
Query languages 1 1

Query languages 1 (NDBI001)

part 1

J. Pokorný

MFF UK, Praha

Query languages 1 2

Overview of SQL92

1) data definition language,

2) interactive data manipulation language,

3) data manipulation language in host version,

4) possibility of views definition,

5) possibility of IC definition,

6) possibility of definition přístupových práv,

7) system catalogue

8) module language,

9) transaction management.

Query languages 1 3

Example: relational schema

RENTS(COPY_N, RENTAL_ID, PIN, PRICE, DATE_DB)

{data about rents of copies – rental Id, customer PIN, price, date due back}

CINEMAS(C_NAME, ADDRESS, MANAGER)

{data about cinemas and their managers}

MOVIES(TITLE, DIRECTOR) {data about movies and their directors}

MOVIE_SHOWINGS(C_NAME, TITLE, DATE)

{data about cinemas playing movies}

CUSTOMERS(PIN, NAME, ADDRESS) {data about customers}

EMPLOYEES(E_ID, ADDRESS, NAME, SALARY)

{data about the rental employees}

COPIES(COPY_N, TITLE) {copies of movies}

BOOKING(TITLE, PIN) {booking of movies by customers}

Query languages 1 4

1. Data definition in SQL

 CREATE TABLE

Possibilities:

global temporary,

local temporary tables

(GLOBAL TEMPORARY, LOCAL TEMPORARY) -

are not persistent

Also: derived tables (views).

CREATE TABLE RENTS

(COPY_N CHAR(3) NOT NULL,

RENTAL_ID CHARACTER(6) NOT NULL,

PIN CHARACTER(10) NOT NULL,

PRICE DECIMAL(5,2),

DATE_DB DATE);

Query languages 1 5

1. Data definition in SQL

 column ICs

– NOT NULL the column cannot contain the NULL value,

– DEFAULT sets column default value for the column

when no value is specified,

– UNIQUE ensures that all values in the column are

different, NULL value does not matter,

– PRIMARY KEY column combination of NOT NULL and

uniquely identifies each row in column table,

– FOREIGN KEY column is a foreign key defining

referential integrity with another table

– CHECK logical expression defining a specific IC

 table ICs (e.g., composite primary key), named ICs

Query languages 1 6

1. Data definition in SQL

 ALTER TABLE

ADD column, DROP column, ALTER column, ADD

CONSTRAINT column DROP CONTRAINT

Ex.: ALTER TABLE CINEMAS ADD NUMBER_OF_SEATS INT

 DROP TABLE

New: RESTRICT, CASCADE (also in ALTER TABLE)

 CREATE SCHEMA

– contains definitions of basic tables, views, domains,

integrity constraints, authorization privileges

CREATE TABLE table_name(list_of_table_elements)

list_of_table_elements ::= table_element[,table_element]...

table_element ::= column_definition | table_IC_definition

Query languages 1 7

1. Data definition in SQL

 DROP SCHEMA

New: RESTRICT, CASCADE

Df.: Database in SQL is a collection of tables and views. It

can be defined by one or more schemas.

schema 1

schema 2

Query languages 1 8

1.1 Data types in SQL

 numeric (exact and approximate),

 character strings,

 bit strings,

 temporal data,

 time intervals.

NULL (is element of all domain types)

TRUE, FALSE, UNKNOWN

Conversions: automatically, explicitly (function CAST)

Query languages 1 9

1.1 Data types in SQL

 exact numeric types

INTEGER, SMALLINT („less“ implementation than

INTEGER),

NUMERIC, DECIMAL.

– NUMERIC(p,q), p digits, of which q digits are to the

right of the decimal point.

– DECIMAL(p,q) (similar to NUMERIC) with user-

defined precision p, must be less or equal to the

maximum precision allowed in the DBMS.

– DECIMAL and NUMERIC are functionally equivalent

(but not the same).

Query languages 1 10

1.1 Data types in SQL

 approximate numeric types

FLOAT (real, parametrized with precision p digits)

REAL (real, with machine-dependent precision)

DOUBLE PRECISICN (real, with machine-dependent

precision greater than REAL)

 character strings

CHARACTER(n) (user-defined fixed length n, right

padded with spaces)

CHARACTER VARYING(n) (max. length n)

Query languages 1 11

1.2 Example

. . .

CREATE TABLE CINEMAS . . .

. . .

CREATE TABLE MOVIE_SHOWINGS

(C_NAME Char_Varying(20) NOT NULL,

TITLE Char_Varying(20) NOT NULL,

DATE Date NOT NULL,

PRIMARY KEY (C_NAME, TITLE),

FOREIGN KEY (C_NAME) REFERENCES CINEMAS,

FOREIGN KEY (TITLE) REFERENCES MOVIES);

Remark: Tables in SQL may not have a primary key!

Query languages 1 12

1.3 Indexes in SQL

 feature out of the relational data model,

 support of access paths to data in a query

 clustered and nonclustered indexes

CREATE INDEX Idx_Cust_name_addr

ON CUSTOMERS (NAME, ADDRESS)

Query languages 1 13

Nonclustered vs. clustered

lists

of pointers

index

records

(index

file)

(relation)relation rows

nonclustered

relation rows

lists

of pointers

clustered

Query languages 1 14

2. Data manipulation in SQL

Simple queries in SQL: Boolean expressions, event. with

new predicates, are allowed in the WHERE clause

DATE_DB BETWEEN '2015-04-23' AND '2015-05-23’

Q1. Find customer names with their addresses.

SELECT [{DISTINCT | ALL}] [{* | name_atr1[, name_atr2]... }]

FROM name_rel1[, name_rel2]...

[WHERE condition]

[ORDER BY sorting_specification]

SELECT NAME, ADDRESS SELECT DISTINCT NAME,

ADDRESS FROM CUSTOMERS FROM CUSTOMERS;

ORDER BY NAME ASC;

Query languages 1 15

2. Data manipulation in SQL

Semantics:

Q2. Find couples of customers, having the same address.

From version SQL92: local renaming columns

SELECT X.PIN AS first, Y.PIN AS second

FROM CUSTOMERS X, CUSTOMERS Y

WHERE X.ADDRESS = Y.ADDRESS AND X.PIN < Y.PIN;

(R1R2... Rk)()[A1,A2,...,Aj]

SELECT DISTINCT A1,A2,...,Aj

FROM R1,R2,...,Rk

WHERE

Query languages 1 16

2. Data manipulation in SQL

Q3. Find rows in RENTS with date due back until 23.4.2015.

SELECT DISTINCT DIRECTOR

FROM MOVIES, BOOKING

WHERE MOVIES.TITLE = BOOKING.TITLE;

SELECT * FROM RENTS

WHERE DATE_DB '2015-04-23';

Q4. Find directors, whose some movies are booked.

Query languages 1 17

2. Data manipulation in SQL

Semantics of comparisons:

x Q y = UNKNOWN if and only if at least one from x, y is NULL

So: NULL = NULL is evaluated as UNKNOWN

Vyhodnocení logických podmínek.

A B A and B A or B not A

TRUE TRUE TRUE TRUE FALSE

TRUE FALSE FALSE TRUE FALSE

TRUE UNKNOWN UNKNOWN TRUE FALSE

FALSE TRUE FALSE TRUE TRUE

FALSE FALSE FALSE FALSE TRUE

FALSE UNKNOWN FALSE UNKNOWN TRUE

UNKNOWN TRUE UNKNOWN TRUE UNKNOWN

UNKNOWN FALSE FALSE UNKNOWN UNKNOWN

UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN

Evaluation of logical conditions

Query languages 1 18

2. Data manipulation in SQL

 interesting example:

EMPLOYEES(E_ID, ADDRESS, NAME, SALARY)

281675 Tachov 21 Novák NULL

SELECT NAME

FROM EMPLOYEES

WHERE SALARY < 29000 OR SALARY >= 29000;

UNKNOWN UNKNOWN

UNKNOWN

Query languages 1 19

2.1 Arithmetic

Q5. Find for Heinrich Götz numbers of copies, he borrowed,

with the rents prices in EUR.

– operators /,+, - and *, precedence order from usual

practice

Recommendation: better to use always parentheses

– NULL is propagated into the result, i.e., when one from

operands is NULL, the operation result is NULL.

SELECT R.COPY_N, R.PRICE/25.15

FROM RENTS R, CUSTOMERS C

WHERE C.NAME = ' Götz H.' AND R.PIN = C.PIN;

Query languages 1 20

2.2 Aggregate functions

COUNT, SUM, MAX, MIN and AVG.

 They are applied on by a query specified column of a

table.

Exception: COUNT(*) counts items including their

duplicates and empty rows

 Aggregate functions applied on columns ignore NULL

values.

 Inclusion or non-inclusion of duplicates in the result is

obeyed by ALL and DISTINCT.

 In the case of (empty table) COUNT() = 0.

aggregate_function([{ALL|DISTINCT}] columns_names)

Query languages 1 21

2.2 Aggregate functions

Q6. How many movies are booked?

Q7. Find the number of rents with rent prices up to 899 CZK.

SELECT COUNT(DISTINCT TITLE)

FROM BOOKING;

SELECT COUNT(*)

FROM RENTS

WHERE PRICE 899.00;

Query languages 1 22

2.2 Aggregate functions

 SUM and AVG calculate (DISTINCT is not specified) with

duplicate values.

 Inclusion of duplicate values also explicitly with ALL.

 SUM() = NULL and AVG() = NULL.

Q8. What is the total amount of money in rents of H. Götz?

 MIN() = NULL and MAX() = NULL.

SELECT SUM(R.PRICE)

FROM RENTS R, CUSTOMERS C

WHERE C.NAME = ' Götz H.' AND R.PIN = C.PIN;

Query languages 1 23

2.2 Aggregate functions

value expression uses arithmetical expressions,

applications of aggregate functions, values of scalar

subqueries (return just one value).

Rule: The use of aggregate functions in SELECT clause

precludes the use of another column.

Q9. Find copy numbers with the highest rent price.

SELECT [{DISTINCT | ALL}] {*|

value_expression1[,value_expression2] ...}

SELECT COPY_N, MAX(PRICE)

FROM RENTS;

Incorrectly

Query languages 1 24

2.2 Aggregate functions

Q9 with a scalar subquery:

Q10. Find PINs of customers, having rented more than 2 copies.

Remark: If we only want PIN, it is not necessary to write

COUNT(COPY_N) in SELECT clause. Older SQL

implementations require it often.

SELECT COPY_N, PRICE

FROM RENTS

WHERE PRICE = (SELECT MAX(PRICE) FROM RENTS);

SELECT PIN, COUNT(COPY_N) AS number_of_copies

FROM RENTS

GROUP BY PIN

HAVING 2 < COUNT(COPY_N);

Query languages 1 25

2.2 Aggregate functions

Q11. Find cinemas and their addresses, where they have

more than 8 movies in the programme.

Remark: placing a scalar subquery on both sides of the

comparison operator Q is possible.

Q12. Find average price from minimum prices of rented

copies for each customer.

In SQL89 it is not possible to formulate this query by one SQL

statement.

SELECT DISTINCT C.NAME, C.ADDRESS

FROM CINEMAS C

WHERE 8 < (SELECT COUNT(TITLE)

FROM MOVIE_SHOWINGS M

WHERE M.NAME = K. NAME);

Query languages 1 26

2.2 Aggregate functions

 Multi-level aggregation

Q13. Find for each customer and price the number of

his/her rents (with this price) and total amount of

money for all his/her rents.

SELECT PIN, PRICE, COUNT(COPY_N) AS počet_kopií,

(SELECT SUM(R.PRICE) FROM RENTS R

WHERE R.PIN = PIN) AS TOTAL_PRICE

FROM RENTS

GROUP BY PIN, PRICE;

Query languages 1 27

2.2 Aggregate functions

Q14. Find cinema managers, who have copies rents for

less than 2000 CZK.

Problem: If the number of rents is zero, the SUM does not

give 0, but NULL, i.e., cinema managers, who have no

rented copies, will be not in the answer.

Solution: conversion NULL into 0 with the function

COALESCE (see 2.3).

SELECT DISTINCT MANAGER

FROM CINEMAS C, CUSTOMERS CU

WHERE C.MANAGER = CU.NAME AND

2000 > (SELECT SUM (R.PRICE)

FROM RENTS. R

WHERE R.PIN = CU.PIN);

Query languages 1 28

2.2 Aggregate functions

SELECT PIN, COPY_N,

PRICE * (SELECT COUNT(COPY_N) FROM COPIES C

WHERE C.TITLE =

(SELECT C1.TITLE FROM Copies C1

WHERE C1.COPY_N = R.COPY_N)

)

FROM RENTS R

GROUP BY PIN, COPY_N;

Q15. For each customer and copy: how much would be a sale if

all the copies of the movie were borrowed at the same price?

Where is the error? PRICE is not in GROUP BY.

Query languages 1 29

2.2 Aggregate functions

SELECT PIN, COPY_N,

PRICE * (SELECT COUNT(COPY_N) FROM COPIES C

WHERE C.TITLE =

(SELECT C1.TITLE FROM Copies C1

WHERE C1.COPY_N = R.COPY_N)

)

FROM RENTS R

GROUP BY PIN, COPY_N;

Q15. For each customer and copy: how much would be a sale if

all the copies of the movie were borrowed at the same price?

Where is the error? PRICE is not in GROUP BY. Allowed in

TransactSQL.

Query languages 1 30

2.3 Value expressions

 CASE expressions

ELSE is also possible. In example, we suppose implicitly

ELSE NULL, i.e., if GENDER value is not given, then

NULL is inserted in the row on place of the value of the

column.

CASE

WHEN GENDER = 'M' THEN 1

WHEN GENDER = ‚W' THEN 2

END

Query languages 1 31

2.3 Value expressions

 function COALESCE

COALESCE(RENTS.PRICE, "PRICE IS NOT GIVEN")

returns in the case, when price of the copy is NULL,

"PRICE IS NOT GIVEN", otherwise, value RENTS.PRICE.

Generally:

evaluates from left to right and returns the first value that is

not NULL. If it does not exist, the result is NULL.

COALESCE(V1,V2,...,Vn)

Query languages 1 32

2.3 Value expressions

 function NULLIF

NULLIF(V1, V2), is equivalent to expression

CASE WHEN V1 = V2 THEN NULL ELSE V1 END

Q14.(SQL92)

SELECT DISTINCT MANAGER

FROM CINEMAS C, CUSTOMERS CU

WHERE C.MANAGER = CU.NAME AND

2000 > COALESCE((SELECT SUM(R.PRICE)

FROM RENTS R

WHERE R.PIN = CU.PIN),0);

Query languages 1 33

2.4 Predicate LIKE

Q16. Find salaries of employees, who are from Kolín.

The problem is we do not know whether the database

contains 'Kolin', or 'Kolín'.

SELECT E.SALARY

FROM EMPLOYEES E

WHERE E.ADDRESS LIKE '%Kol_n%';

_ the underscore represent a single character,

% the percent sign represents zero, one, or

multiple characters.

Query languages 1 34

2.5 Other predicates in SQL92

 row expressions

(R.PRICE, R.DATE) > (S.PRICE, S.DATE)

replaces Boolean expression

R.PRICE > S.PRICE OR (R.PRICE = S.PRICE AND

R.DATE > S.DATE)

 predicate MATCH (for updating tables)

– It is possible, e.g., to check, if input values (here of the column

K) are from a given set (referential integrity).

– More generally: if the row r (with more attributes) is from a set Q

of rows given by a subquery)

...WHERE K MATCH (SELECT NAME FROM CINEMAS)

Query languages 1 35

2.5 Other predicates in SQL92

Semantics:

 without FULL, PARTIAL

TRUE, if a value in r is equal to NULL,

no value is equal to NULL and r is equal to a
row from Q (to just one in the case UNIQUE)

 with FULL
TRUE, if each value in r is equal to NULL,

no value is equal NULL and r is is equal to a
row from Q (to just one in the case UNIQUE)

 with PARTIAL

TRUE, if each value in r is equal to NULL,
each non-empty value in r is equal to the corresponding
value in a row from Q (to just one in the case
UNIQUE)

… r MATCH [UNIQUE] [{FULL | PARTIAL}] subquery ...}

Query languages 1 36

2.5 Other predicates in SQL92

 predicate UNIQUE

duplicates testing

If two rows are equal, the predicate is FALSE. For

table with empty rows (denote them)

UNIQUE() = TRUE.

Q17. Find names and addresses of customers, with at

least two at the same address.

UNIQUE subquery

SELECT C.NAME, C.ADDRESS

FROM CUSTOMERS C

WHERE NOT UNIQUE(SELECT ADDRESS

FROM CUSTOMERS CC

WHERE C.ADDRESS = CC.ADDRESS);

Query languages 1 37

2.5 Other predicates in SQL92

Q18. Find rental IDs of rents, that are rented indefinitely

(DATE_DB is missing).

possibilities: IS NOT NULL,

comparisons with TRUE, FALSE and

UNKNOWN.

SELECT RENTAL_ID

FROM RENTS

WHERE DATE_DB IS NULL;

Query languages 1 38

2.6 Set predicates

 Predicate IN

Q19. Find the addresses of the cinemas where they play

the movie Aquaman.

– column_name IN () returns FALSE

– column_name IN () returns UNKNOWN

column_name [NOT] IN subquery

or

column_name [NOT] IN (list_hodnot)

SELECT ADDRESS FROM CINEMAS

WHERE NAME IN (SELECT NAME

FROM MOVIE_SHOWINGS

WHERE TITLE = ‚Aquaman');

Query languages 1 39

2.6 Set predicates

Q20. Find movies with given directors.

Q21. Find names of customers booking a movie

directed by Spielberg.

SELECT TITLE FROM MOVIES

WHERE DIRECTOR IN (' Menzel ',' Chytilová ', ‘Kachyňa');

SELECT NAME FROM CUSTOMERS WHERE PIN IN

(SELECT PIN FROM BOOKING B

WHERE B. TITLE = (SELECT M.TITLE FROM MOVIES M

WHERE M.DIRECTOR = ‘Spielberg’));

Query languages 1 40

2.7. Predicates ANY, ALL, SOME

 >SOME, <SOME, <>SOME (NOT IN),

=SOME (IN)). ANY is synonym for SOME.

 > ALL expresses: "greater than all items from

the specified set" (+ another comparisons)

– column_name Q ALL() returns TRUE,

– column_name Q ALL() returns UNKNOWN,

– column_name Q ANY() returns FALSE,

– column_name Q ANY() returns UNKNOWN.

Query languages 1 41

2.7. Predicates ANY, ALL, SOME

Q22. Find employees having salary higher that all

employees from Praha.

SELECT E_ID, NAME

FROM EMPLOYEES

WHERE SALARY > ALL(SELECT E.SALARY

FROM EMPLOYEES E

WHERE E.ADDRESS LIKE '%Praha%');

Query languages 1 42

2.8 Quantification in SQL

Ex. "For all movies holds, they have a director".

Logic: universal (") and existential () quantifier are
related by transformation:

" x (p(x)) x (p(x)) /* is equivalent to*/

Equivalent expression: „There is no movie such that it is
not true, that this movie has a director".

More simply: "Each movie has a director " is equivalent
to „There is no movie without director".

 EXISTS
simulates (test of non-emptiness of a set)

[NOT] EXISTS subquery

Query languages 1 43

2.8 Quantification in SQL

Q23. Find names of customers having booked a movie.

Q23'. Find names of customers such that there is a

movie, they have booked.

Semantics:

– The expression is evaluated as TRUE, if the set

given by the subquery is non-empty. Otherwise, it

gets the value FALSE.

– The evaluation goes according to Boolean logic

SELECT NAME

FROM CUSTOMERS C

WHERE EXISTS (SELECT * FROM BOOKING

WHERE PIN = C. PIN);

Query languages 1 44

2.8 Quantification in SQL

– Q23' also possible with IN.

– IN and EXISTS can not be always alternated each

other.

Q24. Find cinemas, they currently showing nothing.

Q24'. Find cinemas such, that there is no movie

currently shown there.

Remark: also possible with COUNT

SELECT NAME

FROM CINEMAS C

WHERE NOT EXISTS

(SELECT *

FROM MOVIE_SHOWINGS M

WHERE C.NAME = M.NAME);

Query languages 1 45

2.9 Set operations

 UNION,

 INTERSECT,

 EXCEPT.

– + more complex expressions, e.g., (set-like) (X Y) Z,

where X, Y, Z are given by subqueries or as TABLE T

– eliminate duplicates

– can be simulated using LEFT OUTER JOIN and test IS

NULL

query_expression UNION [ALL] query_expression [ORDER

BY ordering_specification]

Q24. (SELECT NAME FROM CINEMAS)

EXCEPT

(SELECT NAME FROM MOVIE_SHOWINGS);

Query languages 1 46

2.9 Set operations

 CORRESPONDING

– It is possible to specify over which common the set

operation is performed

– without columns specification, only columns common

for both operands appear.

– adding BY (column_list) it is possible to chose only

some common columns.

 CUSTOMERS[JM, ADDRESS] EMPLOYEES[JM, ADDRESS]

CORRESPONDING [BY (column_list)]

TABLE CUSTOMERS UNION CORRESPONDING

TABLE EMPLOYEES

Query languages 1 47

2.10 Understanding NULL – SQL weaknesses

If ALL(), then > returns TRUE and all employees from the table
EMPLOYEES will be in the answer.

Alternative:

MAX() = NULL and > returns TRUE for no salary value. The answer
will be .

SELECT E_ID, NAME

FROM EMPLOYEES

WHERE SALARY > ALL(SELECT Z.SALARY

FROM EMPLOYEES E

WHERE E.ADDRESS LIKE '%Praha%');

SELECT E_ID, NAME

FROM EMPLOYEES

WHERE SALARY > (SELECT MAX (E.SALARY)

FROM EMPLOYEES E

WHERE E.ADDRESS LIKE '%Praha%')

Query languages 1 48

2.10 Intersection vs. simple selection

R

Customer Bank_code

1 808

2 NULL

NULL 312

NULL NULL

3 156

S

Customer Bank_code

3 156

NULL 808

2 NULL

NULL NULL

SELECT Customer, Bank_code FROM R

INTERSECTION

SELECT Customer, Bank_code FROM S

Result

Customer Bank_code

3 156

2 NULL

NULL NULL

Q25. Which customers having a bank are in both tables?

Query languages 1 49

2.10 Intersection vs. simple selection

R

Customer Bank_code

1 808

2 NULL

NULL 312

NULL NULL

3 156

S

Customer Bank_code

3 156

NULL 808

2 NULL

NULL NULL

Result

Customer Bank_code

3 156

Q25. Which customers having a bank are in both tables?

SELECT R.Customer, S.Bank_code

FROM R, S

WHERE R. Customer=S.Customer AND

R.Bank_code= S.Bank_code

Query languages 1 50

2.10 NOT IN vs. NOT EXISTS

Banks

Bank_code Name

156 Reiff

312 KB

808 ČS

ATMs

Machine DIstrict Bank_code

B1 MS 156

B2 Karlín 312

B3 Žižkov NULL

B4 NULL 312

B5 Smíchov 808

SELECT B.Name FROM Banks B

WHERE B.Bank_code NOT IN (SELECT A.Bank_code

FROM ATMs A

WHERE District = ‘Žižkov‘)

Result

Name

Q26. Find banks having no ATM at Žižkov.

Query languages 1 51

2.10 NOT IN vs. NOT EXISTS

Banks

Bank_code Name

156 Reiff

312 KB

808 ČS

ATMs

Bankomat District Bank_code

B1 MS 156

B2 Karlín 312

B3 Žižkov NULL

B4 NULL 312

B5 Smíchov 808

SELECT B.Name FROM Banks B

WHERE NOT EXISTS (SELECT *

FROM ACMs A

WHERE District = ‘Žižkov‘ AND

B.Bank_code = A.Bank_code

Result

NAME

Reiff

KB

ČS

Query languages 1 52

2.11 Join of tables

 natural join,

 cross join,

 join with condition,

 join on listed columns,

 inner join,

 outer join,

 join sjednocením.

Query languages 1 53

2.11 Join of tables

 Natural join

 Cross join

 Join with condition

 Union join

SELECT *

FROM MOVIES NATURAL JOIN

MOVIE_SHOWINGS;

SELECT *

FROM R CROSS JOIN S;

SELECT *

FROM R JOIN S ON AB;

SELECT *

FROM U JOIN V USING (Z, Y);

Query languages 1 54

2.11 Join of tables

 inner join

 outer join (LEFT, RIGHT and FULL)

Again naturally or with ON.

We obtain a table containing also the movies they do not

give anywhere.

 union join

Each row of the left and right operand is completed from

the right and from the left, respectively, with NULL values

in the result .

UNION JOIN is absent from SQL:2003!

SELECT *

FROM MOVIE_SHOWINGS NATURAL RIGHT OUTER JOIN

MOVIES;

SELECT *

FROM U UNION JOIN V;

Query languages 1 55

2.11 Join of tables

The FROM clause can contain derived tables specified by
SELECT (CROSS JOIN)

Query expression is a collection of terms connected with
UNION, INTERSECT, EXCEPT. Each term is either a
query specification (SELECT) or constant row or a table
given by respective constructors.

Q12. (SQL)

SELECT AVG(T.minim_c)

FROM (SELECT MIN(PRICE)

FROM RENTS

GROUP BY PIN) AS T(minim_c);

Query languages 1 56

3. Updating in SQL

DELETE FROM MOVIES

WHERE TITLE = ‘Gun’;

UPDATE CUSTOMERS SET NAME = ‘Götz’

WHERE PIN = '4655292130';

What will be done, when

the movie has copies, or it

is booked?

UPDATE CUSTOMERS SET NAME = ‘Müller’

WHERE NAME = ‘Muller’;

ALTER TABLE CUSTOMERS

Add NUMBER_OF_RENTS Number;

UPDATE CUSTOMERS C

SET NUMBER_OF_RENTS = (SELECT count(*) from

RENTS R WHERE R.PIN = C. PIN);

Query languages 1 57

3. Updating in SQL

INSERT INTO CUSTOMERS (PIN, NAME)

VALUES ('4804230160',Novák');

 column ADDRESS

will have a default

value, or NULL

 What will be in the

case of attempt to

insert already

entered PIN?

CREATE TABLE HOW_MANY_COPIES (PIN CHAR(10),

NUMBER_of_C SMALLINT);

INSERT INTO TABLE HOW_MANY_COPIES

SELECT PIN, COUNT(COPY_N) FROM RENTS

GROUP BY PIN;

CREATE TABLE HOW_MANY_COPIES (PIN CHAR(10),

NUMBER_of_C SMALLINT)

AS SELECT PIN, COUNT(COPY_N) FROM RENTS

GROUP BY PIN;

Query languages 1 58

4. Views

CREATE VIEW Praguers AS

SELECT RENTAL_ID, NAME, ADDRESS

FROM CUSTOMERS WHERE ADDRESS LIKE '%PRAHA%';

CREATE VIEW HOW_MANY_COPIES (PIN,

NUMBER_OF_RENTS) AS

SELECT PIN, COUNT(COPY_N) FROM RENTS

GROUP BY PIN;

CREATE VIEW view_name [(v_atr1_name[,v_atr2_name]...)]

AS query_specification

[WITH [{CASCADE | LOCAL} CHECK OPTION]

DROP VIEW Praguers;

for updatable

views

Query languages 1 59

4. Views

 view can not be indexed

Updating view leads to updating the basic table

underlining the view,

 a view given by a join of more tables is not

(usually) updatable,

 a view based on one table is not updatable, if it

– contains a column with a derived value,

– separates by a projection a column restricted by

NOT NULL constraint (mainly PRIMARY KEY)

Query languages 1 60

4. Views

 for a view, whose definition contains a

selection, it is necessary to respond to an

update attempt, that is in conflict with the view

definition, e.g.,

INSERT INTO Praguers VALUES

(1234, ’Novák Jiří’,’Pražská 3, Kolín 5’)

 clause WITH CHECK OPTION says to the DB

machine to reject such update

 CASCADED/LOCAL – determines the depth of

checking

Query languages 1 61

4. Views

Usage of views

 data confidentiality (it is possible to submit only

some columns and rows),

 hiding complexity (complex query hidden in the

view definition is designed only once),

 optimization (e.g., hiding complexity when

searching for common subexpressions).

Query languages 1 62

4. Views

Materialization of views

 Materialized views are not virtual, but real

tables.

 They can be automatically maintained

(incrementally or by recalculating the whole

table of the view).

 Support: Oracle, DB2

Query languages 1 63

5. Integrity constraints

 CREATE DOMAIN

CREATE DOMAIN

THIS_YEAR IS DATE DEFAULT ‘2001-12-31’

CHECK (VALUE >= ‘2010-01-01’ AND VALUE <= ‘2010-12-31’)

NOT NULL;

CREATE TABLE RENTS

(COPY_N CHAR(3) UNIQUE NOT NULL,

RENTAL_ID CHARACTER(6) NOT NULL,

PRICE DECIMAL(5,2) CHECK (PRICE >= 100),

PIN CHARACTER(10) NOT NULL,

DATE_DB THIS_YEAR)

PRIMARY KEY (RENTAL_ID);

Query languages 1 64

5. Integrity constraints

 named IC, references to other columns, tables

IC: „No movie directed by Woody Allen is played at

cinemas" for the column TITLE in MOVIE_SHOWINGS.

 table ICs

CHECK (TITLE <> ANY (SELECT TITLE FROM MOVIES

WHERE DIRECTOR = ‘Woody Allen’))

PRICE DECIMAL(5,2)

CONSTRAINT GREATER100 CHECK (PRICE >= 100)

CONSTRAINT Allen_no ...

Query languages 1 65

5. Integrity constraints

Problem: Table ICs are satisfied in as well.

IC: „They are always playing a movie“.

Solution:

assertions - are defined out of tables

 CREATE ASSERTION

named IC formulated using CHECK. IC test is not

automatically TRUE if the associated table is empty!

CONSTRAINT MOVIE_SHOWINGS_ALWAYS

CHECK (SELECT COUNT(*) FROM MOVIE_SHOWINGS) > 0

Query languages 1 66

5.2 Referential integrity

parent table (PT)

master
dependent table (DT)

detail

child

FK foreign key, its value can be NULL,

its domain is given by the actual domain of the unique

attribute UA (e.g., primary key or UNIQUE NOT NULL)

Remarks:

– null values are associated with cardinalities 1:M in E-R model.

– an attempt to break the referential integrity, only an error message

was raised by SQL89.

PT UA

DT FK

Query languages 1 67

5.2 Referential integrity

 Referential integrity can be defined

– in definition of a column IC

– in definition of a table IC

 Operational behaviour

DELETE (row from parent table)

– cascade delete of rows (ON DELETE CASCADE)

– replacing foreign key by null value (SET NULL)

– replacing foreign key by implicit value (SET DEFAULT)

– Non-deleting row with a notice (NO ACTION)

Syntax: ON DELETE action, or ON UPDATE action

FOREIGN KEY (COPY_N) REFERENCES Copies,

FOREIGN KEY (PIN) REFERENCES CUSTOMERS)

Query languages 1 68

5.2 Example

. . .

DROP TABLE CINEMAS CASCADE CONSTRAINTS;

CREATE TABLE CINEMAS . . .
ON DELETE CASCADE

CREATE TABLE MOVIE_SHOWINGS

(C_NAME Char_Varying(20) NOT NULL,

TITLE Char_Varying(20) NOT NULL,

DATE Date NOT NULL,

PRIMARY KEY (C_NAME, TITLE),

FOREIGN KEY (C_NAME) REFERENCES CINEMAS,

FOREIGN KEY (TITLE) REFERENCES MOVIES);

Query languages 1 69

5.2 Table definition - summary

CREATE TABLE table_name (

{column_name data_type [NOT NULL] [UNIQUE]

[DEFAULT value] [CHECK (selection_condition)

[, column_name …]}

[PRIMARY KEY (list_of_column_names),]

{ [FOREIGN KEY (list_of_column_names_creating_foreign_key)

REFERENCES parent_table_name [(list_of_column_names)] ,

[MATCH { PARTIAL | FULL }]

[ON UPDATE referential_action]

[ON DELETE referential_action]]

[, …] }

{ [CHECK (selection_condition) [, …] }

)

Query languages 1 70

5.3 Other possibilities of IC

WITH CHECK OPTION provides another possibility for

expressing an IC over a basic table of a view.

View expresses referential integrity and can be an

alternative to its declarative expressing for SQL

machines, where it is not supported.

CREATE VIEW COPIES_V

AS

SELECT * FROM Copies C

WHERE C.TITLE IN (SELECT TITLE FROM MOVIES)

WITH CHECK OPTION

Query languages 1 71

6. System catalogue

Ex.: ORACLE

Tab(TName,TabType, ClusterID)

– table name (relation or view)

– table type (relation or view)

– in which cluster the table is stored

SysCatalog … more information about tables

SysColumns(CName, TName, Creator, ColNo,

ColType,…)

SysUserlist(userId, UserName, TimeStamp,...

Query languages 1 72

6. System catalogue

SysIndexes(IName, ICreator, TName, Creator, .)

SysViews(ViewName, VCreator, …)

 queries over the catalogue using SQL

SELECT * FROM Tab

Query languages 1 73

7. Data protection

Examples:

 ALTER

 DELETE

 EXECUTE

 INDEX

 INSERT

 REFERENCES

 SELECT

 UPDATE

It is possible to assign a user

/user role the right to perform

the given actions over a

given object

REVOKE ALL PRIVILEGES ON

MOVIES FROM PUBLIC;

– remove access privileges

– PUBLIC refers to the implicitly

defined group of roles

GRANT ALL PRIVILEGES ON

MOVIES TO PUBLIC;

Query languages 1 74

8. Standardization of SQL

SEQUEL: development by IBM in 70ties

SQL standards:

 SQL86

 SQL89 (minor revision of SQL86)

 SQL92
– entry (minor revision of SQL89)

– intermediate (appr. a half of all functionality)

– full

Query languages 1 75

8. Standardization of SQL

 SQL99 (object extension, recursion, triggers,
…)
– all features are enumerated and either flagged

mandatory or optional

– conforming systems must comply with all mandatory
features, which are called Core SQL”

 SQL:2003
– something from XML

– five parts of SQL/MM (Multimedia and Application
Packages) have been completed

Query languages 1 76

8. Standardization of SQL

 SQL:2006

– full integration of XML into SQL including XQuery

 SQL/MM (Multimedia and Application Packages)

– Part 1: Framework,

– Part 2: Full Text,

– Part 3: Spatial objects,

– Part 5: Still Images

– Part 6: Data mining

– Part 7: History (draft from 2011), now ISO/IEC TS 13249-7

– Part 8: Metadata registry (draft from 2011), now ISO/IEC

11179

Query languages 1 77

8. Standardization of SQL

 SQL:2006

– full integration of XML into SQL including XQuery

 SQL/MM (Multimedia and Application Packages)

– Part 1: Framework,

– Part 2: Full Text,

– Part 3: Spatial objects,

– Part 5: Still Images

– Part 6: Data mining

– Part 7: History (draft from 2011), now ISO/IEC TS 13249-7

– Part 8: Metadata registry (draft from 2011), now ISO/IEC

11179

Query languages 1 78

8. Standardization of SQL

 SQL:2008
– part 1: Framework (SQL/Framework)

– part 2: Foundation (SQL/Foundation) 1100 p.

– part 3: Call-Level Interface (SQL/CLI*)

– part 4: Persistent Stored Modules (SQL/PSM**)

– part 9: Management of External Data (SQL/MED)

– part 10: Object Language Bindings (SQL/OLB)

– part 11: Information and Definition Schemas

(SQL/Schemata)

– part 13: SQL Routines and Types Using the Java TM PL

(SQL/JRT)

– part 14: XML-Related Specifications (SQL/XML)
* alternative to calling SQL from application programs (implementation: ODBC)

** procedural language for transaction management (alternatives: IBM: SQL PL,
Microsoft/Sybase: T- SQL, MySQL: MySQL, Oracle: PL/SQL, PostgreSQL: PL/pgSQL

Query languages 1 79

8. Standardization of SQL

– Parts 5, 6, 8 do not exist

Temporally suspended:

– part 7 – SQL/Temporal (partially implemented in ORACLE

11g, IBM DB2 for z/OS, Teradata 13.10),

Canceled:

– part 12 – SQL/Replication

 SQL:2011
– a statement for disabling validation of ICs

– contains a support of temporal databases – it distinguishes

from the approach of the canceled part 7

Query languages 1 80

8. Standardization of SQL

 SQL:2016 (has more than 4300 pages)

– ecognition of rows patterns – a pattern is given by a regular

expression (appropriate for searching patterns in time series)

– support of JSON type (not natively – see XML, but it uses

character strings)

– polymorphic functions

 Standardizing organizations:

– ANSI and ISO (International Organization of Standardization,

but also from Greek „the same“ (isos - ίδιος))

Query languages 1 81

9. Conclusion

 SQL is primarily the communication language

 aplicability vs. monstrous size

