Query languages 2 (NDBI006) Expressive power - Part 1

J. Pokorný MFF UK

Content of the course

1. Three semantics of domain relational calculus (DRC). Definite and safe formulas of DRC. Proof of the equivalence of the relational algebra (RA) and DRC restricted to definite formulas.
2. Proofs of equivalence of query languages.
3. Transitive closure of a binary relation. Impossibility to express it in relational algebra.
4. Composition of RA expressions, the least fixpoint approach, minimal fixpoint.
5. Datalog language - its three possible semantics. Evaluation of a Datalog program without recursion.
6. Evaluation of a Datalog program with recursion - naïve evaluation, method of differences.
7. Datalog with negation. Stratified Datalog
8. Expressive power of Datalog. A relationship of Datalog to other relational languages.
9. Logical problems of information systems.

Content of the course

10. Recursive SQL.
11. Graph Databases
12. Tableau query as visual query interface for e-shops, conjunctive query containment and homomorphism theorem.
13. Tableau query with inequality for e-shops
14. Tableau query and algorithmic complexity of query inclusion.
15. Formal framework for transferability of querying models
16. Datalog with recursion and functional symbols.
17. Datalog with recursion and functional symbols - completeness.

DRC semantics (1)

Assumptions: query expressions $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}} \mid \mathrm{A}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)\right\}, A$ is a DRC formula, database \mathbf{R}^{*}, dom is domain for \mathbf{R}; actual domain of formula A, $\operatorname{adom}(A)$, is a set of values from relations in A and constants in A.
Three problems:

* potential possibility of infinite answer (in the case of infinite dom)
* situation, when TRUE-assignment of free variables is not from R^{*}.
* how to implement evaluation of a quantification (in the case of infinite dom) in a finite time.

DRC semantics (2)

3 semantics of DRC, solving the problems:
(i) unlimited interpretation with restricted output
(ii) limited interpretation
(iii) domain-independent queries

Notation: result of a query Q evaluation in the unlimited interpretation as $Q^{\operatorname{dom}}\left[\mathbf{R}^{*}\right]$.
Then:

* for (i) the result is defined as $Q^{\operatorname{dom}}\left[\mathbf{R}^{*}\right] \cap$ adom ${ }^{k}$, where k is řád resulted relation.
* for (ii) variables ranges over adom, i.e. $Q^{\text {adom }}\left[\mathbf{R}^{*}\right]$.

DRC semantics (3)

Q.: $\{x \mid \neg R(A: x)\}$
\Rightarrow The answer depends on $\operatorname{dom}(A)$.
\Rightarrow Query expression defines different queries for each different domain.
Remark: A query, returning \varnothing, can be domain dependent in the case the quantified variable ranges over an infinite set, e.g.
Q.: $\{x \mid \forall y R(x, y)\}$

Df.: We say that a query expression is domain-independent (definite) if the answer to it does not depend on dom.
Query language is domain-independent, if each its expression is domain-independent. The result of Q is equal to $Q^{d o m}\left[R^{*}\right]=$ $Q^{\text {adom }}\left[R^{\prime \prime}\right]$.

DRC semantics LOAN(C Number, Cust Number, DueDate)

\Rightarrow evaluation of a domain independent expression in unlimited interpretation returns the same result as in restricted interpretation.
Ex.: $\quad \neg \mathrm{BOOK}$ (TITLE:'Introduction to DBS', AUTHOR:a) IS NOT definite.
$\exists \mathrm{cn}(\operatorname{COPY}(\mathrm{cn}, \mathrm{i}) \wedge \operatorname{LOAN}(\mathrm{cn}, \mathrm{b}, \mathrm{dd}))$
IS definite
$\exists \mathrm{cn}(\mathrm{COPY}(\mathrm{cn}, \mathrm{d}) \vee \operatorname{LOAN}(\mathrm{cn}, \mathrm{b}, \mathrm{dd}))$
IS NOT definite, if variables are untyped or of too "wide" types
Theorem (Di Paola 1969): Definiteness of A is not decidable.
\Rightarrow The language of domain-independent expressions is not decidable.
Remark: Relational algebra is a domain-independent language.

DRC semantics (5)

Notation of DRC:

* in unlimited interpretation with restricted output DRCrout,
* in limited interpretation DRC ${ }^{\text {lim }}$
* domain independent expressions DRCind.

Statement: $\mathrm{DRC}^{\text {rout }} \cong \mathrm{DRC}^{\text {lim }} \cong \mathrm{DRC}{ }^{\text {ind }}$. Moreover,
(i) if Q is a DRC expression, then there is a domain independent expression Q', which after evaluation returns the same result as Q in unlimited interpretation with restricted output.
(ii) if Q is a DRC expression, then there is a domain independent expression Q ', which after evaluation returns the same result as Q in limited interpretation.

DRC semantics (6)

Proof (sketch): trivially DRCrout and DRC ${ }^{\text {lim }}$ are at least so powerful as $\mathrm{DRC}^{\text {ind }}$, i.e. $\mathrm{DRC}^{\text {ind }}<\mathrm{DRC}^{\text {lim }}$ and $\mathrm{DRC}^{\text {rout }}<\mathrm{DRC}^{\text {lim }}$

* We show a power of DRClim

If $Q \in D^{*} C^{\text {ind }}$, then it returns $Q^{\text {dom }}\left[\mathbf{R}^{*}\right]$, přičemž $Q^{\text {dom }}\left[\mathbf{R}^{*}\right]=$ $Q^{\text {adom }}\left[\mathbf{R}^{*}\right]$.
Let $Q \in D R C$. Then it is possible to construct $Q^{‘}$ so that all free and bound variables in the formula of query $Q^{‘}$ are restricted to the active domain. Then $D^{‘ a d o m}\left[\mathbf{R}^{*}\right]=D^{\text {adom }}\left[\mathbf{R}^{*}\right]$. Expression $Q^{\text {‘ }}$ is however domain independent, so DRC ${ }^{\text {lim }}<D R C^{\text {ind }}$. We also demonstrated the (ii) part of the statement. Thus $\mathrm{DRC}^{\text {lim }} \cong$ DRC ${ }^{\text {ind }}$.

* It holds, that DRCrout is more powerful than DRClim. A proof of (i) is technically more complicated (see [Hull and Su 94]).

Safe formulas in DRC

Df.: A safe DRC formula, A, is a DRC formula, which is definite and syntactically characterizable.

1. \forall, \Rightarrow are eliminated
2. if A contains a disjunction, then is it is a subformula $\varphi_{1}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{s}}\right) \vee \varphi_{2}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{s}}\right)$,
i.e. φ_{i} contain the same free variables,
3. if A contains a conjunction (maximal), e.g.,
$\varphi \equiv \varphi_{1} \wedge \ldots \wedge \varphi_{r}, r \geq 1$, then each free variable in φ is limited, i.e., at least one of the following conditions holds:
$>$ A variable is free in φ_{i}, which is neither arithmetic comparison and nor negation,
$>$ there is $\varphi_{i} \equiv x=a$, where a is a constant,
$>$ there is $\varphi_{i} \equiv x=y$, where y is limited.

Safe formulas in DRC

4. \neg can be used only in conjunctions of type 3.

Remarks:

* Any safe formula is definite.
* There are definite formulas which are not safe.

Ex.:
$x=y$ IS NOT safe
$x=y \vee R(x, y)$ IS NOT safe
$x=y \wedge R(x, y)$ IS safe
$R(x, y, z) \wedge \neg(P(x, y) \vee Q(y, z))$ IS NOT safe, is definite. $R(x, y, z) \wedge \neg P(x, y) \wedge \neg Q(y, z)$ IS safe!

Equivalence of relational languages

4 approaches:

* domain relational calculus (DRC)
* tuple relational calculus (NRC)
* relational algebra $\left(A_{R}\right)$
* DATALOG

We prove: $\mathrm{DRC} \cong A_{R}$
Lemma: Let φ be a Boolean expression created by using \neg, \wedge, \vee and simple selections $\mathrm{X} \theta \mathrm{Y}$ or $\mathrm{X} \theta k$, where $\theta \in\{\leq, \geq, \neq,<,>,=\}, k$ is constant and X, Y are attribute names. Then for $E(\varphi)$, where E $\in A_{R}$, there is a relational expression E^{\prime}, whose each selection is simple and $E(\varphi) \cong E^{\prime}$.
Proof: 1. each \neg is propagated to a simple selection and θ is replaced by its negation.

Equivalence of relational languages

2. by induction on the number of operators \wedge, \vee.
for \varnothing of operators - trivial
$E(\varphi) \equiv E\left(\varphi_{1} \wedge \varphi_{2}\right)$ and E contains at most selections, which are simple. Then $\mathrm{E}(\varphi) \equiv \mathrm{E}\left(\varphi_{1}\right)\left(\varphi_{2}\right)$.
$E(\varphi) \equiv E\left(\varphi_{1} \vee \varphi_{2}\right)$ and E contains at most selections, which are simple. Then $E(\varphi) \equiv E\left(\varphi_{1}\right) \cup E\left(\varphi_{2}\right)$.
$E x .: E \equiv R\left(\neg\left(A_{1}=A_{2} \wedge\left(A_{1}<A_{3} \vee A_{2} \leq A_{3}\right)\right)\right)$
then $\varphi \equiv A_{1} \neq A_{2} \vee\left(A_{1} \geq A_{3} \wedge A_{2}>A_{3}\right)$
and $E^{\prime} \equiv R\left(A_{1} \neq A_{2}\right) \cup R\left(A_{1} \geq A_{3}\right)\left(A_{2}>A_{3}\right)$

From relational algebra to DRC

Theorem: Each query expressible in A_{R} is expressible in DRC.
Proof: by induction on the number of operators in relational expression E.

1. \varnothing operators in E.
$\mathrm{E} \equiv \mathrm{R} \rightarrow\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}} \mid R\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)\right\}$
$\mathrm{E} \equiv$ const. relation $\rightarrow\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}} \mid \mathrm{x}_{1}=\mathrm{a}_{1} \wedge \ldots \wedge \mathrm{x}_{\mathrm{k}}=\mathrm{a}_{\mathrm{k}} \vee\right.$

$$
\left.x_{1}=b_{1} \wedge \ldots \wedge x_{k}=b_{k} \vee \ldots\right\}
$$

2. $E \equiv E_{1} \cup E_{2}$ by the induction hypothesis there are formulas e_{1} and e_{2} with free variables x_{1}, \ldots, x_{k}

$$
\rightarrow\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}} \mid \mathrm{e}_{1}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right) \vee \mathrm{e}_{2}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)\right\}
$$

From relational algebra to DRC

3. $E \equiv E_{1}-E_{2}$

$$
\rightarrow\left\{x_{1}, \ldots, x_{k} \mid e_{1}\left(x_{1}, \ldots, x_{k}\right) \wedge \neg e_{2}\left(x_{1}, \ldots, x_{k}\right)\right\}
$$

4. $\mathrm{E} \equiv \mathrm{E}_{1}\left[\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{k}}\right]$

$$
\rightarrow\left\{\mathrm{x}_{\mathrm{i} 1}, \ldots, \mathrm{x}_{\mathrm{ik}} \mid \exists \mathrm{x}_{\mathrm{j} 1}, \ldots, \mathrm{x}_{\mathrm{j}(\mathrm{n}-\mathrm{k})} \mathrm{e}_{1}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right\}
$$

5. $\mathrm{E} \equiv \mathrm{E}_{1} \times \mathrm{E}_{2}$

$$
\xrightarrow{\rightarrow}\left\{x_{1}, \ldots, x_{m} x_{m+1}, \ldots, x_{m+n} \mid e_{1}\left(x_{1}, \ldots, x_{m}\right) \wedge e_{2}\left(x_{m+1}, \ldots, x_{m+n}\right)\right\}
$$

6. $E \equiv E_{1}(\varphi)$

$$
\begin{gathered}
\left.\rightarrow\left\{x_{1}, \ldots, x_{k} \mid e_{1}\left(x_{1}, \ldots, x_{k}\right) \wedge x_{A} \theta x_{B}\right)\right\} \text {, if } \varphi \equiv A \theta B \\
\text { or } \\
x_{A} \theta a
\end{gathered} \text { if } \varphi \equiv A \theta a
$$

By lemma, it is enough, when φ denotes a simple selection.

Semantic definition of definite formulas

Sufficient conditions for definite formulas A :

1. components of TRUE-assignment of A are from $\operatorname{adom}(A)$.
2. if $A^{\prime} \equiv \exists y \varphi(y)$, then if for a y_{0} $\varphi\left(y_{0}\right) \Leftrightarrow$ TRUE, then $\mathrm{y}_{0} \in \operatorname{adom}(\varphi)$.
3. if $A^{\prime} \equiv \forall \mathrm{y} \varphi(\mathrm{y})$, then if for a y_{0}

$$
\varphi\left(\mathrm{y}_{0}\right) \Leftrightarrow \operatorname{FALSE}, \text { then } \mathrm{y}_{0} \in \operatorname{adom}(\varphi) .
$$

Remark: 2. and 3. holds for any allowable values of free variables in φ (except y).
Remark: explanation of condition 3.
$\forall y \varphi(y) \Leftrightarrow \neg \exists y \neg \varphi(y)$
\Rightarrow if for a $\mathrm{y}_{0} \neg \varphi\left(\mathrm{y}_{0}\right) \Leftrightarrow$ TRUE, then by 2., $\mathrm{y}_{0} \in \operatorname{adom}(\neg \varphi)$.

Semantic definition of definite formulas

Since $\operatorname{adom}(\neg \varphi)=\operatorname{adom}(\varphi)$, then

$$
\varphi\left(\mathrm{y}_{0}\right) \Leftrightarrow \text { FALSE } \Rightarrow \mathrm{y}_{0} \in \operatorname{adom}(\varphi) .
$$

Statement: Elimination of \forall and \wedge from a definite formula leads to a definite formula as well.

From DRC to relational algebra

Statement: Each query expressible by a definite expression of DRC is expressible in A_{R}.
Proof: by induction on the number of operators in A of the definite expression $\left\{x_{1}, \ldots, x_{k} \mid A\left(x_{1}, \ldots, x_{k}\right)\right\}$

* We express adom (A) as expression A_{R}. We denote it as E .
* W alter A, that it contains only \exists, \vee, \neg.
* The proof will be done for $\operatorname{adom}(\mathrm{A})^{\mathrm{k}} \cap\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}} \mid \mathrm{A}^{\prime}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)\right\}$. When $A^{\prime} \equiv A$ and A is definite, \cap leads to expression (+).
By induction:

1. \varnothing of operators in A^{\prime}. Then A^{\prime} is atomic formula.
$x_{1} \theta x_{2} \rightarrow(E \times E)(1 \theta 2)$
$x_{1} \theta a \rightarrow E(1 \theta a)$
$\underset{\text { ry languages } 2}{R\left(x_{1}, \ldots, x_{m}\right)} \underset{\text { Expressive power } 1}{R}\left(\ldots \wedge i_{1} \theta i_{2} \wedge \ldots\right)\left[\ldots, i_{1}, \ldots\right]$, when, e.g., $x_{i 1}=x_{i 2}$

From DRC to relational algebra

2. A' has at least one operator and the induction hypothesis holds for all subformulas from A^{\prime} with less operators than A^{\prime}.
$>A^{\prime}\left(u_{1}, \ldots, u_{m}\right) \equiv A^{1}\left(u_{1}, \ldots, u_{n}\right) \vee A^{2}\left(u_{1}, \ldots, u_{p}\right)$. Then for expressions $\operatorname{adom}(\mathrm{A})^{\mathrm{m}} \cap\left\{\underline{u} \mid \mathrm{A}^{\mathrm{i}}(\underline{\mathrm{u}})\right\}$ there are relational expressions E_{i}.
Transformation leads to \cup.
Ex.: $A^{\prime}\left(u_{1}, u_{2}, u_{3}, u_{4}\right) \equiv A^{1}\left(u_{1}, u_{3}, u_{4}\right) \vee A^{2}\left(u_{2}, u_{4}\right)$
$\rightarrow\left(E_{1} \times E\right)[1,4,2,3] \cup\left(E_{2} \times E \times E\right)[3,1,4,2]$
$>A^{\prime}\left(u_{1}, \ldots, u_{m}\right) \equiv \neg A^{1}\left(u_{1}, \ldots, u_{m}\right)$. Then for expression $\operatorname{adom}(A)^{m} \cap\left\{\underline{u} \mid A^{1}(\underline{u})\right\}$ there is a relational expression E_{1}. Transformation leads to -, i.e. $E^{m}-E_{1}$
$>A^{\prime}\left(u_{1}, \ldots, u_{m}\right) \equiv \exists u_{m+1} A^{1}\left(u_{1}, \ldots, u_{m}, u_{m+1}\right)$. Then for expression adom $(A)^{m+1}$ $\cap\left\{\underline{u} \mid \mathrm{A}^{1}(\underline{u})\right\}$ there is a relational expression E_{1}. Transformation leads to [], i.e. $\mathrm{E}_{1}[1,2, \ldots, \mathrm{~m}]$.
If $A^{\prime} \equiv A$, then the answer is not changed.

From DRC to relational algebra

Ex. $\{\mathrm{w}, \mathrm{x} \mid \mathrm{R}(\mathrm{w}, \mathrm{x}) \wedge \forall \mathrm{y}(\neg \mathrm{S}(\mathrm{w}, \mathrm{y}) \wedge \neg \mathrm{S}(\mathrm{x}, \mathrm{y}))\}$ is a definite expression. Justification: $\operatorname{dom}(\neg S(w, y) \wedge \neg S(x, y))=\operatorname{dom}(S)$ Let $y_{0} \notin \operatorname{dom}(S)$. Then $\neg S\left(w, y_{0}\right) \wedge \neg S\left(x, y_{0}\right) \Leftrightarrow T R U E$.
So, the condition 3 from sufficient conditions is fulfilled
Eliminating \wedge and \forall, we obtain the definite expression:

$$
\{\mathrm{w}, \mathrm{x} \mid \neg(\neg \mathrm{R}(\mathrm{w}, \mathrm{x}) \vee \exists \mathrm{y}(\mathrm{~S}(\mathrm{w}, \mathrm{y}) \vee \mathrm{S}(\mathrm{x}, \mathrm{y}))\}
$$

Transformation:

$$
\begin{aligned}
& S(w, y) \vee S(x, y) \rightarrow(S \times E)[1,3,2] \cup(S \times E)[3,1,2] \\
& \exists y(-"-\quad) \rightarrow(-"-\quad)[1,2] \text { we denote as } E^{\prime}
\end{aligned}
$$

Remark: E' can be optimized as $(S \times E)[1,3] \cup(S \times E)[3,1]$

$$
\begin{aligned}
& \neg \mathrm{R}(\mathrm{w}, \mathrm{x}) \rightarrow \mathrm{E}^{2}-\mathrm{R} \\
& \neg \mathrm{R}(\mathrm{w}, \mathrm{x}) \vee \exists \mathrm{y}\left(\mathrm{~S}(\mathrm{w}, \mathrm{y}) \vee \mathrm{S}(\mathrm{x}, \mathrm{y}) \rightarrow\left(\mathrm{E}^{2}-\mathrm{R}\right) \cup \mathrm{E}^{\prime}\right. \\
& \neg\left(-{ }^{\prime \prime}-\quad\right) \rightarrow \mathrm{E}^{2}-\left(\left(\mathrm{E}^{2}-\mathrm{R}\right) \cup \mathrm{E}^{\prime}\right)
\end{aligned}
$$

From DRC to relational algebra

Problem: the result leads to a non-effective evaluation
Optimization:
Let \underline{X} denote the complement of X w.r.t. E.
It holds: $\underline{X \cup Y}=\underline{X} \cap \underline{Y}$

$$
\begin{aligned}
& \Rightarrow E^{2}-\left(\left(E^{2}-R\right) \cup E^{\prime}\right)=\left(E^{2}-\left(E^{2}-R\right)\right) \cap\left(E^{2}-E^{\prime}\right) \\
& \quad= \\
& R \cap E^{\prime}=R-E^{\prime} \\
& \text { Visualization: }
\end{aligned}
$$

Expressive power of DRC $\left(A_{R}\right)$

Q.: Find all subordinates of Smith.

Expressive power of DRC $\left(A_{R}\right)$

Q.: Find all subordinates of Smith.

Query transitive closure (0)

Notions:
Df.: Binary relation R is transitive, if for each $(a, b) \in R$ and (b,c) \in R also $(a, c) \in R$.
Df.: Transitive closure of the relation $\mathrm{R}, \mathrm{R}^{+}$, is least transitive relation containing R.
Database notions: relation schema R, relation R^{*}
Ex.: SUP-SUB(Superior, Subordinate) reflects transitive relationships on a conceptual level. SUP-SUB* contains only direct relationships, e.g. (Jamal, Smith), (Fox, Chrom), ...
Goal: calculate transitive closure of the relation SUP-SUB*
Assumption: We will consider relations, which are transitive on a conceptual level.

Query transitive closure (1)

Statement: Let R be a binary relation schema. Then there is no expression A_{R}, calculating for each relation R^{*} its transitive closure R^{+}.
Proof:

1. Consider $\Sigma_{\mathrm{s}}=\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{s}}\right\}, \mathrm{s} \geq 1$, as a set of constants, for which no ordering exists, and

$$
R_{s}=\left\{a_{1} a_{2}, a_{2} a_{3}, \ldots, a_{s-1} a_{s}\right\}
$$

Remark: $R_{s} \Leftrightarrow$ graph $a_{1} \rightarrow a_{2} \rightarrow \ldots \rightarrow a_{s}$, i.e., transitivity is defined by connectivity in a directed graph.
Remark: if an ordering < is defined on Σ_{s}, then

$$
R_{s}^{+} \cong\left(R_{s}[1] \times R_{s}[2]\right)(1<2)
$$

2. We show, that for arbitrary expression $E(R)$ there is s such, that $E\left(R_{s}\right) \neq R_{s}{ }^{+}$.

Query transitive closure (2)

3. Lemma: Let E be a relational algebra expression. Then for sufficiently big s

$$
E\left(R_{s}\right) \cong\left\{b_{1}, \ldots, b_{k} \mid \Gamma\left(b_{1}, \ldots, b_{k}\right)\right\},
$$

where $\mathrm{k} \geq 1$ and Γ is a formula in a disjunctive normal form.
Atomic formulas in Γ have a special form:

$$
b_{i}=a_{j}, b_{i} \neq a_{j},
$$

$b_{i}=b_{j}+c$ or $b_{i} \neq b_{j}+c$, where c is (not necessarily positive)
constant, where $b_{j}+c$ is abbreviation for "such a_{m}, for which $b_{j}=a_{m-c}{ }^{"}$
Domain of interpretation for assignments to variables b_{j} is Σ_{s}.
Remark: $b_{i}=b_{j}+c \Leftrightarrow b_{i}$ is behind b_{j} in the distance c nodes.

Query transitive closure (3)

4. Proof by contradiction.

There is E such, that $E(R)=R^{+}$and any relation R, i.e. also $E\left(R_{s}\right)=R_{s}{ }^{+}$for sufficiently big s
\div by lemma, $\mathrm{R}_{\mathrm{s}}{ }^{+} \cong\left\{\mathrm{b}_{1}, \mathrm{~b}_{2} \mid \Gamma\left(\mathrm{b}_{1}, \mathrm{~b}_{2}\right)\right\}$
There are two cases:
(a) each clause $z \Gamma$ contains an atom of form

$$
b_{1}=a_{i}, b_{2}=a_{i} \text { or } b_{1}=b_{2}+c\left(\Leftrightarrow b_{2}=b_{1}-c\right)
$$

Let $b_{1} b_{2}=a_{m} a_{m+d}$,
where $m>$ arbitrary i and $d>\operatorname{arbitrary} c$

Query transitive closure (4)

$\Rightarrow b_{1}=a_{m}$ and $b_{2}=a_{m+d}$ do not meet any clause from Γ.
\Rightarrow contradiction ($a_{m} a_{m+d} \notin R_{s}^{+}$)
(b) in Γ there are clauses with atoms containing only \neq.

Let $b_{1} b_{2}=a_{m+d} a_{m}$, where neither $b_{i} \neq a_{m}$ nor $b_{i} \neq a_{m+d}$ is contained in Γ, and $d>0$ is greater than arbitrary c in $b_{1} \neq b_{2}+c$ or $b_{2} \neq b_{1}+c$ in Γ (see construction of Γ)
$\Rightarrow a_{m+d} a_{m} \in E\left(R_{s}\right)$ for sufficient s, but $\notin R_{s}^{+} \Rightarrow$ contradiction
Thus: for arbitrary expression E, always there is s for which

$$
E\left(R_{s}\right) \neq R_{s}^{+}
$$

Query transitive closure (5)

5. Proof of lemma - by induction on the number of operators in E
I. \varnothing of operators $\Rightarrow E \equiv R_{s}$ or E is a constant relation

$$
\begin{aligned}
\Rightarrow E & \equiv\left\{b_{1}, b_{2} \mid b_{2}=b_{1}+1\right\} \text { and } \\
E & \equiv\left\{b_{1} \mid b_{1}=c_{1} \vee b_{1}=c_{2} \vee \ldots \vee b_{1}=c_{m}\right\}
\end{aligned}
$$

respectively
II. a) $E \equiv E_{1} \cup E_{2}, E_{1}-E_{2}, E_{1} \times E_{2}$
$E_{1} \cong\left\{b_{1}, \ldots, b_{k} \mid \Gamma_{1}\left(b_{1}, \ldots, b_{k}\right)\right\}$
$\mathrm{E}_{2} \cong\left\{\mathrm{~b}_{1}, \ldots, \mathrm{~b}_{\mathrm{m}} \mid \Gamma_{2}\left(\mathrm{~b}_{1}, \ldots, \mathrm{~b}_{\mathrm{m}}\right)\right\}$
\Rightarrow for \cup and $-k=m$ and therefore

Query transitive closure (6)

$E \cong\left\{b_{1}, \ldots, b_{k} \mid \Gamma_{1}\left(b_{1}, \ldots, b_{k}\right) \vee \Gamma_{2}\left(b_{1}, \ldots, b_{k}\right)\right\}$,
$E \cong\left\{b_{1}, \ldots, b_{k} \mid \Gamma_{1}\left(b_{1}, \ldots, b_{k}\right) \wedge \neg \Gamma_{2}\left(b_{1}, \ldots, b_{k}\right)\right\}$, respectively.
\Rightarrow for \times
$E \cong\left\{b_{1}, \ldots, b_{k} b_{k+1}, \ldots, b_{k+m} \mid \Gamma_{1}\left(b_{1}, \ldots, b_{k}\right) \wedge \Gamma_{2}\left(b_{k+1}, \ldots, b_{k+m}\right)\right\}$
!! Then a transformation to DNF follows.
b) $E \equiv E_{1}(\varphi)$ a φ contains either $=$ or \neq
$\Rightarrow \mathrm{E} \cong\left\{\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{k}} \mid \Gamma_{1}\left(\mathrm{~b}_{1}, \ldots, \mathrm{~b}_{\mathrm{k}}\right) \wedge \varphi\left(\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{k}}\right)\right\}$

Query transitive closure (7)

c) $E \equiv E_{1}[S]$

We will consider a projection removing one attribute
\Rightarrow It is about a sequence of permutations of variables and elimination of the last component.
The elimination of b_{k} leads to $\left\{\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{k}-1} \mid \exists \mathrm{b}_{\mathrm{k}} \Gamma\left(\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{k}}\right)\right\}$, where Γ is in DNF
\Rightarrow by a)

$$
\cup_{\mathrm{i}=1 \cdot \mathrm{~m}}\left\{\mathrm{~b}_{1}, \ldots, \mathrm{~b}_{\mathrm{k}-1} \mid \exists \mathrm{b}_{\mathrm{k}} \Gamma_{\mathrm{i}}\left(\mathrm{~b}_{1}, \ldots, \mathrm{~b}_{\mathrm{k}}\right)\right\}
$$

\Rightarrow we will eliminate \exists from one conjunct
$\dot{*}$ in Γ_{i} there are not $\mathrm{b}_{\mathrm{k}}=\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}}=\mathrm{b}_{\mathrm{k}}+\mathrm{c}$, and $\mathrm{b}_{\mathrm{k}}=\mathrm{b}_{\mathrm{i}}+\mathrm{c}$
$\Rightarrow \quad\left\{\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{k}-1} \mid \underline{\Gamma}_{\mathrm{i}}\left(\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{k}-1}\right)\right\}$
where $\underline{\Gamma}_{i}$ does not contain $b_{k} \neq a_{i}, b_{i} \neq b_{k}+c$, or $b_{k} \neq b_{i}+c$

Query transitive closure (8)

$\%$ in Γ_{i} there is either $b_{k}=a_{i}$ or $b_{i}=b_{k}+c$ or $b_{k}=b_{i}+c$
\Rightarrow substitutions for b_{k} will take place.
The results are adjusted to TRUE
or
FALSE
or

$$
b_{t}=b_{j}+g
$$

and the following inequalities are added:

$$
\begin{aligned}
& b_{i} \neq a_{j} \text { for } \mathrm{s}-\mathrm{c}<\mathrm{j} \leq \mathrm{s}, \\
& \mathrm{~b}_{\mathrm{i}} \neq \mathrm{a}_{\mathrm{j}} \text { for } 1<\mathrm{j} \leq \mathrm{c}, \text { respectively }
\end{aligned}
$$

Transitive closure functionally

Df.: A composition $R^{\circ} S$ of binary relations R, S defined on domain D is a binary relation

$$
\left\{a, b \mid \exists c \in D,(a, c) \in R^{*} \wedge(c, b) \in S^{*}\right\}
$$

Let f be a function assigning to a binary relation R a binary relation R^{\prime} (both relations are defined on D).
Df.: Let R be relational variable and $f(R)$ relational expression. Then the least fixpoint (LFP) of the equation

$$
\begin{equation*}
R=f(R) \tag{1}
\end{equation*}
$$

is a relation R^{*} such, that:

$$
\begin{array}{ll}
>R^{*}=\mathrm{f}\left(\mathrm{R}^{*}\right) & \text { /fixpoint/ } \\
>\mathrm{S}^{*}=\mathrm{f}\left(\mathrm{~S}^{*}\right) \Rightarrow \mathrm{R}^{*} \subseteq \mathrm{~S}^{*} & \\
\text { Iminimality/ }
\end{array}
$$

Df.: f is monotonic if for each two relations $R^{*}{ }_{1}$ and $R^{*}{ }_{2}$

$$
R_{1}^{*} \subseteq R^{*}{ }_{2} \Rightarrow f\left(R_{1}^{*}\right) \subseteq f\left(R_{2}^{*}\right)
$$

Transitive closure functionally

Statement: f is monotonic if and only if

$$
f\left(R_{1} \cup R_{2}\right) \supseteq f\left(R_{1}\right) \cup f\left(R_{2}\right)
$$

Df.: f is additive if and only if

$$
f\left(R_{1} \cup R_{2}\right)=f\left(R_{1}\right) \cup f\left(R_{2}\right)
$$

Statement: Additive function is monotonic.
Theorem (Tarski): If f is monotonic, then the LFP of equation (1) exists.
LFP construction: For a finite relation R, we obtain LFP by repeating application of f.
Initialize R by \varnothing, then $f^{f-1}(\varnothing) \subseteq f^{f}(\varnothing)$.
Then there is $n_{0} \geq 1$ such that

$$
\varnothing \subset f(\varnothing) \subset f^{1}(\varnothing) \subset \ldots \subset f^{n 0}(\varnothing)=f^{n 0+1}(\varnothing)
$$

Relation $f^{n 0}(\varnothing)$ is the LFP of the equation (1).

Transitive closure functionally

Proof: By induction on i, it is shown, that relation $f^{n 0}(\varnothing)$ is contained in each fixpoint of equation (1).
Statement: The transitive closure of a binary relation R^{*} defined on D is the LFP of the equation

$$
S=S^{\circ} R^{*} \cup R^{*}
$$

where S is a relational variable (binary, defined on D).
Proof: $f(S)=S^{\circ} R^{*} \cup R^{*}$
$\Rightarrow \quad f^{n}(\varnothing)=\cup_{i=1 . . n} R^{*}{ }^{\circ} R^{*}{ }^{\circ} \ldots{ }^{\circ} R^{*}$
which leads to the transitive closure

$$
\cup_{i=1 . . \infty} R^{*}{ }^{\circ} R^{*}{ }^{\circ} \ldots{ }^{\circ} R^{*}
$$

Transitive closure functionally

Ex.: Consider the relation schema
FLIGHTS(FROM, TO, DEPARTURE, ARRIVAL)
Task: to express CONNECTIONS with transfers
Solution: CONNECTIONS* is given as the LFP of equation
CONNECTIONS $=$ FLIGHTS $\cup($ FLIGHTS \times CONNECTIONS) ($2=5 \wedge 4<7$)[1, 6, 3, 8]
Statement: Each relational algebra expression not containing difference is additive in all its variables.

Transitive closure functionally

Remarks:

* Non-monotonic expression can have a LFP,
* Not every expression involving the difference operator fails to be monotone.
Df.: A minimální fixpoint (MFP) of equation (1) is such fixpoint R^{*}, that there is no other fixpoint, which is a proper subset of R^{*}.
$\Rightarrow \exists$ LFP, then it is the only one MFP.
If there is more MFPs, then they are mutually noncomparable and no LFP exists.

Databases intensionally

Ex.: Consider predicates
$F(x, y) x$ is a father of y
$M(x) \quad x$ is a man
$S(x, y) x$ is a sibling of y
$B(x, y) x$ is a brother of y

Extensional database (EDB):
F(James, Paul)
F(James, Jerry)
F(Jerry, Veronika)

Databases intensionally

Intensional database (IDB):

$$
\begin{align*}
& M(x):-F(x, y) \tag{4}\\
& S(y, w):-F(x, y), F(x, w) \tag{5}\\
& B(x, y):-S(x, y), M(x) \tag{6}
\end{align*}
$$

Queries:
Q_{1} : Has Paul a brother?
Q_{2} : Find all (x, y), where x is a brother of y.
Q_{3} : Find all (x, y), where x is a sibling of y.
Remark: EDB + IDB create a logical program (LP)

Solution of LP by the resolution method

EDB as a set of facts
IDB as a set Horn clauses:

$$
\begin{aligned}
& F(x, y) \Rightarrow M(x) \\
& F(x, y) \wedge F(x, w) \Rightarrow S(y, w) \\
& S(x, y) \wedge M(x) \Rightarrow B(x, y)
\end{aligned}
$$

Assumption: Formulas in IDB are universally quantified, e.g.,

$$
\forall x \forall y \forall w(F(x, y) \wedge F(x, w) \Rightarrow S(y, w))
$$

Reformulation of $Q_{1}: \exists z B(z$, Paul $)$

Solution of LP by the resolution method

Resolution method:

* Uses a proof by contradiction
* inference is equivalent to deriving an empty clause (NIL); in other cases it is not possible to say, whether clauses is derivable

Principle: $A_{1} \vee \ldots \vee A_{i} \vee B_{1} \quad C_{1} \vee \ldots \vee C_{j} \vee \neg B_{2}$

* Unification: by substitutions we try to achieve to do B_{1} and B_{2} complementary.
* Deriving a resolvent: If after unification the input has a form $\underline{A}_{1} \vee \ldots \vee \underline{A}_{i} \vee B$ and $\underline{C}_{1} \vee \ldots \vee \underline{C}_{j} \vee \neg B$, then it is possible to derive $\underline{A}_{1} \vee \ldots \vee \underline{A}_{i} \vee \underline{C}_{1} \vee \ldots \vee \underline{C}_{j}$

Solution of LP by the resolution method

Statement: A resolvent is (un)satisfiable, if input clauses were (un)satisfiable.
The procedure goal: to derive NIL

A is a logical
conseqence of W

Justification: $W=\left\{A_{1}, \ldots, A_{m}\right\}$, then $W \cong A$ if and only if
$A_{1} \wedge \ldots \wedge A_{m} \wedge \neg A$ is unsatisfiable
By the Gödel theorem, unsatisfiability is partially decidable, i.e. there is a procedure P such that for each formula φ the following holds:
if φ is unsatisfiable, then $P(\varphi)$ terminates and announces it,
if φ is satisfiable, then $\mathrm{P}(\varphi)$ either terminates and announces it, or fails to terminate.

Solution of LP by the resolution method

Ex.: We add to EDB and IDB $\neg \mathrm{B}(z$, Paul) (7) and run the resolution method:
(8) S(Jerry,w) :- F(James,w) from (2),(3)
(9) S(Jerry,Paul)
(10) M(Jerry)
(11) B(Jerry,y) :- S(Jerry,y)
(12) B(Jerry,Paul)
(13) NIL
from (8),(1)
from (3),(4)
from (10),(6)
from (11),(9)
from (12),(7)

Terminology and constraints

* terms: variables or constants
* facts are atomic formulas containing only constants
* rules are Horn clauses
$\mathrm{L}_{0}:-\mathrm{L}_{1}, \ldots, \mathrm{~L}_{n}$
where L_{i} are atomic (positive) formulas
* atomic formulas or negations of atomic formulas are called literals.
* positive and negative literals
* facts are called basic literals

Terminology and constraints

* structure of rules:
$L_{0} \quad$ head of a rule
$L_{1}, \ldots, L_{n} \quad$ body of a rule
Remark: Facts and literals are also Horn clauses.

DATALOG - syntax and semantics (1)

1. Datalog program is a collection of facts and rules.
2. Three kinds of predicate symbols:
$>R_{i} \in R$
$>S_{i} \ldots$ virtual relations
$>$ built-in predicates $\leq, \geq, \neq,<,>,=$
R_{i} and S_{i} are called ordinary.
Remark: \neq will not conceived as a negation (we will compare only bound variables)
3. Semantics of logic programs can be built by at least in three different ways:
$>$ proof theoretic,
$>$ model theoretic,
$>$ with fixpoints.

DATALOG - syntax and semantics (2)

* proof theoretic approach

Method: interpretation of rules as axioms usable to a proof, i.e. we make substitutions in body of rules and derive new facts from heads of rules. In the case of Datalog, it is possible to obtain just all derivable facts.

* model theoretic approach

Method: to predicate symbols we associate relations (a logical model) which satisfy the rules.
Ex.: Consider a logical program LP
IDB:
$P(x)$:- $Q(x)$
$\mathrm{Q}(\mathrm{x}):-\mathrm{R}(\mathrm{x})$,
i.e. Q and P denote virtual relations.

DATALOG - syntax and semantics (3)

* Let:
$R(1) \quad Q(1) \quad P(1)$
$\mathrm{Q}(2) \quad \mathrm{P}(2) \quad \mathrm{M}_{1}$
$P(3)$
Relations $\mathrm{P}^{*}, \mathrm{Q}^{*}, \mathrm{R}^{*}$ make a model M_{1} of the logical program LP.
* Let: $\mathrm{R}(1)$ (and other facts have value FALSE). Then relations $\mathrm{P}^{*}, \mathrm{Q}^{*}, \mathrm{R}^{*}$ are not a model of the LP.
* Let: $\quad \mathrm{R}(1) \quad \mathrm{Q}(1) \mathrm{P}(1)$
M_{2}
then relations P^{*}, Q^{*}, R^{*} make a model M_{2} of the $L P$.
Let $E D B: R(1)$, i.e. relational $D B$ is given as

$$
\mathrm{R}^{*}=\{(1)\} .
$$

then M_{1} and M_{2} are with the given DB consistent.

DATALOG - syntax and semantics (4)

$>\mathrm{M}_{2}$ is even a minimal model, i.e. when we change anything there, we destroy consistency.
$>M_{1}$ does not make a minimal model.
Remark: with both semantics we obtain the same result.
Disadvantages of both approaches: non-effective algorithms in the case, when EDB is given by database relations.

DATALOG - dependency graph (1)

* with fixpoints

Method: evaluating algorithm+relational DB machine Df.: a dependency graph of a logical program LP nodes: predicates from R and IDB edges: (U, V) is an edge, if there is a rule
 V:- ... U ...
Ex.: extension of the original example

$$
\begin{aligned}
& M(x):-F(x, y) \\
& S^{\prime}(y, w):-F(x, y), F(x, w), y \neq w \\
& B(x, y):-S^{\prime}(x, y), M(x) \\
& C(x, y):-F\left(x_{1}, x\right), F\left(x_{2}, y\right), S^{\prime}\left(x_{1}, x_{2}\right) \\
& C(x, y):-F\left(x_{1}, x\right), F\left(x_{2}, y\right), C\left(x_{1}, x_{2}\right)
\end{aligned}
$$

DATALOG - dependency graph (2)

$$
\begin{aligned}
& R(x, y):-S^{\prime}(x, y) \\
& R(x, y):-R(x, z), F(z, y) \\
& R(x, y):-R(z, y), F(z, x)
\end{aligned}
$$

where $C(x, y) \ldots x$ is a cousin of y, i.e. their fathers are brothers
$R(x, y) \ldots x$ and y are relatives
recursive datalogical program

F

DATALOG - dependency graph (3)

R, C ... recursive predicates
Df.: A logical program is recursive if there is a cycle in its dependency graph.

DATALOG - safe rules

Df.: safe rule
A variable x occurring in a rule is limited, if it occurs in the body of literal L of the same rule, where:
$>L$ is given by an ordinary predicate, or
$>L$ is of form $x=a$ or $a=x$, or
$>L$ is of form $x=y$ or $y=x$ and y is limited.
A rule is safe, if all its variables are limited.
Ex.: safety of rules
IS_GREATER_THAN(x,y) :- x > y
FRIENDS(x, y) :- M(x)
$S^{\prime}(y, w):-F(x, y), F(x, w), y \neq w$

Non-recursive DATALOG

* Its dependency graph is acyclic.
* There is a topological ordering of nodes such, that $R_{i} \rightarrow R_{j}$ implies $i<j$.
Remark: ordering is not given unambiguously
Ex.: ordering F - M - S - B

Non-recursive DATALOG

Principle of the algorithm (for one virtual relation):
(1) $U\left(x_{1}, \ldots, x_{k}\right):-V_{1}\left(x_{i 1}, \ldots, x_{i k}\right), \ldots, V_{s}\left(x_{j 1}, \ldots, x_{j s}\right)$
(2) for U it is performed

```
transform to joins and selection
```

apply a projection on the result
(3) Steps (1), (2) are performed for all rules with U in their heads and for partial results

```
apply a union
```

Remark: Due to the acyclicity and topological ordering, the steps (1), (2) can be always applied for a rule.

Non-recursive DATALOG

Convention: variable $\mathrm{x} \rightarrow$ attribute X
Rule rewriting:

* C(x,y) :- F($\left.x_{1}, x\right), F\left(x_{2}, y\right), S^{\prime}\left(x_{1}, x_{2}\right)$

1. step:

$$
A U X(X 1, X, X 2, Y)=F(X 1, X) * F(X 2, Y) * S^{\prime}(X 1, X 2)
$$

2. step:

$$
C(X, Y)=A U X[X, Y]
$$

* for S'

$$
S^{\prime}(Y, W)=(F(X, Y) * F(X, W))(Y \neq W)[Y, W]
$$

Non-recursive DATALOG

Other possibilities:

* $\quad V(x, y):-P(a, x), R(x, x, z), U(y, z)$

1. and 2. step:
$\mathrm{V}(.,)=.(\mathrm{P}(1=a)[2]$ * $\mathrm{R}(1=2)[1,3]$ * U$)[.,$.
Problem: In the rule head, constants, the same variables, and different orders of variables can occur.

A request on a rectification, i.e., a transformation of rules in such way, that heads with the same predicate symbol have a tuple of the same variables.

Non-recursive DATALOG

Ex.: $\quad P(a, x, y):-R(x, y)$

$$
P(x, y, x):-R(y, x)
$$

We introduce u, v, w and do the substitutions:

$$
\begin{aligned}
& \quad \begin{array}{l}
P(u, v, w):-R(x, y), u=a, \text { in }=x, w=y \\
P(u, v, w):-R(y, x), u=x, \text { in }=y, w=x \\
\Rightarrow \quad \\
P(u, v, w):-R(v, w), u=a, \\
P(u, v, w):-R(v, u), w=u
\end{array}
\end{aligned}
$$

Lemma:
(1) If the rule is safe, then after rectification too.
(2) The original and rectified rule are equivalent, i.e., after its evaluation we obtain the same relation.

Non-recursive DATALOG

Statement: The evaluated program provides for each predicate from IDB a set of facts, which forms

1. the set of just those facts, provable from EDB by application of rules from IDB.
2. a minimal model for EDB + IDB .

Proof: by induction in the rules ordering.

