
Language SQL:

operator Cube

J. Pokorný

MFF UK

Content

 Motivation for CUBE operator

 GROUP BY limits

 how to do aggregations

 CUBE and ROLLUP operators

 Conclusions

1

Data analysis

Spread Sheet

Table

1

Visualization

Extraction
Analysis &

Hypothesis

formulation

Ex.: Car market analysis

We are interested in the influence of the car
model, colour, and year of production to the
amount of sold cars. We do not care about
the dealer and the date of sale. 2

OLAP

 OLAP (Online Analytical Processing)

 Principle of modelling: dimensions, facts
 dimensions

• can be hierarchical

• have attributes

 facts
• attributes dependent on dimensions

Ex.: Car market
Dimensions: Model, Year, Colour

Fact: Amount of sold cars

3

OLAP

 n-dimensional data structures

 possibilities of representation:

 one table for all

 table for each dimension + table of facts

 data cube

 evaluation:
• aggregation functions COUNT, SUM, MAX, ...

• operator GROUP BY

4

Problems with GROUP BY

 Simple queries: common aggregations like
SELECT Model, Country, SUM(Amount)

FROM Sale

GROUP BY Model, Country;

 More complex: Which model is a bestseller in
Slovakia?

 Limits of aggregation constructions:
• histograms

• roll-up

• cross-tables

5

Histograms

 Standard SQL has no statements for

histograms construction

Ex.: we have day weather-forecast, we

want to aggregate days to weeks or

months

 Histograms are computed using nested

queries

6

Histograms

Modern SQL systems support histograms

directly (it is not necessary to use nested

queries as in SQL92)

SELECT month, area, MIN(temperature)

FROM Weather

GROUP BY Month(time) AS month,

Area(latitude, longitude) AS area

7

Roll-up, drill-down

 data can be aggregated into different dimensions levels

 we want to move through the levels

up ---- roll-up,

down ---- drill-down

by: Model, Year, Colour

by: Model, Year

by: ModelModel Year Colour
Chevy 1994 black 50

white 40

90
1995 black 85

white 115

200
290

8

Where to put aggregated values?

 Disadvantages of previous representation:

 empty values in rows

 it is not a relation

 too many attributes (domains)

 Partial solution:

 it is suitable to store aggregated values directly to the table

 let us add columns which provide aggregated values for each row

 disadvantage: it is out of the relational data model

Model
Year/Colour

Total1994
Total

1995
Total

black whit e black whit e

Chevy 50 40 90 85 115 200 290
Ford 50 10 60 85 75 160 220

Total 100 50 150 170 190 360 510

9

Solution: relational representation

 special value ALL

 ALL means that we want to all values of a

domain in this place.

 ALL() defines a set

Ex.: ALL(Model)={Black, White}

Where to put aggregated values?

Model Year Colour Amount
Chevy 1994 black 50

Chevy 1994white 40

Chevy 1994ALL 90
Chevy 1995 black 85

Chevy 1995white 115

Chevy 1995ALL 200
Chevy ALL ALL 290

10

How to use SQL?

SELECT ‘ALL’, ‘ALL’, ‘ALL’, SUM(amount)

FROM sale

WHERE Model=‘Chevy’

UNION

SELECT Model, ‘ALL’, ‘ALL’, SUM(amount)

FROM sale

WHERE Model=‘Chevy’

GROUP BY Model

UNION

SELECT Model, Year, ‘ALL’, SUM(amount)

FROM sale

WHERE Model=‘Chevy’

GROUP BY Model, Year

UNION ...

 or several SELECT statements without ALL
11

Cross table

 Let us change relational representation and we obtain a
cross table.

 values of dimensions are placed in headings of rows
and columns in a “two-dimensional space”

 construction in SQL: GROUP BY + UNION

 Problem: what for example Ford? The next table.

year

colour

Chevy 1994 1995 ALL

black 50 85 135
whit e 40 115 155

ALL 90 200 290

12

Operators CUBE and ROLLUP

 solution: operators

ROLLUP and

CUBE

 generalization of

GROUP BY, or

cross table

Red

White

Blue

by Colour

by Model & Colour

by Model & Year

by Colour & Year

by Model
by Year

Sum

Data Cube
and sub-spaces of aggregatesSum

Red

White

Blue

Chevy Ford

by Model

by Colour

Cross table

Red

White

Blue

by Colour

Sum

Group By
(all)

Sum

Aggregate

13

CUBE – the first idea

 Ex.: we are constructing a data cube from three attributes
 result is similar to real 3D cube C

 edges of C represent the domains of attributes, cells content
represent facts

 each cell corresponds with one SQL group

 we place aggregated value on each margin of C; it is constructed
by application of GROUP BY operation in one dimension

 we place the values aggregated by two dimensions on the edges
of C, starting from the beginning of the cube

 the super-aggregation (by all dimensions) is placed in the “origin”
of the cube C

 Data cube is a multi-dimensional data model, where each
domain contains a special value ALL.

14

CUBE – how it works

 Operator CUBE works like this:
 it is equivalent to the collection of standard GROUP BY

applications for all subsets of specified attributes (groupings),

 super-aggregates are added to the result

 what is added: if there is N attributes, there are 2N-1
aggregated values

 if Ci = dom(Ai), i<1,N>, then the size of the cube is
(Ci + 1).

 in CUBE processing, aggregations are processed all-
together in one operation for all cells

 Remark: MS SQL Server 2005 - CUBE was 2x faster
than GROUP BY and UNION

15

Syntax

GROUP BY:

GROUP BY <all_attributes_to_aggregate>

<all_attributes_to_aggregate> ::=

{(<column_name> | <expression>)

[AS <name>]

,...}

16

Reduction of aggregation groups

 Sometimes it is useless to build the whole
cube.

 Sometimes any combination of the
attributes (dimensions) are unnecessary
(example: application of CUBE to
attributes day, month, year)

 GROUPING SETS – grouping by a list

 ROLLUP – only hierarchical aggregations

17

GROUPING SETS

 Ex.: Car market

Dimensions: Model, Year, Colour

Facts: Amounts of sold cars

 explicit list of of aggregations

SELECT Model, Colour, Country, SUM(Amount)

FROM Sale

GROUP BY GROUPING SETS ((),(Model),

(Colour, Country))

18

Operator ROLLUP

 operator ROLLUP is „low-cost“, it produces only the
following aggregates
(v1, v2 , ... , vk , f()),

(v1, v2 , ... , ALL, f()),

...

(v1, ALL , ... , ALL, f()),

(ALL, ALL, ... , ALL, f())

 Subsets with first attribute value ALL are not included
into aggregation result (except the super-aggregate)
 less results than the CUBE operator

 not applicable for all queries solved by CUBE

(Q.: „How many white cars were sold?“ does not work!)

19

Operator CUBE

SELECT agg_amount = SUM(amount),

Model, Country, Colour

FROM Sale

GROUP BY CUBE

(Model, Country, Colour);

Model Country Colour Amount
Chevy CZ white 45

Chevy CZ yellow 18
Chevy CZ black 78

Chevy SK white 41
Chevy SK yellow 52

Chevy SK black 61

Ford CZ white 28
Ford CZ yellow 47

Ford CZ black 30
Ford SK white 21

Ford SK yellow 46

20

Operator CUBE
ColourCountryModelAgg_am

ALLSKFord75

blackSKFord8

yellowSKFord46

whiteSKFord21

ALLCZFord105

blackCZFord30

yellowCZFord47

whiteCZFord28

ALLALLChevy295

ALLSKChevy154

blackSKChevy61

yellowSKChevy52

whiteSKChevy41

ALLCZChevy141

blackCZChevy78

yellowCZChevy18

whiteCZChevy45

ALLALLFord180

blackALLALL177

blackALLFord38

blackALLChevy139

yellowALLALL163

yellowALLFord93

yellowALLChevy70

whiteALLALL135

whiteALLFord49

whiteALLChevy86

ALLSKALL229

blackSKALL69

yellowSKALL98

whiteSKALL62

ALLCZALL246

blackCZALL108

yellowCZALL65

whiteCZALL73

ALLALLALL475

36 rows

Operator ROLLUP

SELECT agg_amount = SUM(amount),

Model, Country, Colour

FROM Sale

GROUP BY ROLLUP

(Model, Country, Colour);

Model Country Colour Amount
Chevy CZ white 45

Chevy CZ yellow 18
Chevy CZ black 78

Chevy SK white 41
Chevy SK yellow 52

Chevy SK black 61

Ford CZ white 28
Ford CZ yellow 47

Ford CZ black 30
Ford SK white 21

Ford SK yellow 46

22

ROLLUP
ColourCountryModelAgg_am

ALLSKFord75

blackSKFord8

yellowSKFord46

whiteSKFord21

ALLCZFord105

blackCZFord30

yellowCZFord47

whiteCZFord28

ALLALLChevy295

ALLSKChevy154

blackSKChevy61

yellowSKChevy52

whiteSKChevy41

ALLCZChevy141

blackCZChevy78

yellowCZChevy18

whiteCZChevy45

ALLALLFord180

blackALLALL177

blackALLFord38

blackALLChevy139

yellowALLALL163

yellowALLFord93

yellowALLChevy70

whiteALLALL135

whiteALLFord49

whiteALLChevy86

ALLSKALL229

blackSKALL69

yellowSKALL98

whiteSKALL62

ALLCZALL246

blackCZALL108

yellowCZALL65

whiteCZALL73

ALLALLALL475

19 rows

Relationships of GROUP BY, CUBE, and

ROLLUP

 The following algebraic laws hold:

 CUBE(ROLLUP) = CUBE

 CUBE(GROUP BY) = CUBE

 ROLLUP(GROUP BY) = ROLLUP

 Meaningful hierarchical order of the operators:

GROUP BY <attributes_to_aggregate>

ROLLUP <attributes_to_aggregate>

CUBE <attributes_to_aggregate>

24

Syntax

From CUBE to ROLLUP:
GROUP BY [<attributes_to_aggregate>]

[ROLLUP <attributes_to_aggregate>]

[CUBE <attributes_to_aggregate>]

 after GROUP BY it is allowed to use

ROLLUP and CUBE

 each operator generates lists of attributes

for aggregations (groups); then their

Cartesian product included in the result
24

More aggregations

SELECT Model, Colour, Country, SUM(Amount)

FROM Sale

GROUP BY ROLLUP (Model),
ROLLUP(Colour, Country)

generates groupings:

{Model, ()} X {(Colour, Country), (Colour), ()}

= { (Model, Colour, Country), (Model, Colour),
(Model), (Colour, Country), (Colour), () }

26

Value ALL

 problems with ALL as a special value:
 many special cases

 if ALL represents the set, then the remaining values of
the domain have to be of simple types

 the implementations of ALL is therefore as
follows:
 it is used NULL instead of ALL

 function ALL() is implemented

 function GROUPING() is implemented to differentiate
between NULL and ALL

27

Value ALL

 former: value ALL

 now: in data space the value NULL

 value TRUE in the corresponding field

expresses that the NULL means ALL

 former : (ALL, ALL, ALL, 941)

 now :

(NULL,NULL,NULL,941,TRUE,TRUE,TRUE)

28

GROUPING

 NULL value in the place of ALL is called

grouping (grouping NULL)

 Function GROUPING differentiates

grouping NULL value from normal (non-

grouping) NULL

 returns 1, if it is the grouping NULL (i.e. ALL)

 returns 0, if it is the non-grouping NULL or

there is a non-NULL value there.

29

GROUPING

 We can write:

SELECT Model, Year, Colour, SUM(Amount),

GROUPING(Model),

GROUPING(Year),

GROUPING(Colour)

FROM Sale

GROUP BY CUBE Model, Year, Colour.

30

GROUPING()

 INSERT INTO Sale

VALUES (NULL, ‘SK’, NULL, 229);

 it is impossible to differentiate this new row from

another one which express aggregations of CUBE

 the only possibility is the GROUPING() function

31

GROUPING()

....

SKNULLNULL229

SKNULLNULL229

....

NULLwhiteChevy86

SKwhiteChevy41

CZwhiteChevy45

SELECT Agg_amount = SUM(Amount),

Model, Colour, Country

FROM Sale

GROUP BY Model, Colour, Country

WITH CUBE;

ALL Grouping(Model) = 1

NULL Grouping(Model) = 0

Model CountryColour Amount
NULL SK NULL 229

Chevy CZ white 45
Chevy CZ yellow 18

Chevy CZ black 78

Chevy SK white 41

Chevy SK yellow 52

Chevy SK black 61

Ford CZ white 28

Ford CZ yellow 47

Ford CZ black 30
Ford SK white 21

Ford SK yellow 46

Ford SK black 8

GROUPING()

SELECT Ag_amount = SUM(Amount),

Model,

‘all_models’=grouping(Model),

Country,

‘all_countries’=grouping(Country),

Colour,

‘all_colours’=grouping(Colours)

FROM Sale

GROUP BY CUBE Model, Colour, Country;

Model CountryColour Amount
NULL SK NULL 229

Chevy CZ white 45
Chevy CZ yellow 18

Chevy CZ black 78

Chevy SK white 41

Chevy SK yellow 52

Chevy SK black 61

Ford CZ white 28

Ford CZ yellow 47

Ford CZ black 30
Ford SK white 21

Ford SK yellow 46

Ford SK black 8

33

GROUPING()

ag_amount Model all_models Count ry all_count ries Colour all_colours

45 Chevy 0 CZ 0 white 0
41 Chevy 0 SK 0 white 0

86 Chevy 0 NULL 1 white 0

...

229 NULL 0 NULL 0 NULL 0
...

229 NULL 1 SK 0 NULL 1

34

Non-standard: from NULL to ALL in T-SQL

....

CZNULLFord105

NULLNULLChevy295

SKNULLChevy154

CZNULLChevy141

SELECT Ag_amount = SUM(Amount),

Model,

Colour=ISNULL(Model,’ALL’),

Country

FROM Sale

GROUP BY

CUBE Model, Colour, Country;

Model CountryColour Amount
NULL SK NULL 229

Chevy CZ white 45
Chevy CZ yellow 18

Chevy CZ black 78

Chevy SK white 41

Chevy SK yellow 52

Chevy SK black 61

Ford CZ white 28

Ford CZ yellow 47

Ford CZ black 30
Ford SK white 21

Ford SK yellow 46

Ford SK black 8

35

SELECT Units = SUM(Amount),

Model = CASE WHEN (grouping(Model)=1) THEN ‘ALL’

ELSE ISNULL(Model, ‘N/A’)

END,

Country = CASE WHEN (grouping(Country)=1) THEN ‘ALL’

ELSE ISNULL(Country, ‘N/A’)

END,

colour = CASE WHEN (grouping(Colour)=1) THEN ‘ALL’

ELSE ISNULL(colour, ‘N/A’)

END

FROM Sale

GROUP BY ROLLUP Model, Country, Colour

Nt.: N/A - Not-Applicable

Non-standard: from NULL to ALL in T-SQL

36

Conclusions

 Operator CUBE generalizes and unifies:

 aggregates

 group by

 roll-up and drill-down

 cross tables

 Interesting problems:

 evaluating CUBE for different aggregation functions

 implementation (hashing, 2N algorithm, CUBE

algorithm)

37

Conclusions

 Operators CUBE and ROLLUP are
standardized in SQL:1999.

 Creation of a data cube requires a special
implementation.

 Querying strategy: restriction of queried data by
specialized query (WHERE), then application of
CUBE operator

 The next extension in practise: mainly Microsoft
– MDX (MultiDimensional EXpressions)

38

