
1

SQL Language:

news from the 2003 standard

Jaroslav

Pokorný

Query languages 1

Query languages 1 2

SQL:2003

 a lot of corrections and bug fixes

 several new features

 data types

• operations

• predicates

 operation MERGE

 OLAP: TABLESAMPLE

 generated columns

 the identity columns and generators

 part 14 SQL/XML

Query languages 1 3

SQL:2003

Consists of 9 parts:

 part 1: SQL/Framework

 part 2: SQL/Foundation

 part 3: SQL/CLI (Call-Level Interface)

 part 4: SQL/PSM (Persistent Stored Modules)

 part 9: SQL/MED (Management of External Data)

 part 10: SQL/OLB (Object Language Binding)

 part 11: SQL/Schemes

 part 13: SQL/JRT (Java Routines and Types)

 part 14: SQL/XML

parts 5, 6, 7, 8, and 12 do not exist

Query languages 1 4

New data types

 BIGINT

 MULTISET

Rejected types (from 1999)

 BIT

 BIT VARYING

Query languages 1 5

BIGINT

 Precision of BIGINT precision of

INTEGER precision of SMALLINT

 based on INT and SMALLINT

 the same operators like SMALLINT and

INTEGER

Query languages 1 6

MULTISET
 types of collections:

 MULTISET

 ARRAY

 multiset is a non-sorted, variable-length

collection whose elements have a specified

type

 MULTISET - no maximal cardinality is specified

 ARRAY - max. cardinality is not mandatory

Query languages 1 7

MULTISET - definition

 A INTEGER MULTISET

 B ROW(F1 BIGINT, F2 VARCHAR(4000)) MULTISET

 C INTEGER MULTISET()

 empty multiset of integers (not NULL!)

 D INTEGER MULTISET(2, 3, 5, 7)

 non-empty multiset with several integers

 E INTEGER MULTISET(SELECT A
FROM R WHERE A > 10)

multiset of integers given by a
SELECT

Query languages 1 8

MULTISET – ops. and functions

/* multi stands for a multiset */

 CARDINALITY(multi)

 returns number of elements in multi

 SET(multi)

 returns content of multi without duplicities

 ELEMENT(multi)

 the cardinality must by 1

 returns the element (singleton)

Query languages 1 9

MULTISET - ops. and functions

 UNNEST(multi) AS name

 returns the individual elements of multi as

rows of a virtual table name

UNNEST MULTISET (2, 3, 5, 7) AS P

7

5

3

2

P

Query languages 1 10

MULTISET – ops. and functions

 multi1 MULTISET op [quantifier] multi2

op — UNION, EXCEPT, INTERSECT

quantifier — ALL or DISTINCT

Note: similar to the set operators

UNION, EXCEPT a INTERSECT

Note: quantifier ALL is implicit

Query languages 1 11

MULTISET – ops. and functions

SELECT

A MULTISET INTERSECT DISTINCT B

FROM R

WHERE CARDINALITY(B) > 50

Query languages 1 12

MULTISET – ops. and functions

New aggregation functions for multisets

Assumption: a group is given by GROUP BY or by a

collumn

 COLLECT — transforms values in a group into the

multiset

 FUSION — creates a union of all multisests in a group

— amount of duplicities of a value = sum of duplicities of

the value in each multiset in a group

 INTERSECTION — intersects all multisets in a group —

amount of duplicities on a value = minimum of

duplicities on the value in all multisets in a group

Query languages 1 13

MULTISET – ops. and functions

CREATE TABLE Logins(

session_id INT NOT NULL PRIMARY KEY,

successful BOOLEAN NOT NULL,

user_id INT,

attempts ROW(VARCHAR(128), VARCHAR(128))

MULTISET);

SELECT user_id,

COLLECT (session_id) AS s_ids,

FUSION (attempts) AS all_attempts,

INTERSECTION (attempts) AS common_attempts

FROM Logins

WHERE Successful

GROUP BY user_id;

username, password

Query languages 1 14

MULTISET – ops. and functions

A part of Logins for the user with Id = 8 and his/her
successful attempts

Logins: session_Id user_Id attempts

a 8 multiset[(1,x),(2,y)]

b 8 multiset[(1,x)]

c 8 multiset[(1,x),(3,h)]

Result (1 row for the user with Id = 8)

s_ids all_attempts common_attempts

multiset[a,b,c] multiset[(1,x), (1,x), multiset[(1,x)]

(1,x), (2,y), (3,h)]

Query languages 1 15

New predicates

 comparison (multiset!) operators = and <>

 [NOT] MEMBER

 [NOT] SUBMULTISET

 IS SET, IS NOT A SET

Query languages 1 16

Predicate MEMBER

h [NOT] MEMBER [OF] multi

 h must be compatible with the type of

elements in multi

 FALSE if h is not in multi or it is empty

 TRUE if h is equals to any element in

multi

 UNKNOWN if any element in multi is

NULL

Query languages 1 17

Predicate SUBMULTISET

multi1 [NOT] SUBMULTISET [OF] multi2

…element types from multisets have to be

compatible

 relation „be a submultiset“

 TRUE if multi1 = multi2 and each

value in multi1 has a correspondent value

in multi2

Query languages 1 18

Predicate SET

multi IS [NOT] A SET

 multi is a multiset

 TRUE if there are no duplicities in multi

 max 1 NULL value in multiset

Query languages 1 19

MERGE

 combines INSERT and UPDATE statements

 rows of input (reference) table are divided into

two groups according to predicate P:

insert source table (IST) if P is FALSE or

UNKNOWN

update source table (UST), if P is TRUE.

Query languages 1 20

MERGE

 IST rows are inserted into result table R.

 each row in R which equals to a row in

UST is updated.

 if there are more equal rows in R for one row

from UST, an error is raised

 Syntax is done by MATCHED and NOT

MATCHED keywords

Query languages 1 21

MERGE

MERGE INTO table [AS name]
USING reference_table
ON condition
WHEN MATCHED THEN

SET column = value

MERGE INTO table [AS name]
USING reference_table

ON condition

WHEN NOT MATCHED THEN
INSERT [(a_list_of_columns)]
VALUES (a_list_of_values)

Query languages 1 22

MERGE

MERGE INTO store AS ST

USING (SELECT prod_id, desc, amount

FROM import) AS IM

ON (ST.prod_id = IM.prod_id)

WHEN MATCHED THEN

UPDATE SET amount = ST.amount + IM.amount

WHEN NOT MATCHED THEN

INSERT (prod_id, descr, amount)

VALUES (IM.prod_id, IM.descr, IM.amount)

store(prod_id, descr, amount)

import(prod_id, descr, amount, price)

Query languages 1 23

TABLESAMPLE

 new feature for OLAP

 evaluation of aggregation functions in

samples

 faster application development

 two different sampling methods:

BERNOULLI and SYSTEM

Query languages 1 24

TABLESAMPLE

 BERNOULLI: sample table consists of appr. %amount of
original table; probability of appearance a given row in the
sample is %amount independently of every other row.

 SYSTEM: sample table consists of appr. %amount of
original table; probability of appearance a given row in the
sample can depend on rows already inserted into the
sample

 REPEATABLE: amount of repeated operation calls
(amount_op) generates the same sample for the same
source.

TABLESAMPLE {BERNOULLI SYSTEM}

(%amount) [REPEATABLE(amount_op)]

Query languages 1 25

TABLESAMPLE

Q.: Guess appr. estimation of the total

salary for each department

SELECT dept, SUM(salary) * 10

FROM employees

TABLESAMPLE BERNOULLI (10)

REPEATABLE (5)

GROUP BY dept

Query languages 1 26

Generated columns

 original columns of table: base columns

 generated columns - their value is computed from 0 or
more base columns of the same row

CREATE TABLE employees (

emp_ID INTEGER,

dept string(6)

salary DECIMAL(7,2),

addition DECIMAL(7,2),

total_salary GENERATED ALWAYS AS

(salary + addition),

user GENERATED ALWAYS AS
(CURRENT_USER))

Query languages 1 27

Identity columns & generators

 identity column: mechanism for automatic

key population

 generator: used for generation of the next

value of a sequence

 together provides the mechanism for

automatic key generation for identity

columns

Query languages 1 28

Sequence generators

Parameters:

 data type (numeric)

 start value

 increment (positive or negative, 1 by default)

 minimal and maximal values

 cycle (when the maximum value is reached, it

starts from the beginning)

 external (explicit object of the schema) or

internal (part of another schema object, column

for example)

Query languages 1 29

External generators

CREATE SEQUENCE s_name AS type

START WITH value

INCREMENT BY value

MAXVALUE value

CYCLE

 possibilities:
• NO CYCLE

• NO MAXVALUE, MINVALUE, NO MINVALUE

generator

options}

Query languages 1 30

Sequence generators

 is initialized to a base value Z

 generation of the next value:

NEXT VALUE FOR s_name

 returns Z + N *incremental_value, for N 0

 if computed value > MAXVALUE (or < MINVALUE) and

NO CYCLE, then raise exception

Query languages 1 31

Sequence generators

Examples:

INSERT INTO Order

VALUES (NEXT VALUE FOR seqgen, ‘prod1’, 2);

CALL myproc(NEXT VALUE FOR seqgen);

SET J = J + NEXT VALUE FOR seqgen;

Order(order_id, prod, amount)

Query languages 1 32

Sequence generators

 value of start, max, min, increment, and

cycle/nocycle can be changed by alter

statement

ALTER SEQUENCE s_name

RESTART WITH new_base_value

 removing of sequence

DROP SEQUENCE s_name

Query languages 1 33

Internal sequence generators

 GENERATED ALWAYS or GENERATED BY

DEFAULT

 ALWAYS — means UPDATE on column is not

allowed; INSERT requires OVERRIDING

SYSTEM VALUE (privilege)

 BY DEFAULT — INSERT or UPDATE allowed;

the value is generated during INSERT, if it is not

specified in statement

Query languages 1 34

Internal sequence generators

CREATE TABLE Employees (
em_id INTEGER

GENERATED ALWAYS AS IDENTITY
START WITH 100
INCREMENT 1
MINVALUE 100
NO MAXVALUE
NO CYCLE,

salary DECIMAL(7,2), ...,
)

Query languages 1 36

Conclusion

 These extensions support creating analytical

functions in SQL, i.e., they are usable for

OLAP and now for so called Big Analytics.

