
Using Linked Open Data to Improve Recommending on
E-Commerce

Ladislav Peska
Faculty of Mathematics and Physics

Charles University in Prague
Malostranske namesti 25, Prague, Czech Republic

peska@ksi.mff.cuni.cz

Peter Vojtas
Faculty of Mathematics and Physics

Charles University in Prague
Malostranske namesti 25, Prague, Czech Republic

vojtas@ksi.mff.cuni.cz

ABSTRACT
In this paper, we present our work in progress on using LOD data
to enhance recommending on existing e-commerce sites. We
imagine a situation of e-commerce website employing content-
based or hybrid recommendation. Such recommending algorithms
need relevant object attributes to produce useful
recommendations. However, on some domains, usable attributes
may be difficult to fill in manually and yet accessible from LOD
cloud.

For our pilot study, we selected the domain of secondhand
bookshops, where recommending is extraordinary difficult
because of high ratio of objects/users, lack of significant attributes
and small number of the same items in stock. Those difficulties
prevents us from successfully apply both collaborative and
common content based recommenders. We have queried Czech
language mutation of DBPedia in order to receive additional
information about objects (books) and use them as Boolean
attributes for hybrid matrix factorization method. Our approach is
general and can be applied on other domains as well.

Proposed methods were successfully tested in an off-line
experiment; however we needed to cope with several technical
difficulties and obstructions described in the paper, which may
hinder widespread of such approaches.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Retrieval -
Information Filtering

General Terms
Measurement, Human Factors, Experimentation.

Keywords
Hybrid recommender systems, Linked Open Data, DBPedia,
content-based attributes, e-commerce, matrix factorization.

1. INTRODUCTION
Recommending on the web is both an important commercial
application and popular research topic. The amount of data on the
web grows continuously and it is virtually impossible to process it
directly by a human. The keyword search engines were adopted to
fight information overload but despite their undoubted successes,

they have certain limitations. Recommender systems can
complement onsite search engines especially when user does not
know exactly what he/she wants.

Many recommender systems, algorithms or methods have been
presented so far. Initially, the majority of research effort was
spent on the collaborative systems and explicit user feedback.
Collaborative recommender systems suffer from three well known
problems: cold start, new object and new user problem.

New user / object problem is a situation, where recommending
algorithm is incapable of making relevant prediction because of
insufficient feedback about current user / object. The cold start
problem refers to a situation short after deployment of
recommender system, where it cannot relevantly predict because
it has insufficient data generally.

The new object problem became even more important on domains
with high object fluctuation (e.g. fast aging objects like news
articles or limited amount of items per object type). Using
attributes of objects and hence content based or hybrid
recommender systems can speed up learning curve and reduce
both cold start and new object problems. Various domains
however differ greatly in how many and how useful attributes can
be provided in machine readable form. However we can use some
of the LOD datasets to enhance our object’s attributes and thus
improve recommendation quality.

1.1 Our motivation
Despite the widespread of recommending systems, there are still
domains, where creating useful recommendations is very difficult.

• Auction servers or used goods shops have often only
one object of given type available which prevents us
from applying collaborative filtering directly.

• For some domains e.g. films, news articles or books it
is difficult to define and maintain all important
attributes hindering content based methods.

• Websites with relatively high ratio between #objects /
#users will generally suffer more from cold start and
new user problems.

For our study, we chose secondhand bookshops domain which
includes all above mentioned difficulties. The main problem of
the book domain is that similarity between books is often hidden
in vast number of attributes (characters appeared, location, art
form or period, similarity of authors, writing form etc.). Although
those attributes are difficult to design and fill, it is not impossible.
But in the most cases, only one book is available in the
secondhand bookshop, so creating a new record must be fast and
simple enough that potential purchase could eventually cover the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SeRSy’13, October 13, 2013, Hong Kong, China.
Copyright 2013 ACM 1-58113-000-0/00/0010…$10.00.

costs of work. Collaborative recommender systems can be used,
but their efficiency is hindered both by high ratio between
#objects/#users and the fact that each object can be purchased
only once.

On the other hand, Wikipedia covers the book domain quite well,
so our main research question is whether we can effectively use
information available on Linked Open Data cloud (e.g. DBPedia)
to improve recommendation on difficult domains such as
secondhand book shop.

1.2 Main contribution
The main contributions of this paper are:

• Proposing system to on-line querying Linked Open
Data to enrich object’s content information

• Experiments with real-world e-commerce data
evaluating added value of mined attributes.

• Identifying key problems hindering development of
similar systems.

The rest of the paper is organized as follows: review of some
related work is in section 2. In section 3 we how to incorporate
LOD into recommending systems in general, section 4 describes
our selection of recommending algorithms suitable for the task
and section 5 discuss specific needs of secondhand-bookshop
domain. Section 6 discusses experiments held on Czech
secondhand bookshop and finally section 7 concludes our paper
and points to some future work.

2. RELATED WORK
Although areas of recommender systems and Linked Open Data
have been extensively studied recently, papers involving both
topics are not very common. We suggest Konstan and Riedl [7]
paper as a good overview for recommender systems domain and
Bizen, Heath and Berners-Lee [1] for LOD.

The closest to our work is the research by Di Noia et al. [2],
whose aim was to develop content based recommender system for
a movie domain based sole on (multiple) LOD datasets. Similarly
A. Passant [9] developed dbRec – the music recommender system
based on DBPedia dataset. Both authors have however different
initial point of view: they struggle to develop system based sole
on LOD datasets. Although Di Noia et al. used MovieLens 1M
dataset in their experiments, they did not claim it to be an integral
part of their recommender system, only a testing platform.

Our approach is different in several ways: First we focus on e-
commerce domain with its rather unique requirements and
possibilities. We expect to have running e-commerce portal with
its objects and eventually also existing recommender system.
Hence LOD datasets are used only as means of recommendation
improvements.

This scenario might looks similar as Di Noia et al. experiments
with MovieLens, but we stressed on capability of the proposed
recommender system to cope with and to recommend for objects
without corresponding LOD data. Although the technique of
integrating LOD and non-LOD data is similar in both Di Noia et
al. and our approach, recommending procedure differs due to this
assumption.

On the contrary of A. Passant [9], who used LOD to create both
recommender system and user interface, we need to cope with
inaccurate and missing interface between LOD and non-LOD
datasets and missing objects. This fact affects choice of
recommending (or similarity) method as we can either separate

LOD-based and non-LOD recommendations and use e.g.
SimRank[6] for LOD or (our choice) integrate LOD data into the
objects structure and use e.g. content aware matrix
factorization[3]. Using matrix factorization also allows us to be
less strict in validation and evaluation of LOD input.

Among other work connecting areas of recommender systems and
LOD we would like to mention paper by Heitmann and Hayes [5]
using Linked Data to cope with new-user, new-item and sparsity
problems and Goldbeck and Hendler’s work on FilmTrust [4]:
movie recommendations enhanced by FOAF trust information
from semantic social network.

Matrix factorization techniques [8] are currently main-stream
algorithm to learn user preferences gaining their popularity during
NetFlix prize. There are also several implementation of hybrid
matrix factorization using taking into account object’s attributes.
We use Content-boosted matrix factorization as proposed in
Forbes and Zhu [3] in our experiments.

This paper follows on our preliminary work [10], we have
improved data mining procedure in order to increase objects
coverage, used hybrid recommending method instead of pure
content-based to improve recommending quality and run large
scale experiments.

3. ENHANCING RECOMMENDER
SYSTEMS WITH LINKED OPEN DATA
In this section, we will briefly describe our architecture to collect
LOD and their usage in recommender system. The architecture
itself is rather simple and straightforward, but we believe that this
chapter can be interesting from the software engineering point of
view as we try to point out several issues, which should be bore in
mind.

Figure 1: Top-Level architecture of the system: 1A is original e-
commerce system with a content-based or hybrid recommender;

1B is its extension for querying and storing LOD datasets.

The top-level architecture is shown on Figure 1. System maintains
one or more SPARQL endpoints to various LOD datasets. The
connections are usually REST APIs or simple HTTP services.
Whenever an object of the system is created or edited, the system
will automatically query each SPARQL connection with best
possible object specification.

The important step while using more than one LOD dataset is
matching identical resources. The difficulty of this step is
however highly dependent on the datasets. Resources are then
stored in the system triples store (relational database table was
sufficient during our experiments) or alternatively mapped into
the object-attribute structure immediately.

Each object is also queried periodically via batch queries as the
LOD datasets can provide more information over time. We have
also considered using local copies of LOD datasets. This approach
would however result in excessive burden to both data storage and
system maintenance and also prevent us from using up-to-date
dataset.

3.1 Using LOD in Recommender System
Unless we want to use specific graph-based similarity measures
e.g. SimRank [6] (which are appropriate for LOD, but would
cause problems for objects without matching LOD data) we need
to map mined RDF into the Object-Attribute structure. In our
previous work, we used following mapping:

• RDF Subject ≈ recommendable object (e.g. product of
an e-shop)

• RDF Predicate ≈ Attribute name

• Set of RDF Objects (with the same Subject and
Predicate) ≈ Attribute value

Set attributes were thereafter compared with Jaccard similarity,
original attributes of an object remains the same compared with
appropriate similarity metrics. Although such mapping achieved
quite positive results, it has one important weakness: various RDF
Objects of the same Predicate may have highly different
information value. Good example of this phenomenon is
dbPedia:wikiPageWikiLink Predicate (see Section 5 for more
details). Due to this, we decided to use other approach:

• RDF Subject ≈ recommendable object

• <RDF Predicate × RDF Objects> ≈ Binary attribute

Original object attributes should be transformed into binary as
well. This setting leads directly to some form of matrix
factorization as the matrix itself is typically very large and yet
sparse enough (approx. 70000 attributes, 5000 objects and density
≈ 0.1% during our experiments). One advantage is that
significance of each RDF Object is considered separately,
however number of attributes can grow unbound unacceptably
rising time demands. To improve this problem, we proposed two
methods to reduce number of attributes in Section 4.2.

4. RECOMMENDING ALGORITHMS
Matrix factorization techniques are currently leading methods for
learning user preferences. We choose to use Forbes and Zhu’s
Content boosted matrix factorization method [2] as it incorporates
object attributes directly into the matrix factorization. We will
briefly describe their approach and its (dis)advantages. For space
reasons we skip more elaborated introduction on matrix
factorization. We suggest consulting Koren et al. [5] instead.

Given the list of users },...,{ 1 nuuU = and objects },...,{ 1 mooO = ,

we can form the user-object rating matrix [] mnuor ×=R . With

lack of explicit feedback, user-object rating uor in our case is

defined as Boolean information whether user u visited object o.
We will keep using term “rating” for this implicit information
throughout the rest of the paper as it is more convenient in other
Matrix Factorization related literature.

For a given number of latent factors f, matrix factorization aims to
decompose original R matrix into UOT, where U is fn× matrix

of user latent factors (T
iµ stands for latent factors vector for

particular user iu) and OT
 is mf × matrix of object latent factors

(iσ is vector of latent factors for particular object io).

[]
4434421
K

321
M mf

fn

T

T

T

×

×

×

=≈ 212

1

σσµ
µ

UOR

(1)

Unknown rating for user i and object j is predicted as j
T
iijr σµ=ˆ .

Our target is to learn matrixes U and O minimizing errors on
known ratings. Regularization penalty is added to prevent
overfitting altogether forming optimization equation:

)(
222

min OUUOR
OU,

++− λT (2)

This equation can be solved e.g. by Stochastic Gradient Descent
(SGD) technique iterating for each object and user vectors

))((

))((

jij
T
i

ojKi
ijjj

ijj
T
i

uiKj
ijii

r

r

σλµσµησσ

µλσσµηµµ

−−+=

−−+=

∑

∑

∈

∈
 (3)

Where η is learning rate, uiK set of all objects rated by user iu and

ojK set of all users, who rates object jo . We use this method as

one of our baselines.

4.1 Content boosted matrix factorization
Content boosted matrix factorization method (CBMF) is based on
the assumption that each object’s latent factors vector is a function
of its attributes. Having am×A matrix of object attributes and

fa×B matrix of latent factors for each attribute, the constraint can

be formulated as:

ABO = (4), (6 [3])

Under the constraint (4), we can reformulate both matrix
factorization problem (1), its optimization equation (2) and
gradient descend equations (3):

{ []
4434421
K

321
M maaf

T

fn

T

T

TTT aa

××

×

××

==≈ 212

1

BAUBUOR µ
µ

(1a)

))((

))((

),(

BB

BB

λµµησσ

µλµηµµ

−−+=

−−+=

∑

∑

∈

∈

T
ijj

TT
i

Kji
ijjj

ij
T

j
TT

i

uiKj
ijii

aar

aar

 (3a)
(8,9 [3])

4.2 Reducing number of attributes
Both Forbes and Zhu’s and our own experiments corroborated
that CBMF method improves recommendation quality in both
RMSE, nDCG, Average Position or Presence at top-k metrics.
Price for the improvement is time complexity which rises with
number of attributesia . Forbes and Zhu’s experiments were made

on recipes domain with 7000 attributes representing recipe’s
ingredients, ours on travel agency dataset with approx. 1000
attributes of each tour. In both cases the number of attributes was
relatively stable and can be internally controlled. While
employing LOD, we start to lose control on number of attributes.
In our presented (still rather small) experiment, we have mined

approx. 70000 different RDF objects for 5000 books, which
greatly affects computation time. In order to reduce number of
attributes, we defined and tested two heuristics:

Reducing based on attribute frequency keeps only top-k
(Boolean) attributes with highest frequency among set of objects.
Method is based on assumption that infrequent attributes
represents marginal properties useless to determine objects
similarity. Opposite metric is possible too to reveal DBPedia
equivalents of stop-words, but we did not find any too frequent
attributes in our dataset.

Reducing based on latent factors first computes CBMF with
small number of latent factors, iterations and/or for subset of data
and then select top-k attributes with highest contribution to the
latent factors (ia with maximal sum of their attributes latent

factors ∑ =
f
j ji1 ,B from equation 1a). The idea of this method is to

use only attributes which is enough involved in composing hidden
(latent) user and object factors – see e.g. Fig. 2 in Koren et al. [8].
This method is however less adaptable to the new objects or new
features than the previous one due to overall more complicated
insert new row operation for the most matrix factorization
methods. This fact should be considered while deploying on real-
world system as it may cause inaccuracies on domains with high
object fluctuation.

5. USING LINKED OPEN DATA IN
SECONDHAND BOOKSHOP DOMAIN
In our previous work [10] we explored LOD cloud in order to find
usable dataset for Czech secondhand bookshop. Given the
language constraint (book titles in Czech) and need for suitable
interface (SPARQL endpoint), we found only one available
dataset: Czech version of DBPedia1. There is unfortunately no
common unique identifier within the books domain. Using ISBN
is possible, but it identifies each issue, publisher or language
version separately and thus will lead to information loss.

We used combination of author and book title keyword search and
correct rdf:type in our previous work, however another problem
arose: Czech Wikipedia contains relatively large amount of books
and writers, but the vast majority of them have no infobox
attached and thus cannot be properly identified. Yet they still
contain information about Wikipedia pages linked to them2, which
can be valuable in recommendation. In order to use also these
resources we need to rollback to simple author and book keyword
search. This may lead to substantial inconsistencies due to
absence of names disambiguation; however we take advantage of
choice of recommending method. As contribution of each
attribute (resource) is determined separately to minimize

difference between original and factorized matrixes TUOR − ,

irrelevant attributes received by incorrect data mining should be
suppressed automatically. Figure 2 shows example of SPARQL
query used and portion of its result.

With given settings, we were able to collect additional data about
4980 out of 9500 books (52% coverage instead of 7.3% made by
more restrictive mining in our previous work). Altogether over
64000 different attributes were mined, but 34000 of them were
present only on one object and were discarded immediately. One
object has in average 60 non-zero attributes.

1 http://cs.dbpedia.org
2 See e.g. http://cs.dbpedia.org/page/R.U.R.

Figure 2: Example of SPARQL query about The Return of the
King (in Czech “Navrat krale”) and a portion of returned data.

6. EXPERIMENTS
In order to prove our theory as feasible, we performed a series of
off-line experiments on real users of a Czech secondhand
bookshop. The book shop itself also contains some attributes
useful for recommendation: book title, author name, book
category and book price. For the purpose of recommendation,
nominal attributes were transformed into set of Boolean attributes
one attribute per value and book price was separated into 10
equipotent interval. Again attributes with only one object was
discarded resulting into 820 new attributes.

6.1 Recommending methods
In order to test both benefits of using LOD data and methods to
reduce number of attributes, we have implemented following
methods:

• Baseline: standard SGD matrix factorization.

• Attributes:CBMF method using only original book
shop attributes.

• LOD: CBMF using only attributes mined from LOD.

• LOD+Attr: CBMF using both original book shop
attributes and attributes mined from LOD.

• LOD+Attr(freq. reduced): CBMF using only top-1000
attributes determined by attribute frequency.

• LOD+Attr(lat. fact. reduced):CBMF using only top-
1000 attributes determined by latent factors
contribution.

All methods were initialized with 10 latent factors and 1 hour
maximal computation time. We plan to experiment with other
method settings in our future work.

6.2 Experimental goals and success metrics
Before the experiment we need to set experiment goals and
success metrics. As the datasets contains only implicit feedback,
we cannot rely on user rating and related error metrics e.g. RMSE
or MAE (no need to mention that those metrics do not reflect well
real-world success metrics anyway). The Precision / Recall
methods are also problematical as we can obtain only positive

implicit feedback (user visited object) or its absence which
however cannot be automatically interpreted as negative feedback
(user might not be aware of the object). Typical usage of
recommender systems in e-commerce is to present list of top-k
objects to the user. We let recommending methods to rank objects
and denote as success if the algorithm manages to rank well
enough those objects, we have some evidence of their positive
preference.

As we lack any explicit feedback, we need to infer positive
preference from the implicit data. For the purpose of this rather
early work we consider page-view action (Boolean information
whether user u visited object o) as an expression of positive user
preference. More formally, relevance ru,o of object o for user u is
defined as:

OTHERWISE

ouIFF
r ou 0

visited1
, = (4)

It is possible to use more selective meanings of positive
preference e.g. to consider only purchased objects as positively
preferred or require more feedback to confirm his/her preference.
However this will lead to insufficient data in the test set so we
leave the problem of finer grained preference to the future work.

We adopt normalized distributed cumulative gain (nDCG) as a
standard metrics to rate relevance of list of objects. The premise
of nDCG is that relevant documents appeared low in the
recommended list should be penalized (logarithmical penalty
applied) as they are less likely to attract user attention. This fits
well into the recommending scenario, where lower-ranked objects
are presented to the user on less desirable positions. It is also
possible to restrict DCG to sum only up to top-kth position as
usually only top-k objects are shown to the user. However there is
no justification to set any particular top-k and the list of eligable
objects for recommendation could be pre-filtered (e.g. keep only
objects from certain category if user is browsing the category) so
objects on lower ranks keeps some value too.

Results of Presence@top-k and Average position metrics are
shown as they have more intuitive connection to the data.
Presence@top-k for arbitrary fixed user and recommending
method is defined as sum of ru,o of top-k best objects according to
recommending method for current user. Presence@top-k is then
summed over all users. Average position is defined as average of
positions of objects with ru,o=1 in recommending list (defined by
current recommending method successively for all users).

6.3 Evaluation procedure
Recommending method evaluation was carried out as follows: For
each user, his/her click stream was divided into two halves
according to its timestamp – earlier data serving as train set and
following as test set. Note that only users with at least two visited
objects qualify for the experiment. There are other ways to divide
train/test set e.g. to apply cross-validation, but we rather took
advantage of possibility to use and compare stream or time-aware
algorithms on the same dataset in future. The resulting train set
contains 4025 records from 3049 users. Test set contains 4725
records.

Then for each user, each method rate all objects, sort them
according to the rating and look up positions of objects from the
test set and compute nDCG and P@top-k. In production
recommender system, we should take into account also other
metrics like diversity, novelty or serendipity and probably want to
pre-select list of candidate objects, but for purpose of our
experiment, we will focus on rating only.

6.4 Experiment results
Figure 3 displays results of recommending methods in nDCG
aggregated by the train set size and Figure 4 shows distribution of
P@top-k up to top-150. Although smaller top-k would be used in
the real deployment, the list of objects eligible for
recommendation would be probably pre-filtered too, leaving some
influence also to objects beyond typical top-k boundary.

Figure 3: Average nDCG aggregated by train set sizes per user.
Legend shows average nDCG per all users and train set sizes.

LOD+Attr (freq. reduced) method achieved the best results in
nDCG and is statistically significantly better than any other
method (p-value<10-4), but LOD+Attr (lat .fact. reduced)
outperformed other methods in average position (p-value<0.002).
All methods are stat. sign. better than Baseline (p-value<10-6) and
LOD+Attr slightly outperforms Attributes (p-value<0.03).

Figure 4: P@top-k development for increasing top-k sizes.

Legend shows average position of preferred objects.

We can conclude that using additional data from LOD datasets
can significantly improve recommendation quality (even in
situation when received data are messy and possibly incorrect) if
proper recommending method is chosen. Reducing number of
attributes is promising approach to both speed up computation and
improve results. Both proposed reduction methods looks
promising and we will continue to experiment with them and/or
combine them together, although reduction based on latent factors
might suffer from time-consuming updates and thus should be

0,1

0,11

0,12

0,13

0,14

0,15

0,16

0,17

0,18

1 2 3 4 5

Train set size per user

Average nDCG aggregated by train set size

0

50

100

150

200

250

300

350

400

450

500

550

0 15 30 45 60 75 90 105 120 135 150

Top-K size

Presence @ Top-K for various top-k sizes

deployed carefully, only if more significant improvements are
shown.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we aim to improve recommendations on
problematical e-commerce systems by using additional data
collected from Linked Open Data Cloud. We showed several
difficulties which current recommender systems may encounter
and a domain (secondhand bookshops) where all those difficulties
can be found.

A simple method for enhancing objects with LOD data was
presented and possibilities of its utilization were discussed. We
chose to use them as Boolean attributes and select hybrid matrix
factorization method to derive top-k recommended objects.

The off-line experiments held on the real visitors of Czech
secondhand bookshop corroborates our assumption, that
enhancing recommender systems with LOD data can improve
recommendation quality and we managed to improve one of the
main drawbacks of our previous work – low object coverage.

Future work involves e.g. experimenting with other
recommendation methods or parameters of current ones. We
would like to also consider approaches to enhance matrix
factorization with other implicit feedback and also and improving
Czech DBPedia mapping rules in order to receive more precise
data. The possibility of automatic translation of book names
should be also considered in order to use also non-Czech
resources.

8. ACKNOWLEDGMENTS
The work on this paper was supported by the grant SVV-2013-
267312, GAUK-126313 and P46.

REFERENCES
[1] Bizer, C.; Heath, T. & Berners-Lee, T. Linked Data - The

Story So Far. Int. J. Semantic Web Inf. Syst., 2009, 5, 1-22

[2] Di Noia, T.; Mirizzi, R.; Ostuni, V. C.; Romito, D. & Zanker,
M. Linked open data to support content-based recommender
systems. In I-SEMANTICS '12, ACM, 2012, 1-8

[3] Forbes, P. & Zhu, M. Content-boosted matrix factorization
for recommender systems: experiments with recipe
recommendation. In RecSys 2011, ACM, 2011, 261-264

[4] Golbeck, J. & Hendler, J. FilmTrust: movie
recommendations using trust in web-based social network. In
CCNC 2006, IEEE, 2006, vol. 1, 282-286

[5] Heitmann, B. & Hayes, C. Using Linked Data to Build Open,
Collaborative Recommender Systems. AAAI Spring
Symposium: Linked Data Meets Artificial Intelligence, 2010

[6] Jeh, G. & Widom, J. SimRank: a measure of structural-
context similarity. In KDD ‘02, ACM, 2002, 538-543

[7] Konstan, J. & Riedl, J. Recommender systems: from
algorithms to user experience. UMUAI, 2012, 22, 101-123

[8] Koren, Y.; Bell, R. & Volinsky, C. Matrix Factorization
Techniques for Recommender Systems. Computer, IEEE
Computer Society Press, 2009, 42, 30-37

[9] Passant, A. dbrec - Music Recommendations Using DBpedia
In ISWC 2010, Springer, LNCS, 2010, 209-224

[10] Peska, L.; Vojtas, P.: Enhancing Recommender Systems with
Linked Open Data. In FQAS 2013, Springer, LNCS, 2013,
483-494

