
Query languages 1

Query languages 1 (NDBI001)

Query Optimization

Jaroslav Pokorný

MFF UK, Praha

pokorny@ksi.mff.cuni.cz

1

Query languages 1

DBMS context

 A key module of DBMS

 Goal: to make optimization independent on
strategy query expression

Counterexamples: navigational languages, SQL
interpreter

 Parallel to evaluation of arithmetic
expressions
Here: time complexity of operations of AR using I/O

operations

Crucial factors: size of relations, size of active
domains, indexes, hashing, bitmaps etc.

2

Query languages 1

Architecture

parser

plan

generátor

cost

estimator

evaluater of query plans

Query optimizer

SELECT C.name

FROM Booking B, Clients C

WHERE B.client_ID=C.client_ID AND

B.flight_n=100 AND C.category>5

catalogue

manager

schema statistics

3

Query languages 1

Optimizer

 Phases of query processing

Transfer into the internal form

 SQL AR

 linear expression tree

Remark: calculi AR in polynomial time depending on

the expression length

conversion into canonic form

optimization

evaluation plan

code generating

4

Query languages 1

Overview of the problem

 Evaluation plan: query tree + algorithm for each

operation.

 Two main ideas:
which plans are considered for given query?
how to estimate the plan cost ?

 From the plans considered it is chosen the one with

the least cost.

Ex..: System R
using statistic data for cost estimation,
using equivalent algebraic expressions,
 restriction to left-deep plans.

5

Query languages 1

Example of a schema

Semantics: Clients book their flights until a given date.

Parameters: B = 4 KByte

 Booking:

R = 40 Byte, b = 100, pB = 1000 pages.

 Clients:

R = 50 Bytes, b = 80, pC = 500 pages.

Clients (client_ID: int, name: string, category: int, age: real)

Booking(client_ID: int, flight_n: int, date: date, remark: string)

6

Query languages 1

Alternative 1

 Plan: join by nested-loops, selection+projection

when the result is generated

 Cost: 500+500*1000 I/Os

 Apparently, the worst plan!

 Use possibilities: selections should be evaluated

earlier, available indexes, etc.

 Optimization goal: To find the most effective

plans, which lead to the same result (answer).

SELECT C.name

FROM Booking B, Clients C

WHERE B.client_ID=C.client_ID AND

B.flight_n=100 AND C.category>5

name

flight_n=100category >5

Booking Clients

*

7

Query languages 1

Alternative 2

(without indexes)

 The main difference: selections first.

 Assumption: M=5 (5 buffers. Calculation of the plan cost:

 Scanning Booking (1000) + writes into T1 (10 pages, if we have 100 flights and

uniform distribution).

 Scanning Clients (500) + writes into T2 (250 pages, if we have 10 categories,

uniform distribution).

 Sort(T1) (2*2*10), Sort(T2) (2*4*250), Merge(T1,T2) (10+250)

 Sum: 1000+10+500+250+40+2000+260= 4060 I/O operations.

Remark: sorting - by n-way sorting algorithm (T1 with 2 passes, T2 with 4 passes)

Improvement: projections before sorting - T1[client_ID], T2[client_ID, name]:

 T1 (1 page), T2 (166 pages),

 Sum: 1000+1+500+166 + 2*1*1 + 2*4*166 + 1 + 167 = 3027 I/O operations.

name

Booking Clients

*

flight_n=100 category >5

2pT*#passes

8

Query languages 1

Alternative 3

(with indexes)
 With clustered index flight_n in Booking,

we obtain 100,000/100 = 1000 tuples

on 1000/100 = 10 pages.

name

Booking

Clients

*

flight_n=100

category >5

 Join attribute is a key in Clients
 at most one tuple, unclustered index

on client_ID OK.

 The decision not to propagate category >5 before join is

based in the availability of index client_ID in table

Clients.

 Cost: reading pages from Booking (10); for each

Booking tuple 1 page from Clients is read (1000);

Sum: 1010 I/O operations
9

Query languages 1

Algebraic optimization

Enables to use various strategies for join and propagate
selections and projection before operation join.

 Commutativity of join and Cartesian product

E1 [] E2 E2 [] E1

E1 * E2 E2 * E1

E1 E2 E2 E1

 Associativity of (theta) join and Cartesian product

(E1 [1] E2) [23] E3 E1 [13] (E2 [2] E3),
where 2 includes attributes only from E2 and E3

(E1 * E2) * E3 E1 * (E2 * E3)

(E1 E2) E3 E1 (E2 E3)

10

Query languages 1

Algebraic optimization

 Commutativity of selection and projection

If all the attributes from are ín {A1,...,Ak}, then

E1[A1...Ak]() E1()[A1...Ak]

If B1,...,Bs are not in , then

E1()[A1...Ak] E1[A1...AkB1...Bs]()[A1...Ak]

Remark: Propagation of selection to (basic) relations can be
used also for operations , -, .

 Commutativity of selection and Cartesian product

If all attributes are are involved in E1, then

(E1 E2)() E1() E2

11

Query languages 1

Algebraic optimization

 Commutativity of selection and union

(E1 E2)() E1() E2()

 Commutativity of selection and difference

(E1 - E2)() E1() - E2()

Remark: Similarly, it is possible to use a projection.

 Commutativity of projection and Cartesian product

(E1 E2)[A1...An] E1[B1...Bk] E2[C1...Cm]

where iBi iCi = iAi, Bi concern E1 and Cj concern E2.

 Commutativity of projection and union

(E1 E2)[A1...An] E1[A1...An] E2[A1...An]

12

Query languages 1

Heuristics for query optimization

1. Selections as soon as possible. Use cascades of selections,
commutativity of selections with projections and , distributiveness
of selection over , , - in such way, to get selections as close
at possible to leafs.

2. Projections as soon as possible. Use cascades of projections,
distributiveness of projection over , , , - and
commutativeness of selection and projection in such way, to get
projections as close as possible to leafs. Remove unnecessary
projections.

3. If possible, transform into *. Selection on 1 argument in apply
earlier.

4. Sequence of selections and/or projections replace by one
selection, one projection. Use possibilities to do more operations
altogether! (pipeline: e.g., if * follows, generate tuples of join)

13

Query languages 1

Heuristics for query optimization

5. Use associativity of *, , , to regrouping relations in the query

tree in such way, so that selections producing smaller relations

were called earlier.

6. Store results of common subqueries (if they are not too big).

Remark: appropriate for queries on views

14

Query languages 1

Algebraic optimization - example

D: Find titles of books having copies, which should be returned back

until 30.9.2015.

DRA:

(LOANS * READERS * COPIES * BOOKS) [TITLE, AUTHOR,

ISBN, COPY_ID, NAME, ADDRESS, READER_ID, DATE_BACK]

(DATE_BACK < 30.9.2015) [TITLE]

Remark: D could originate as the query on view LOANS_INFO

SELECT TITLE

FROM LOANS_INFO

WHERE DATE_BACK < 30.9.2015

15

Query languages 1

Algebraic optimization - example

Transformations:

(1) 2 joins from 3 joins replace by

((LOANS READERS)(L.READER_ID = R.READER_ID)
[COPY_ID, READER_ID, DATE_BACK, NAME, ADDRESS]

* ((COPIES BOOKS)(C.ISBN = B.ISBN) [TITLE, AUTHOR, ISBN,
COPY_ID, PURCHASE_DATE])) [TITLE, AUTHOR, ISBN,
COPY_ID, NAME, ADDRESS, READER_ID, DATE_BACK]
(DATE_BACK < 30.9.2015) [TITLE]

(2) remove the last * and omit PURCHASE_DATE from []

(AB)(COPY_ID = COPY_ID) [TITLE, AUTHOR, ISBN, COPY_ID,
NAME, ADDRESS, READER_ID, DATE_BACK]
(DATE_BACK < 30.9.2015) [TITLE]

16

Query languages 1

Algebraic optimization - example

(3) Because DATE_BACK is in [] and conditions of selections

commutate

(AB)(DATE_BACK < 30.9.2015)(COPY_ID = COPY_ID)[TITLE]

Remark: unnecessary projections were removed

(4) Because DATE_BACK is only in A in relation LOANS

((LOANS(DATE_BACK < 30.9.2015) READERS)(L. READER_ID

= R. READER_ID)[COPY_ID, READER_ID, DATE_BACK, NAME,

ADDRESS] B) (COPY_ID = COPY_ID)[TITLE]

(5) Reduction of projections in () to [COPY_ID] and [COPY_ID,TITLE]

 (LOANS(DATE_BACK < 30.9.2015)[COPY_ID] (COPIES

BOOKS)(C.ISBN = B.ISBN)[COPY_ID, TITLE])

(COPY_ID = COPY_ID)[TITLE] relation READERS disappears

17

Query languages 1

Algebraic optimization - example

(6) Result in operations selection, projections, and *

(LOANS(DATE_BACK < 30.9.2015)[COPY_ID] * (COPIES *

BOOKS) [COPY_ID, TITLE])[TITLE]

The query belongs to the class of SPJ-queries.

It is possible to optimize them in way to minimalize the number of

joins.

(It is an NP-complete problem.)

18

Query languages 1

Statistics-driven optimization

 Cost estimation for each plan: for each operation, cost
and size result estimations are performed

 Information about R* size and indexes is needed.

 Data catalogues typically contain a description of relation
R and indexes:
nR (# tuples) and pR (# pages)

V(A,R) = R[A] (tj. adomA)

pR.A (# leaf pages B+-tree index for R.A).

 l(A,R) – the depth of B+-tree for index R.A, min/max values for
each B+-tree index, 2minA, 2maxA (the second lowest, resp.
highest value in adomA)

 More detailed information (e.g., histograms for adomA)

through the index

19

Query languages 1

Result size estimation and reduction factors

 Maximum # tuples in result is given by a product of

relations cardinalities being in the FROM clause.

 Reduction factor (RF) associated with each atom

reflects the impact of the atom in reducing result size.

 Result cardinality = Max # tuples * product of all RF.

 Implicit assumption: terms are independent!

SELECT list_of_attributes

FROM list_of_relations
WHERE atom1 AND ... AND atomk

20

Query languages 1

Estimation of size result and RFs

atom A=k

 RF = 1/V(A.R), given index on A

 RF = 1/10 index does not exist

atom A=B

 RF = 1/MAX(V(A,R), V(B,S)), given indexes on A and B

 RF = 1/V(A,R) given an index on A

 RF = 1/10 no index exist

atom A>k

 RF = (2max-k)/(2max-2min), given an index A

 RF < ½ if A is not of integer type or index does not exist

SELECT list of attributes

FROM list of relations
WHERE atom1 AND ... AND atomk

21

Query languages 1

Optimization using rough estimation of RFs

Strategy: estimations of RF for operators

Ex..: rough estimations by constants

RF= = 20%, RF> = 40%

 FLIGHT.Cost > 26.000

(1)

FLIGHT.Cost > 7.000 (2)

have the same RF, because evidently

RF1>real < RF2>real

22

Query languages 1

Example: Informix Online

selekční condition

R.i-attribute = k

R.i-attribute IS NULL

R.i-attribute = S.i-attribute

i-attribute > k

i-attribute < k

attribute = expression

attribute = NULL

attribute LIKE expression

RF

1/V(R.i-attribute, R)

1/max(V(R.i-attribute,R), V(S.i-attribute,S))

(2max - k)/(2max -2min)

(k -2min)/(2max -2min)

1/10

1/5

Assumptions: i-attribute is attribute with index, k is constant, m is estimation of

subquery size.

23

Query languages 1

Example: Informix Online

Selection condition

attribute > expression

attribute < expression

EXISTS subquery

NOT selection

selection1 AND selection2

selection1 OR selection2

attribute IN list-of-values

attribute ANY subquery

RF

1/3

1, if there is estimation, that TRUE

0, otherwise

1-RFselection

RFselection1 * RFselection2

RFselection1 + RFselection2 -

RFselection1 * RFselection2

 attribute = k1 OR … attribute = km

 attribute k1 OR … attribute km

24

Query languages 1

Statistics driven optimization

 Histograms

 the assumption of uniform distribution is not real in applications

 a histogram on attribute is constructed by partitioning the data

distribution D into mutually disjoint subsets called buckets and

approximating the frequencies f and values V in each bucket in

some common fashion, i.e., histograms approximate real data

distribution

 they are maintained by DBMS

 Kinds of histograms

 Equi-width: divides value range of the column into intervals

supposing, that value distribution in interval is uniform

 Equi-depth: number of tuples in interval is appr. of the same

size

25

Query languages 1

Statistics driven optimization

2 3 3 1 2 1 3 8 4 2 0 1 2 4 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

5.0

2.67

Sequi-width

1.33
1.0

5.0

interval 1 2 3 4 5

number 8 4 15 3 15

2.25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Equi-depth

3.5

3.0

1.75

9.0

interval 1 2 3 4 5

number 9 14 6 7 9

values from adomA

number of tuples

26

Query languages 1

Enumeration of alternative paths
 Two main cases:

plans for a single relation

plans for more relations

 queries over single relation are composed from

operations selection, projection (and aggregation

operations):

each available access path (scanning file/index) is considered

and the one with the least estimated cost is chosen.

Two different operations can be performed altogether (e.g.,

when an index is chosen for selection, projection is done for

each selected tuple and tuples are moved (pipelined) into

aggregation calculation).
27

Query languages 1

Example: System R

Assumptions: Simple query q over relation R, some attributes with
index, V(A, R)

 indexes:
 clustered (R(A=c) is in minimal amount of pages)
 unclustered (R(A=c) is in nR/V(A,R) pages)

Method: choose the cheapest strategy from (1)-(8) and on the result
use the rest of conditions from q

(1) A = c, where there is a clustered index for A

Cost: pR/V(A,R)

(2) A c, where {, , , } and there is a clustered index for A

Cost: pR/2

Remark: for it is necessary to read entire R (5)

28

Query languages 1

Example: System R

(3) A = c, where for A there is unclustered index

Cost: nR/V(A,R)

(4) When R is a sequential file, then the entire R is read.

Cost: pR

(5) when R „mixed“ with other relations and there is a clustered index

for arbitrary attribute (group of attributes), then the whole R is read

„over“ it.

Cost: pR

(6) A c, where {, , , } and for A there is unclustered index

Cost: nR/2

29

Query languages 1

Example: System R

(7) If there is any unclustered index, the entire R is read „over“ it.

Cost: nR

(8) (1)-(7) are not applicable. Then all pages potentially containing R

are read.

Cost: nR

Remark: A = c AND B=d and there is index on A and B as well.

A better strategy would be „over both indexes“ intersection of

two lists of pointers

30

Query languages 1

Estimation of the plan cost for one

relation – more precisely with RF
 Index on primary key A satisfies an equality:

Cost: l(A,R)+1 for B+-tree, about 1.2 for hashed index.

 Clustered index I satisfies 1 or more
comparisons:

(pR.A + pR) * product RF of satisfying selections.

 Non-clustered index I satisfies 1 or more
selections:

(pR.A + nR) * product RF of satisfying selections.
 projections were performed without elimination of duplicates!

31

Query languages 1

Example

 There is an index on category:

(1/V(A,R))*nC = (1/10) * 40000 tuples should be selected.

clustered index: (1/V(A,C)) * (pC.category + pC)=

(1/10) * (50+500) pages are selected.

unclustered index: (1/V(A,C)) * (pC.category + nC) = (1/10) *

(50+40000) pages are selected.

 There is an index on client_ID:

All tuple/pages should be read. Index is not usable. The

whole file C (500) is scanned.

SELECT C.client_ID

FROM Clients C

WHERE C.category=8

32

Query languages 1

Queries involving more relations

 Since the number of joins is increasing, the number of alternative
plans is quickly increasing; it is necessary to restrict the search
space.
 For n relations R1,...,Rn the number of plans is (2(n-1))!/(n-1)!, e.g., for n=7 it is

665280.

 Solution: using dynamic programming;

 S contains n relations. For finding the best plan for S, consider all
possible plans of form: S1 * (S – S1), where S1 is any non-empty
subset of S.

 Recursively calculate cost of each plan. Choose the cheapest of the
2n - 2 alternatives.

 Basic case for recursion: Access plan for particular relation.

 apply all selections on Ri using the best choices of indexes on Ri.

 When the plan for any subset is computed, store it and reuse, when
it is required again. Thus, it is not necessary to generate all join
orders .

33

Query languages 1

Queries involving more relations

procedure findbestplan(S)
if (bestplan[S].cost) return bestplan[S]

//else: bestplan[S] ještě was not calculated, calculate it now
if (S contains only 1 relation)

set the bestplan[S].plan and bestplan[S].cost according to the
best access to S

else for each S1 S such that S1 and S1 S
P1= findbestplan(S1)
P2= findbestplan(S - S1)
A = the best algorithm for join of results P1 and P2
cost = P1.cost + P2.cost + cost A
if cost < bestplan[S].cost then

bestplan[S].cost = cost
bestplan[S].plan = “call P1.plan; call P2.plan;

join results P1 and P2 by algorithm A”
return bestplan[S]

 Complexity: O(3n)

34

Query languages 1

Queries involving more relations

 Essential decision in System R: for * only those linear trees are
considered, which are of type left-deep.

Df.: linear: each non-leaf node has at least one child from R

Df.: left-deep: each right-hand-side child is from R

 left-deep joins enable generate fully piplined plans.
 Intermediate results have to be not stored into temporary files

Remark: not all left-deep plans are fully pipelined (depends on the
algorithm of join operation, e.g., sort-merge)

 It is not necessary to generate all join orders. Using dynamic
programming, the cheapest alternative is generated only once for
each subset {R1, …, Rn} and stored.

Remark: There are O(n*2n) left-deep plans.

35

Query languages 1

Queries involving more relations

linear trees

left-deep

bushes
*

* *

*

*
*

*

*

*

nelinear trees

36

Query languages 1

Enumeration on left-deep plans

Left-deep plans distinguish only in order of relations, access method

for each relation and method of a join for each relation.

 Algorithm modification:

 replace “for each S1 S such that S1 and S1 S”

 by expression „for r S

Let S1 = S – r“

 Enumerated using n passes (if n relations joined):

 Pass 1: Find the best 1-relation plan for each relation.

 Pass 2: Find the best way to join result of each 1-relation plan (as outer)

to other relation (all 2-relation plans)

 Pass n: Find the best way to join the result of the (n-1)-relation plan

(outer) to the nth relation (all n-relation plans)

 Time complexity is O(n2n)
37

Query languages 1

Finding „the best“ left-deep plan

procedure findbestplan(S)
if (bestplan[S].cost) return bestplan[S]

//else: bestplan[S] has not yet been calculated, calculate
it now

if (S contains onlyt 1 relation)
set bestplan[S].Plan and bestplan[S].cost according
to the best access to S

else for r S

let S1 = S – r

P1= findbestplan(S1)
P2= findbestplan(S - S1)
A = the best algorithm for join of results P1 and P2
cost = P1.cost + P2.cost + cost A
if cost < bestplan[S].cost then

bestplan[S].cost = cost
bestplan[S].Plan = “call P1.plan; call P2.plán;

join results P1 and P2 by algorithm A”
return bestplan[S]

38

Query languages 1

Calculation of left-deep plans

 For each subset of relations only the
cheapest plan (for each interesting tuple
ordering - see sorting, merging, group by).

BA C DPass 1

Pass 2

Pass n

*

*

*

39

Query languages 1

Example

Pass 1:

Clients: B+-tree matches

on category>5, and is probably cheapest. But the result is a set

of tuples, index is unclustered, scanning the file can be cheaper.

 The plan with B+-tree (sorted by category) is held

Booking: B+-tree agrees on flight_n=100; the cheapest.

Pass 2:

We consider each plan retained from Pass 1 as the outer and

consider, how to join it with the other relation

Booking as the outer: by hashing to Clients tuples, that satisfy

client_ID = value of client_ID of outer tuple.

Clients:

B+-tree on category

hashing on client_ID

Booking:

B+-tree on flight_n

name

Booking Clients

*

flight_n=100 category >5

40

Query languages 1

Example

Pass 1:

Clients: B+-tree matches

on category>5, and is probably cheapest. But the result is a set

of tuples, index is unclustered, scanning the file can be cheaper.

 The plan with B+-tree (sorted by category) is held

Booking: B+-tree agrees on flight_n=100; the cheapest.

Pass 2:

We consider each plan retained from Pass 1 as the outer and

consider, how to join it with the other relation

Booking as the outer: by hashing to Clients tuples, that satisfy

client_ID = value of client_ID of outer tuple.

Clients:

B+-tree on category

hashing on client_ID

Booking:

B+-tree on flight_n

name

Booking Clients

*

flight_n=100 category >5

41

Query languages 1

Query blocks: units of

optimization

 Query in SQL is split into a

collection of block queries, which

are optimized always 1 block

in time.

 A nested block corresponds

(simply) to a procedure call for each tuple from outer block

– for each block, the following plans are considered:

– all available access methods for relation in the FROM clause.

– all trees for left-deep joins (how to join with relations in inner FROM

(permutations and join methods are considered)

nested blockouter block

SELECT C.name

FROM Clients S

WHERE C.age IN

(SELECT MAX (S2.age)

FROM Clients S2
GROUP BY S2.category)

42

Query languages 1

Nested queries

 Nested block is optimized
independently, with the outer
tuple considered as providing a
selection condition.

 Outer block is optimized with the
cost of `calling’ nested block
computation taken into account.

 Implicit ordering of these blocks
means that some good strategies
are not considered. The non-
nested version of the query is
typically optimized better.

SELECT C.name

FROM Clients C
WHERE EXISTS

(SELECT *

FROM Booking B

WHERE B.flight_n=103

AND B.client_ID=C.client_ID)

nested block k optimization:

SELECT *

FROM Booking B

WHERE B.flight_n=103 AND

C.client_ID = outer value

Equivalent non-nested query:

SELECT C.name

FROM Clients C, Booking B

WHERE C. client_ID =B. client_ID

AND B.flight_n=103
43

Query languages 1

Syntax driven optimization

Ex.: SELECT * FROM Copies (1)

WHERE Cost >’40’ AND Issue_country = ’GB’

SELECT * FROM Copies (2)

WHERE Issue_country = ’GB’ AND Cost >’40’

In some DBMS the evaluation depends of the order of conditions:

The one with the lowest RF is evaluated first.

 variant (2) is more effective than (1).

44

Query languages 1

Syntax driven optimization

How to bypass the optimizer?

Ex.: SELECT * FROM Copies (1)

WHERE (Purchase_date >’23.04.99’ AND

Issue_country = ’GB’) OR ISBN = ‘486’;

(SELECT * FROM Copies (2)

WHERE Purchase_date >’23.04.99’ AND

Issue_country = ’GB’)

UNION

(SELECT * FROM Copies WHERE ISBN = ‘486’);

Tendency of optimizer: (1) sequentially, (2) with indexes for

subqueries

45

Query languages 1

Summary

 Query optimization is an important task solved by DBMS.

 Other approaches:

 based on rules

 probability algorithms

 parametrized optimization

 It is necessary to understand optimization, to understand

an influence of DB design (relations, indexes) on the load

(set of queries).

 Trend: autonomous DBMS with AI.

 Ex..: platform Oracle 18c based on machine learning. DB is

automatically upgraded, optimizes at run time, DBA is not

necessary.
46

