
Query languages 1 1

Query languages 1 (NDBI001)

XML

Jaroslav Pokorný

MFF UK, Praha

pokorny@ksi.mff.cuni.cz

Query languages 1 2

Content

1. Introduction

2. XML language

3. XML data model

4. XPath - overview

5. Indexing XML data

6. Conclusions

Query languages 1 3

Part I: Introduction

Query languages 1 44

Documents vs. databases

The world of documents

> a lot of small documents

> usually static

> implicit structure

section, paragraph, sentence,

> tagging

> adapted to a person

> content

format/annotation

> paradigms
“store as”, wysiwyg

> metadata

author’s name, date, subject

The world of databases

> a number of large databases

> usually dynamic

> explicit structure (schema)

> records

> adapted to a machine

> content

schema, data, methods

> paradigms

atomicity, parallelism, isolation, durability

> metadata

schema description

Query languages 1 5

What to do with them?

Documents

 editing

 printing

 lexical control

 counting words

 information retrieval (IR)

 search

Databases

 actualization

 data cleaning

 querying

 transformations

Query languages 1 6

Boundaries between documents and db

 Boundaries between the world of documents and the world

of databases is not clear.

 In some proposals both approaches are legal.

 Somewhere in the middle are

– formatting languages

– semistructured data

Semistructured data is defined as data, which is unordered or

incomplete, its structure may change, even unpredictably.

Ex.: data in web sources, HTML pages, Bibtex files, biological

data.

Markup languages: HTML, XML, XHTML, …

research

in the second half of 90ties

Query languages 1 7

HTML

 Lingua franca for publishing hypertext on the WWW

 Designed for presentation, how the web browser should

display the text, pictures and buttons on a web page.

 Fixed set of tags, attributes, nesting elements, …, but

allowing some irregularities, simple to learning, …

 HTML  XML  SGML

<HTML>
<HEAD><TITLE>Sejdeme se Na Vlachovce</TITLE></HEAD>
<BODY>

<H1>Introduction</H1>

</BODY>
</HTML>

start tag

Text (PCDATA)

end tag

attribute name attribute name

Query languages 1 8

Part II: XML language

 XML structure

 XML text

 XML attributes

 Tree structure of XML

Query languages 1 9

XML structure

 XML is a content markup language

 XML data is an instance of semistructured data.

 XML consists of tags and a text

 tags occur in pairs <date> ...</date>

 must be properly nested

<date> <day> ... </day> ... </date> --- well

<date> <day> ... </date>... </day> --- wrong

(not possible: <i> </i> ...)

Query languages 1 10

XML text

 XML has only one “basic” type -- text.

 Text is bounded by tags, e.g.,

<title> Database alphabet </title>

<year> 1999 </year> --- 1999 is a text

 XML text is of type PCDATA (Parsed Character DATA).

It uses 16-bit encoding (Unicode).

 Later we will see, how with XML data can be specified

new types.

Query languages 1 11

XML structure

Nested tags can be used to express different

structures. For example, n-tuple (row):

<person>
<name> Jane Smith </name>
<phone> 2191 4264 </phone>
<email> smith@ksi.ms.mff.cuni.cz </email>

</person>

Query languages 1 12

XML structure (cont.)

A list can be represented using repeatedly the

same tag:

<addresses>
<person> ... </person>
<person> ... </person>
<person> ... </person>
...

</addresses>

Query languages 1 13

Terminology

Segment of XML document with start and corresponding end tag

is called element. The text between tags is element content.

Element can be empty (it has no content – except of attributes)

<name> </name> or shortly <name/>

<person>
<name> Jane Smith </name>
<phone> 2191 4264 </phone>
<phone> 2191 4363 </phone>
<email> smith@ksi.mff.cuni.cz <email>

/person>

element

is not element
subelement

Query languages 1 14

Terminology

Start tag of an element can contain attributes. They are

used typically to description of element content.

<item>

<word language = “A”> cheese </word>

<word language = “F”> fromage </word>

<word language = “N”> Käse </word>

<meaning> Food created… </meaning>

</item>

Query languages 1 15

Attributes

Further use - expressing dimensions or types

<picture>

<height dim = “cm”> 2400 </height>

<width dim = “cm”> 96 </ width>

<data coding = “gif” compression = “zip”>

M05-.+C$@02!G96YE<FEC ...

</data>

</picture>

Query languages 1 16

Mixed content

Element can contain mix of elements and data of type

PCDATA

<washing>

<name> Persil 1.2 </name>

<motto>

The world <dubious> favorite </dubious> of
washing powder

</motto>

</washing>

Remark: data of this form is not typically generated

from (relational) databases.

Query languages 1 17

Complete XML Document

<?xml version="1.0"?>

<person>

<name> Jane Smith </name>

<phone> 2191 4264 </phone>

<email> smith@ksi.mff.cuni.cz </email>

</person>

XML

declaration

Query languages 1 18

XML has a tree structure

 Figure contains a model of an XML text

 differences w.r.t. models of semistructured data,
which use typically edge labeling

person

name emailphone

Jane Smith

2191 4264

2191 4363

smith@ksi.mff.cuni.cz

phone

Query languages 1 19

Example: relational DB representation

projects:

p_name budget controlled

employees:

name PIN age

Query languages 1 20

Relations projects and employees in XML

<db>

<project>

<p_name> Searching </p_name>

<budget> 100000 </budget>

<controlled> Kopecký, M. </controlled>

</project>

<employee>

<name> Dvorský, J. </name>

<PIN> 700321/1423 </PIN>

<age> 29 < /age>

</employee>

<employee>
<name> Mikulová,L. </name>
<PIN> 715512/0132 </PIN>
<age> 38 </age>

</employee>
<project>

<p_name> Sorting </p_name>
<budget> 700000 </budget>
<controlled> Mikulová,L.

</controlled>
</project>
:

</db>

projects and employees are mixed

Query languages 1 21

<db>

<projects>

<project>

<p_name> Searching </p_name>

<budget> 100000 </budget>

<controlled> Kopecký, M. </controlled>

</project>

<project>

<p_name> Sorting </p_name>

<budget> 700000 </budget>

<controlled> Mikulová, L. </controlled>

</project>

:

</projects>

Relations projects and employees in XML

<employees>

<employee>

<name> Kopecký, M. </name>

<PIN> 640802/3200</PIN>

<age> 35 </age>

</employee>

<employee>

<name> Mikulová,L. </name>

<PIN> 715512/0132 </PIN>

<age>38 </age>

</employee>

:

</employees>

</db>

employees are “behind” projects

Query languages 1 22

<db>

<projects>

<p_name> Searching </p_name>

<budget> 100000 </budget>

<controlled> Kopecký, M. </controlled>

<p_name> Sorting </p_name>

<budget> 700000 </budget>

<controlled> Mikulová,L </controlled>

:

</projects>

Relations projects and employees in XML

<employees>
<name> Kopecký, M. </name>
<PIN> 640802/3200 </PIN>
<age> 35 </age>
<name> Mikulová, L</name>
<PIN> 715512/0132 </PIN>
<age> 38 </age>
:

</employees>
</db>

or wihout “separator” tag …

Query languages 1 23

More about attributes
<db>

<film id=“f1”>

<title>Turbína</title>

<director>Novak A.</director>

<cast idrefs=“h1 h2”></cast>

<budget>100000</budget>

</film>

<film id=“f2”>

<title>Batalion</title>

<director>Buřita S.</director>

<cast idrefs=“h2 h9 h21”></cast>

<budget>110000</budget>

</film>

<film id=“f3”>

<title>Gabriela</title>

<director>Vrchota J.</director>

<cast idrefs=“h1 h8”></cast>

<budget>90000</budget>

</film>

…

<actor id=“h1”>

<name>M. Glázrová</name>

<playing_in idrefs=“f1 f3 f78” >

</playing_in>

</actor>

<actor id=“h2”>

<name>K. Höger</name>

<playing_in idrefs=“f1 f2 f11”>

</playing_in>

<age>38</age>

</actor>

<actor id=“h3”>

<name>H. Vítová</name>

<playing_in idrefs=“f2 f35”>

</playing_in>

</actor>

:

</db>

Query languages 1 24

When to use attributes

It is not always clear, when to use attributes.

Attributes are not "seen".
<person PIN= “780730/0013”>

<name> J. Black </name>

<email>

black@ksi.mff.cuni.cz

</email>

...

</person>

<person>

<PIN> 780730/0013 </PIN>

<name> J. Black </name>

<email>

black@ksi.mff.cuni.cz

</email>

...

</person>

Document conforming to the rule “nesting tags” and not having

same attributes in its start tag, is called well-formed.

Query languages 1 25

Part III: XML data model

 Description of document type with DTD

 Association to the object data model

Query languages 1 26

Document type description via DTD

 Document Type Descriptors (DTDs) assign to

XML documents a structure.

 there is certain relationship between DTD and

a database schema,

 DTD is a syntactic specification.

Query languages 1 27

Example: Personal address book

<person>

<name> Říha Antonín </name>

<with_title> Dr. A. Říha </ with_title>

<address>Malostranské 25 </address>

<address> Praha, 100 00 </address>

<phone> 2191 4268 </phone>

<fax> 2191 4323 </fax>

<phone> 2191 4323 </phone>

<email> riha@ksi.mff.cuni.cz</email>

</person>

exactly one name

max. 1

as many rows for

addresses as needed

mixed phones and

faxes

as many as

needed

Query languages 1 28

Structure specification

 name specifies a name element

 with_title? specifies optional

(0 or 1) elements with_title

 name, with_title? specifies name followed

optionally by with_title

 address* specifies 0 or more address elements

 phone | fax phone or fax element

 (phone | fax)* 0 or more phone or fax elements

 email* 0 or more email elements

Query languages 1 29

Structure specification (cont.)

The whole structure of the person element is

specified as

name, with_title?, address*, (phone | fax)*,
email*

It’s a regular expression. Why is it important?

Query languages 1 30

Regular expressions

Each regular expression determines a corresponding

finite automaton.

Ex.:

name, address*, email

Corresponding simple program (parser)

name

address

email

Query languages 1 31

Another example

name, address*, (phone | fax)*, email*

name

address

phone

phone

fax

fax

email

email

Adding optional with_title leads to complications

with the size of the automaton

email

Query languages 1 32

DTD for address book

<!DOCTYPE address book [

<!ELEMENT address book (person*)>

<!ELEMENT person

(name, with_title?, address*, (fax | phone)*, email*)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT with_title (#PCDATA)>

<!ELEMENT address (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

<!ELEMENT fax (#PCDATA)>

<!ELEMENT email (#PCDATA)>

]>

Query languages 1 33

Revised relational DB

projects:

p_name budget controlled

employees:

name PIN age

Query languages 1 34

Two DTDs for relational DB

<!DOCTYPE db [
<!ELEMENT db (projects,employees)>
<!ELEMENT projects (project*)>
<!ELEMENT employees (employee*)>
<!ELEMENT project (p_name, budget, controlled)>
<!ELEMENT employee (name, PIN, age)>
...

]>

<!DOCTYPE db [
<!ELEMENT db (project | employee)*>
<!ELEMENT project (p_name, budget, controlled)>
<!ELEMENT employee (name, PIN, age)>
...

]>

Query languages 1 35

Recursive DTD

<!DOCTYPE genealogy [

<!ELEMENT genealogy (person*)>

<!ELEMENT person (

name,

birthday,

person, -- mother

person)> -- father

...

]>

Where is a problem? Parents are mandatory.

Order.

Query languages 1 36

Recursive DTD (cont.)

<DOCTYPE genealogy [

<!ELEMENT genealogy (person*)>

<!ELEMENT person (

name,

birthday,

person?, -- mother

person?)> -- father

...

]>

Where is the problem now? Order.

Better solution: with ID, IDREF, IDREFS

Query languages 1 37

Some things are difficult to specify

Each employee element contains elements name, age
and PIN in any order.

<!ELEMENT employee

((name, age, PIN) | (age, PIN, name) |

(PIN, name, age) | ...

)>

Suppose a situation, when there are more attributes of
employees!

Query languages 1 38

Regular expressions in XML

 A tag A occurs

 e1,e2 expression e1 followed by e2

 e* 0 or more e occurrences

 e? optional -- 0 or 1 occurrences

 e+ 1 or more occurrences

 e1 | e2 either e1 or e2

 (e) grouping

Query languages 1 39

Specification of attributes in DTD

<!ELEMENT height (#PCDATA)>

<!ATTLIST height

dimension CDATA #REQUIRED

accuracy CDATA #IMPLIED >

Attribute dimension is required; attribute accuracy is

optional.

CDATA is character data, not usually parsed.

Query languages 1 40

Specification of attributes ID and IDREF

<!DOCTYPE family [

<!ELEMENT family (person)*>

<!ELEMENT person (name)>

<!ELEMENT name (#PCDATA)>

<!ATTLIST person

id ID #REQUIRED

mother IDREF #IMPLIED

father IDREF #IMPLIED

children IDREFS #IMPLIED>

]>

Well-formed document having DTD and conforms to

the DTD is called valid.

Query languages 1 41

Some valid data

<family>

<person id=„jane" mother="marie" father="josef">

<name> Jane Novak </name>

</person>

<person id="josef" childern=„jane vít">

<name> Josef Novak </name>

</person>

<person id="marie" childern=„jane vít">

<name> Marie Novak </name>

</person>

<person id="vít" mother=”marie" father="josef">

<name> Vít Novak </name>

</person>

</family>

Query languages 1 42

Consistency of values of ID and IDREF(S)

attributes

 If attribute is declared as ID
– associated values must all be different in the

document

 If attribute is declared as IDREF

– associated value must exist as a value of an ID
attribute (no „hanging pointers“) in the given
document

 similarly for all values of IDREFS attribute

 ID, IDREF and IDREFS attributes are not
typed

Query languages 1 43

DTD vs. db schemes (or types)

 Comparing to db standards (or programming languages),

DTDs are rather weak specifications.

– only one basic type -- PCDATA

– no useful “abstractions” (e.g., sets)

– IDREF are not typed. They point to something, but they don’t know

what!

– no IC, e.g., child is inverse to parents

– no methods

 Proposals how to extend XML: schemes, IC

– XML Schema (proposal of W3C)

– Microsoft in Explorer 5.

 Today’s popular JSON: „lightweight “ and more simple

alternative to XML

Query languages 1 44

Part IV: XPath - overview

Query languages 1 45

XML data model in XPath

Node types in the model

 root node

 nodes elements

 text nodes,

 attribute nodes,

 nodes for comments

 nodes of processing instructions

 nodes name spaces

What is no there: section CDATA, references to
entities and DTD

Query languages 1 46

XML data model - example

<P>Here it is a<HI TYPE=„ital“>highlighted</HI>text.<P>

attribute
node

node element

I

P

HIHere it is text

TYPE highlighted

node element

text node

text node

root of the tree

Query languages 1 47

XPath expressions and their evaluation

 XPath expressions denote queries.

 the result of expression evaluation - possibilities:

– a node set,

– number,

– Boolean value,

– string

Query languages 1 48

XML document

book
category=“H.3.3”

author

Michael Kay

title

XPath 2.0 Prog…

chapter

heading

This …

Intro...

chapter

heading

XML and references

section section

heading

examples

for …

heading

Axes

Query languages 1 49

XPath – basic constructs

simple path specifies one step in navigation in db.

x/l

key notion: regular path expression

Ex.: biblio/(report l article) -- alternative

author/first_name? -- partial information

report/reference*/author -- Kleene closure

Remark: R+, where R is a regular expression, is equivalent to
R/R

Query languages 1 50

Paths in XPath

 path, which starts with / represents absolute path, starting
from the root of XML data
– Ex.: /book

– Remark: absolute path can select more than one element.

– Remark: query: / selects “the whole document”.

 path, which does not start with / represents relative path
starting from the current (context) element
– Ex.: chapter/heading

Remark: the result are all headings of chapters, that are
descendants of the current node

 path starting // can start anywhere in document
– Ex.: //heading selects each element heading, which occurs in

document

– Remark: expensive query

Query languages 1 51

XPath axes

 Queries use various relations between nodes (axes in XPath):

X::Y means “select Y from axis X”

self – set of the nodes

self::node() is the current node

ancestor – nodes lying on the path from u to the root,

ancestor-or-self – u and nodes lying on the path from u to the
root,

parent – the first node lying on path from u to the root,

child – immediate descendants of the node u,

/child::X is the same as /X

Query languages 1 52

XPath axes

descendent - all nodes, for that is node u an ancestor,

descendent-or-self - u and all nodes, for that is node u an
ancestor,

preceding-siblings – siblings of node u preceding u in
preorder tree traversal,

following-siblings – siblings node u following u in preorder
tree traversal,

preceding – nodes preceding u (except for its ancestors) in
preorder tree traversal,

following – nodes following u (except for its descendants) in
preorder tree traversal.

Query languages 1 53

XPath axes

ancestor

descendant

following

preceding

following-siblingpreceding-sibling

child

attribute

namespace

self

parent

J. Pokorný

Query languages 1 54

Axes - examples

 //book/descendant::* returns all descendants of every
element book

 //book/descendant::chapter returns all chapter
descendants of very element book

 //parent::* returns all elements, that are a parent of a
node, i.e. tree leafs will not be in result

 //section/parent::* every parent of a section element

 //parent::chapter is each chapter element, which is a
parent (i.e. has children)

 /library/book[3]/following::* everything, what is after
the third book of the library

Query languages 1 55

Abbreviations (syntactic suger) for axes

(nothing) corresponds to child::

@ corresponds to attribute::

. corresponds to self::node()

.//X corresponds to self::node()/descendant-or-self::node()/child::X

.. corresponds to parent::node()

../X corresponds to parent::node()/child::X

// corresponds to /descendant-or-self::node()/

//X corresponds to /descendant-or-self::node()/child::X

Query languages 1 56

XPath – query examples

 In the most of queries their path is based on the children
axis

 Examples of queries:

/article/*/paragraph

article//figure

//article[author=’Michael Kay’]

More complex:

//article[title = ’XPath 2.0 Programming’]/author

article[author]//name -- requires a sibling

Which query does this expression express?

//figure/ancestor::chapter/following-sibling::chapter

Query languages 1 57

XPath – query examples

//figure/ancestor::chapter/following-sibling::chapter

The answer:

the chapters, following (with the same superelement)

any chapter containing a figure

Query languages 1 58

XPath – more about semantics

 Simple path (step) is evaluated w.r.t. a context.

context consists of:

– context node,

– position of the node in context and the context scope
(the number of nodes),

– bind variables, library functions, name space
declarations

 simple path has a form: axis::node-test[predicate]

– axis selects a set of nodes-candidates (e.g. children),

– node-test filters candidates, based on the node type
and the name (name elements,…),

– predicate (Boolean expression) further filters nodes,

– the rest goes into the result.

Query languages 1 59

Part V: Indexing XML data

Query languages 1 60

Methods for indexing XML data

 indexing as a fulltext

disadvantage: querying by structure is not possible

 indexing relations in a classical way (Lore)

 indexing based on positions

– using absolute or relative addresses for representation of

words and tags positions in XML document

 indexing based on paths

– paths are encoded according to a tree-traversal order

– all paths leading to all words are encoded

– It is possible to query both a content and structure
– …

Query languages 1 61

Indexing in Lore

&1

&2

&11

&4

&10

&3

&12&9

LINDEX

VINDEXTINDEX

PINDEX

Film
Film

Film

Title

Author Price
year

“1984“ “George Orwell“ 200 1956

See: http://infolab.stanford.edu/lore/

Query languages 1 62

Value Index (VINDEX)

 Input: tag T, comparison , value v

 Output: all atomic objects having incoming

edge T and value v’ satisfying  and value v.

Ex.: (Price, >, 150)

Result is {&11, &15}

 Vindex can be implemented, e.g., with B+-

trees;

Query languages 1 63

Link Index (LINDEX)

 Input: oid o and tag T

 Output: all parent objects having edge T incoming
to o.
 If T is omitted, all parents and their tags are returned.

Ex.: retrieve a parent with Lindex for object &4 via

edge labeled Film;

It returns parent object &1

 Lindex can be implemented, e.g., with linear
hashing

Query languages 1 64

Link Index (LINDEX)

Ex.: db/A/B[C=5]

Uses Vindex and Lindex:

 Find C component via Vindex and (C, =, 5)

 Try, whether there is a path A/B from db to

this object via two calling Lindex.

 Return evaluation.

Query languages 1 65

Text Index (TINDEX)

 Input: TINDEX provides searching using a keyword
w in form (w, T), where T is a tag.

 Output : list of postings <o, n>

 Can be implemented via inverted lists, mapping
word w and tag T to a list of atomic values v with
input edge T, where v contains w on position n.

 Tag can be omitted.

Ex.: Look up with TINDEX for all objects containing
word “Ford“ and having incoming edge Name.

Result:{<&17, 1><&21, 2>}

Query languages 1 66

Path Index (PINDEX)

 Input: object o and expression p denoting a path

 Output : all objects reachable from o via the path p

 Restriction: usually only simple paths, i.e. those

starting in named objects and containing no regular

expressions

Ex.: db/Film/Title

Pindex for retrieving all objects reachable via

db/Film/Title

Result: {&5, &9, &14}

Query languages 1 67

Evaluating top-down directly

Ex.: db.Film[Price < 200]

 All subelements of the Film element in db are
searched and for each look up, the content of
subelement Price is tested if its value is less
than 200.

 This leads to depth-first traversal of the tree
matching edges, which occur in path
expressions.

Query languages 1 68

Evaluating bottom-up with indexes

Ex.: db.Film[Price < 200]

 First find all objects meeting the condition
using an appropriate Vindex.

 For each from these objects traverse
backward in the tree to their parents using
Lindex.

 Advantage: avoids the paths, which do not
meet the condition.

first

Query languages 1 69

Hybrid evaluating with indexes

Ex.: db.Film[Price < 200]

 Something is evaluated (not necessarily
everything) what concerns the condition by top-
down approach.

 Then there are found directly the objects meeting
the condition with Videx. Then it continues by
traversing via Lindex to the same point as with top-
down approach.

 Query result is found as an intersection set of the
objects set and combination of traversing paths.

Query languages 1 70

XML – standards family

TEI

CSS

HTML

XSL
XML

XLink

XPointer

RDF
XSchema

HyTIME SGML DSSSL

XPath

XHTML

XSLT

XQL

XQuery

XML-QL

XSQL

Query languages 1 71

Conclusion

 Indexes occur in native XML databases

 Proposed various types of indexes on XML

data to execute efficiently XPath queries.

 XPath 2.0 is also a subset of XQuery 1.0.

 Indexes provide efficient support for

processing queries in these languages.

