
Query languages 2 (NDBI006)

Recursion in SQL

J. Pokorný

MFF UK

Query languages 2 – Recursion

Content

1. Introduction

2. Creating recursive queries

3. Recursive calculation

4. Recursive searching

5. Logical hierarchies

6. Recursion termination

7. Conclusion

2

Query languages 2 - Recursion

Recursion in SQL

 Intuitively: a query is recursive, if it is used in
its own definition.

 This connection can be both direct and over
more tables.

 Advantages: in certain cases the only
effective way for obtaining the result

 Disadvantages: often worse readability a
clarity

2

Query languages 2 - Recursion

Where to use recursion in SQL

 effective for any data with hierarchical structure

 relationships in tree structures

 search in cyclic and acyclic graphs

 examples from practice:

 search for connections in timetables

 organizational structure of a company

 bill of materials

 components in a document management system,

etc.

3

Query languages 2 - Recursion

You can get around without recursion

 SQL before the SQL:99 standard did not contain

a possibility to construct recursive queries,

 non-procedural solution: with adding certain

„graph information“,

 procedural solution: use of cursors, cycles,

 others: ORACLE: proprietary solution + PL/SQL,

 loss of efficiency and optimization

 code is not so „elegant“

4

Query languages 2 - Recursion

Application of recursion

 For graph traversal we obtain:

 reachability

Q1. Find all suborders of a given employee.

 path enumerating

Q2. Find the whole structure (all sub-products) for a

given product.

 path joining

Q3. For a given product list all its components and

including their amount.

5

Query languages 2 - Recursion

Other advantages and

disadvantages of recursion

 Advantages:

 all work is specified in one query

 It is possible to use a big part of the result

 Disadvantages

 if only the small part of the result is really used

 possibly endless recursion calls

6

Query languages 2 - Recursion

Content

1. Introduction

2. Creating recursive queries

3. Recursive calculation

4. Recursive searching

5. Logical hierarchies

6. Recursion termination

7. Conclusion

7

Query languages 2 - Recursion

Common Table Expression

 generalization of table expression in SQL:92

 declared by keyword WITH

 used as a substitute in nested queries

 ze SELECT, INSERT, UPDATE, DELETE

 queries immediate after WITH keyword are

called just once time

WITH [RECURSIVE] CTE [, CTE]…

CTE ::=name_CTE[(name_sl[,name_sl]…)] AS

(CTE_query_definition)

9

Query languages 2 - Recursion

Composition of aggregations –

without CTE

Q4: Find the forum with the highest number of
contributions

SELECT COUNT(ID) AS number, forum
FROM Contributions
GROUP BY forum
HAVING COUNT(ID) = (

SELECT MAX(number)
FROM (SELECT COUNT(ID) AS number, forum

FROM Contributions
GROUP BY forum)

Note: We are looking for MAX(COUNT(...))

Contributions(ID, forum, question)

10

Query languages 2 - Recursion

Composition of aggregations –

with CTE

WITH

Max_amount_of_contrib(number, forum)

AS (SELECT COUNT(ID), forum)

FROM Contributions

GROUP BY forum)

SELECT number, forum

FROM Max_amount_od_contrib

WHERE number = (SELECT MAX(number)

FROM Contrib_number)

11

Query languages 2 - Recursion

More CTEs in one query

WITH

Amount_of_contrib(number, forum)

AS (SELECT COUNT(ID), forum
FROM Contributions
GROUP BY forum),

Max_amount_of_contrib(number)

AS (SELECT MAX(number)
FROM Amount_of_contrib)

SELECT C1.*
FROM Amount_of_contrib C1 INNER JOIN

Max_amount_of_contrib C2 ON
C1.number = C2.number

Note: CTEs work in the same way as derived tables (given
by SELECT behind FROM)

12

Query languages 2 - Recursion

A movement to recursion

WITH Superiors(name, supID, empID) AS

(SELECT name, supID, empID

FROM Employees

WHERE function = 'manager'

)

SELECT * FROM Superiors

Q5.

name supID empID

Lomský 2 3

Bor 2 4
13

empID name function supID

1 Novák director NULL

2 Srb vice-director 1

3 Lomský manager 2

4 Bor manager 2

Query languages 2 - Recursion

Recursive queries

 It is possible to refer R in CTE for table R

 the temporary table is created (exists only during query
evaluation)

 three parts
WITH

anchoring (initialization subquery)

UNION ALL

recursive member
• recursion runs when no further record is added or the recursion

limit (MAXRECURSION) is not exceeded.

• be careful to cycle occurrence in the recursive member

SELECT
• outer SELECT - returns the query result

14

Query languages 2 - Recursion

Example
WITH RECURSIVE Superiors(name, supID, empID) AS

(SELECT name, supID, empID

FROM Employees

WHERE name = 'Nový'

UNION ALL

SELECT E.name, E.supID, E.empID

FROM Employees AS E

INNER JOIN

Superiors AS S

ON S.supID = E.empID)

SELECT * FROM Superiors

anchoring: executed only once

recursive member: repeatedly

join with the previous step

output

name supID empID

Nový 11 13

Ryba 6 11

Rak 5 6

Syka 4 5

Bor 2 4

Srb 1 2

Novák NULL 1

What was the query?

15

Query languages 2 - Recursion

Example
WITH RECURSIVE Superiors(name, supID, empID) AS

(SELECT name, supID, empID

FROM Employees

WHERE name = 'Nový'

UNION ALL

SELECT E.name, E.supID, E.empID

FROM Employees AS E

INNER JOIN

Superiors AS S

ON S.supID = E.empID)

SELECT * FROM Superiors

anchoring: executed only once

recursive member: repeatedly

join with the previous step

output

name supID empID

Nový 11 13

Ryba 6 11

Rak 5 6

Syka 4 5

Bor 2 4

Srb 1 2

Novák NULL 1

Q6.: Find all managers of employee
Nový (including himself).

16

Query languages 2 - Recursion

Restrictions of recursive queries

 It is not allowed to refer CTE in anchor

 Recursive part always self-refers CTE
 SQL:99 supports only "linear" recursion: each FROM has at most one

reference to recursively defined relation.

 Recursive part must not contain

 SELECT DISTINCT

 GROUP BY

 HAVING

 scalar aggregation

 TOP

 OUTER JOIN
 each column in recursive subquery has to be type-compatible with

associated column in initialization subquery
 type conversion – CAST can be used

17

Query languages 2 - Recursion

Content

1. Introduction

2. Creating recursive queries

3. Recursive calculation

4. Recursive searching

5. Logical hierarchies

6. Recursion termination

7. Conclusion

18

Query languages 2 - Recursion

Recursive calculation

Q7. Which parts (including their amounts) are

necessary to construct a plane wing.

19

landing gear

rivet
hinge

wing flap

wing

wing strut

4

3
5

10

1 15

100

2

8

Query languages 2 - Recursion

Recursive calculation

 simplified storing in DB (relation Components) with

quantities of particular parts in a part
Part Subpart Qty

wing wing strut 5

wing wing flap 1

wing landing gear 1

wing rivet 100

wing strut rivet 10

wing flap hinge 2

wing flap rivet 5

landing gear hinge 3

landing gear rivet 8

hinge rivet 4

20

Query languages 2 - Recursion

Recursive calculation – queries

Q8. How many rivets are used to construct

a plane wing?

Q9. List of all subparts for creating a plane

wing including their amount.

21

Query languages 2 - Recursion

Recursive calculation – solution

 What we have to be aware of?

 recursion calling (graph walking)

 to sum amounts of rivets in individual parts

 amounts of individual sub-parts

22

Query languages 2 - Recursion

Recursive calculation – Q8

 CTE

WITH RECURSIVE WingParts(Subpart, Qty)
AS

((SELECT Subpart, Qty

FROM Components

WHERE Part = ‘wing’)

UNION ALL

(SELECT C.Subpart, W.Qty * C.Qty

FROM WingParts W, Components C

WHERE W.Subpart = C.Part));

[initialization
subquery]

[recursive
subquery]

 result

Subpart Qty

wing strut 5 directly

wing flap 1

landing

gear

1

rivet 100

rivet 50 from wing strut

hinge 2 from wing flap

rivet 5 from wing flap

hinge 3 from landing gear

rivet 8 from landing gear

rivet 8 from hinge of wing falp

rivet 12 from hinge of landing

gear

23

Query languages 2 - Recursion

Recursive calculation – Q8

 finally we summarize particular quantities

WITH RECURSIVE WingParts(Subpart, Qty) AS

((SELECT Subpart, Qty

FROM Components

WHERE Part = ‘wing’)

UNION ALL

(SELECT C.Subpart, W.Qty * C.Qty

FROM WingParts W, Components C

WHERE W.Subpart = C.Part))

SELECT sum(Qty) AS Qty

FROM WingParts

WHERE Subpart = ‘rivet’;

Result

Qty

183

24

Query languages 2 - Recursion

Recursive calculation – Q9

 To solve Q9 it is enough to change only the result query
WITH RECURSIVE WingParts(Subpart, Qty) AS

((SELECT Subpart, Qty

FROM Components

WHERE Part = ‘wing’)

UNION ALL

(SELECT C.Subpart, W.Qty * C.Qty

FROM WingParts W, Components C

WHERE W.Subpart = K.Part))

SELECT Subpart, sum(Qty) AS Qty

FROM WingParts

GROUP BY Subpart;

Result

Subpart Qty

wing strut 5

wing flap 1

landing gear 1

hinge 5

rivet 183

25

Query languages 2 - Recursion

Syntax of tree traversal v Oracle 9i

SELECT columns FROM table

[WHERE condition3]

start WITH condition1

CONNECT BY condition2

[ORDER BY …]

 Rows satisfying the condition in start WITH are considered

as root rows on the first level of nesting

 For each row at level i, direct descendants fulfilling

condition in clause CONNECT BY at level i+1 are looked

for recursively.

 Ancestor row in the condition is denoted by the key word PRIOR

26

Query languages 2 - Recursion

Syntax of tree traversal v Oracle 9i

 Finally, there are removed rows not satisfying

the WHERE clause.

 If sorting is not defined, the order corresponds

to the pre-order traversal.

 Each row contains the pseudocolumn LEVEL

containing the row level in hierarchy.

27

Query languages 2 - Recursion

Oracle 9i vs. SQL:99

 Oracle 9i:
SELECT LPAD(’ ’, 2*Level) || name, Level
FROM Emp
start WITH manager IS NULL
CONNECT BY manager = PRIOR empID;

 SQL:99
WITH RECURSIVE Emp1 AS (

SELECT x.name AS name, 0 AS Level
FROM Emp x WHERE manager IS NULL

UNION ALL
SELECT y.name, Level+1
FROM Emp y JOIN Emp1 ON y.manager =

Emp1.empID)
SELECT * FROM Emp1;

Emp(empID, name, manager)

Inserts 2*Level

spaces

28

Query languages 2 - Recursion

Oracle 9i vs. SQL:99

Data

Novák

Srb

Lomský

Bor

Effect of LPAD
function

29

Query languages 2 - Recursion

Recursion support in other DBMS

 Yes: IBB DB2, Microsoft SQL Server,
PostgressSQL

 No: MySQL

30

Query languages 2 - Recursion

Content

1. Introduction

2. Creating recursive queries

3. Recursive calculation

4. Recursive searching

5. Logical hierarchies

6. Recursion termination

7. Conclusion

31

Query languages 2 - Recursion

Recursive searching

 Effort to find the best solution based on certain

criteria of the given problem.

 Example:

Let us consider an airport departure system and a

client who wants to travel from San Francisco to New

York with the lowest cost.

32

Query languages 2 - Recursion

Recursive searching – example

 route map (including costs for the flight):

33

Query languages 2 - Recursion

Recursive searching – example

 several possible paths (in different colours):

34

Query languages 2 - Recursion

Recursive searching – example

 The table of Flights

Q10. Find the lowest cost path from San
Francisco to New York.

Problem: the flight map is not an acyclic graph –
we have to solve the stopping of recursion.

flightno start destination cost

xxx01 SF CHG 275

xxx02 SF DLS 300

…

35

Query languages 2 - Recursion

Recursive searching – 1. solution

 Temporary table used in CTE is called Trips

 the subquery with all directly (one-flight) reachable

destinations from San Francisco will be the anchor of

the query

 the recursive part of the query will find others (two or

more flights) destinations

36

Query languages 2 - Recursion

Recursive searching – 1. solution

WITH RECURSIVE Trips (destination, route, totalcost) AS

((SELECT destination, destination, cost

FROM Flights

WHERE start = 'SF')

UNION ALL

(SELECT l.destination

v.route || ',' || l.destination, v.totalcost + l.cost

FROM Trips v, Flights l

WHERE v.destination = l.start))

SELECT route, totalcost

FROM Trips

WHERE destination = 'NY';

Where is the problems?

- We add a longer expression to
the route column

- We are in endless loop.

37

Query languages 2 - Recursion

Recursive searching – 1. solution +

correction

 Violation of the rule, that the value in the column of the
recursive subquery must not be longer in the corresponding
column of the initialization subquery (anchor):

Solution:
 We change data type in both subqueries (initialization and recursive) to

VARCHAR(50)

 This is done by the CAST expression.

 Function CAST

Examples:

CAST (c1 + c2 AS Decimal(8,2))

CAST (name||address AS Varchar(255))
 longer string is completed with spaces

 shorter string is cut and returns a warning

CAST (expression AS data_type)

38

Query languages 2 - Recursion

Recursive searching – 1. solution +

correction

 Problem of looping

Solution:

 We will not take into account flights from the start, i.e.

from San Francisco

 We will not take into account flights from the

destination, i.e. from New York

 We are only interested in flights with a maximum 2

stages

39

Query languages 2 - Recursion

Recursive searching – final solution

WITH RECURSIVE Trips (destination, route, #flights, totalcost) AS

((SELECT destination, CAST(destination AS Varchar(50)), 1, cost

FROM Flights

WHERE start = 'SF'

UNION ALL

(SELECT l.destination, CAST(v.route || ',' || l.destination AS Varchar(50)),
v. #flights + 1, v.totalcost + l.cost

FROM Trips t, Flights f

WHERE t.destination = f.start

AND f.destination <> 'SF'

AND f.start <> 'NY'

AND t. #flights < 2))

SELECT route, totalcost

FROM Trips

WHERE destination = 'NY ' AND totalcost=(SELECT min(totalcost)

FROM Trips

WHERE destination='NY');

Result

route totalcost

DLS, NY 525

CHG,NY 525

40

Query languages 2 - Recursion

Content

1. Introduction

2. Creating recursive queries

3. Recursive calculation

4. Recursive searching

5. Logical hierarchies

6. Recursion termination

7. Conclusion

41

Query languages 2 - Recursion

Classification of hierarchies

 by graph properties

 convergent

 divergent

 recursive

 by balance

 balanced

• all leafs on the same level

• on each level different objects (e.g., geographical structure)

 unbalanced

• leafs at different levels

• uniform objects (e.g. organizational structure)

 Problem: representation by relations
42

Query languages 2 - Recursion

 each node except the root has exactly one
parent

Ex.: geographical hierarchies
• continent, state, town, street

 implementation

 Edge (PKEY, KEYO)

 primary key KEYO

 table with referential

integrity PKEY KEYO

Divergent hierarchies

43

Query languages 2 - Recursion

Convergent hierarchies

 Each object can have arbitrary number of
ancestors and descendants

Ex.: Departments of company

 Define the result of query
Q11. How many descendants has “AAA”?

• 6, 7, 8?

 Implementation
 table of objects

 table of relationships

44

Query languages 2 - Recursion

Recursive hierarchies

 similar to convergent ones
 Moreover: a node can be its ascendant (directly or

indirectly)

 Example: supervisor-subordinate vs. project manager
and director as a team member

 they cause cycling

 in practice, their use is mostly conflicting

 implementation
 as convergent ones

45

Query languages 2 - Recursion

Content

1. Introduction

2. Creating recursive queries

3. Recursive calculation

4. Recursive searching

5. Logical hierarchies

6. Recursion termination

7. Conclusion

46

Query languages 2 - Recursion

Recursion termination

 How remove cycling in recursive
hierarchies?

 Possibilities of stopping the recursion

 QB Server
• V MS SQL after reaching the value

MAXRECURSION (default 100)

 after reaching a given level

 to remember the path and omit already
visited nodes

47

Query languages 2 - Recursion

Problem: recursive hierarchies

PKEY CKEY

AAA BBB

AAA CCC

AAA DDD

CCC EEE

DDD AAA

DDD FFF

DDD EEE

FFF GGG

AAA

BBB CCC DDD

EEE FFF

GGG

table RH

Q12. Find all descendants AAA until level 4
48

Query languages 2 - Recursion

Stopping after reaching nth level

(attribute LVL)

 What to do with duplicates in result?

WITH RECURSIVE PARENT(CKEY, LVL) AS

(SELECT DISTINCT PKEY, 0

FROM RH

WHERE PKEY = 'AAA'

UNION ALL

SELECT H.CKEY, R.LVL+1

FROM RH H, PARENT P

WHERE P.CKEY = H.PKEY

AND P.LVL + 1 < 4

)

SELECT CKEY, LVL

FROM PARENT;

N = 4

49

Query languages 2 - Recursion

Shift away the duplicates (using 2

CTE)

WITH RECURSIVE PARENT(CKEY, LVL) AS

(SELECT DISTINCT PKEY, 0

FROM RH

WHERE PKEY = 'AAA'

UNION ALL

SELECT H.CKEY, R.LVL+1

FROM RH H, PARENT R

WHERE P.CKEY = H.PKEY

AND P.LVL + 1 <4

),

WITHOUT_DUPL(CKEY, LVL, NUM) AS

(SELECT CKEY, MIN(LVL), COUNT(*)

FROM PARENT

GROUP BY CKEY)

SELECT CKEY, LVL, NUM

FROM WITHOUT _DUPL
50

Query languages 2 - Recursion

Ommiting already visited nodes

WITH PARENT (CKEY, LVL, PATH) AS

(SELECT DISTINCT PKEY, 0, VARCHAR(PKEY, 20)

FROM RH

WHERE PKEY = ‘AAA‘

UNION ALL

SELECT H.CKEY, P.LVL + 1,

P.PATH || ‘>‘ || H.CKEY

FROM RH H, PARENT R

WHERE P.CKEY = H.PKEY

AND

LOCATE(H.CKEY || ‘>‘, P.PATH) = 0

)

SELECT CKEY, LVL, PATH

FROM PARENT;

Result

CKEY LVL PATH

AAA 0 AAA

BBB 1 AAA>BBB

CCC 1 AAA>CCC

DDD 1 AAA>DDD

EEE 2 AAA>CCC>EEE

EEE 2 AAA>DDD>EEE

FFF 2 AAA>DDD>FFF

GGG 3 AAA>DDD>FFF>GGG

returns the position of

pattern in argument

51

Query languages 2 - Recursion

Stack vs. recursion

 Problem: how effectively implement recursion –

join repeating can lead to that things being

calculated repeatedly

 Recursion can be simulated using a stack.

 Stack model is faster than CTE
 It is usable only for querying hierarchical data

52

Query languages 2 - Recursion

Example

Vehicles(Id, parentID, name)

Id parentID name

1 NULL ALL

2 1 sea

3 1 earth

4 1 air

5 2 submarine

6 2 boat

7 3 car

8 3 two-wheeled

9 3 truck

10 4 rocket

11 4 plain

12 8 motorcycle

13 8 bicycle

53

Query languages 2 - Recursion

Example

ALL

sea
earth

air

submarine boat car rocket plain
two-

wheeled

motor-
cycle

bicycle

truck

54

Query languages 2 - Recursion

Ancestors without recursion (1)

 Can recursion be removed? YES, using

the stack.

 We add 2 new columns to the table

Vehicles: R_bound and L_bound

 Their values are based on the numbering

that occurs through the preorder tree

traversal.

55

Query languages 2 - Recursion

Ancestors without recursion (2)

 We fill the table with the data, i.e., for new

columns:

UPDATE Vehicles SET L_bound = 1 , R_bound = 26 WHERE

ID = 1

UPDATE Vehicles SET L_bound = 2 , R_bound = 7 WHERE

ID = 2

…

UPDATE Vehicles SET L_bound = 12 , R_bound = 13

WHERE ID = 12

UPDATE Vehicles SET L_bound = 14 , R_bound = 14
WHERE ID = 13

56

Query languages 2 - Recursion

Ancestors - without recursion (3)

ALL

sea
earth

air

submarine boat car rocket plain
two-

wheeled

motor-
cycle

bicycle

truck

1,26

2,7 8,19 20,25

3,4 5,6 9,10

12,13 14,15

17,18 21,22 23,2411,16

57

Query languages 2 - Recursion

Example
Id parentID name L_bound R_bound

1 NULL ALL 1 26

2 1 sea 2 7

3 1 earth 8 19

4 1 air 20 25

5 2 submarine 3 4

6 2 boat 5 6

7 3 car 9 10

8 3 two-wheeled 11 16

9 3 truck 17 18

10 4 rocket 21 22

11 4 plain 23 24

12 8 motorcycle 12 13

13 8 bicycle 14 15
58

Query languages 2 - Recursion

Ancestors - without recursion (4)

Query for ancestors of motorcycle uses

intervals.

SELECT *

FROM Vehicles

WHERE R_bound > 12

AND L_bound < 13

59

Query languages 2 - Recursion

Example
Id parentID name L_bound R_bound

1 NULL ALL 1 26

2 1 sea 2 7

3 1 earth 8 19

4 1 air 20 25

5 2 submarine 3 4

6 2 boat 5 6

7 3 car 9 10

8 3 two-wheeled 11 16

9 3 truck 17 18

10 4 rocket 21 22

11 4 plain 23 24

12 8 motorcycle 12 13

13 8 bicycle 14 15

60

