamental, particularly a visualization of large-
scale graph data, and of query and analysis results.

 Need for benchmarks:
 The benchmarks built, e.g., for RDF data, are mostly focused

on scaling and not on querying.

 Benchmarks covering a variety of graph analysis tasks are
missing. They would help towards evaluating and comparing
the expressive power and the performance of different graph
databases and frameworks.

Query Languages 2 59

Other challenges

 Graph streams processing: with goal to compute
properties of a graph without storing the entire graph.

 Compressing graphs: matching without
decompression is possible. Combining parallelism
with compressing or partitioning is also very inter-
esting.

Query Languages 2 60

Conclusions

 Technological trends:
 Usage of graphics processors (GPUs)

 Overcome the problem to run graphical DB on a single
machine

 parallelization of graph databases

 Usual question:

What to choose?
 There is no single answer: everything depends on how

the data will be used.

 If necessary, two separate persistence solutions can
coexist for each use case (polyglot persistence).

Query Languages 2 61

References

 Sasha et al: Algorithmics and Applications of Tree and Graph
Searching PODS’02

 Cypher: http://docs.neo4j.org/chunked/stable/cypher-query-
lang.html

 The Neo4j Documentation:

https://neo4j.com/docs/

 Pokorný, J., Snášel, V.: Big Graph Storage, Processing and
Visualization. Chapter 12 in: Graph-Based Social Media
Analysis, I. Pitas (Ed.), Chapman and Hall/CRC, pp. 403 – 430,
2015.

Query Languages 2 62

