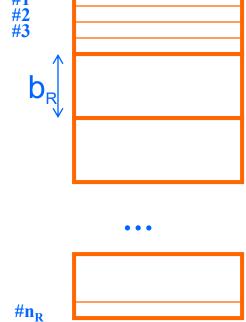
Query evaluation

Jaroslav Pokorný MFF UK, Praha pokorny@ksi.mff.cuni.cz

Statistics

Statistics for each relation:

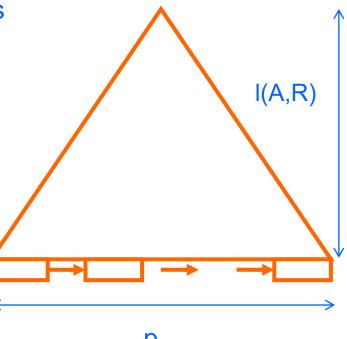
n _R V(A,R)	<pre># of tuples in relation R # of elements in R[A]</pre>	#1 #2 #3		
P _R b _R	# of pages to store R blocking factor	b _R		
M	# of pages of free space in RAM			
I(A,R)	# of levels of index file for A in R		Г	
Notation:		#n _R		
buffer _R	#n _R Compact space of pages for R in RAM (we do not consider caching)			



Indexing by B⁺-trees:

Appropriate for: if there is an ordering on dom(A). Consider attribute A of relation R:

- f_{A,R}: average number of successors in non-leaf node (~50-100)
- I(A,R): # index levels (~2-3)
 - $\sim \log(V(A,R))/\log(f_{A,R})$
- p_{R,A} : # leaf pages



Time and space complexity

- Measures for query cost:
 - CPU (cost of an operation is small; it is decreasing, difficult to estimate)
 - Disk (the main cost component # of I/O operations)
- How many tuples is necessary to transfer?
- Which statistics should be maintained?

Notation: A instead of R.A

SELECT * FROM R WHERE A = a'A is a primary key, Cases: A is a secondary (alternative) key there is an index on A unclustered or of type CLUSTER A is a hash key Assumption: uniform distribution of A values in R[A]

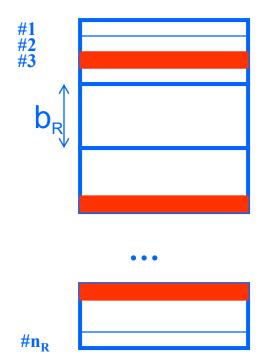
$$n_{R(A=a)} = n_R / V(A,R)$$

Query languages 1

Sequential scanning

- p_R /*worst case*/
- p_R/2

/* average, if A is a primary key*/

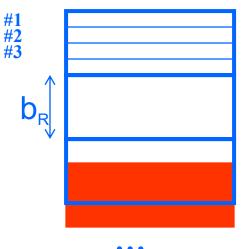


Binary search, if R is ordered on A

- log₂(p_R)
- $\log_2(p_R) + n_{R(A=a)}/b_R$ /*if A is arbitrary

/*if A is primary key*/ /*if A is arbitrary

attribute*/



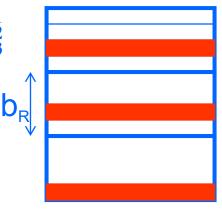
#n_R

Scanning, if there is an index for A

- I(A) + 1 /*if A is primary key*/
- I(A) + n_{R(A=a)}/b_R /*if index for A is of type CLUSTER*/
- I(A) + n_{R(A=a)} /*if index for A is not of type CLUSTER*/

Scanning, if A is a hash key

• ≈1 access



#1 #2 #3

SELECT * FROM R WHERE A < 'a'

Sequential scanning

- p_R
- $p_{R}(a min_{A})/(max_{A} min_{A})$

```
/* the worst case*/
/*if R is sorted on A*/
```

Scanning, when there is an index

- I(A) + p_R/2
- $I(A) + p_{R,A}/2 + n_R/2$

/*if R is sorted on A*/
/* if there is an index for
A, A is a secondary key*/

Example

Booking(passenger_n, flight_n, date, remark) $n_{Booking} = 10\ 000$ $b_{Booking} = 20$ V(passenger_n, Booking) = 500 V(flight_n, Booking) = 50 $f_{flight_n,Booking} = 20$

Query: Find passengers with flight number = '77'

Example

Sequential scan:

 \Rightarrow query cost: 500 I/O operations

Clustered index for flight_n:

query cost = $I(flight_n) + n_{Booking(flight_n=70)}/b_R$

- I(A): 50 values $f_A = 20 \Rightarrow I(A)=2$ Justification: $(log(50)/log(20) \approx 2)$
- n_{R(A=a)} = n_R/V(A,r) = 10,000/50 = 200 tuples n_{R(A=a)}/b_R = 200/20 = 10 pages
 ⇒ query cost = 2+10= 12

Join operator calculation

R(<u>K</u>,A,...)

N:1

S(<u>A</u>,...)

Two types of implementation:

- independent relations
- with pointers(Starbrust, Winbase,...)

Basic methods:

- nested loops (variants with indexing, scanning)
- sort-merge
- hash join

Assumptions: join attribute A, $p_R \le p_S$,

for the variant with pointers $R \rightarrow S$

Remark: special case - Cartesian product

- naive algorithm
 - for each $r \in R$
 - for each $s \in S$

if $\Theta(r,s)$ then begin u:= r [Θ] s; WRITE(u) end

-
- by pages

 $\begin{array}{ll} \text{smaller relation as outer one!} \\ \text{M=3} \implies p_{\text{R}} + p_{\text{R}}p_{\text{S}} \text{ reads} \\ & (n_{\text{R}} n_{\text{S}}/\text{V}(\text{A},\text{S}))/b_{\text{RS}} \text{ writes (justify!)} \\ \text{Improvement: - inner relation is read} \qquad \overbrace{} \\ & \overbrace{} \\ & \text{it saves 1 read at start (end)} \end{array}$

Query languages 1

Variants:

• M big, then the partition: M-2, 1, 1

outer inner result

- $\Rightarrow p_R + p_S p_R/(M-2)$ reads
- R in main memory
 - $\Rightarrow p_R + p_S$ reads
- with pointers, M=3
 - $\Rightarrow p_R + n_R$ reads

index on S.A (B⁺-tree)

Assumptions: R sorted on R.A, S.A is primary

 $\Rightarrow p_{R} + I(A,S) + p_{S,A} + V(A,R)$

• S hashed on S.A

Assumptions: R sorted on R.A, S.A is primary

 $\Rightarrow p_{R} + V(A,R)$

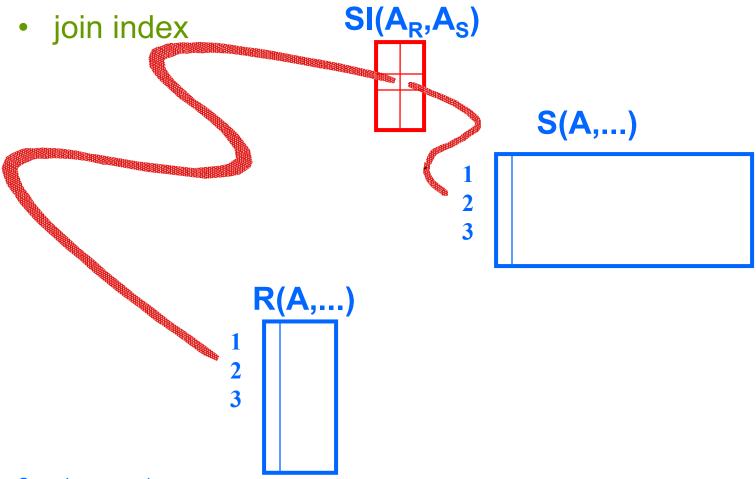
reads

reads

- with selection (by scanning),
- Ex.: SELECT * FROM R,S WHERE R.A=S.A AND R.B=12

Assumptions: R.B primary key (indexed), S.A secondary key (clust. index, tuples with S.A=a in one page)

 \Rightarrow I(A,S) + I(B,R) + 2 reads



Query languages 1

Nested loops - more relations

 $\begin{aligned} \mathsf{M}^{\mathsf{`}} &= \mathsf{M}_{1} + \mathsf{M}_{2} + \ldots + \mathsf{M}_{n} < \mathsf{M} \\ \mathsf{R}_{\mathsf{i}} \text{ are partitioned into } \mathsf{I}_{\mathsf{i}} \text{ subrelations of length } \mathsf{M}_{\mathsf{i}}, \mathsf{i.e.}, \\ \mathsf{I}_{\mathsf{i}} &= \lceil \mathsf{p}_{\mathsf{i}}/\mathsf{M}_{\mathsf{i}} \rceil, \ (1 \leq \mathsf{i} \leq \mathsf{n}) \end{aligned}$ $\begin{aligned} \mathsf{Cost function } [\mathsf{Kim84}]: \\ \mathsf{C} &= \mathsf{p}_{1} + [\mathsf{M}_{2} + (\mathsf{p}_{2} - \mathsf{M}_{2})\lceil \mathsf{p}_{1}/\mathsf{M}_{1} \rceil] + \ldots + [\mathsf{M}_{n} + (\mathsf{p}_{n} - \mathsf{M}_{n})\lceil \mathsf{p}_{1}/\mathsf{M}_{1} \ldots \lceil \mathsf{p}_{\mathsf{n}-1}/\mathsf{M}_{\mathsf{n}-1} \rceil] \\ \Rightarrow \text{ the problem of finding integer } \mathsf{M}_{\mathsf{i}}, \text{ to obtain } \mathsf{C} \text{ minimal} \\ \mathsf{Heuristics:} \end{aligned}$

(1) List n relations into the algorithm proportionally by their size, that $p_1 \leq p_2 \leq ... \leq p_n;$

(2) For R_n allocate 1 page, M⁴ - 1 divide equally;

(3) (M^{\cdot} - 1)/(n-1) is not integer then assign bigger M_i to smaller relations;

Nested loops - more relations

```
Structure of the basic algorithm (here for three relations):
for j:=1 to L_1 do
   begin read R_{1i} into buffer<sub>M1</sub>;
   for k:=1 to L_2 into
          begin read R_{2k} into buffer<sub>M2</sub>;
                   for s:=1 to L_3 into
                        begin read R<sub>3s</sub> into buffer<sub>M3</sub>;
                             create join of buffer<sub>Mi</sub>, 1 \le i \le 3;
                             write result
                        end
          end
   end
```

Nested loops - more relations

```
Ex.:

a) p_1 = 7, p_2 = 14, p_3 = 21, M' = 11

\Rightarrow dividing M' = <5, 5, 1>

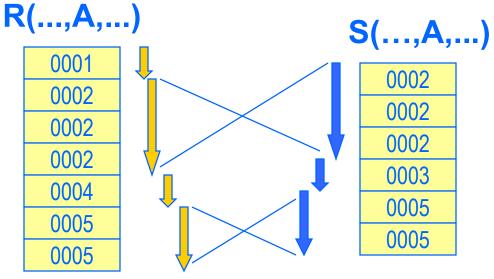
b) p_1 \le \dots \le p_5, M' = 16

\Rightarrow dividing M' = <4, 4, 4, 3, 1>
```

Sort-merge join

Idea: sorting, merging (two-pass algorithm)

Appropriate: if R and S are sorted



- min. M = 3, 2. phase requires $p_R + p_S$ reads
- Requires auxiliary space for sorting
- Result is sorted

Sort-merge

• M = 3 (with use of external sorting)

 $\Rightarrow \sim 2p_{R} \log(p_{R}) + 2p_{S} \log(p_{S}) + p_{R} + p_{S}$

without writing the result

- $M \ge \sqrt{p_s}$ (two-pass algorithm)
- (1) Sorted runs of length 2M pages are created (with a priority queue) and are written to disk;

 \Rightarrow length of run is $\ge 2\sqrt{p_S}$

 \Rightarrow for S there is at most $p_S/2\sqrt{p_S}$ runs, for R also not more than $p_S/2\sqrt{p_S}$

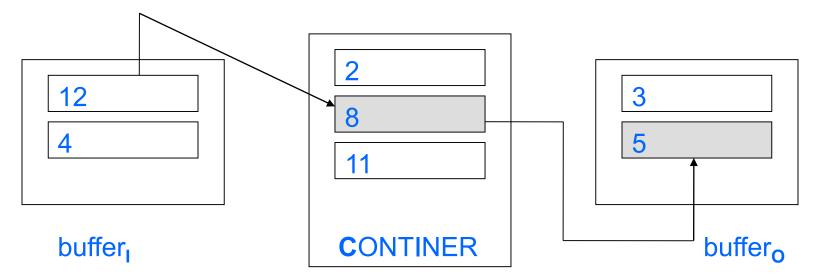
 \Rightarrow totally at most $\sqrt{p_s}$

(2) For each run, a page is allocated in memory and these pages are concurrently merged;

 $\Rightarrow 3(p_R + p_S)$ without writing the result

Query languages 1

Principle of a priority queue



- 1. C and buffer_I are filled up by tuples from R.
- 2. From C tuples *u* are selected such that $u.A \ge v.A$, $\forall v$ in buffer_o (1) a rank in ascending order by values *A*.
- 3. Free place in K is filled up by a new tuple from buffer_I. If buffer_I = \emptyset , then a new page R is read. If buffer_o is full, then the given run on the disk is erlarged. If no tuple from the container fulfills (1), then the current state of buffer_o is the last page of the run.

In this way, it is possible to create runs of length in average 2*M* pages. Query languages 1

Sort-merge

- variant with pointers
- R is sorted by pointers
- S is read only once, it has not to be sorted
 - $\Rightarrow 3p_R + p_S$ without writing the result

Comparison:

- $|p_R p_S|$ is big \Rightarrow nested loops is better
- $|p_R p_S|$ is small \Rightarrow sort-merge is better
- restricting selections \Rightarrow better with scanning

Hash joins

Appropriate:

- indexes for R.A and S.A are not available
- result does not need to be sorted on A
 - classical hashing
 - GRACE algorithm
 - simple hashing
 - recursive partition of relations
 - hybrid hashing

Classical hash join

Assumption: R fits in M pages

 $M = p_R *F + 1 + 1$, where F is coefficient greater than 1

(1) Hash R into main memory;

(2) Read S sequentially;

Hash s.A and direct access read $r \in R$;

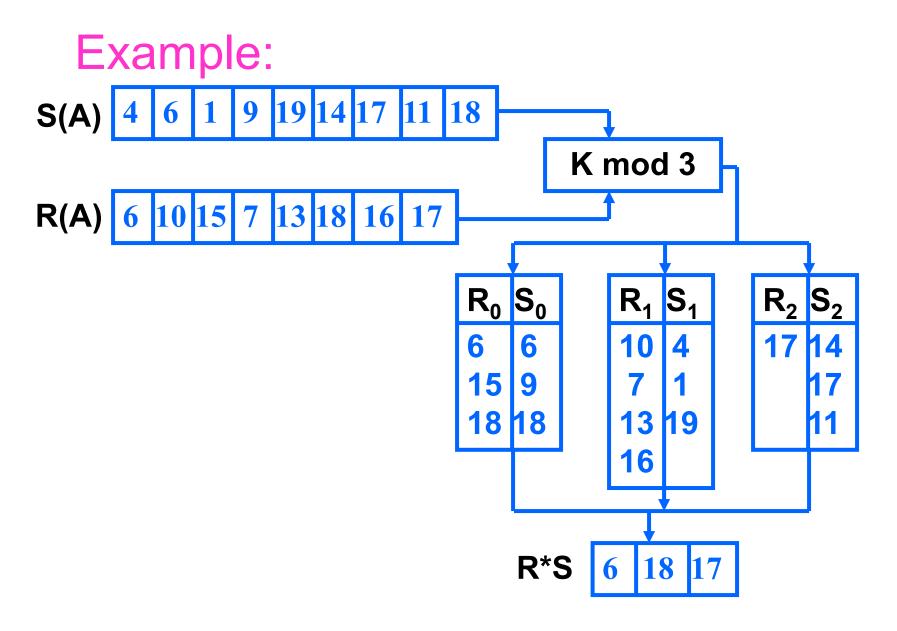
(3) if s.A = r.A then begin u:= r * s; WRITE(u) end

 \Rightarrow p_R + p_S reads

Partitioned hash join

Assumption: R does not fit in M pages

- Idea: R and S are partitioned into disjunctive subsets in such way, that R tuples in partition *i* will only match S tuples in partition *i*.
- Two pass algorithm:
- (1) Partition R and S on disk;
- (2) Hash R part (R parts) into M-2 pages;
 - Read the related S part;
 - Hash s.A and by direct access search for matches in R; Generate the result;



GRACE algorithm

"school" version

Data structures: tuples R a S, buckets of pointers HR_i , HS_i , $i \in \{0, 1, ..., m-1\}$

Hash function h: dom(A) \rightarrow <0,m-1>

Algorithm:

for k:=1 to n_R do begin i :=h(R[k].A); HR_i := HR_i \cup {k} end

for k:=1 to n_S do begin i :=h(S[k].A); HS_i := HS_i \cup {k} end for i:=0 to m-1 do

begin $POM_R := \emptyset$; $POM_S := \emptyset$;

foreach $j \in HR_i$ do begin r:=R[j]; POM_R := $POM_R \cup \{r\}$ end; foreach $j \in HS_i$ do begin s:=S[j]; POM_S := $POM_S \cup \{s\}$ end;

GRACE algorithm

/* in RAM */ foreach $s \in POM_s$ do begin foreach $r \in POM_R$ do begin if s.A = r.A then begin u:= r * s; WRITE(u) end end end end read \Rightarrow p_R + p_S + n_R + n_S appropriate: when $p_R/m + p_S/m < M$

Query languages 1

GRACE with storing partitioned relations

- $M \ge \sqrt{(p_R * F)}$
- (1) Choose h such that R can be partitioned into m = $\sqrt{(p_R^*F)}$ partition;
- (2) Read R a hash into (output) buffer_i, ($0 \le i \le m-1$);

if buffer_i is full then WRITE(buffer_i);

- (3) Do (2) for S;
- (4) for i :=0 to m-1 do begin
- (4.1) Read R_i and hash it into space of size $\sqrt{(p_R^*F)}$;
- (4.2) Read $s \in S_i$ a hash s.A.

If there is $r \in R_i$ a s.A = r.A, then generate the result. end

GRACE with storing partitioned relations

Justification of 4.1: Assumption - $R_i \approx$ of the same size $p_R/m = p_R/\sqrt{(p_R^*F)} = \sqrt{(p_R/F)}$ R_i requires space $F\sqrt{(p_R/F)} = \sqrt{(p_R^*F)}$ $\Rightarrow 3(p_R + p_S)$ I/O operations Appropriate: when $p_R/m + p_S/m < M$ Remarks:

- S_i can be arbitrary. They require 1 page of memory;
- A problem, when V(A,R) is small;
- appropriate in situations, when R(K,...), S(K₁,K,...);
- If R_i resp. S_i does not fit in M-2 pages ⇒ recursion
 i.e. R_i is partitioned into R_{i0}, R_{i1},...,R_{i(k-1)} sets of pages;

Simple hashing

Assumption: $p_R*F > M-2$, A is UNIQUE Idea: special case of GRACE, when $R \rightarrow R_1$, R_2 Algorithm: repeat begin choose h; read R and hash r.A; M-2 buffers create R_1 , other tuples into R_2 on disk; read S and hash s.A; if h(s.A) falls into space R_1 then begin if s = r A then generate result end else store s into S_2 on disk; $R:=R_2$; $S:=S_2$ end until $R_2 \neq \emptyset$;

Query languages 1

Hybrid hashing

- Idea: combination of GRACE and simple hashing,
 - R is partitioned into parts R_1 , R_2 ,..., R_k , R_0 such that R_0 fits into RAM.
- Partition of M-2 pages: $|buffer_i| = 1$ ($1 \le i \le k$), $|buffer_0| = p_{R0}$
- Algorithm:
- (1) Choose h;
- (2) Read R and hash r.A; create R_i ($0 \le i \le k$);
 - /*R₀ is in buffer₀*/
- (3) Read S and hash s.A; create S_i (1≤i≤k);
 if h(s.A) falls into space S₀ then create join;
 (4) for i:=1 to k do create join by GRACE;

Comparing algorithms

Assumptions:

- $M > \sqrt{p_s}$ for sort-merge
- $M > \sqrt{p_R}$ for hashing

Notation: $alg1 >> alg2 \Leftrightarrow alg1$ is better than alg2

	Sort- merge	GRACE	Simple hashing	Hybrid hashing
GRACE	>>		>> (for smaller M)	
Simple hashing	>>	>> (for greater M)		
Hybrid hashing	>>	>>	>>	

Division

Df.: R and S with schemes Ω_1 and $\Omega_2 \subset \Omega_1$, respectively. $T = R \div S = R[\Omega_1 - \Omega_2] - ((R[\Omega_1 - \Omega_2] \times S) - R)[\Omega_1 - \Omega_2]$ Ex.: S Β Β R Β Α Α Α after sorting

Division by hashing

Idea: Buckets HS_i for values from S.B are created. The values from R.A are stored into them. Values from $\cap HS_i$ contribute to the result.

Algorithm: (elements of the hash table are, e.g., of type array or set, they represent buckets)

(1) Read S, calculate h(s.B) and denote the space (bucket) $HS_{s,B}$, foreach s.B do $HS_{s,B}$:= \emptyset ;

(2) for j:=1 to n_R do begin r:=R[j];

if there is a bucket for h(r.B)

then $HS_{r,B}$:= $HS_{r,B} \cup \{r,A\}$ end

(3) for each $HS_{s,B}$ do sort($HS_{s,B}$); /*is not necessary*/ (4) Create $\cap HS_i$ and generate T; _{Query languages 1} 36

Other operations

GROUP BY

- index on A over index we obtain groups
- sorting by R.A
- by hashing (as in division) foreach a∈ R[A] do create a bucket + variable for aggregation function calculation;

DISTINCT

also via hashing