

Query languages 1 (NDBI001) Information retrieval

Jaroslav Pokorný MFF UK, Praha pokorny@ksi.mff.cuni.cz

1

Query languages 1

Information retrieval systems - development

systems of processing external attributes

Resources:

systems of fulltexts processing

digital libraries

- creating texts directly in computer
 - a need searching, not only browsing
 - indexing not always possible
- development of large storages (CD ROM, WORM)

development of communications (Internet)
 Query languages 1

Content

- 1. Introduction
- 2. Measuring the relevance
- 3. Boolean model
- 4. Vector space model
- 5. Relevance feedback
- 6. Thesaurus
- 7. Conclusions

Text retrieval

query - request formulated in a language is given by a text pattern (word, expression, a substring of a word, phrase, or a whole text) or by several patterns (*conjunctive query*) More generally: Boolean expression answer (set of hits) - texts matching a query hit relevance – the degree to which the hit matches the user request. The notion of relevance is imprecise, context- and user-dependent.

- answer restriction:
- maximum M
 - maximum M most relevant
 - set a threshold Θ

Text retrieval

Field: Information Retrieval

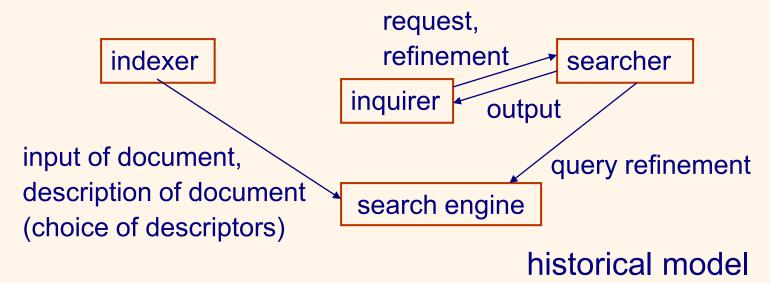
- IR is all about retrieval, what you want, when what you want, is hidden in mass of what you do not want.
- More precisely: find for a query relevant documents

Field: Information Filtering

Assign to a document D profiles in such way, that D is for them relevant.

IR - basic architecture

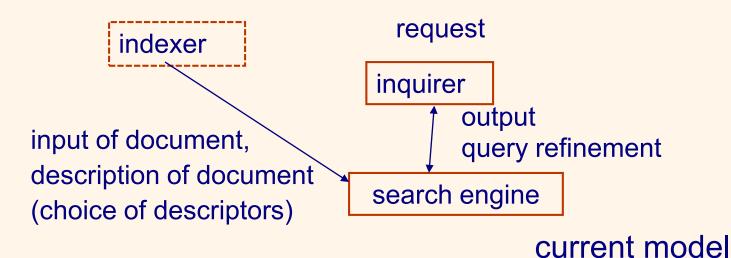
Subsystems: text disclosure(1)text delivery(2)(1) see information servicessecondary information versus fulltext



Query languages 1

IR - basic architecture

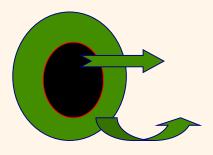
Subsystems: text disclosure(1)text delivery(2)(1) see information servicessecondary information versus fulltext



Query languages 1

Measuring the relevance

Recall R

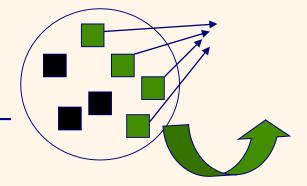


R = _____

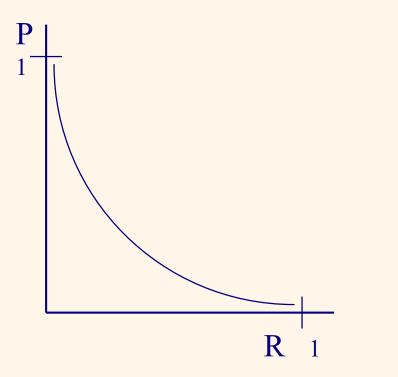
#relevant documents in collection

Precision P

#retrieved relevant documents
P =
#retrieved documents



Trade-off between R and P



precision-recall curve

Boolean model

- Document representation: a set of terms
- Querying:
 - formally: by Boolean expressions
 - technique: exact match
- Determining terms practice:
 - removal of stop-words from sets of terms result: reduction 30-50% (C.J. van Rijsbergen)
 - Inguistic processing (tokenization)

Boolean model

<term></term>	ble syntaxes:		
<attribute_name> = <attribute_value></attribute_value></attribute_name>		/comparison/	
<function_name>(<term>),</term></function_name>		/function application /	
X AND Y	retrieve D, containing both X and Y.		
X OR Y	retrieve D, containing eithe	er X or Y.	
X XOR Y	retrieve D, containing eithe	er X or Y but not X AND Y	
NOT Y	retrieve D, not containing Y		
X adj Y	retrieve D, that contain X followed by Y		
X (n)words Y	retrieve D, that contain X followed by Y at the maximum		
X sentence Y	distance <i>n</i> words retrieve D, in which X and ` sentence	Y occur in the same	

Boolean model

will match arbitrary character.

- * character followed by * will match arbitrary number of occurrences (including 0) of this character. E.g., xy* will match x, xy, xyy etc.
- + character followed by + will match arbitrary number of occurrences (except empty) of this character. E.g., xy+ will match xy, xyy, xyyy etc.
- [] characters in [] will match arbitrary one character, which is in brackets, but not another. E.g., [xyz] will match x, y or z.
- [^] starting the string in [] by ^ means negation (not). E.g., [^xyz] will match arbitrary character except of x, y, or z.
- [-] among characters in [] denotes a range of characters. E.g., [a-x] will match arbitrary character from a to x.

Boolean model: P versus R

- By query refinement in Boolean model we can obtain higher P, but lower R.
- Ex.: experiment (Blair, Maron, 1985) 40000 legal texts
- Goal: not only high P, but R as well.
- Results: $P \rightarrow 80\%$, $R \rightarrow 20\%$
- the synonym problem too general language, it is not possible to capture it by thesaurus.
- Ex.: accident, disaster, collision, "something happened", ...
- automatic indexing does not eliminate these problems

What affects the relationship P and R? Problems with manual indexing: *indeterminacy*

in indexing

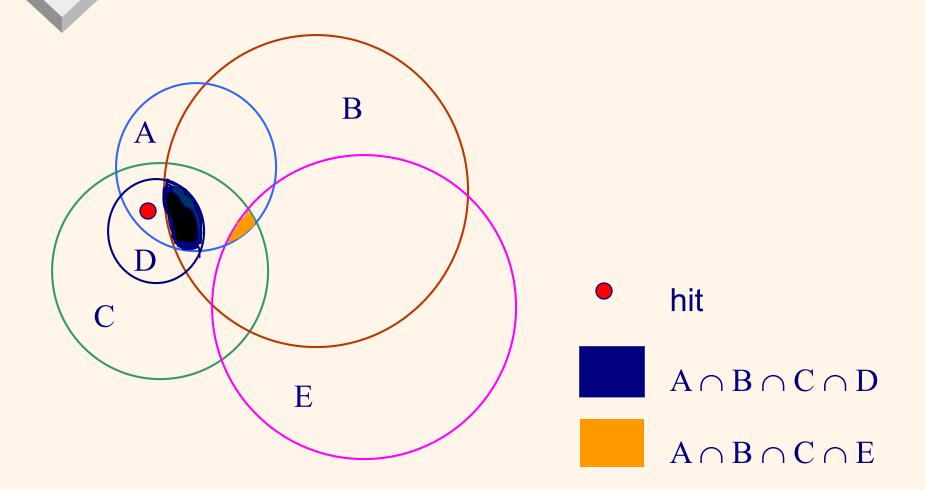
influence of indexer

in selection of terms for query influence of inquirer
 Ex.: p₁, p₂ probabilities, that the inquirer uses terms t₁, t₂
 q₁, q₂ probabilities, that the terms t₁, t₂ se vyskytují in D
 ⇒ p, that the inquirer selects t₁, t₂ and D with t₁, t₂ is retrieved, is
 p₁* p₂* q₁* q₂
 E.g., R = 0,6 * 0,7 * 0,5 * 0,6 = 0,126 ⇒ R < 13%
 ⇒ for i=5, p_i = q_i = 0,5 ⇒ R = 0,1%
 ⇒ if there is 1000 relevant D, only 1 is retrieved!

prediction criterion – how to ensure a match between selection of terms for query and for documents (today: similarity of ontologies)

- method: elimination of indeterminacy
- maximum criterion to handle up to 20-50 hits
- problems with fulltext collections:
 - collection size (versus maximum criterion)
 - selection of terms for query
 - ^u revaluation of elimination of indexers
 - u indeterminacy of inquirer remains
 - unilateral behavior of inquirer -

tendency to change the last decision and retain the first steps



Indeterminacy of the inquirer's selection of search terms Solution:

- lookup D with high relevance for inquirer (D is known + it is known, that it occurs on collection),
- terms for query are retrieved from D,
- omitting terms resp. replacing them by disjunctions.
- \Rightarrow decreasing the inquirer indeterminacy

Solution of unilateral behavior of inquirer by weighting:

Ex.:	terms		probability (weight)
	Author: Pokorn	0,3	
	Date: 1995-1999		0,7
	Journals:	CW	0,2
		Artificial Intelligence	0,5
		ERCIM News	0,2
	Descriptors:	XML	0,6
		database	0,8
		query language	e 0,9

The total number of conjunctive queries is 255.

Products of probabilities for

2 terms	3 terms	max. for 1, 2,
p _{do} * p _{da} = 0,72	$p_{do} * p_{da} * p_{dat} = 0,5$	0,9
p _{do} * p _{dat} = 0,63	$p_{do} * p_{dat} * p_{xm} = 0,38$	3 0,72
p _{da} * p _{dat} = 0,56	$p_{do} * p_{da} * p_{ar} = 0,4$	0,5
		0,3
		0,15

Algorithm:

- create groups for all combinations
 - calculate maxima for groups
 - is the maximum criterion met?
 - offer to the inquirer

Boolean model: other problems

Non-intuitive results

- A AND B AND C AND D AND E
 - D not containing only one of given terms will be not retrieved.
- A OR B OR C OR D OR E

D containing only one from given terms are seen as equally important as documents containing all given terms.

- It does not allow output size control.
- all Ds satisfying a query are conceived as equally important, it is not possible to sort them by their similarity.

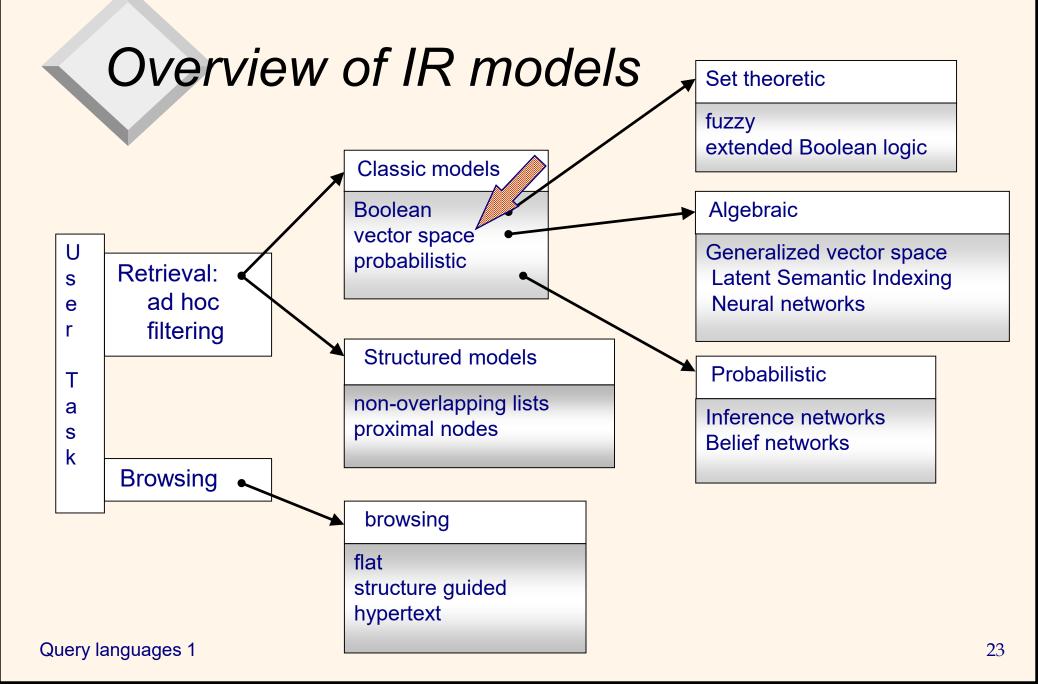
Boolean model: other problems

- It is difficult to realize automatic relevance feedback, i.e. to modify automatically a query based on D marked in answer as relevant.
- Expressive power of Boolean model is restricted. Any set {D} of documents describable by terms, can be, in principle, retrieved by an appropriate Boolean query. However, in practice it is not guaranteed for any set {D} satisfying user's needs, to formulate simply Boolean query.
- more art than science.

What next?

Thesis:

Classic Boolean systems can be extended by a function influencing maximum criterion; however, it is not possible to increase P and R simultaneously without additional information.



Assumption: collection **D** of *m* documents, *n* different terms $t_1...t_n$

Each document $D_i \in \mathbf{D}$ is represented by a vector

$$D_i = (w_{i1}, w_{i2}, ..., w_{in}), \text{ where } w_{ij} \in <0;1>$$

where w_{ij} is the weight of a term t_j for document D_i . **D** is representable by term-document matrix

$$\mathbf{D} = \begin{bmatrix} W_{11} & W_{12} & \dots & W_{1n} \\ W_{21} & W_{22} & \dots & W_{2n} \\ \dots & & & \\ W_{m1}W_{m2} & \dots & W_{mn} \end{bmatrix}$$

Query languages 1

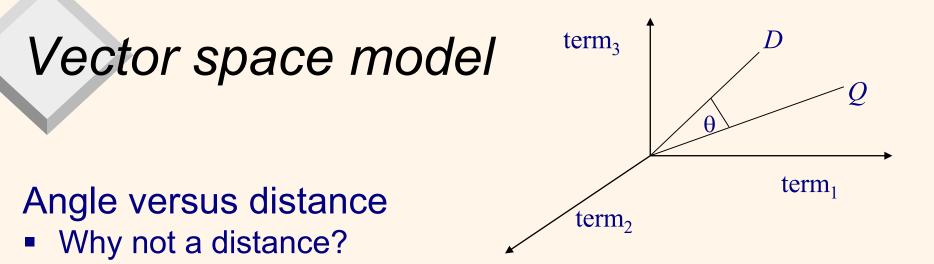
Querying: we regard query as a short document

- formally: by a query vector
- partial match querying technique: by a similarity function (coefficient)
 query expression Q in vector model

 $Q = (q_1, q_2, ..., q_n)$, where $q_i \in <0; 1>$.

Problem: how to calculate similarity

- It is possible to rank the retrieved documents in the order of presumed relevance.
- It is possible to enforce a certain threshold so that the size of the retrieved set can be controlled.



- Experiment: we take a document D and append it to itself. The document D' will be created.
 - "Semantically" D and D' have the same content.
 - Euclidean distance in the space between points D and D' would be large.
 - The angle between D and D' (as vectors) is 0, which corresponds to maximal similarity.
- Key idea: rank documents according to angle between D and query vector.
- Appropriate: cosine monotonically decreasing function for the interval [0°, 180°]

coefficient similarity (angl. *similarity*) query Q and document *D*_i

(a) $Sim(Q,D_i) = \sum_{k=1,..,n} (q_k * w_{ik})$ (dot product) (b) $Sim(Q,D_i) = \sum_{k=1,..,n} (q_k * w_{ik}) / \sqrt{(\sum_{k=1,..,n} (w_{ik})^2 * \sum_{k=1,..,n} (q_k)^2)}$ (cosine measure)

Denominator in (b) is a normalization factor,

(c)
$$Sim(Q,D_i) = 2\sum_{k=1,..,n} (q_k * w_{ik}) / (\sum_{k=1,..,n} (w_{ik})^2 + \sum_{k=1,..,n} (q_k)^2)$$

(*Dice coefficient*)

Postulate: the more two vectors that represent documents are "near", the more the documents are similar

Remark: binary vector space model (i.e., the only non-zero w_{ik} in D_i and Q are equal to 1).

For all three cases Sim =

- $|Q \cap D_i|$
- $(|Q \cap D_i|)(\sqrt{|Q|} * \sqrt{|D_i|})$
- $2(|Q \cap D_i|)(|Q| + |D_i|)$

Advantage: *R* and *P* can be increased up to 20%.

Pragmatic approach: one-word terms + appropriate method of weighting

Term Frequency

 TF_{ij} the frequency of t_j in D_i (the number of times that t_j occurs in D_i .

Normalized Term Frequency

 NTF_{ij} the frequency of t_j in D_i given as $((TF_{ij}/max TF_{ik})+1)/2$

where max is over all terms in *i*-th row of matrix **D**. Disadvantage: term with high TF is in many $D_i \implies \text{low P}$

IDF inverse document frequency IDF for term t_j is defined as $IDF_j = \log(m/DF_j) + 1$

where *m* is the number of documents in **D** and DF_j (*document frequency*) is a frequency t_j in **D**, i.e. the number of documents containing term t_j .

IDF is decreasing with the increasing number of documents containing the term.

Remark:

- for document ranking the base of the log is immaterial.
- IDF is really inverse w.r.t. DF.
 Query languages 1

Behavior:

term occurs in all documents $\Rightarrow \log(1) = 0$ (term is one of the stop words)

term occurs only in 1 document \Rightarrow

 $IDF = \log m + 1$

Ex.: IDF = 2 for m = 10 je, IDF = 5 for m = 10000, etc.

A typical weighting is tf-idf weighting:

 $w_{ij} = TF_{ij} * IDF_{j}$ or $TD_{ij} = NTF_{ij} * IDF_{j}$

Notation in literature: tf-idf, tf.idf, tf x idf

Remark: it is not worthwhile to maintain too small w_{ij} (approaching the threshold).

The best weights in Q:

 $q_{\rm k} = (0.5 + (0.5^* TF_{\rm k})/\text{max } TF) * IDF_{\rm k}$

where TF_k is term frequency of t_k in Q, max TF is maximum frequency of a term in Q and IDF_k is IDF of term t_k in **D**.

Experimentally, tf-idf has been found to work well.

Special cases for Q and D:

- only a set of terms is given $\Rightarrow q_k = IDF_k$
- approximation of long queries $\Rightarrow q_k = TF_k$
- short documents \Rightarrow approximation weights by 0, 1
- long documents ⇒ retrieval unit is passage

Vector space model: problems

- Assumption: independency of terms (synonymy still not solved)
- Missing syntactic information (phrase structure, word order, proximity information)
- Missing semantics (e.g. word sense)
- History: part of the SMART system (1970)

Today: Apache Lucene – combines vector space and Boolean model

Vector space model in Boolean system - example of implementation

Assumptions:

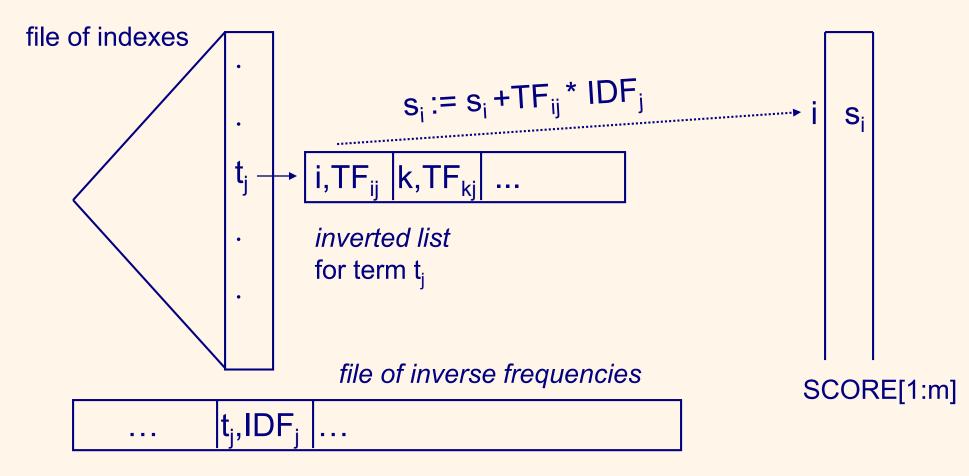
- index file with inverted lists
- in inverted lists TF_{ii} (we model w_{ii})
- a file containing IDF_i
- file SCORE[1:m]
- term weights of query terms are equal to 1 Algorithm:

(1) podle query terms přistupuj inverted lists.

(1.1) Oprav sums in SCORE

(2) Sort SCORE and return, e.g., 20 nejvyšších.

Vector space model in Boolean system - example implementation



Query languages 1

Vector space model and signatures example implementation Assumptions:

- D_i has b_i blocks, query has Q terms
- signature file there is a signature for each block
- file containing *IDF*_i (we model q_i in this way (*DF* is enough)
- file SCORE[1:20] (maintains the 20 higest)

Algorithm: For all D do:

(1) Vynuluj POM.

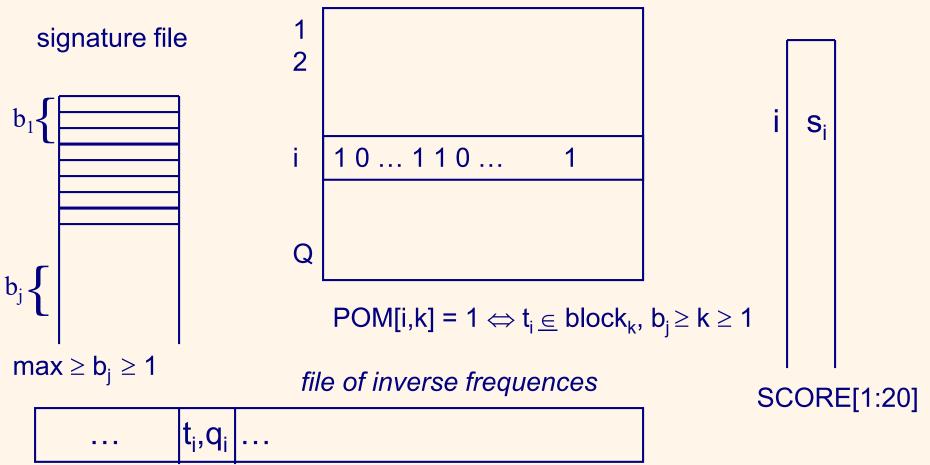
- (2) signature of each from b text blocks D compare with Q query signatures. Results store into POM.
- (3) For each t_i query calculate $bc_i = \sum_{j=1...bmax} POM[i,j]$
- (4) Calculate

 $s = \sum_{i=1}^{J} \frac{bc_i * q_i}{b}$

Query languages 1

Vector space model and signatures - example implementation

POM[1:Q; 1:max]



Indexing complexity by vector space model

- Vectors construction and indexing document with *n* units is O(*n*).
- indexing *m* such documents is O(*m n*).
- calculation of IDFs can be done in the same pass
- calculation of vector lengths is also O(m n).
- \Rightarrow total time complexity is O(*m n*)

Example 1 – Text extender

SELECT journal, date, title FROM ARTICLES WHERE CONTAINS(article text, '("database" AND ("SQL" | "SQL92") AND NOT "dBASE")') = 1;

Other functions: NO OF MATCHES (how often the search criteria are

found in each text documen), RANK (rank value in answer based on a measure).

SELECT journal, title

FROM ARTICLES

WHERE NO_OF_MATCHES (article_text, 'database') > 10;

SELECT journal, date, titul, RANK(article_text, '("database" AND ("SQL" | "SQL92"))') AS relevant possibility FROM ARTICLES of different **ORDER BY relevant DESC;**

implementations

Example 2 – Fulltext in MySQL 5.1

Types of FT retrieval:

- Boolean
- FT with index
- CREATE TABLE ARTICLES (
- journal TEXT
- article_text VARCHAR(200)
- FULLTEXT (journal, article_text)
-) engine=MyISAM 🚤
- storage machine other: InnoDB,...
- SELECT * FROM ARTICLES
- WHERE MATCH(journal, article_text)
- AGAINST('database' IN NATURAL LANGUAGE MODE);

Result sorting: implicitly by relevance

Query languages 1

FULLTEXT is an index type

Example 2 – Fulltext in MySQL 5.1

Types of FT retrieval:

- Boolean
- FT with index

SELECT * FROM ARTICLES

WHERE MATCH(journal, article_text)

AGAINST('+database --relational' IN BOOLEAN MODE);

Result sorting :

- + (AND), (NOT), no operator (OR)
- implicitly no sorting

Techniques for "intelligent" IR

1. relevance feedback

- direct feedback
- pseudo feedback
- 2. query expansion
 - by "natural" thesaurus
 - "artificial" thesaurus

Advantages: increase R, only rarely P.

Relevance feedback

Intuition:

- vectors of relevant document and query are similar
- vectors of non-relevant document and query are not similar;
- \Rightarrow *query reformulation* based on the answer to query
- Assumptions: query vector q

 answer contains: relevant
 D₁^r,..., D_{mr}^r
 non-relevant
 D₁ⁿ,..., D_{mn}ⁿ

Relevance feedback

$$\vec{q}$$
' = $\alpha \vec{q}$ + $\frac{\beta}{m_r} \sum_{i=1...mr} \vec{D}_i^r - \frac{\gamma}{m_n} \sum_{i=1...mn} \vec{D}_i^n$

for α =1 Rocchio 71

$$\vec{q}' = \alpha \vec{q} + \beta \sum_{i=1...mr} \vec{D}_i^r - \gamma \sum_{i=1...mn} \vec{D}_i^n$$
for $\alpha = \beta = \gamma = 1$ Ide 71

$$\vec{q}' = \alpha \vec{q} + \beta \Sigma_{i=1...mr} \vec{D}_i^r - \gamma \vec{D}_1^n$$

where α , β , γ are appropriate constants

Relevance feedback - incrementally

REPEAT 1. System retrieves D with maximal SIM(Q,D); 2. User marks D as relevant or non-relevant; 3. IF D is relevant THEN D goes to the output list; 4. \vec{q} is modified by \vec{D} ; UNTIL ϕ Query modification:

$$\vec{q}_{j+1} = \int \alpha \vec{q}_j + \beta \vec{D}_j$$

 $\alpha \vec{q}_j - \gamma \vec{D}_j$
 D_j is relevant
 D_j is non-relevant

Remark: a D that has not yet been selected is always selected.

Relevance feedback – other possibilities

reweighting terms: increasing term weights in relevant documents and decreasing term weights in non-relevant documents
 pseudo-feedback: consider the first k documents as relevant and then do relevance feedback (query reformulation).

Extending query by thesaurus

- Thesaurus (in Latin treasure, treasury) provides synonym information and about semantically related words and phrase.
- Ex.: Eurovoc for law and legislation, is from 2005 also for Czech.

Thesaurus

Expressions using thesaurus (standard ISO-2788) NARROWER TERM one level narrower term NT('text') NT('text',n) *n* levels narrower terms NT('text',*) all narrower terms **BROADER TERM one level broader term** BT('text') BT('text',n) *n* levels broader term BT('text',*) all broader terms TT('text') TOP TERM **SYNONYMS** SYN('text') PT('text') PREFERRED TERM RELATED TERMS RT('text')

Query languages 1

Thesaurus

Other relationships:

USE – to a given term assigns its preferred term,

- UF (USE FOR) to a given term assigns its synonymous (non-preferred) term
- SN (scope note) note attached to the given term

Other standard (for text collections):

ANSI Z39.58 Common Command Language for Online Interactive Information Retrieval – developer by institution NISO (National Information Standards Organization).

Remark: real languages are only similar to these standards

Example: Wordnet

- Lexical database of semantic relationships between words (of English, ..., Czech).
- developed by Prof. George Miller and his team at Princeton university.
- 150,000 English words.
- Nouns, verbs, adjectives, and adverbs are grouped into cca 110,000 set of synonyms called synsets.

Example: Wordnet

Examples of conceptual relations among synsets:

- antonyms (have oposite meanings): wet \rightarrow dry, young \rightarrow old
- semantically similar to: dry \rightarrow parched
- reason: killing \rightarrow death
- holonymy : chapter \rightarrow text (be part of)
- meronymy: computer \rightarrow cpu (has as a part)
- hyponymy (subordinate notions): tree → plant (specialization)
- hyperonymy (superordinate notions): fruit → apple (generalization)

Example: Wordnet

- Measuring semantic similarity and correlations introduced for WordNet by Pederson, et al in r. 2005 – (software WordNet::Similarity)
- similarity coefficients
 - based on paths lengths: Lch, wup, Path
 - based on information content: res, lin, jcn
- relatedness measures
 - hso, lesk, vector

Conclusion

Current (new) applications:

- text classification
- text extraction (summarization)
- digital libraries
- Web retrieval
- multilingual environment
- spam detection
- text plagiarism detection