
Query languages 1 1

Query languages 1 (NDBI001)

XML

Jaroslav Pokorný

MFF UK, Praha

pokorny@ksi.mff.cuni.cz

Query languages 1 2

Content

1. Introduction

2. XML language

3. XML data model

4. XPath - overview

5. Indexing XML data

6. Conclusions

Query languages 1 3

Part I: Introduction

Query languages 1 44

Documents vs. databases

The world of documents

> a lot of small documents

> usually static

> implicit structure

section, paragraph, sentence,

> tagging

> adapted to a person

> content

format/annotation

> paradigms
“store as”, wysiwyg

> metadata

author’s name, date, subject

The world of databases

> a number of large databases

> usually dynamic

> explicit structure (schema)

> records

> adapted to a machine

> content

schema, data, methods

> paradigms

atomicity, parallelism, isolation, durability

> metadata

schema description

Query languages 1 5

What to do with them?

Documents

 editing

 printing

 lexical control

 counting words

 information retrieval (IR)

 search

Databases

 actualization

 data cleaning

 querying

 transformations

Query languages 1 6

Boundaries between documents and db

 Boundaries between the world of documents and the world

of databases is not clear.

 In some proposals both approaches are legal.

 Somewhere in the middle are

– formatting languages

– semistructured data

Semistructured data is defined as data, which is unordered or

incomplete, its structure may change, even unpredictably.

Ex.: data in web sources, HTML pages, Bibtex files, biological

data.

Markup languages: HTML, XML, XHTML, …

research

in the second half of 90ties

Query languages 1 7

HTML

 Lingua franca for publishing hypertext on the WWW

 Designed for presentation, how the web browser should

display the text, pictures and buttons on a web page.

 Fixed set of tags, attributes, nesting elements, …, but

allowing some irregularities, simple to learning, …

 HTML XML SGML

<HTML>
<HEAD><TITLE>Sejdeme se Na Vlachovce</TITLE></HEAD>
<BODY>

<H1>Introduction</H1>

</BODY>
</HTML>

start tag

Text (PCDATA)

end tag

attribute name attribute name

Query languages 1 8

Part II: XML language

 XML structure

 XML text

 XML attributes

 Tree structure of XML

Query languages 1 9

XML structure

 XML is a content markup language

 XML data is an instance of semistructured data.

 XML consists of tags and a text

 tags occur in pairs <date> ...</date>

 must be properly nested

<date> <day> ... </day> ... </date> --- well

<date> <day> ... </date>... </day> --- wrong

(not possible: <i> </i> ...)

Query languages 1 10

XML text

 XML has only one “basic” type -- text.

 Text is bounded by tags, e.g.,

<title> Database alphabet </title>

<year> 1999 </year> --- 1999 is a text

 XML text is of type PCDATA (Parsed Character DATA).

It uses 16-bit encoding (Unicode).

 Later we will see, how with XML data can be specified

new types.

Query languages 1 11

XML structure

Nested tags can be used to express different

structures. For example, n-tuple (row):

<person>
<name> Jane Smith </name>
<phone> 2191 4264 </phone>
<email> smith@ksi.ms.mff.cuni.cz </email>

</person>

Query languages 1 12

XML structure (cont.)

A list can be represented using repeatedly the

same tag:

<addresses>
<person> ... </person>
<person> ... </person>
<person> ... </person>
...

</addresses>

Query languages 1 13

Terminology

Segment of XML document with start and corresponding end tag

is called element. The text between tags is element content.

Element can be empty (it has no content – except of attributes)

<name> </name> or shortly <name/>

<person>
<name> Jane Smith </name>
<phone> 2191 4264 </phone>
<phone> 2191 4363 </phone>
<email> smith@ksi.mff.cuni.cz <email>

/person>

element

is not element
subelement

Query languages 1 14

Terminology

Start tag of an element can contain attributes. They are

used typically to description of element content.

<item>

<word language = “A”> cheese </word>

<word language = “F”> fromage </word>

<word language = “N”> Käse </word>

<meaning> Food created… </meaning>

</item>

Query languages 1 15

Attributes

Further use - expressing dimensions or types

<picture>

<height dim = “cm”> 2400 </height>

<width dim = “cm”> 96 </ width>

<data coding = “gif” compression = “zip”>

M05-.+C$@02!G96YE<FEC ...

</data>

</picture>

Query languages 1 16

Mixed content

Element can contain mix of elements and data of type

PCDATA

<washing>

<name> Persil 1.2 </name>

<motto>

The world <dubious> favorite </dubious> of
washing powder

</motto>

</washing>

Remark: data of this form is not typically generated

from (relational) databases.

Query languages 1 17

Complete XML Document

<?xml version="1.0"?>

<person>

<name> Jane Smith </name>

<phone> 2191 4264 </phone>

<email> smith@ksi.mff.cuni.cz </email>

</person>

XML

declaration

Query languages 1 18

XML has a tree structure

 Figure contains a model of an XML text

 differences w.r.t. models of semistructured data,
which use typically edge labeling

person

name emailphone

Jane Smith

2191 4264

2191 4363

smith@ksi.mff.cuni.cz

phone

Query languages 1 19

Example: relational DB representation

projects:

p_name budget controlled

employees:

name PIN age

Query languages 1 20

Relations projects and employees in XML

<db>

<project>

<p_name> Searching </p_name>

<budget> 100000 </budget>

<controlled> Kopecký, M. </controlled>

</project>

<employee>

<name> Dvorský, J. </name>

<PIN> 700321/1423 </PIN>

<age> 29 < /age>

</employee>

<employee>
<name> Mikulová,L. </name>
<PIN> 715512/0132 </PIN>
<age> 38 </age>

</employee>
<project>

<p_name> Sorting </p_name>
<budget> 700000 </budget>
<controlled> Mikulová,L.

</controlled>
</project>
:

</db>

projects and employees are mixed

Query languages 1 21

<db>

<projects>

<project>

<p_name> Searching </p_name>

<budget> 100000 </budget>

<controlled> Kopecký, M. </controlled>

</project>

<project>

<p_name> Sorting </p_name>

<budget> 700000 </budget>

<controlled> Mikulová, L. </controlled>

</project>

:

</projects>

Relations projects and employees in XML

<employees>

<employee>

<name> Kopecký, M. </name>

<PIN> 640802/3200</PIN>

<age> 35 </age>

</employee>

<employee>

<name> Mikulová,L. </name>

<PIN> 715512/0132 </PIN>

<age>38 </age>

</employee>

:

</employees>

</db>

employees are “behind” projects

Query languages 1 22

<db>

<projects>

<p_name> Searching </p_name>

<budget> 100000 </budget>

<controlled> Kopecký, M. </controlled>

<p_name> Sorting </p_name>

<budget> 700000 </budget>

<controlled> Mikulová,L </controlled>

:

</projects>

Relations projects and employees in XML

<employees>
<name> Kopecký, M. </name>
<PIN> 640802/3200 </PIN>
<age> 35 </age>
<name> Mikulová, L</name>
<PIN> 715512/0132 </PIN>
<age> 38 </age>
:

</employees>
</db>

or wihout “separator” tag …

Query languages 1 23

More about attributes
<db>

<film id=“f1”>

<title>Turbína</title>

<director>Novak A.</director>

<cast idrefs=“h1 h2”></cast>

<budget>100000</budget>

</film>

<film id=“f2”>

<title>Batalion</title>

<director>Buřita S.</director>

<cast idrefs=“h2 h9 h21”></cast>

<budget>110000</budget>

</film>

<film id=“f3”>

<title>Gabriela</title>

<director>Vrchota J.</director>

<cast idrefs=“h1 h8”></cast>

<budget>90000</budget>

</film>

…

<actor id=“h1”>

<name>M. Glázrová</name>

<playing_in idrefs=“f1 f3 f78” >

</playing_in>

</actor>

<actor id=“h2”>

<name>K. Höger</name>

<playing_in idrefs=“f1 f2 f11”>

</playing_in>

<age>38</age>

</actor>

<actor id=“h3”>

<name>H. Vítová</name>

<playing_in idrefs=“f2 f35”>

</playing_in>

</actor>

:

</db>

Query languages 1 24

When to use attributes

It is not always clear, when to use attributes.

Attributes are not "seen".
<person PIN= “780730/0013”>

<name> J. Black </name>

<email>

black@ksi.mff.cuni.cz

</email>

...

</person>

<person>

<PIN> 780730/0013 </PIN>

<name> J. Black </name>

<email>

black@ksi.mff.cuni.cz

</email>

...

</person>

Document conforming to the rule “nesting tags” and not having

same attributes in its start tag, is called well-formed.

Query languages 1 25

Part III: XML data model

 Description of document type with DTD

 Association to the object data model

Query languages 1 26

Document type description via DTD

 Document Type Descriptors (DTDs) assign to

XML documents a structure.

 there is certain relationship between DTD and

a database schema,

 DTD is a syntactic specification.

Query languages 1 27

Example: Personal address book

<person>

<name> Říha Antonín </name>

<with_title> Dr. A. Říha </ with_title>

<address>Malostranské 25 </address>

<address> Praha, 100 00 </address>

<phone> 2191 4268 </phone>

<fax> 2191 4323 </fax>

<phone> 2191 4323 </phone>

<email> riha@ksi.mff.cuni.cz</email>

</person>

exactly one name

max. 1

as many rows for

addresses as needed

mixed phones and

faxes

as many as

needed

Query languages 1 28

Structure specification

 name specifies a name element

 with_title? specifies optional

(0 or 1) elements with_title

 name, with_title? specifies name followed

optionally by with_title

 address* specifies 0 or more address elements

 phone | fax phone or fax element

 (phone | fax)* 0 or more phone or fax elements

 email* 0 or more email elements

Query languages 1 29

Structure specification (cont.)

The whole structure of the person element is

specified as

name, with_title?, address*, (phone | fax)*,
email*

It’s a regular expression. Why is it important?

Query languages 1 30

Regular expressions

Each regular expression determines a corresponding

finite automaton.

Ex.:

name, address*, email

Corresponding simple program (parser)

name

address

email

Query languages 1 31

Another example

name, address*, (phone | fax)*, email*

name

address

phone

phone

fax

fax

email

email

Adding optional with_title leads to complications

with the size of the automaton

email

Query languages 1 32

DTD for address book

<!DOCTYPE address book [

<!ELEMENT address book (person*)>

<!ELEMENT person

(name, with_title?, address*, (fax | phone)*, email*)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT with_title (#PCDATA)>

<!ELEMENT address (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

<!ELEMENT fax (#PCDATA)>

<!ELEMENT email (#PCDATA)>

]>

Query languages 1 33

Revised relational DB

projects:

p_name budget controlled

employees:

name PIN age

Query languages 1 34

Two DTDs for relational DB

<!DOCTYPE db [
<!ELEMENT db (projects,employees)>
<!ELEMENT projects (project*)>
<!ELEMENT employees (employee*)>
<!ELEMENT project (p_name, budget, controlled)>
<!ELEMENT employee (name, PIN, age)>
...

]>

<!DOCTYPE db [
<!ELEMENT db (project | employee)*>
<!ELEMENT project (p_name, budget, controlled)>
<!ELEMENT employee (name, PIN, age)>
...

]>

Query languages 1 35

Recursive DTD

<!DOCTYPE genealogy [

<!ELEMENT genealogy (person*)>

<!ELEMENT person (

name,

birthday,

person, -- mother

person)> -- father

...

]>

Where is a problem? Parents are mandatory.

Order.

Query languages 1 36

Recursive DTD (cont.)

<DOCTYPE genealogy [

<!ELEMENT genealogy (person*)>

<!ELEMENT person (

name,

birthday,

person?, -- mother

person?)> -- father

...

]>

Where is the problem now? Order.

Better solution: with ID, IDREF, IDREFS

Query languages 1 37

Some things are difficult to specify

Each employee element contains elements name, age
and PIN in any order.

<!ELEMENT employee

((name, age, PIN) | (age, PIN, name) |

(PIN, name, age) | ...

)>

Suppose a situation, when there are more attributes of
employees!

Query languages 1 38

Regular expressions in XML

 A tag A occurs

 e1,e2 expression e1 followed by e2

 e* 0 or more e occurrences

 e? optional -- 0 or 1 occurrences

 e+ 1 or more occurrences

 e1 | e2 either e1 or e2

 (e) grouping

Query languages 1 39

Specification of attributes in DTD

<!ELEMENT height (#PCDATA)>

<!ATTLIST height

dimension CDATA #REQUIRED

accuracy CDATA #IMPLIED >

Attribute dimension is required; attribute accuracy is

optional.

CDATA is character data, not usually parsed.

Query languages 1 40

Specification of attributes ID and IDREF

<!DOCTYPE family [

<!ELEMENT family (person)*>

<!ELEMENT person (name)>

<!ELEMENT name (#PCDATA)>

<!ATTLIST person

id ID #REQUIRED

mother IDREF #IMPLIED

father IDREF #IMPLIED

children IDREFS #IMPLIED>

]>

Well-formed document having DTD and conforms to

the DTD is called valid.

Query languages 1 41

Some valid data

<family>

<person id=„jane" mother="marie" father="josef">

<name> Jane Novak </name>

</person>

<person id="josef" childern=„jane vít">

<name> Josef Novak </name>

</person>

<person id="marie" childern=„jane vít">

<name> Marie Novak </name>

</person>

<person id="vít" mother=”marie" father="josef">

<name> Vít Novak </name>

</person>

</family>

Query languages 1 42

Consistency of values of ID and IDREF(S)

attributes

 If attribute is declared as ID
– associated values must all be different in the

document

 If attribute is declared as IDREF

– associated value must exist as a value of an ID
attribute (no „hanging pointers“) in the given
document

 similarly for all values of IDREFS attribute

 ID, IDREF and IDREFS attributes are not
typed

Query languages 1 43

DTD vs. db schemes (or types)

 Comparing to db standards (or programming languages),

DTDs are rather weak specifications.

– only one basic type -- PCDATA

– no useful “abstractions” (e.g., sets)

– IDREF are not typed. They point to something, but they don’t know

what!

– no IC, e.g., child is inverse to parents

– no methods

 Proposals how to extend XML: schemes, IC

– XML Schema (proposal of W3C)

– Microsoft in Explorer 5.

 Today’s popular JSON: „lightweight “ and more simple

alternative to XML

Query languages 1 44

Part IV: XPath - overview

Query languages 1 45

XML data model in XPath

Node types in the model

 root node

 nodes elements

 text nodes,

 attribute nodes,

 nodes for comments

 nodes of processing instructions

 nodes name spaces

What is no there: section CDATA, references to
entities and DTD

Query languages 1 46

XML data model - example

<P>Here it is a<HI TYPE=„ital“>highlighted</HI>text.<P>

attribute
node

node element

I

P

HIHere it is text

TYPE highlighted

node element

text node

text node

root of the tree

Query languages 1 47

XPath expressions and their evaluation

 XPath expressions denote queries.

 the result of expression evaluation - possibilities:

– a node set,

– number,

– Boolean value,

– string

Query languages 1 48

XML document

book
category=“H.3.3”

author

Michael Kay

title

XPath 2.0 Prog…

chapter

heading

This …

Intro...

chapter

heading

XML and references

section section

heading

examples

for …

heading

Axes

Query languages 1 49

XPath – basic constructs

simple path specifies one step in navigation in db.

x/l

key notion: regular path expression

Ex.: biblio/(report l article) -- alternative

author/first_name? -- partial information

report/reference*/author -- Kleene closure

Remark: R+, where R is a regular expression, is equivalent to
R/R

Query languages 1 50

Paths in XPath

 path, which starts with / represents absolute path, starting
from the root of XML data
– Ex.: /book

– Remark: absolute path can select more than one element.

– Remark: query: / selects “the whole document”.

 path, which does not start with / represents relative path
starting from the current (context) element
– Ex.: chapter/heading

Remark: the result are all headings of chapters, that are
descendants of the current node

 path starting // can start anywhere in document
– Ex.: //heading selects each element heading, which occurs in

document

– Remark: expensive query

Query languages 1 51

XPath axes

 Queries use various relations between nodes (axes in XPath):

X::Y means “select Y from axis X”

self – set of the nodes

self::node() is the current node

ancestor – nodes lying on the path from u to the root,

ancestor-or-self – u and nodes lying on the path from u to the
root,

parent – the first node lying on path from u to the root,

child – immediate descendants of the node u,

/child::X is the same as /X

Query languages 1 52

XPath axes

descendent - all nodes, for that is node u an ancestor,

descendent-or-self - u and all nodes, for that is node u an
ancestor,

preceding-siblings – siblings of node u preceding u in
preorder tree traversal,

following-siblings – siblings node u following u in preorder
tree traversal,

preceding – nodes preceding u (except for its ancestors) in
preorder tree traversal,

following – nodes following u (except for its descendants) in
preorder tree traversal.

Query languages 1 53

XPath axes

ancestor

descendant

following

preceding

following-siblingpreceding-sibling

child

attribute

namespace

self

parent

J. Pokorný

Query languages 1 54

Axes - examples

 //book/descendant::* returns all descendants of every
element book

 //book/descendant::chapter returns all chapter
descendants of very element book

 //parent::* returns all elements, that are a parent of a
node, i.e. tree leafs will not be in result

 //section/parent::* every parent of a section element

 //parent::chapter is each chapter element, which is a
parent (i.e. has children)

 /library/book[3]/following::* everything, what is after
the third book of the library

Query languages 1 55

Abbreviations (syntactic suger) for axes

(nothing) corresponds to child::

@ corresponds to attribute::

. corresponds to self::node()

.//X corresponds to self::node()/descendant-or-self::node()/child::X

.. corresponds to parent::node()

../X corresponds to parent::node()/child::X

// corresponds to /descendant-or-self::node()/

//X corresponds to /descendant-or-self::node()/child::X

Query languages 1 56

XPath – query examples

 In the most of queries their path is based on the children
axis

 Examples of queries:

/article/*/paragraph

article//figure

//article[author=’Michael Kay’]

More complex:

//article[title = ’XPath 2.0 Programming’]/author

article[author]//name -- requires a sibling

Which query does this expression express?

//figure/ancestor::chapter/following-sibling::chapter

Query languages 1 57

XPath – query examples

//figure/ancestor::chapter/following-sibling::chapter

The answer:

the chapters, following (with the same superelement)

any chapter containing a figure

Query languages 1 58

XPath – more about semantics

 Simple path (step) is evaluated w.r.t. a context.

context consists of:

– context node,

– position of the node in context and the context scope
(the number of nodes),

– bind variables, library functions, name space
declarations

 simple path has a form: axis::node-test[predicate]

– axis selects a set of nodes-candidates (e.g. children),

– node-test filters candidates, based on the node type
and the name (name elements,…),

– predicate (Boolean expression) further filters nodes,

– the rest goes into the result.

Query languages 1 59

Part V: Indexing XML data

Query languages 1 60

Methods for indexing XML data

 indexing as a fulltext

disadvantage: querying by structure is not possible

 indexing relations in a classical way (Lore)

 indexing based on positions

– using absolute or relative addresses for representation of

words and tags positions in XML document

 indexing based on paths

– paths are encoded according to a tree-traversal order

– all paths leading to all words are encoded

– It is possible to query both a content and structure
– …

Query languages 1 61

Indexing in Lore

&1

&2

&11

&4

&10

&3

&12&9

LINDEX

VINDEXTINDEX

PINDEX

Film
Film

Film

Title

Author Price
year

“1984“ “George Orwell“ 200 1956

See: http://infolab.stanford.edu/lore/

Query languages 1 62

Value Index (VINDEX)

 Input: tag T, comparison , value v

 Output: all atomic objects having incoming

edge T and value v’ satisfying and value v.

Ex.: (Price, >, 150)

Result is {&11, &15}

 Vindex can be implemented, e.g., with B+-

trees;

Query languages 1 63

Link Index (LINDEX)

 Input: oid o and tag T

 Output: all parent objects having edge T incoming
to o.
 If T is omitted, all parents and their tags are returned.

Ex.: retrieve a parent with Lindex for object &4 via

edge labeled Film;

It returns parent object &1

 Lindex can be implemented, e.g., with linear
hashing

Query languages 1 64

Link Index (LINDEX)

Ex.: db/A/B[C=5]

Uses Vindex and Lindex:

 Find C component via Vindex and (C, =, 5)

 Try, whether there is a path A/B from db to

this object via two calling Lindex.

 Return evaluation.

Query languages 1 65

Text Index (TINDEX)

 Input: TINDEX provides searching using a keyword
w in form (w, T), where T is a tag.

 Output : list of postings <o, n>

 Can be implemented via inverted lists, mapping
word w and tag T to a list of atomic values v with
input edge T, where v contains w on position n.

 Tag can be omitted.

Ex.: Look up with TINDEX for all objects containing
word “Ford“ and having incoming edge Name.

Result:{<&17, 1><&21, 2>}

Query languages 1 66

Path Index (PINDEX)

 Input: object o and expression p denoting a path

 Output : all objects reachable from o via the path p

 Restriction: usually only simple paths, i.e. those

starting in named objects and containing no regular

expressions

Ex.: db/Film/Title

Pindex for retrieving all objects reachable via

db/Film/Title

Result: {&5, &9, &14}

Query languages 1 67

Evaluating top-down directly

Ex.: db.Film[Price < 200]

 All subelements of the Film element in db are
searched and for each look up, the content of
subelement Price is tested if its value is less
than 200.

 This leads to depth-first traversal of the tree
matching edges, which occur in path
expressions.

Query languages 1 68

Evaluating bottom-up with indexes

Ex.: db.Film[Price < 200]

 First find all objects meeting the condition
using an appropriate Vindex.

 For each from these objects traverse
backward in the tree to their parents using
Lindex.

 Advantage: avoids the paths, which do not
meet the condition.

first

Query languages 1 69

Hybrid evaluating with indexes

Ex.: db.Film[Price < 200]

 Something is evaluated (not necessarily
everything) what concerns the condition by top-
down approach.

 Then there are found directly the objects meeting
the condition with Videx. Then it continues by
traversing via Lindex to the same point as with top-
down approach.

 Query result is found as an intersection set of the
objects set and combination of traversing paths.

Query languages 1 70

XML – standards family

TEI

CSS

HTML

XSL
XML

XLink

XPointer

RDF
XSchema

HyTIME SGML DSSSL

XPath

XHTML

XSLT

XQL

XQuery

XML-QL

XSQL

Query languages 1 71

Conclusion

 Indexes occur in native XML databases

 Proposed various types of indexes on XML

data to execute efficiently XPath queries.

 XPath 2.0 is also a subset of XQuery 1.0.

 Indexes provide efficient support for

processing queries in these languages.

