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Preface

Along with technologies such as SQL/noSQL1 databases, proprietary binary

file formats, plain-text configuration files and JSON2, XML is one of the lead-

ing formats for storing structured data. However, even though languages such

as DTD and XML Schema3 to describe XML structure exist for a long time, most

of the documents use outdated or no schema at all [VMP08]. To tackle this prob-

lem one may employ reverse-engineering techniques to infer the schema from

existing documents, such as those described in [Aho96, BNV08, Vyh09]. In par-

ticular, [KMS+11a] introduces the jInfer schema inference framework, dealing

primarily with the structural parts of the schema: how all the elements, at-

tributes and text data are to be organized in an XML document conforming

to that schema. Inference of this kind of structural information was greatly im-

proved in [Kle11].

But the schema is not the only constraint that can be imposed on an XML

document. Any textual or numerical value featured in the document may be

subject to type constraints, such as the requirement to conform to a specific reg-

ular expression. Furthermore, the concept of keys and foreign keys, well known

from the relational database world, applies to schemas as well and will be the

topic of this work. One could go even further and try to find even more sophis-

ticated relations in the data, such as functional dependencies researched in [Š11].

From all the constraints that can be applied to an XML document by means

of its schema, this work will focus on keys and foreign keys. Most important

concepts in this field are introduced in [BDF+01] and formalized in the notions

of ID/IDREF/IDREFS attributes in DTD and XSD and xs:key/xs:keyref struc-

tures in XSD (both in [BPM+08]).

1noSQL: collection of non-relational database technologies, http://nosql-database.org/.
2JSON: JavaScript Object Notation, lightweight data format, http://www.json.org/.
3DTD and XML Schema: 2 most prominent XML schema languages, [BPM+08]
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The scope of thiswork is finally limited to the inference of ID/IDREF/IDREFS

from existing XML documents. ID attributes were chosen over xs:key because

the preliminary research found out that while it is possible to find real-life XML

data with schemas containing xs:key structure, schemas with ID attributes are

much more common and it is much easier to obtain large data sets for experi-

ments.

Structure of the Thesis

The thesis will be structured as follows.

InChapter 1we introduce a fewnotions required throughout thework, such

as XML tree, ID attributes, ID sets, linear programming and the mixed integer

problem.

Then in Chapter 2, we review approaches to ID attribute search from previ-

ous articles on this topic and formulate the problem of finding the optimal ID

set.

This will lead us to the NP-complete problem of Maximum Independent

Set, where we will inspect the approaches to solving it in Chapter 3.

We will discuss a closely related Mixed Integer Problem and show that

by solving MIP we can solve the Maximum Independent Set and thus the orig-

inal problem of optimal ID set.

Afterwards, we will show how to use an external MIP solver and demon-

strate that this can take too much time. Next we show how to use a heuristic

approach to find good solutions much faster.

An extension to jInfer for finding ID attributes using MIP solver and a com-

bination of heuristics will be presented and experimentally evaluated in Chap-

ter 4.
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Conventions

As usual, source code excerpts, class, field and method names shall be written

in fixed-width font, such as getHeuristic(). Names of specific heuristics will

be written like Mutation . Name of test data sets will be written like OVA1 .

Pseudocode examples such as the one in Listing 1 will always be presented

in a functional way, with inputs and outputs of the function clearly marked

at the beginning.

Algorithm 1 Example Algorithm
Input: I input data

Input: nmaximum number of iterations

Output: results found

for i = 1→ n do

// try to find a solution

attempt← calculate possible solution from I

if attempt is a valid solution then

return attempt

end if

return “solution not found”

end for

There is a list of abbreviations following the bibliography in Listing 5.

Please note that throughout this work we will disregard the O() complexi-

ties of algorithmsweuse. This is because the algorithmsweuse are by principle

strongly stochastic and their performance often depends on behavior of exter-

nal tools, which we regarded as black boxes and mostly ignored their inner

workings.
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1. Definitions

1.1 XML Tree

We shall use the representation introduced in [BM03], where anXMLfile is rep-

resented by a labeled tree consisting of nodes for elements, attributes and sim-

ple text data. Parent nodes are connected to child nodes with edges. This tree

shall be called anXML tree. For a given node v of an XML treewe define label(v)

(name of the node in the document, only for elements and attributes), id(v)

(unique identifier across the document) and value(v) (text content, only for at-

tributes and simple text data) in the same way as the cited article does.

Without loss of generality we ignore the actual ordering of nodes in the tree.

Example This example introduces an XML file fragment that will be used for

demonstration throughout the work. An XML tree representing it is in Figure

1.1(a), where each node is annotated with a triplet label(v) : id(v) : value(v).

<x>

<y a="1" b="2"/>

<y a="3" c="4"/>

<y/>

<z a="1"/>

</x>

Furthermore, we denote I the set of all ids and V the set of all values in the

document. We will need two more definitions from the article.

Definition 1.1 (Node equality). Nodes v1 and v2 are node equal, written v1 =n v2

iff id(v1) = id(v2).

Definition 1.2 (Value equality). Nodes v1 and v2 are value equal, written v1 =v v2

iff value(v1) = value(v2).

9



Figure 1.1: Example XML Tree

x:1:

y:2: y:3: y:4: z:5:

a:6:1 b:7:2 a:8:3 c:9:4 a:10:1

(a) XML Tree

x:1:

y:2: y:3: y:4: z:5:

a:6:1 b:7:2 a:8:3 c:9:4 a:10:1

(b) Attribute Mappings

1.2 ID, IDREF, IDREFS Attributes

According to [BPM+08], anXMLattributemayhave the type ID, IDREF or IDREFS

(among others). The following constraints are related to these types.

Validity constraint: ID

Values of type ID must match the Name production. A name must

not appear more than once in an XML document as a value of this

type; i.e., ID values must uniquely identify the elements which bear

them.

Validity constraint: One ID per Element Type

An element typemust not havemore than one ID attribute specified.

Validity constraint: ID Attribute Default

An ID attribute must have a declared default of #IMPLIED1 or #RE-

QUIRED2.

Validity constraint: IDREF

Values of type IDREF must match the Name production, and values

of type IDREFSmust matchNames; eachNamemust match the value

of an ID attribute on some element in the XML document; i.e. IDREF

values must match the value of some ID attribute.
1#IMPLIEDmeans that the attribute has a specified default value.
2#REQUIREDmeans that the attribute cannot be empty.
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1.3 Attribute Mappings

Now we return to [BM03] to define the notion of an attribute mapping (or AM

for short). We will use a different definition (without introducing keys from

[BDF+01]) that will however give us the same result.

Definition 1.3 (ΣE , ΣA, Σ). ΣE is the set of all element labels, ΣA is the set of all

attribute labels. Σ = ΣE ∪ ΣA is their union and effectively the set of all labels

in the document.

Definition 1.4 (Attribute mapping). For x ∈ ΣE and y ∈ ΣA we define the

attribute mapping of y over x, denotedMy
x , the I × I relation defined by

My
x = {(z, w) : label(z) = x, label(w) = y, parent(w) = z}.

Thus the relation My
x contains edges in the XML tree connecting element

nodes labeled x and attribute nodes labeled y.

We can use projection to retrieve all the unique ids of either elements or at-

tributes from the relation, with notation πE(My
x ) and πA(My

x ).

Definition 1.5 (Type of the attribute mapping). Attribute mappingMy
x is of the

type τ(My
x ) = x.

Example The XML tree from Figure 1.1(b) has the following non-empty AMs

drawn in bold lines: Ma
y = {(2, 6), (3, 8)}, M b

y = {(2, 7)}, M c
y = {(3, 9)} and

Ma
z = {(5, 10)}.

The following example equations hold.

πE(Ma
y ) = {2, 3}

πA(Ma
z ) = {10}

τ(M c
y) = y

Definition 1.6 (Image of the attribute mapping). Image ι of the attribute map-

pingMy
x is defined as ι(My

x ) = {z : z = value(w), w ∈ πA(My
x )}.

So the image of an AM is a set of all the values of all the attribute nodes

contained in the mapping.
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Example Again referring to the XML tree from Figure 1.1, we get the follow-

ing AM images.

ι(Ma
y ) = {1, 3}

ι(M b
y) = {2}

ι(M c
y) = {4}

ι(Ma
z ) = {1}

Attribute Mapping Model An attribute mapping model is a data structure

containing the information about all the AMs in a document, together with

their images. We shall use this notion later in experimental part of this work.

Definition 1.7 (name()). Given an attribute mapping m = My
x , name(m) shall

be defined as the string x− y.

1.4 ID Set

Based on the requirements for an ID attribute from Section 1.2 we will define

ID set with the help of the following definition.

Definition 1.8 (Candidate attributemapping). Anattributemappingm is a can-

didate attribute mapping if it is an injective function, that is,

|m| = |πE(m)| = |πA(m)| = |ι(m)|.

Example In our example all the attribute mappings are candidate AMs.

Now we can proceed to define an ID set.

Definition 1.9 (ID set). A set of candidate attribute mappings I = {m1, . . .mn}

is an ID set iff ⋂
mi∈I

τ(mi) = ∅ and
⋂
mi∈I

ι(mi) = ∅.

That is, an ID set has images without repeating values and all the types are

unique (an element cannot have more than one ID attribute).
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Example Returning to our example, the following are all the possible ID sets:

{Ma
y }, {M b

y}, {M b
y ,M

a
z }, {M c

y}, {M c
y ,M

a
z }. Note that oncewe select anAMof type

ywe can never add any otherwith the same type. Note also that {M c
y ,M

a
z } is not

an ID set, because ι(M c
y) ∩ ι(Ma

z ) 6= ∅.

IDREF and IDREFS Condition

Given an ID set I , the requirements from Section 1.2 give us the following con-

dition for an attribute mappingm to be marked IDREF:

ι(m) ⊆
⋃
mi∈I

ι(mi).

Furthermore, ifm contains multivalued attributes, it is to be marked IDREFS.

1.5 Attribute Mapping Weight

This definition of weight for AMs or AM sets comes from [BM03] again. We

need the notions of support and coverage to define it. Let M = {m1, . . .mi} be

the set of all non-empty AMs in the document.

1.5.1 Support

Definition 1.10 (Support). Support of an attribute mappingm is defined as fol-

lows:

φ(m) =
|m|∑
p∈M |p|

.

The support of attributemappingMy
x is the fraction of edges in theXML

tree that connect x elements to y attributes.

Example Support of Ma
y in our example is 2/(2 + 1 + 1 + 1) = 0.4. Support

of every other mapping is 1/(2 + 1 + 1 + 1) = 0.2.
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1.5.2 Coverage

Definition 1.11 (Coverage). Coverage of an attributemappingm is defined as fol-

lows:

χ(m) =

( ∑
p∈M,p6=m

|ι(m) ∩ ι(p)|

)
/
∑
p∈M

|ι(p)|.

The coverage of an attribute mapping measures how much of the

image of that mapping occurs elsewhere, as a fraction of all map-

pings images in the document.

Example Coverage ofMa
y in our example is (0 + 0 + 1)/(2 + 1 + 1 + 1) = 0.2.

Coverage ofMa
z is 0.2 as well; all the other mappings have coverage 0.

Weight of an attribute mapping is then defined as a linear combination of its

support and coverage.

Definition 1.12 (Weight). For α, β ≥ 0 as relative priorities of support and cov-

erage we define the AM weight as follows:

weight(m) = α.φ(m) + β.χ(m).

For a set of AMs (whichmay ormay not be an ID set) S = {m1, . . .mi}wedefine

the weight of this set as the sum of the weights of its AMs:

weight(S) =
∑
m∈S

weight(m).

Note that this definition of weight is quite arbitrary and all the algorithms

mentioned later could easily work with AM weight defined in any other way,

even, for example, defined interactively by the user.

1.6 Independent Set

We shall need the notion of an indepentent set (IS) of vertices in a graph and

its weighted variant.

14



Definition 1.13 (Independent set). Given an undirected graphG = (V,E), a set

of vertices I ⊆ V is an independent set, iff

∀v1, v2 ∈ I, v1 6= v2 : (v1, v2) /∈ E.

Definition 1.14 (Maximum weighted independent set). Given an undirected

graph G = (V,E) and a weight function w : V → R, an independent set Imax

is the maximum weighted independent set, iff the following is satisfied:

∀I ′ ⊆ V, I ′is an independent set :
∑
v∈I′

w(v) 6
∑

v∈Imax

w(v).

It is well known that finding the maximumweighted IS is an NP-hard opti-

mization problem, [JR86].

1.7 Linear Programming

The problem of linear programming is optimization of a linear function under

a set of linear constraints. The formulation is usually called a linear program.

It can be written in the following form:

max
x

z = cTx

s.t. Ax 6 b

x > 0

x =


x1

x2

. . .

xn

 , c =


c1

c2

. . .

cn

 ,b =


b1

b2

. . .

bm

 ,

where a minimization version is possible, too.

Where x is the vector of variables (to be found by the optimization), b is the

vector and A its accompanying matrix of constraints and c is the vector of co-

efficients for the objective function. x and c have length n, b has lengthm and

15



A has dimensionsm× n. Furthermore,

max
x

f(x)

means maximize the value of f(x) by changing the value of x.

Another way to write this formulation is this:

max
x

z =
n∑

i=1

cixi

s.t.

a11x1 + a12x2 + . . .+ a1nxn 6 b1

a21x1 + a22x2 + . . .+ a2nxn 6 b2

. . .

am1x1 + am2x2 + . . .+ amnxn 6 bm

xi > 0, i = 1, . . . n

Solving a linear program is usually possible in polynomial timeusing the sim-

plex algorithm described for example in [Dan98].

1.8 Mixed Integer Problem

Definition 1.15 (Mixed integer problem). MIP, ormixed integer problem, is an in-

stance of linear programming in which some or all variables are limited to in-

tegral or boolean (0, 1) values.

Solving MIP in general is NP-hard.
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2. Related Work

According to the article [BM03, Chapter 4], the problem of finding an ID set

with weight more than some given K (K-IDSet) is in NP. Furthermore, the

independent set (IS) problem can be reduced to K-IDSet, meaning K-IDSet

is NP-hard and thus NP-complete. The transformation from IS problem for-

mulation to K-IDSet problem formulation is as follows.

Let G = (V,E) be a simple connected graph with vertex set V =

{v1, . . . , vn}, and edge set E = {e1, . . . , em}. We define the attribute

mappings as follows. Let I = V ∪E, and define value(x) = x, x ∈ I.

For each vertex vi ∈ V , we create a mapping mi = {(vi, ej) : ej ∈

E is incident on vi}, and define τ(mi) = vi; let C = {m1, . . . ,mn}

be set of all such mappings. It is clear that G has an independent set

of size K iff C has an ID set of size K. Also, C can be constructed

in time polynomial on n+m.

The article continues by proving that finding themaximumweighted IS can

be reduced to the problem of finding an ID set with maximum weight (Max-

IDSet). This again means that Max-IDSet is NP-complete and, furthermore,

unless P = NP, Max-IDSet has no constant factor approximation algorithm.

The difference in transformation frommaximumweighted IS to Max-IDSet

is as follows.

[...] with the added restriction that w(mi) = w(vi), vi ∈ V .

Note that the transformation works in both ways: it is equivalently possible

to create a maximum weighted IS instance for a given Max-IDSet instance.

The article further suggests a heuristic approach described in Section 3.4.1,

which was incorporated into the framework proposed by this work.

To the best of our knowledge, there are no other articles dealing with this

problem.

17



2.1 Finding XML Keys

XML keys are a structure somewhat similar to ID attributes, but with a much

larger expressive strength. They have been introduced in [BDF+01] and imple-

mented in XML Schema1.

Fajt in [Faj10] summarizes several algorithms to help find XML keys in ex-

isting data, namely Gordian, XML Primary Keys, SPIDER and DBA Companion.

Except forXMLPrimary Keys, they all are originally purposed to find keys in re-

lational databases. We will describe them shortly.

Gordian

This algorithm from [SBHR06] extracts composite primary keys (PKs) from re-

lational databases.

The idea behind is an observation that a projection of entities corre-

sponds to a key if each counted aggregation for a projection is equal

to 1. Thus, thismethod searches for all possible projections of a data-

set while computing aggregations on the projected part of the set

of entities.

This is achieved by constructing a prefix tree from the tuples in the orig-

inal relation, which is then pruned and traversed depth-first to find non-key

attributes from which the primary keys are inferred. This algorithm still has

to be adapted to search for PKs in XML data.

XML Primary Keys

This is an algorithm from [GZ02] capable of finding simple keys and foreign

keys directly in XML data. This is achieved by building a prefix tree containing

all the XML nodes and then evaluating every path in it as a candidate key using

metrics called support and confidence. To findmore complex keys, the algorithm

1http://www.w3.org/TR/xmlschema11-1/#Identity-constraint_Definition_details

18

http://www.w3.org/TR/xmlschema11-1/#Identity-constraint_Definition_details


iteratively constructs candidate keys from simpler ones and evaluates them.

The following two algorithms deal with inclusion dependencies (INDs), de-

scribed for example in [BDF+00].

SPIDER

The core of this algorithm from [BLNT07, JUF10] is the following.

The process consists of two steps - sets of values are sorted during

the first one and then all the candidates are analyzed in parallel. The

core of the method is utilizing the data structure called min-heap

which synchronizes the processing of all values of all attributes.

It is possible to use a number of heuristic pruning strategies to keep themin-

heap in a reasonable size. This algorithm performs very well for PKs in rela-

tional databases, however, it still has to be adapted for XML keys.

DBA Companion

Like SPIDER, this method from [JUF10] is able to find all the INDs in the data-

base in just one pass. However, it uses a different data structure (basically a bi-

nary relation between the attributes and their corresponding values) and con-

siders data types. Composite INDs are found using the simple ones and prun-

ing the search space. According to the authors of SPIDER, DBA Companion

is far inferior in performance. This algorithm has yet to be adapted to search

for XML keys, too.

Fajt’s Approach - KeyMiner

Fajt introduces a new algorithm based on Gordian and SPIDER to look for pri-

mary and foreign keys in XML data. First, relations have to be extracted from

the original XML document. Then all the primary keys are found using a mod-

ified Gordian algorithmwhich can find absolute as well as relative PKs. Finally,
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SPIDER is used to compute the foreign keys from the PKs found in the previous

step.

2.1.1 Relation to ID Attributes

XML keys found this or any other way can under some circumstances (when

they are simple enough) be translated to an equivalent ID attribute definition.

The process is described in [Vli02, Ch. 9, s. 3]. This opens a new line of possible

research: finding XML keys using an algorithmmodified to look only for useful

keys and then converting them to ID attributes.

However, in our work we find ID attributes directly. And even though we

can always convert them to XML keys by the process mentioned above, we are

unable to find more complex keys this way.

2.2 MaximumWeighted IS

Maximum weigthed IS is a well researched topic with a lot of known direct

or approximation algorithms, see e.g. [JR86] or [FGK09]. According to [Pas97],

the best knownapproximation algorithm forweighted IS to-date achieves an ap-

proximation ratio of 3(∆ + 2), where ∆ is the maximum degree of a vertex

in the IS graph. This article lists several algorithms similar to those we intro-

duce in the following chapters.
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3. MIP Approach

In this chapterwe introduce a new approach to findingmaximum ID sets. First,

we transform the problem formulation to maximum weighted IS problem for-

mulation. Then we transform this into an MIP formulation, and demonstrate

how this can be solved using a solver such as GLPK [glp]. We will continue

by applying heuristic approaches to improve the performance of the process.

3.1 ID Set to IS Formulation

Given C = {m1, . . . ,mn} a set of all AMs in a document, we construct a graph

G = (V,E) as follows. For each AM mi ∈ C we create a vertex vname(mi). Two

vertices vname(mi) and vname(mj) shall be connected by an edge iff they cannot

share the same ID set, either because they have the same type (τ(mi) = τ(mj)),

or their images intersect (ι(mi) ∩ ι(mj) 6= ∅). Weight of a vertex vname(mi) is the

weight of the attribute mapping: w(vname(mi)) = weight(mi).

Now finding the maximum weighted IS in G finds the maximum (optimal)

ID set in the original document.

3.2 IS to MIP Formulation

Given a graph G = (V,E) with a weight function w : V → R, we introduce

a binary variable xi for each vertex vi ∈ V and an inequality constraint xi+xj ≤

1 for each edge e = (vi, vj) ∈ E. Furthermorewe introduce an objective function

in form
∑

xi
xiw(vi).

It is obvious that the objective function and all the constraints consitute

a MIP instance, and that solving it finds the maximum weigthed IS in G.
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3.3 Finding ID Sets With GLPK

By chaining these two translations we can create a MIP formulation for a given

set of AMs from a document. Solving thisMIP instancewill give us the optimal

ID set for this document.

GLPK is a multi-platform, multi-purpose solver well suited for this task.

It uses the Simplex method to solve LP problems and Branch & Bound for MIP.

Branch & Bound This is an optimizationmethodwhere the search space is sys-

tematically divided into smaller sub-spaces. This is the branching component,

and a so-called search tree is built this way. Then, the sub-problems are recur-

sively solved and whole branches of the search tree are discarded when it be-

comes obvious that the solution does not lie there. This is the bounding compo-

nent. See [LD60] for detailed description.

An advantage of using Branch & Bound is that while traversing the search

tree it finds intermittent, sub-optimal solutions. It is thus possible to limit

the total search time and instead of the optimum take the best solution found

so far.

We will now demonstrate the full process of finding the optimal ID set

of an example XML file using GLPK.

Example

Consider again our XML file fragment.

<x>

<y a="1" b="2"/>

<y a="3" c="4"/>

<y/>

<z a="1"/>

</x>
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Figure 3.1: IS Representation Graph

z -a

y-a

y-b

y-c

Recall that attribute mappings in this example are C = {Ma
y ,M

b
y ,M

c
y ,M

a
z }.

Corresponding vertices in the IS formulationwill beV = {vy−a, vy−b, vy−c, vz−a}.

Edges in the IS formulation will be the following ones:

(vy−a, vy−b),

(vy−a, vy−c),

(vy−b, vy−c),

(vy−a, vz−a).

The first three edges are due to the type collision (y), the last one is due

to ι(Ma
y ) ∩ ι(Ma

z ) = {1}. The graph G constructed in this way is shown in Fig-

ure 3.1.

The next step is theMIP formulation. Wedonot need to translate from the IS

formulation, as the translation from ID set formulation is straightforward, too.

For each AM m there will be one binary variable xname(m). Objective function

coefficients in vector c will be weights of respective mappings. For each pair

of AMsm1,m2 that cannot share the same ID set there shall be a row inmatrixA

representing the inequality xname(m1) + xname(m2) 6 1. bwill be a vector of ones

of corresponding length.
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x =


xy−a

xy−b

xy−c

xz−a

 , c =


weight(Ma

y )

weight(M b
y)

weight(M c
y)

weight(Ma
z )

 =


0.2

0.2

0.6

0.4

 ,b =


1

1

1

1

 , A =


0 1 1 0

1 0 1 0

1 1 0 0

1 0 0 1


The problem now is, recall, to solve the following:

max
x

z = cTx

s.t. Ax 6 b.

In GLPKMathProg language [Mak], this translates to the following.

set AMs;

param Weight {i in AMs};

var x {i in AMs} binary;

maximize z: sum {i in AMs} x[i] * Weight[i];

s.t. c1: x['y-a'] + x['y-b'] <= 1;

s.t. c2: x['y-a'] + x['y-c'] <= 1;

s.t. c3: x['y-b'] + x['y-c'] <= 1;

s.t. c4: x['y-a'] + x['z-a'] <= 1;

data;

set AMs := y-a y-b y-c z-a;

param Weight :=

y-a 0.6

y-b 0.2

y-c 0.2

z-a 0.4;

end;

We can use this as an input for the GLPK solver, and we get the solution.

...

Problem: glpk_input

Rows: 5

Columns: 4 (4 integer, 4 binary)

Non-zeros: 12

Status: INTEGER OPTIMAL

Objective: z = 0.6 (MAXimum)
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...

No. Column name Activity Lower bound Upper bound

------ ------------ ------------- ------------- -------------

1 x[y-a] * 1 0 1

2 x[y-b] * 0 0 1

3 x[y-c] * 0 0 1

4 x[z-a] * 0 0 1

...

This output tells us that the solution is xy−a = 1, xy−b = 0, xy−c = 0 and

xz−a = 0. This means that the optimal ID set with maximum weight contains

only theMa
y attribute mapping.

It is obvious that this approach works and for any possible input we can let

GLPK find the optimal solution. However, sometimes it takes too long to find

the optimum (see e.g. Section 4.3.2), hence, the aim of this work is to improve

this process.

3.4 Heuristics

The definition of heuristic or heuristic algorithm varies from one source to anoth-

er. We shall be using it roughly in the following sense.

Definition 3.1 (Heuristic). A heuristic is an approach to problem solving based

on prior experience, educated guess or common knowledge.

Definition 3.2 (Heuristic Algorithm). A heuristic algorithm is one that, in a rea-

sonably short time, generates a good, maybe even optimal solution to an opti-

mization problem. However, it will not provide any formal guarantee about its

quality.

This definion of heuristic algorithm coming from [DC10] is rather vague,

however, it will be sufficient for us.
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Figure 3.2: Metaheuristic Schema
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An example of a heuristic is the commonly used approach of trial and error:

after a failed attempt, change some parameter and try again. We will see many

more heuristics later in this chapter.

While a heuristic algorithm can be seen as a tool designed to solve one spe-

cific problem, the notion of a metaheuristic reminds of a recipe to solve a whole

family of problems. We shall be using themetaheuristic presented in Figure 3.2

to find optimal ID sets in this work. But before we start describing its structure

and components, we need to introduce some more notions.

Definition 3.3 (Solution Space, Solution Quality). Solution space in general

is the set of all permissible solutions (not violating any constraints). In the spe-

cific case of a MIP formulation it is the set of all x subject to Ax 6 b. Every so-

lution in the solution space has its quality, in case of MIP for solution x it is the

value of the objective function in x.

Definition 3.4 (SolutionNeighborhood). Neighborhoodof a solutionx in the so-

lution space are all the other solutions close to x according to some metric.

The precise definition of the neighborhood is always adjusted according

to specific needs. However, the neighborhood should be defined so that is con-
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tinuous (with respect to quality) to be useful. The exact reasons for this require-

ment are sketched in Section 3.4.2.

Definition 3.5 (Solution Pool, Incumbent Solution). Solution pool (sometimes

called pool of feasible solutions or feasible pool) is a set of solutions of different

qualities that were found in one of the stages of the metaheuristic. The solu-

tion(s) with the highest quality is (are) called the incumbent solution(s).

A quick reminder of what we are trying to solve using our metaheuristic:

given a list of AMs with weights, find a non-conflicting subset maximizing the

sum ofweights in the subset. This sumwill henceforth be considered the quali-

ty of the solution (subset). Wewill nowdescribe its structure, please refer again

to Figure 3.2.

First we take the list of candidate AMs and ask a construction heuristic (see

Section 3.4.1) to provide us with a pool of solutions. Then, in a loop, we use

this pool as input for improvement heuristics (see Section 3.4.2) and in turns ask

them to improve it. All the time we check whether termination criteria are met,

and if so, we terminate themetaheuristic. The incumbent solution from the last

pool is then declared the Output ID set.

The notion ofmetaheuristic covers awide range of topics in the field of heuris-

tics, such as Tabu Search (see [GL97]), Ant Colony Optimization (see [DS04])

or Genetic Algorithms (see e.g. [Gol89]), to name a few.

We will now introduce the heurisitics we have implemented to use in our

metaheuristic for finding optimal ID sets.

3.4.1 Constructions Heuristics

When we start to solve a problem using a metaheuristic approach, at first we

have no solutions at all. The purpose of a construction heuristic (CH) is then

to provide us with at least some solution. This may or may not be already

the optimum, in the latter case it will be improved on later using improvement
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heuristics (IH). Some IHs can profit from a pool of several sub-optimal solu-

tions, and some CHs can produce this pool from them.

FIDAX

The first construction heuristic is the algorithm described in [BM03] (we shall

call it FIDAX from now on). It can trivially be used to give us one feasible solu-

tion - it is, after all, a deterministic heuristic algorithm.

The algorithm works in two steps. First, all candidate AMs are grouped

according to their types, and for each type the AM with the highest weight

is selected. Second, all these AMs (now calledC ′) are traversed in order of their

decreasing size. For each AMm, a set S of all conflicting AMs from C ′ is found

and weights of both m and S are calculated. Then the weights are compared

and eitherm or S is removed from C ′.

The pseudocode of this CH (taken from the original article with trivial mod-

ifications without changing the logic) is in Listing 2.

Random

One of the most natural heuristics when dealing with the ID set problem can

be described as follows: select from candidate AMs at random, if possible (ad-

dition would not violate the ID set condition) add them to the solution. This

is obviously a greedy heuristic.

The advantages of this trivial heuristic are simplicity, speed and ease with

which it can create a pool of variable solutions, almost for free. As we will see

later in the experiments (Section 4.3.3), it performs surprisingly well.

See the Listing 3 for its pseudocode.

Fuzzy

Fuzzy is an improvement over the Random CH: the next AM to be added is se-

lected based on weighted instead of uniform random. The weight used here

is the usual weight of an AM as defined in Section 1.5. Because of the random-
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Algorithm 2 FIDAX CH
Input: C list of candidate AMs

Output: a feasible solution

C ′ ← C sorted by decreasing size

Compute the weight w(m) of eachm in C

for each t in ΣE do

Letm be a highest-weight mapping of type t in C ′

Remove from C ′ all mappings of type t exceptm

end for

for eachm in C ′ do

S ← all mappings in C ′ whose images intersect ι(m)

if w(m) >
∑

p∈S w(p) then

remove all p ∈ S from C ′

else

removem from C ′

end if

end for

return C ′
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Algorithm 3 Random CH
Input: N required size of pool

Input: C list of candidate AMs

Output: pool of N feasible solutions

r ← empty pool

for i = 1→ N do

// create 1 solution

s← empty solution

while s is a feasible ID set do

a← pick at random from C\S

s← s ∪ a

end while

r ← r ∪ s

end for

return r

ness involved in the choice, we can again easily create a pool of solutions this

way.

This is again a greedy heuristic, the Listing 4 contains its pseudocode.

Incremental

This trivial heuristic sorts all candidate AMs by their decreasing weights (see

Section 1.5) and then tries to iteratively add them to solution, if possible. This

way it can create only one solution, and again, this is a greedy heuristic.

See Listing 5 for its pseudocode.

Removal

This is basically a reversal of the idea from the Incremental heuristic - start

with a solution containing all the candidate AMs. This probably does not sat-

isfy the ID set condition. Therefore, sort them by increasing size and start re-

moving them from the solution, until it satisfies the ID set condition. Again,
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Algorithm 4 Fuzzy CH
Input: N required size of pool

Input: C list of candidate AMs

Output: pool of N feasible solutions

r ← empty pool

for i = 1→ N do

// create 1 solution

s← empty solution

C ′ ← C

while C ′ not empty do

a← pick at weighted random from C ′

if s ∪ a is a feasible ID set then

s← s ∪ a

C ′ ← C ′\a

end if

for each c ∈ C ′ do

if s ∪ c is not a feasible ID set then

// if c cannot be possibly added anymore

C ′ ← C ′\c

end if

end for

end while

r ← r + s

end for

return r
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Algorithm 5 Incremental CH
Input: C list of candidate AMs

Output: a feasible solution

C ′ ← sort C by decreasing weight

s← empty solution

for each c ∈ C ′ do

if s ∪ c is a feasible ID set then

s← s+ c

end if

end for

return s

this is a greedy heuristic returning only one solution.

See Listing 6 for its pseudocode.

Algorithm 6 Removal CH
Input: C list of candidate AMs

Output: a feasible solution

C ′ ← sort C by increasing weight

s← C ′

for each c ∈ s do

if s is a feasible ID set then

return s

end if

s← s\c

end for

Truncated Branch & Bound - Glpk

This construction heuristic will be called Glpk from now on. It is basically

a time-constrained run of GLPK. Recall that GLPK uses a the Branch & Bound

algorithm that produces feasible solutions even before the optimum is found.

Limiting the run time gives us the best solution found so far, which means this
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is a construction heuristic.

To be able to create a pool of solutions, the GLPK input in MathProg lan-

gauge is always randomly shuffled by changing the order in which variables

and constraints appear. This is causes the solver to explore the search tree

in various orders, producing different solution in each of the time-constrained

runs.

3.4.2 Improvement Heuristics

Improvement heuristics in general start with a solution pool, attempt to im-

prove one ormore solutions in it and then return this improved pool in the end.

We will need two notions to describe their behavior.

Intensification is the attempt to move the solution towards the nearby local

optimum in the solution space.

Diversification is the attempt tomove the solution away (escape) from the lo-

cal optimum, to be able to explore more of the solution space when the meta-

heuristic starts stagnating.

A metaheuristic needs to combine intensification and diversification ten-

dencies to explore the solution space and at the same time arrive at a local op-

timum. Recall the requirement for the solution space to be continuous in terms

of quality: this guarantees that as we approach a solution x, the quality of so-

lutions we encounter approaches the quality of x.

Identity

This ultimately trivial improvement heuristic does nothing. It simply returns

the feasible pool unchanged. For the sake of completeness, see its Listing 7.
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Algorithm 7 Identity IH
Input: FP pool of feasible solutions

Output: the same pool of feasible solutions

return FP

Remove Worst

This trivial IH tries to improve the solution pool by removing the worst solu-

tion (i.e. the one with the lowest quality). This is interesting in cooperation

with other improvement heuristics that increase the solution pool size, to keep

it from growing by pruning inferior solutions.

See Listing 8 for details.

Algorithm 8 Remove Worst IH
Input: FP pool of feasible solutions

Output: pool of feasible solutions

smin ← solution with the lowest weight ∈ FP

return FP\smin

Random Remove

This is again a rather trivial diversification improvement heuristic. By remov-

ing a random subset of specified size from each solution in the pool, it provides

the variability needed to escape from local optima in the solution space.

The number of AMs to remove from each solution is specified as fraction

from (0, 1) of the solution size (number of AMs in solution). For example,

Random Remove with fraction = 0.1 would remove 1 random AM from a solu-

tion containing 10AMs and 2 from a solution containing 17AMs (due to round-

ing).

This heuristic returns a pool of solutions of the same size as it got on input.

See Listing 9 for pseudocode.
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Algorithm 9 Random Remove IH
Input: FP pool of feasible solutions

Input: k ∈ (0, 1) fraction of AMs to remove from each s ∈ FP

Output: pool of feasible solutions

for each s ∈ FP do

K ← k ∗ |s|

remove K random AMs from s

end for

return FP

Hungry

This simple improvement heuristic assumes that the solutions in the pool are

not “complete”, i.e. there are AMs that could be added to themwithout violat-

ing the ID set condition.

Hungry tries to improve each solution in the feasible pool in the following

way. It orders all candidate AMs not present in the solution by decreasing

weight. Afterwards, it iteratively tries to extend the solution with these AMs,

taking care not to violate the ID set condition. The resulting solution (whether

any AMs were added or not) is then returned to the pool. This is then intensi-

fication, and Listing 10 captures the process.

The following three IHs: Mutation , Crossover and Local Branching are

inspired by [DC10].

Mutation

Mutation is based on the following idea. We assume that an incumbent solu-

tionmay already contain someAMs belonging to the optimal solution. Wewill

take a random guess and fix some of these AMs, i.e. we add new constraints

to the MIP formulation fixing values of the respective variables to 1.

This new formulation contains less free variables and should be easier to

solve, probably even to optimum. We run GLPK again using this constrained

35



Algorithm 10 Hungry IH
Input: FP pool of feasible solutions

Input: C list of candidate AMs

Output: pool of feasible solutions

for each s ∈ FP do

// improve a single solution

C ′ ← C\s

C ′ ← C ′ sorted by decreasing weight

for each c ∈ C ′ do

if s ∪ c is a feasible ID set then

s← s ∪ c

end if

end for

end for

return FP

formulation, enforcing again a time limit. Solution found this way is a feasi-

ble solution of the original problem, however the optimum is not necessarily

the same as in unconstrained formulation. It is an intensification approach: we

limit the search to the neighborhood of an already found solution.

Mutation changes the MIP formulation in following way. For every AM

AMF fixed to appear in the solution a following constraint is added to GLPK

input:

s.t.findex : x[′name(AMF )′] = 1;

index is a unique integer to number all the constraints.

Additionaly, every othermappingAMi collidingwithAMF (⇐⇒ ι(AMF )∩

ι(AMi) 6= ∅) will cause the following constraint to be added:

s.t.findex : x[′name(AMi)
′] = 0;

And the original constraint in form:

s.t.cindex : x[′name(AMF )′] + x[′name(AMi)
′] <= 1;
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will not be included.

Listing 11 captures the process of randomly selecting a specified fraction

of AMs of the incumbent solution to fix, then running GLPK again. Mutation

requires pool of at least one solution as input, and adds the improved solution

to the result pool.

Algorithm 11 Mutation IH
Input: FP pool of feasible solutions

Input: k fraction of AMs to fix

Output: pool of feasible solutions

incumbent← incumbent solution in FP

K ← k ∗ |incumbent|

fix K random AMs from incumbent in GLPK problem formulation

improved← run GLPK

return FP ∪ improved

Crossover

This improvement heuristic expands on the idea of Mutation . But, instead

of randomly selecting AMs in the incumbent solution, it looks for common-

alities among the solutions in the pool. This is based on the hope that if more

solutions agree on the same AMs, those are probably included in the optimal

solution too.

Crossover takes a parameter - fraction of solutions in the pool amongwhich

to look for commonalities. AMs found in every one of themare fixed in themod-

ifiedMIP formulation the sameway as in Mutation . This again amounts to an in-

tensification tendency.

Listing 12 captures the process. Crossover requires at least one solution

in the pool, but to work properly, more are needed. Solutions are picked at ran-

dom from the pool, common AMs found and fixed. GLPK is run again (with

a time constraint) and the improved solution is added to the result pool.

37



Algorithm 12 Crossover IH
Input: FP pool of feasible solutions

Input: k fraction of solutions among which to look for commonalities

Output: pool of feasible solutions

K ← k ∗ |FP |

FP ′ ← K random solutions ∈ FP

am← AMs found in all solutions ∈ FP ′

fix am in GLPK problem formulation

improved← run GLPK

return FP ∪ improved

Local Branching

Local Branching is another intensification heuristic. This time the neighbor-

hood being searched is defined by edit distance.

The incumbent solution is represented by a vector xINCUMBENT of ones and

zeroes. Based on it, a new constraint will be added to theMIP formulation. For

every other solution xi the edit distance, i.e. number of positions in which

xINCUMBENT and xi differ, will have to be lower than some threshold K. This

will be represented in MathProg as follows.

s.t.LB : sum{i in INCUMBENT}(1−x[i])+sum{i inREMAINING}x[i] ≤ K;

Where INCUMBENT is the set of names of AMs in the incumbent solu-

tion, REMAINING is the set of all AMs not included in the incumbent solu-

tion andK is themaximumedit distance allowed. K is determined as a fraction

of the count of all AMs, provided as parameter k.

See Listing 13 for pseudocode. The heuristic requires a pool containing

at least one solution, solves the modified MIP formulation using GLPK lim-

ited to some time again and adds the improved solution to the result pool.
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Algorithm 13 Local Branching IH
Input: FP pool of feasible solutions

Input: k fraction of the total AM count to determine max edit distance

Output: pool of feasible solutions

K ← k ∗ |total AM count|

incumbent← incumbent solution in FP

add max edit distance requirement to GLPK problem formulation

improved← run GLPK

return FP ∪ improved

Genetic algorithms It isworth noting that by combining Mutation , Crossover

and RemoveWorst we get a very simple genetic algorithm.

3.5 IDREF

Once an ID set is found, regardless of how exactly, it is easy to find the IDREF

set, i.e. the attribute mappings that can be declared as IDREF. This algorithm

is adopted from [BM03].

First of all, from the set of all the attributemappings in themodel remove all

the AMs contained in the ID set. This is because the specification of DTD/XSD

does not allow an attribute to be ID and IDREF (IDREFS) at the same time. Let

us denominate these mappings as IDREF candidates (obviously different from

candidate AMs).

Second, find the image of the ID set as the union of images of all the AMs

in this ID set.

ι(ID) =
⋃

m∈ID

ι(m)

Now the IDREF set contains all the AMswhose images are a subset of the ID

set image.

ι(c) ⊂ ι(ID)⇒ c ∈ IDREF
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This can be easily determined in a loop over the list of candidates. The pro-

cess is captured in Listing 14.

Algorithm 14 IDREF Search
Input: AMs list of all AMs

Input: ID ID set as a list of AMs

Output: IDREF set as a list of AMs

IDREF ← ∅

candidates← AMs\ID

ι(ID)←
⋃

m∈ID ι(m)

for each c ∈ candidates do

if ι(c) ⊂ ι(ID) then

IDREF ← IDREF ∪ c

end if

end for

return IDREF
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4. Experiments

At this point of the thesis the reader should be already familiar with the no-

tions we have introduced: the problem of finding the optimal ID set (with re-

spect to a given weight), that it is directly related to the NP-complete problem

of finding the maximal weighted independent set, that this can be solved us-

ing the MIP approach, and that there are several possibilities how to optimize

the work of the solver by employing various heuristics.

Wehave implemented these ideas and incorporated them in the jInfer frame-

work (seeAppendixA). But beforewe describe the experiments themselves, we

should try to formulate our aim.

First of all, we describe how the whole system and its components behave.

Wewant to see the changes introduced bymodifying several parameters, while

keeping the others fixed. They probably will not be orthogonal, we might

at least isolate some of the parameters that are less important to the overall

behavior.

Second, we evaluate the system performance in terms of the speed of find-

ing good heuristic results. We find tweaks to make the whole process as fast

as reasonably possible.

And in the end, we formulate general recommendations regarding the prob-

lem of finding ID sets.

4.1 Experimental Data

To conduct out experiments, we are using XML documents of three categories:

• Realistic

• Realistic with artificial (converted) attributes

• Artificial
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In case of realistic data we want to see the performance in cases taken from

the real world. The problem with realistic data is that sometimes, interesting

values (that might or might not contain IDs) are stored as simple text nodes

instead of attributes. We will try to convert some of these values to attributes

(e.g. using a smart XSL transformation), let our heuristics find the ID sets, and

then translate them back to XML keys (see Section 4.1.2 for details). And finally,

we create completely artificial data to create inputs that will put our heuristics

in stress. This is because the realistic data often prove to be too simple to solve

- the list of candidate AMs is usually too short to be hard to be solved to opti-

mality.

Definition 4.1 (Data set). One or more XML files sharing the same schema

(even if only an implicit schema) shall be referred to as a data set. In the scope

of this work this will always mean a single XML file. However, this definition

of a data set covers also the extension tomore XML files as described in [BM03].

To understand our test data sets we discuss their origin and graph represen-

tation. As mentioned earlier in Chapter 3, the problem of finding the optimal

ID set is in fact the problem of finding themaximumweighted independent set

in a graph. Therefore it is interesting to actually see the graphs of these data

sets and understand some related metrics.

The former will be achieved with the help of the GraphViz tool ([gra]),

where we will draw the graphs so that all the vertices represent the candidate

AMs, and the edges represent pairs of AMs that have nonempty intersection

of their images (and thus cannot be in the same ID set together). Thus solv-

ing the maximal weighted IS on these graphs will be equivalent to solving our

problem of optimal ID set.

The latter will come in form of tables containing information regarding the

data sets, such their size, known optimum for α = β = 1 (found by running

the Glpk heuristic without a time limit) and the numbers of vertices and edges

in aforementioned graphs.
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Table 4.1: List of Realistic Test Data Sets

Name Size [kb] |V | |E| Optimum

OVA1 4.5 29 43 0.45588235294117635

OVA2 11.9 23 36 0.1634615384615385

OVA3 237.6 31 47 0.25537156151635415

XMA-c 1 807.7 1 0 0.7546666666666667

XMA-p 13 748.3 1 0 0.2019306150568969

XMD 1 743.0 17 15 0.09786094165493507

4.1.1 Realistic Data

From three different sources we collected 6 different data sets, called OVA1 -

OVA3 , XMA-c , XMA-p and XMD . Their summary is in Table 4.1, their graph repre-

sentations can be seen in Figure 4.1.

To interpret the data: OVA* sets have interesting and challenging graphs,

but they are relatively small. We can consider them to be the “typical” repre-

sentants.

On the other hand, the XMA-* sets are relatively huge, but trivial: their only

candidate AM will just get picked and the heuristic will end. Therefore we

will see the performance of the other components of the whole system, such

as loading the data sets into memory representations.

Finally, the XMD set is relatively big and, at the same time, has non-trivial

graph representation. In this case we should see a performance more balanced

between processing and finding the ID set.

4.1.2 Realistic Data With Artificial Attributes

We used 2 data sets to convert, MSH and NTH . None of these sets had any at-

tributes before the conversion. Their summary is in Table 4.2, their graphs are

in Figure 4.2.

To address the conversion: in case of MSH we found 2 elements with values

resembling a key of the records contained in the file, and converted them to be
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Figure 4.1: Realistic Data
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Table 4.2: List of Realistic Test Data Sets With Converted Attributes

Name Size [kb] |V | |E| Optimum

MSH 3 100.5 1 0 0.5416472778036296

NTH 2 523.5 5 7 0.057918595422124436

Figure 4.2: Realistic Data With Converted Attributes
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attributes of these records using a simple XSL transformation. In the case of NTH

we converted all the values in sub-elements of the record elements to be the at-

tributes of the records.

This approach is useful, because asmentioned inChapter 2, ID attributes are

a special case of XML keys. We can use this approach to findXMLkeys: convert

some “suspicious” data into attributes, find the optimal ID set and then create

XML key based on this ID set.

In case of MSH we created 2 attributes, of which only one constituted a can-

didate AM. This is then the case similar to XMA-* sets: quite large data, yet only

one trivial ID attribute to be found.

In case of NTH we introduced 8 attributes. Out of them 5 proved to be can-

didate AMs, with 7 edges constraining them. This means we have a relatively

large set with considerably simple work to be done by the heuristics.

4.1.3 Artificial Data

As soon as we started experimentingwith the data coming from the real world,

it was obvious that they are not complex enough. After we built the model, we
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got the most complex graphs of 31 vertices and 47 edges (see Table 4.1). We

approach this problem from the other side: in the end, we will be solving the

equivalent of IS problem on a graph created from XML data. Wewill create the

XML data to contain a more complex graph with a specific number of vertices

and edges.

This data will represent very complex real world schemas with a lot of var-

ious attributes with similar values.

Our artificial test datawill look similar to the following excerpt fromanXML

file:

<graph>

<vertex0 attr="-2968876296119015800"/>

<vertex1 attr="1729745997570096518"/>

<vertex2 attr="-9020549659620928934"/>

...

<vertex99 attr="-7545982394508643394"/>

<vertex82 attr="0"/><vertex21 attr="0"/>

<vertex64 attr="1"/><vertex21 attr="1"/>

<vertex44 attr="2"/><vertex2 attr="2"/>

...

<vertex96 attr="99"/><vertex40 attr="99"/>

</graph>

Our aim is to create a graph with approximately v vertices and e edges.

First, we introduce v elements with names vertex0 - vertex{V-1}. To consti-

tute an AM, they need an attribute attr, but with random values large enough,

so that they do not conflict with others. Second, for each of the e edges we

choose two vertex* elements at random, and give them the same value of their

attr. This will ensure they cannot share the same ID set, thus effectively cre-

ating the edge in the graph representation.

This waywe can generate datamore complex than anything found in the re-

alworld. Itwill however serve us tomeasure the performance of our algorithms

in extreme cases.

The respective pseudocode for this is provided in Algorithm 15.
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Algorithm 15 Random XML Data Creation
Input: v requested number of vertices

Input: e requested number of edges

Output: XML file content

print <graph>

for i = 1→ |V | do

R← RANDOM

print <vertexi attr="R ">

end for

for i = 1→ |E| do

v1← RANDOM(|V |)

v2← RANDOM(|V |)

print <vertexv1 attr="i "> <vertexv2 attr="i ">

end for

print </graph>

return

With this process it is possible to create as much data as needed, with any

combination of v and e requested.

There is one characteristic that candescribe randomgraphs like this, and that

is the density. This can be defined in various ways, we will use two different in-

terpretations. The first is |E||V | , that is, how many edges are there for one vertex

(multiplied by 2 we would get the average degree of the vertices).

The second, perhapsmore interesting, is |E|
Emax

, whereEmax = |V |.(|V |−1)
2

. This

is the density as the fraction of edges that are to all edges that could be in a com-

plete graph with |V | vertices.

We have created 3 sets to be used in experiments alongwith the realistic and

converted sets, called 100-100 , 100-200 and 100-1000 . Note that the name

is always in the form v − e.

All of the experimental data sets mentioned so far, realistic, converted and

artificial alike will be referred to as official test data (sets).
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Table 4.3: List of Artificial Test Data Sets

Name Size [kb] |V | |E| |E|
|V |

|E|
Emax

Optimum

100-100 8.4 99 95 0.95 0.02 0.836666666666667

100-200 13.0 96 174 1.81 0.04 0.726000000000000

100-1000 49.5 93 754 8.11 0.16 0.380952380952381

Also, we will need data of comparably similar characteristics but varying

size to study the effects of size on the run times of experiments. For this reason

we created 11 more sets, from 0-0 as the trivial one to 100-500 as the largest

one. These will be referred to as sized test data (sets). We wanted to keep the

same density among these sets, so we picked the |E|
Emax

density interpretation

for this.

A summary is provided in Table 4.3 and Table 4.4; these tables contain 2

new columns: values of density in both interpretations we introduced. Some

of the graph representations can be seen in Figure 4.3.

While studying the tables it becomes obvious that the actual numbers |V |

and |E| do not match to the v and e in the names of the sets. This is because

of theway the randomgeneration algorithmworks: itmight pick the same edge

twice, which will automatically render it unsuitable for the ID set. Because

of the so-called Birthday paradox (see e.g. [McK66]), this will happen more

with higher e.

To interpret Tables 4.3 and 4.4: we get 3 sets of different sizes and densities

in the first one. The |V | and |E| numbers are orders of magnitude higher than

in any realistic (or converted) data set we are using.

In the second table we aimed for the |E|
Emax

density of 0.1 = 10%, and we can

see that thiswas indeed achieved. There is an interesting observation to bemade

here: the optimum is steadily decreasing with the increasing overall graph

size. This intuitively suggests that the maximum quality theoretically achiev-

able is related to the |E||V | density, not to the one we fixed. Exploration of this

phenomenon is beyond the scope of this thesis.
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Figure 4.3: Artificial Data
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Table 4.4: List of “Sized” Artificial Test Data Sets

Name Size [kb] |V | |E| |E|
|V |

|E|
Emax

Optimum

0-0 0.2 0 0 - - 0.0

10-5 0.6 10 5 0.50 0.11 0.8500000000000002

20-20 1.7 18 13 0.72 0.08 0.7166666666666669

30-45 3.1 29 43 1.48 0.11 0.7083333333333334

40-80 5.1 39 72 1.85 0.10 0.6950000000000002

50-125 7.5 48 111 2.31 0.10 0.6566666666666666

60-180 10.4 58 157 2.71 0.09 0.6214285714285716

70-245 13.8 67 205 3.06 0.09 0.5982142857142856

80-320 17.6 76 261 3.43 0.09 0.5791666666666667

90-405 21.9 86 352 4.09 0.10 0.528888888888889

100-500 26.7 91 388 4.26 0.09 0.4981818181818182

Note that all the data sets we used in experiments can be found on the DVD

enclosed with this work.

4.2 Experimental Setup

As was mentioned before, we will use an extension to the jInfer framework

called IDSetSearch . Please see Appendices A and B for more detailed infor-

mation on these two pieces of software.

We now have to introduce a few notions before moving forward to the de-

scription of our experiments. In the following text, words experiment and ex-

perimental in various phrases (experiment X, experimental Y) will be used inter-

changeably.

Experiment parameters are the following ones.
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• All the parameters in all the heuristics.

• The specific way in which the heuristics are chained.

• Parameters α and β in the weight (quality) measurement.

• Initial pool size.

• The termination criteria.

• The input XML file.

• Known optimum for this file and α, β.

An experiment instance, or experiment configuration, is one specific setting of all

experiment parameters.

And finally, one or more experiment configurations, regardless whether

their parameters differ, constitute an experiment set.

4.2.1 Grammar and Model Creation

This section will briefly describe the process by which an input data set is pro-

cessed to obtain the AMmodel as described in Section 1.3.

An input data set is a single XML file on the filesystem; however, there

is a straightforward extension to multiple files conforming to the same schema.

The first step in this process is to use jInfer’s module BasicIGG module (see

[KMS+11b] for details) to obtain a list of rules - an initial grammar (IG). Please

see [KMS+11a] for detailed specification of IG format.

The second step is to convert the grammar into the AMmodel. This is done

by a linear scan and retrieving a so-called flat representation. This consists

of a list of tuples in the following format.

(element name, attribute name, attribute value)
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There is a tuple for every attribute node with a value found in the initial

grammar. Note that the information about the context in which the element

was originally found is lost - but this is not a problem with regard to the defi-

nition of XML ID attributes. Furthermore, tuples in flat representation do not

need to be unique.

The model now has to be able to return the list of all attribute mappings

and their respective images. This is achieved by simply grouping the flat rep-

resentation by the pair (element name, attribute name) and aggregating all at-

tribute values for each such pair. Another responsibility of the model is to re-

turn the list of types - that is simply the list of unique element names.

Example

Recall the following XML file fragment from Chapter 1.

<x>

<y a="1" b="2"/>

<y a="3" c="4"/>

<y/>

<z a="1"/>

</x>

Its IG representation is the following set of IG rules.

x → y, y, y, z

y → @a,@b

y → @a,@c

y → empty_concatenation

z → @a

The flat representation will consist of the following set of tuples.
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(y, a, 1)

(y, b, 2)

(y, a, 3)

(y, c, 4)

(z, a, 1)

Attribute mappings in this model will be (y, a), (y, b), (y, c) and (z, a). Their

images will be (1, 3), (2), (4) and (1), respectively. The list of types in this model

will be (y, z).

4.2.2 Hardware and Software

We will use the following configuration when conducting our experiments.

Intel Core 2 Duo processor @ 2.33 GHz

4 GB DDR2 RAM

Windows 7 SP1 64bit

Java SE Runtime Environment (build 1.6.0_26-b03)

Java HotSpot 32-Bit Client VM (build 20.1-b02)

GLPK version 4.45 (Cygwin)

GLPK version 4.34 (native)

4.2.3 Methodology

We will attempt to protect our experiment from the influence of the environ-

ment as much as reasonably possible. First of all, NetBeans running the exper-

iments is the only relevant program running in the system while the experi-

ments are performed. Unfortunately, NetBeans itself is quite a large environ-

ment, and we would most certainly get more reliable results if we could run

our experiments outside of it. This improvement is left for the future work.
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Also, every experimental configuration is run 50 times so that the effects

of any events adversely affecting our results (e.g. OS deciding to run some

house cleaning) will be averaged out. Whenever possible, we will use boxplots

instead of a simple average (or average and variance) to present results of these

multiple runs.

4.2.4 Measuring the Time

Whenever it is necessary to measure the duration of an operation, we will

use the System.nanoTime() built-in function. The result cannot be interpret-

ed in an absolute manner, but by subtracting the time at the start from the time

at the end, we can get a reasonably reliable measurement.

4.2.5 Obtaining the Results

Every run of an experiment produces a trace such as the one presented and

commented on in Appendix C. We can get all the information relevant to that

experiment run from this trace alone. An experimental set will produce a num-

ber of these traces and store them in plain text files in a folder. Parsing these

files to aggregate and collate them might be a tedious task even using tools

like sed and grep, so some of the experiment sets directly output tabular da-

ta in format recognized by GnuPlot [gnu], which we use to plot charts found

in this work.

4.2.6 Reading Boxplots

Topresent a set ofmeasurements obtained by iteratively running an experiment

we shall prominently use the boxplot chart. Because we use boxplots produced

by GnuPlot, let us quote its manual [Kel] for the exact definition.

Quartile boundaries are determined such that 1/4 of the points have

a value equal or less than the first quartile boundary, 1/2 of the points

have a value equal or less than the second quartile (median) value,
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etc. A box is drawn around the region between the first and third

quartiles, with a horizontal line at the median value. Whiskers ex-

tend from the box to user-specified limits. Points that lie outside

these limits are drawn individually.

The “user-specified limits” ofwhiskers are set to a default value, let us quote

from the manual again.

By default the whiskers extend from the ends of the box to the most

distant point whose y value lies within 1.5 times the interquartile

range.
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4.3 Experimental Results

We will now present the experiments we performed along with their results

and conclusions. Each experimentwill be introducedwith a table summarizing

the most important parameters of the experiment, such as data used, number

of iterations and CH pool size, α and β parameters and the actual heuristics

used.

4.3.1 Grammar and Model Generation

The first experiment set will try to establish how long it takes to extract the IG

from the input XML file and to create the AMmodel from this IG. For now, we

will not be running or measuring any heuristics.

Input data all official and sized test data sets

Iterations 50

Pool size not applicable

α, β not applicable

CH not applicable

IHs not applicable

The experimental set will contain 50 ∗ (11 + 11) = 1100 configurations: 50

iterations for 11 test data sets plus 11 sized test data sets. There will be no CHs

or IHs. We will be gathering the timing data for IG extraction and model gen-

eration in GnuPlot format.

The results are captured in Table 4.5. We are presenting the average gram-

mar extraction (GE) times and their standard deviation, the same for model

creation (MC) and total (sum of these two, Tot) times. For many data sets the

average time is less than 10 ms: this is not enough to be precise and we do not

calculate the standard deviation in these cases.

We can see from the results that for most data sets their model can easily be

created under around one second, only in case of the biggest set XMA-p (13 MB)
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Table 4.5: Grammar Extraction and Model Creation Times

Data set GE GE MC MC Tot Tot

avg [ms] stdev avg [ms] stdev avg [ms] stdev

OVA1 < 10 - < 10 - < 10 -

OVA2 < 10 - < 10 - < 10 -

OVA3 42.94 19.8509 60.92 27.0848 103.86 31.6911

XMA-c 140.32 33.2618 90.24 45.8803 230.56 56.2633

XMA-p 7518.82 922.8882 10135.46 502.8997 17654.28 1353.8794

XMD 979.18 307.1760 563.04 341.4697 1542.22 134.6883

MSH 570.24 167.1119 225.48 90.6775 795.72 161.8340

NTH 328.36 118.3766 1074.9 155.5604 1403.26 137.8695

100-100 < 10 - < 10 - < 10 -

100-200 < 10 - < 10 - < 10 -

100-1000 18.34 10.2372 18.84 1.0373 37.18 9.9338

0-0 < 10 - < 10 - < 10 -

10-5 < 10 - < 10 - < 10 -

20-20 < 10 - < 10 - < 10 -

30-45 < 10 - < 10 - < 10 -

40-80 < 10 - < 10 - < 10 -

50-125 < 10 - < 10 - < 10 -

60-180 < 10 - < 10 - < 10 -

70-245 < 10 - < 10 - < 10 -

80-320 < 10 - < 10 - 12.48 8.3574

90-405 < 10 - < 10 - 15.88 10.3778

100-500 < 10 - < 10 - 18.74 8.8889
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this takes approximately 17 seconds. We can conclude that grammar andmod-

el creation times are not a bottleneck for now. Heuristics run timeswill be order

of magnitude higher.

GLPK Interface Timing

A related problem is how long it takes to create an input for GLPK and then

parse its results. We will use the same test data sets as in the previous case, but

now we will gather times needed to communicate with GLPK.

The results are captured in Table 4.6. For each data set there are the times

of (GLPK) input creation (IC) - average and standard deviation, then the same

for output parsing (OP) and total (Tot).

Interestingly enough, in most cases the times to create an input for GLPK

and then to parse its output are very similar. Also, for sized test data sets

it is interesting to note that even though the |V | and |E| numbers are increasing,

the times remain almost the same. This is probably due to the fact that IC and

OP times include the I/O when writing to a file for GLPK or reading the file

it produced, and these times are probably the most relevant.

4.3.2 GLPK: Native vs. Cygwin

In this experiment we will try to remove one of the variables out of the equa-

tion: that is the effect of different versions of GLPK on the overall results. The

rationale is this: on Windows systems, the two most accessible ways to install

GLPK are via a binary distribution or via Cygwin as one of its packages.

If we find out which of these Cygwin version is better, wewill be using it ex-

clusively knowing this should not affect any other aspect of our experiments.

We might also find that there is no relevant difference, which would be and

interesting finding, too.

Apart from comparing different versions, we shall see how the pure GLPK

approach behaves. The first part of this experiment will be limiting the run
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Table 4.6: GLPK Interface Times

Data set IC IC OP OP Tot Tot

avg [ms] stdev avg [ms] stdev avg [ms] stdev

OVA1 36.46 66.8517 49.8 114.0687 86.26 150.1044

OVA2 39.52 75.8210 48.8 102.4484 88.32 154.9596

OVA3 34.1 74.1838 38.62 89.3772 72.72 134.7295

XMA-c 40.88 88.6632 33.84 65.8636 74.72 127.7338

XMA-p 36.54 70.7436 49.24 101.2412 85.78 145.2092

XMD 37.98 69.2719 32.88 70.2173 70.86 114.6692

MSH 40.42 91.9885 36.52 72.1018 76.94 138.6198

NTH 36.02 66.3403 38.06 88.8244 74.08 128.9974

100-100 46.5 103.3929 46.92 89.7049 93.42 158.7267

100-200 42.34 96.1204 38.22 90.0284 80.56 152.6534

100-1000 32.92 64.4534 42.1 89.4546 75.02 127.8541

0-0 46.8 123.5183 46.92 102.2601 93.72 181.5228

10-5 40.06 75.7370 40.1 72.4851 80.16 126.7135

20-20 33.72 70.7263 34.1 66.2781 67.82 116.3783

30-45 38.26 71.7549 45.94 110.1284 84.2 155.7594

40-80 37.06 67.0024 49.26 106.3185 86.32 144.9918

50-125 50.44 101.9162 84.76 364.7350 135.2 378.7835

60-180 38.38 89.3379 42.54 94.3742 80.92 149.6049

70-245 41.5 93.2951 40.3 93.4858 81.8 149.6797

80-320 51.92 121.9812 47.98 96.0904 99.9 171.4617

90-405 40.5 91.5373 36.46 88.5099 76.96 144.2890

100-500 37.82 85.7571 43.4 90.3257 81.22 141.9103
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time, thus making it an instance of Truncated branch & bound . In this case

we will see the dependency between the run time and the quality achieved

in it. In the second part we will let GLPK run until the optimum is found. We

shall see the dependency between input size and run time needed to achieve

the optimum.

Input data 100-500

Iterations 50

Pool size 1

α, β 1, 1

CH Glpk

IHs ∅

Our experimental set will contain 500 experimental configurations for each

of these twoGLPK versions. Every configurationwill use Glpk CH set to a time

limit from 1 to 46 seconds with increments of 5, meaning 10 settings * 50 iter-

ations = 500 configurations in total (see Algorithm 16). There will be no im-

provement heuristic. The only data we gather in the GnuPlot file are the final

qualities (weights). The data set used is 100-500 as the biggest one in sized test

data.

Algorithm 16 GLPK: Native vs. Cygwin Set Generation 1
Output: experimental set ES

ES ← ∅

for i = 1→ 50 do

for time = 1→ 46 step 5 do

ES ← ES ∪ CH = Glpk (limit = time), IH = ∅

end for

end for

return ES
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Figure 4.4: Time vs. Quality
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The results of this test are captured in Figure 4.4. They should be interpreted

as follows: for each time limit from 1 to 46 seconds there are two boxplots next

to each other, the left, dashed one is the native GLPK, the right, solid one is the

Cygwin GLPK. This is reflected in the tics on the X (time) axis, meaning that

the axis cannot be interpreted in the usual way.

We can see from the graph that even though for smaller times (1 and 6 sec-

onds, respectively) the Cygwin GLPK is reaching better qualities with smaller

variance, starting from 11 seconds the native GLPK is at least as good or better

for every following time. The results are inconclusive though, it is necessary

to wait for confirmation from the second part of this experiment.
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Input data all sized test data sets

Iterations 50

Pool size 1

α, β 1, 1

CH Glpk

IHs ∅

The other way to compare the performance of these two GLPK versions

is to see how long it takes them to find the optimum for a set of data of increas-

ing size. This experimental set will contain 550 configurations for each version.

Every configuration will let Glpk CH run for unlimited time, until it finds the

optimum. This will be repeated in 50 iterations for each of the 11 files from the

sized test data set (see Algorithm 17). There will again be no IH, the only data

we will collect are the times of the CH run in each case.

Algorithm 17 GLPK: Native vs. Cygwin Set Generation 2
Output: experimental set ES

ES ← ∅

for i = 1→ 50 do

for file ∈ sized test data do

ES ← ES ∪ {file, CH = Glpk (no limit), IH = ∅}

end for

end for

return ES

The results are captured in Figure 4.5; please take a note that the Y axis

is in log scale. As with the previous case, the X axis cannot be interpreted in the

usual way. For each data set there are two boxplots next to each other: the left

one is the native GLPK, the right one is the Cygwin GLPK.

From these results it becomes clear that the native GLPK has in general

shorter running times for each and every input data set than its Cygwin coun-

terpart. This becomes less extreme with the increasing input size, which leads
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Figure 4.5: Time Until Optimum
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us to suspicion that the core parts of computation in both cases are equally pow-

erful. Regardless of that, we shall be using the native GLPK for the following

experiments.

To conclude the first timing experiments we introduce a summary pie chart

in Figure 4.6. This shows the typical distribution of times needed to find the

optimum for the OVA3 data set.

These experiments proved that for bigger data sets the times to reach the

optimum might become too long. We shall attempt to find heuristics to reach

the optimum faster in the following experiments.

4.3.3 Random vs. Fuzzy vs. FIDAX

Our investigation into various CHs will start by comparing FIDAX from the

original article [BM03] to 2 of our trivial randomized greedy heuristics, Random

and Fuzzy .
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Figure 4.6: Timing Summary

Input data set all official test data sets

Iterations 50

Pool size 10

α, β 1, 1

CH Random , Fuzzy , FIDAX

IHs ∅

The experimental set will contain 1650 configurations in total: 3 different

CHs * 11 official test data sets * 50 iterations. There will be no improvement

heuristics. The pool size will be set to 10, even though FIDAX cannot profit

from this. Listing for this can be found in Algorithm 18.

We will be gathering the running time of the CH itself and quality of the

best solution found for GnuPlot.

Results can be found in Figure 4.7 - qualities achieved and Figure 4.8 - times

spent. The Y (time) axis in the latter figure is again in log scale. For each data set

there are 3 boxplots next to each other. The first, leftmost, represents Random ,

second Fuzzy and finally the third, rightmost is FIDAX .

We can draw the following conclusions: Fuzzy consistently finds the best

solution, but it is by far the slowest of these CHs. The trivial Random is better

than FIDAX in artificial as well as some real data.
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Algorithm 18 Random vs. Fuzzy vs. FIDAX Set Generation
Output: experimental set ES

ES ← ∅

for i = 1→ 50 do

for file ∈ official test data do

ES ← ES ∪ {file, CH = Random (pool = 10), IH = ∅} ∪ {file, CH =

Fuzzy (pool = 10), IH = ∅} ∪ {file, CH = FIDAX , IH = ∅}

end for

end for

return ES

Figure 4.7: Random vs. Fuzzy vs. FIDAX - Quality
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Figure 4.8: Random vs. Fuzzy vs. FIDAX - Time

Improving FIDAX with Hungry

Nowwe shall try to answer a minor question, whether it is possible to improve

FIDAX by using Hungry as IH. This short experiment answers that question.

Input data set all official test data sets

Iterations 1

Pool size 1

α, β 1, 1

CH FIDAX

IHs Hungry or ∅

We need a pool size of one and only a single iteration - both FIDAX and

Hungry are deterministic. We will try all official data sets, first with empty IH,

second with Hungry as IH. We will gather the qualities in each case and see

whether there is any improvement.
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Table 4.7: Results of Adding Hungry After FIDAX

Data set Quality - FIDAX Quality - FIDAX + Hungry

OVA1 0.4411764705882353 0.4411764705882353

OVA2 0.16346153846153846 0.16346153846153846

OVA3 0.25482414123443264 0.2553715615163541

XMA-c 0.7546666666666666 0.7546666666666666

XMA-p 0.2019306150568969 0.2019306150568969

XMD 0.09786094165493509 0.09786094165493509

MSH 0.5416472778036296 0.5416472778036296

NTH 0.05259709474828076 0.057918595422124436

100-100 0.56 0.6766666666666669

100-200 0.44200000000000017 0.5980000000000003

100-1000 0.19952380952380955 0.29619047619047617

The experimental results are summarized in Table 4.7 and are quite sur-

prising. Bold cells mean that adding Hungry helped achieve a better quality.

However trivial Hungry is, it is still able to improve the ID set found by FIDAX

by as much as almost 50% (the last row, 100-1000 ).

Table 4.8 lists the ID attributes found in both cases for this most extreme

input, 100-1000 . Note that the content of each cell means “attribute attr in el-

ement vertexXY should be marked as ID attribute”.

4.3.4 Best Standalone CH

We shall now try to find the best standalone CH, that is the CH that finds on av-

erage the best solutions when run without any IHs. We need to set a time limit

for Glpk to make it an instance of Truncated Branch & Bound , and we shall

use 1 second. This is the smallest time limit possible for GLPK and it is still

a reasonably short time, fair to other CHs.

67



Table 4.8: ID Sets in FIDAX Versus FIDAX + Hungry

FIDAX FIDAX + Hungry

vertex5

vertex26

vertex30 vertex30

vertex31 vertex31

vertex32 vertex32

vertex34 vertex34

vertex35 vertex35

vertex36 vertex36

vertex37 vertex37

vertex39 vertex39

vertex60

vertex69

vertex70

vertex74 vertex74

vertex75 vertex75

vertex80 vertex80
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Input data all official test data sets

Iterations 50

Pool size 10

α, β 1, 1

CH various

IHs ∅

We will use all the official data sets, set the pool size to 10 where applica-

ble, α and β to 1. This experiment will consist of 50 iterations * 11 data sets * 6

CHs = 3300 experimental configurations. See the Algorithm 19 for details. This

time we are not interested in run times, only in qualities which we shall gather

in format for GnuPlot.

Algorithm 19 Best Standalone CH Set Generation
Output: experimental set ES

ES ← ∅

for file ∈ official test data do

for i = 1→ 50 do

ES ← ES ∪ {file, CH = Random , IH = ∅}

ES ← ES ∪ {file, CH = Fuzzy , IH = ∅}

ES ← ES ∪ {file, CH = Incremental , IH = ∅}

ES ← ES ∪ {file, CH = Removal , IH = ∅}

ES ← ES ∪ {file, CH = FIDAX , IH = ∅}

ES ← ES ∪ {file, CH = Glpk (limit = 1), IH = ∅}

end for

end for

return ES

For data sets XMA-c , XMA-p , MSH and NTH every CH found the optimum ev-

ery time. Graphs representing the results for remaining data sets can be found

in Figure 4.9.
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Figure 4.9: Best Standalone CH
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We can see that Glpk wins (or is among the best) in every single case. We

will start from there and try to build upon this result.

4.3.5 Best IH for Glpk

The next logical step is to try to add one IH after the best CH we have found,

Glpk . We will investigate all IHs except for RandomRemove and RemoveWorst ,

which cannot help us at this time.

We should note that the combination best CH - best IH found this way does

not necessarily need to be the best one overall, becausewe find it using a greedy

approach.

Input data 80-320 , 90-405 , 100-500 ,

100-100 , 100-200 , 100-1000

Iterations 50

Pool size 10

α, β 1, 1

CH Glpk

IHs Crossover , Hungry , Local Branching , Mutation

This experimental set will contain 6 data sets * 50 iterations * 4 IHs = 1200

experimental configurations. Note that we are using only the most challeng-

ing data sets, as the combination of Glpk as CH and any other IH is already

an overkill for easier data sets.

The results are listed in Table 4.9. We shall denote improvement the absolute

increase in quality after running Glpk and after running the IH. The table now

lists for each data set and each IH the average improvement as well as the stan-

dard deviation of the improvement. Bold number represents the best IH for

that specific data set. Mutation proves to be the best IH for 3 out of 6 data sets.
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Table 4.9: Best IH for Glpk

Hungry Hungry Crossover Crossover

Data set improv - avg improv - stdev improv - avg improv - stdev

80-320 0.00017 0.00118 0.00017 0.00118

90-405 0.00502 0.00618 0.00033 0.00165

100-500 0.00664 0.00667 0.00016 0.00081

100-100 0.00000 0.00000 0.00000 0.00000

100-200 0.00000 0.00000 0.00000 0.00000

100-1000 0.01630 0.01294 0.00180 0.00506

LB LB Mutation Mutation

Data set improv - avg improv - stdev improv - avg improv - stdev

80-320 0.00072 0.00223 0.00064 0.00218

90-405 0.00698 0.00616 0.00851 0.00659

100-500 0.00796 0.00797 0.00964 0.00804

100-100 0.00000 0.00000 0.00000 0.00000

100-200 0.00000 0.00000 0.00000 0.00000

100-1000 0.01710 0.01188 0.02337 0.01558
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Algorithm 20 Best IH for Glpk Set Generation
Output: experimental set ES

ES ← ∅

for file ∈ {80-320 , 90-405 , 100-500 , 100-100 , 100-200 , 100-1000 } do

for i = 1→ 50 do

ES ← ES ∪ {file, CH = Glpk (limit = 1), IH = Crossover (fraction =

0.1, limit = 1)}

ES ← ES ∪ {file, CH = Glpk (limit = 1), IH = Hungry }

ES ← ES ∪ {file, CH = Glpk (limit = 1), IH =

Local Branching (fraction = 0.1, limit = 1)}

ES ← ES ∪ {file, CH = Glpk (limit = 1), IH = Mutation (fraction =

0.1, limit = 1)}

end for

end for

return ES

Random as CH

Asmentioned before, we chose the combination Glpk and Mutation in a greedy

manner. We will now try to take a step back and attempt to replace Glpk with

Random , hoping to get similar qualities in much shorter time (a reminder: Glpk

always takes 1 second).

Input data 80-320 , 90-405 , 100-500 ,

100-100 , 100-200 , 100-1000

Iterations 50

Pool size 10

α, β 1, 1

CH Random or Glpk

IHs Mutation

Setup used will be almost identical to that from the previous experiment.

Experimental set will consist of 6 data sets * 50 iterations * 2 CHs = 600 experi-
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mental configurations, see Algorithm 21. We shall collect the eventual quality

after running both the CH and the IH in format suited for GnuPlot.

Algorithm 21 Random as CH Set Generation
Output: experimental set ES

ES ← ∅

for file ∈ {80-320 , 90-405 , 100-500 , 100-100 , 100-200 , 100-1000 } do

for i = 1→ 50 do

ES ← ES ∪ {file, CH = Random , IH = Mutation (fraction =

0.1, limit = 1)}

ES ← ES ∪ {file, CH = Glpk (limit = 1), IH = Mutation (fraction =

0.1, limit = 1)}

end for

end for

return ES

Results are summarized in Figure 4.10. Again, for each data set there are

two boxplots representing Random (left one) and Glpk (right one). The combi-

nation Glpk + Mutation always finds the optimum for the simpler data sets,

thus the collapsed boxplots. Moreover, it achieves higher quality in each da-

ta set. On the other hand, combination Random + Mutation has much shorter

running times and in the biggest (and hardest) data set 100-1000 has almost

comparable results. This makes it a reasonable choice for big inputs where

short time is more important than optimal quality.

4.3.6 Various α, β

After finding the best combination of a CH and IH we turn our attention to pa-

rameters. The first ones are the α and β from the definition of our weight func-

tion (Section 1.5). A short reminder: the weight is defined as follows.

weight(m) = α.φ(m) + β.χ(m)
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Figure 4.10: CH for Mutation
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Where φ(m) is support the attribute mappingm and χ(m) is its coverage.

It is thus obvious that only the ratio between α and β matters, not their ac-

tual values. This means that investigating effects of these parameters is in fact

a 1-dimensional problem. However, for the sake of simplicity we will use 25

combinations of various α and β and normalize them only during evaluation.

We do not expect any changes in performance of heuristics andwewill limit

the inquiry to different ID sets produced under different settings.

Input data realistic + converted official test data sets

Iterations 1

Pool size 1

α, β {0.1, 0.25, 0.5, 0.75, 1} × {0.1, 0.25, 0.5, 0.75, 1}

CH Glpk

IHs ∅

This experimental set will contain 5 different α settings * 5 β settings * 8 data

sets = 200 experimental configurations. We are not using the artificial data sets,
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because due to the way they are generated (attribute values are random num-

bers), they cannot possibly create different optimal ID sets. The pseudocode

capturing this is provided in Algorithm 22. We will use Glpk constrained

to 1 second (thus making it an instance of Truncated Branch & Bound ) and

no IHs. Pool size as well as iteration count will be 1. We are noting the actual

ID set found by the run of the heuristic.

Algorithm 22 Various Values of α and β Set Generation
Output: experimental set ES

ES ← ∅

for α ∈ {0.1, 0.25, 0.5, 0.75, 1} do

for β ∈ {0.1, 0.25, 0.5, 0.75, 1} do

for file ∈ realistic of converted official test data do

ES ← ES ∪ {file, CH = Glpk (limit = 1, alpha = α, beta = β), IH =

∅}

end for

end for

end for

return ES

The following data sets have the same optimal ID sets regardless of the set-

ting of α and β: MSH , NTH , XMA-c , XMA-p . The OVA* data sets showed various

dependencies on α and β; we shall now describe one representative example.

Results for OVA1

The 2 different ID sets found for various α and β in OVA1 are listed in Table

4.10 (note that the actual names had to be anonymized for reasons discussed

in Section 4.1.1). The differing attribute mapping is marked.

Table 4.11 summarizes the dependency of the ID set found on various val-

ues of α, β. We then define the α− ratio as α

α + β
and summarize the findings

in a linear manner, sorted by increasing α − ratio in Table 4.12. Note that the
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Table 4.10: Different ID Sets Found for OVA1

ID set 1: element@attribute ID set 2: element@attribute

aff@fa aff@fa

com@ty com@ty

cre@da cre@da

cri@te cri@te

cve@st cve@st

* def@id * def@cl

fil@co fil@co

mod@da mod@da

ova@xs ova@xs

pat@op pat@op

sof@op sof@op

sta@da sta@da

sub@or sub@or

sbt@te sbt@te
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Table 4.11: Effect of α, β on ID Set Found for OVA1

α \β 0.1 0.25 0.5 0.75 1

0.1 1 2 2 1 1

0.25 2 2 2 1 2

0.5 2 1 1 1 2

0.75 1 2 1 2 1

1 1 2 1 1 2

α− ratios are not unique due to the way we constructed the experimental con-

figurations here.

Interestingly enough, there is no clear separation between the two ID sets

depending on the α − ratio to be found. The existence of the two sets might

be due to the fact that Glpk randomizes the order in which AMs are presented

to the external GLPK solver. However, this question is beyond the scope of this

work, and shall be left for future work.

4.3.7 Ignoring Text Data

When considering data sets such as XMA-p , we notice that they contain a lot

of simple text nodes that do not contribute to our search, but possibly slow

it down. Precisely for this reason the BasicIGG module in jInfer contains an op-

tion to turn off processing of such nodes. (It also allows to ignore the content

of attributes, but this would be devastating to our cause.) Ignoring the content

of text nodes means internally that these are created, but their actual string

content is skipped and not saved in the memory structures. This means that

the whole data model occupies less space on the heap, which can possibly lead

to better performance.

We shall now investigate this matter by taking the biggest data set XMA-p

containing a lot of text data.
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Table 4.12: Effect of α− ratio on ID Set Found for OVA1

α− ratio ID set α− ratio ID set

0,091 1 0,500 2

0,118 1 0,500 2

0,167 2 0,571 1

0,200 2 0,600 1

0,250 1 0,667 1

0,286 2 0,667 1

0,333 2 0,714 2

0,333 2 0,750 2

0,400 1 0,800 2

0,429 1 0,833 2

0,500 1 0,882 1

0,500 2 0,909 1

0,500 1
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Input data XMA-p

Iterations 50

Pool size 1

α, β 1, 1

CH Glpk

IHs not applicable

Our experimental set will contain 50 iterations * 2 = 100 experimental con-

figurations as described in Algorithm 23. We will be using Glpk limited to 1

second with no additional IH and pool size set to 1. After the first 50 itera-

tions we will turn on the option to ignore the simple text node data and run the

same 50 iterations again. We will be collecting the grammar extraction (GE)

and model creation (MC) times as in the experiment in Section 4.3.1.

Algorithm 23 Ignoring Text Data Set Generation
Output: experimental set ES

ES ← ∅

for i ∈ 1→ 50 do

ES ← ES ∪ {XMA-p , CH = Glpk (limit = 1), IH = ∅}

end for

set “ignore text data”

for i ∈ 1→ 50 do

ES ← ES ∪ {XMA-p , CH = Glpk (limit = 1), IH = ∅}

end for

return ES

The results are summarized in Figure 4.11. Boxplots drawn in dashed lines

represent the original case, not ignoring the text data. Solid lines represent the

case where we ignore the text data.

Interestingly, the grammar extraction times tend to be shorter in the case

when text data is not ignored, although this is inconclusive. However, there
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Figure 4.11: Ignoring Text Data
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is a clear improvement of about 50 % in case of model creation times. The

conclusion then is to ignore the simple text node content whenever possible

when finding ID attributes.

4.3.8 Chaining the IHs

In this section we will describe the most interesting experimental area, that

is chaining more than one improvement heuristics and running them in a loop.

Unfortunately, the sheer number of possible combinations in which IHs can be

ordered (as well as the number of ways to set their parameters) prohibits us

from investigating this in depth.

We shall then employ a higher-level heuristic: we will choose 3 strategies

(lists of IHs, or metaheuristics), assess their performance to find the best one

and then tune its parameters. This approach is by nomeans exhaustive, it is just

a probe in the problem space.

The 3 strategies we assess will be constructed from the following instances
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of improvement heuristics:

• RR is RandomRemove with fraction set to 0.1.

• MUT is Mutation with fraction set to 0.1 and time limit set to 1 second.

• CX is Crossover with fraction set to 0.1 and time limit set to 1 second.

• LB is Local Branching with fraction set to 0.1 and time limit set to 1

second.

• RW is RemoveWorst .

• H is Hungry .

The strategies themselves shall be the following:

• Strategy 1. RR → MUT → RR → CX → RW → . . .

• Strategy 2. CX → RW → MUT → . . .

• Strategy 3. CX → RR → MUT → RW → LB → RW → . . .

Input data all official test data sets

Iterations 20

Pool size 10

α, β 1, 1

CH Random

IHs various

The experimental set will consist of 3 strategies * 11 data sets * 20 iterations

= 660 experimental configurations. Their construction is formalized in the Al-

gorithm 24. The construction heuristic will be Random with pool size 10. All

the fractions are set to 0.1 for the time being. The termination criterion is set

to limit the total runtime to 10 seconds and (potentialy) infinite iterations.
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Algorithm 24 Chaining IHs Set Generation
Output: experimental set ES

ES ← ∅

MUT ← Mutation (fraction = 0.1, limit = 1)

CX ← Crossover (fraction = 0.1, limit = 1)

LB ← Local Branching (fraction = 0.1, limit = 1)

RR ← RandomRemove (fraction = 0.1)

H ← Hungry

RW ← RemoveWorst

IHs← ∅

IHs← IHs ∪ (RR , MUT , RR , CX , RW )

IHs← IHs ∪ (CX , RW , MUT )

IHs← IHs ∪ (CX , RR , MUT , RW , LB , RW , H )

for ih ∈ IHs do

for file ∈ official test data do

for i = 1→ 20 do

ES ← ES ∪ {file, CH = Random , IH = ih, limit = 10seconds}

end for

end for

end for

return ES
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Figure 4.12: Chained IHs - 100-100 Results for Strategy 1
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Log traces like the one in Appendix C will be gathered - also, after each it-

eration, the time taken so far and the quality of incumbent solution is noted.

Resulting traces for each data set can be summarized in graphs like the one

for 100-100 in Figure 4.12. This one deserves more explanation than usual.

X and Y axes represent the time and quality, as usual. Each line represents

one run of the strategy (metaheuristic) in the followingway: theNth break in the

line (i.e. the Nth data point) is the partial result after the Nth step of the strategy.

Its X position denotes the absolute time in which this step finished, and its Y

position represents the incumbent solution quality after this step. Every time

a line “disappears” before reaching 10 seconds it means that this metaheuristic

run found the optimum before the 10 second mark. There is an obvious repeti-

tive regularity in the shape of each line, which corresponds to the fact that there

is a finite number of IHs in this strategy (5 of them in Strategy 1) which repeat

over time. The obvious similarity between different lines corresponds to the

fact that each run is from the same strategy, and over time, they do the same
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steps.

We can see effects of different IHs from this graph:

• Every (1 + 5k)th and (3 + 5k)th step is a RandomRemove , and each time this

happens there is a rather sharp drop in quality.

• Every (2 + 5k)th step is a Mutation , and there is a consistent increase

in quality each time.

• Every (4 + 5k)th step is a Crossover , and each time it happens there

is a consistent increase, yet smaller than with Mutation .

• Every 5kth step is a RemoveWorst , and as expected, this removes the worst

solution not touching the best ones that decide the incumbent quality.

The line thus stays flat every time it happens.

In this particular example there is only 1 run out of 10 that does not finish

(find optimum) under the 10 second mark.

There are twomore graphs like this in Figures 4.13 and 4.14 for comparison,

capturing Strategy 2 and Strategy 3 respectively working on the same data set,

100-100 . Describing them in detail is beyond the scope of this work.

It is now necessary to assess which of the strategies perform the best. We

shall take a look at the different data sets. Easily we can discard MSH , NTH ,

XMA-c , XMA-p , because the optimum is found in the very first step. Let us now

introduce a metric for assessment of a strategy: namely howmany times of the

20 runs it found the optimum. The respective results are summarized in Table

4.13.

Each cell contains the number of times the strategy found optimum in the

data set, out of 20 runs. The strategies that performed best on that data set are

highlited. We can see that Strategies 1 and 3 are very similar in performance.

We shall nonetheless choose Strategy 1 as the winner for its simplicity. Now

we can tune its parameters.
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Figure 4.13: Chained IHs - 100-100 Results for Strategy 2
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Figure 4.14: Chained IHs - 100-100 Results for Strategy 3
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Table 4.13: Performance of Various IH Chains

Dataset Strategy 1 Strategy 2 Strategy 3

100-100 20 19 20

100-200 19 18 17

100-1000 4 1 5

OVA1 20 20 20

OVA2 19 13 18

OVA3 17 18 20

Tuning Strategy 1

A short reminder: Strategy 1 consists of Random as the CH and the following

IHs: RR → MUT → RR → CX → RW → . . .

Theparameterswe can tune in this strategy are the fractions in RandomRemove

(possibly 2 of them, as there are 2 instances in use), Mutation and Crossover .

We shall not tune the time limits in Mutation and Crossover and leave them

set to 1 second. This presents us with a 3-dimensional space of parameters,

where we want to find a combination best suited for our test data sets. We will

sample this space by taking a total of 45 configurations of the aforementioned

fractions.

Input data all sized test data sets

Iterations 25

Pool size 10

α, β 1, 1

CH Random

IHs RR → MUT → RR → CX → RW → . . .

This experimental set will consist of 45 fraction combinations * 11 data sets

* 25 iterations = 12375 experimental configurations. CH will be Random with

pool size of 10. IHs will be the ones from Strategy 1, with their fractions set

to one of the 45 combinations produced in the following way.
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• RandomRemove fraction will be from {0, 0.05, 0.1, 0.2, 0.5}

• Mutatio fraction will be from {0.05, 0.1, 0.2}

• Crossover fraction will be from {0.05, 0.1, 0.2}

The total limit will remain at 10 seconds. The process of creating the configu-

rations is captured in Algorithm 25. We will be gathering the following infor-

mation for each run: what were the parameters, how long did the run take and

whether it found the optimum.

Algorithm 25 Chained IHs - Improving Strategy 1 Set Generation
Output: experimental set ES

ES ← ∅

RW ← RemoveWorst

for rrFraction ∈ {0, 0.05, 0.1, 0.2, 0.5} do

for mutFraction ∈ {0.05, 0.1, 0.2} do

for cxFraction ∈ {0.05, 0.1, 0.2} do

RR← RandomRemoval (fraction = rrFraction)

MUT ← Mutation (fraction = mutFraction, limit = 1)

CX ← Crossover (fraction = cxFraction, limit = 1)

for file ∈ sized test data do

for i = 1→ 50 do

ES ← ES ∪ {file, CH = Random , IH =

(RR , MUT , RR , CX , RW ), limit = 10seconds}

end for

end for

end for

end for

end for

return ES

After averaging the data, we get a large result table; an excerpt of it is in Ta-

ble 4.14. Only the results for the biggest data sets and a few combinations of RR,
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Table 4.14: Performance of Strategy 1 Depending on Parameters - Excerpt

RR MUT CX 60-180 70-245 80-320 90-405 100-500

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0.5 0.1 0.1 AT 1049.72 1584.72 2349.2 7408.28 9414.28

0.5 0.1 0.1 SR 1 1 1 0.52 0.28

0.5 0.1 0.1 AQ opt opt opt 0.52533 0.49196

0.5 0.1 0.2 AT 763.44 1343.08 2599.88 9448.12 10269.76

0.5 0.1 0.2 SR 1 1 1 0.24 0

0.5 0.1 0.2 AQ opt opt opt 0.52213 0.48462

0.5 0.2 0.05 AT 1438.84 1608.32 2647.4 4954.04 7784.88

0.5 0.2 0.05 SR 1 1 1 0.8 0.4

0.5 0.2 0.05 AQ opt opt opt 0.52693 0.49647

0.5 0.2 0.1 AT 1333.12 1741.08 2506.84 4720.32 8150.6

0.5 0.2 0.1 SR 1 1 1 0.84 0.56

0.5 0.2 0.1 AQ opt opt opt 0.52733 0.49651

0.5 0.2 0.2 AT 922.16 1353.76 2394.48 4633.12 7424.8

0.5 0.2 0.2 SR 1 1 1 0.84 0.44

0.5 0.2 0.2 AQ opt opt opt 0.52804 0.49495

MUT and CX fractions are presented.

In the left part of the table are the fraction values. In the right part are the

averaged running times (AT), success ratios (ratio of runs that found the op-

timum, SR) and average qualities (AQ) for each data set. The highest success

ratios and qualities are highlited.

It is now necessary to pick one fraction combination as the best one, and

it is (RR = 0.5,MUT = 0.2, CX = 0.1). Using this combination for all the data

sets from 10-20 up to 80-320 the optimum was always found and for 90-405

and 100-500 the success ratios were the highest.

Now to interpret the fractions in the best combination. RandomRemove frac-
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tion of 0.5 means that a randomly chosen half of all AMs from every ID set

in the pool will be discarded. This amounts to a very strong diversification ten-

dency and keeps the strategy from stalling in local optima. Mutation fraction

of 0.2 means around 1/5th of AMs in the incumbent solution will be fixed for

the next GLPK optimization. Crossover fraction of 0.1 means that around 10%

of ID sets in the pool (randomly chosen) will be scanned for common AMs.

RandomRemove and Mutation fractions in the best combination are at the up-

per bound of the rangewe chose for them. As a futurework option it is possible

to start moving these fractions even more in their preferred way.

Final Comparison

Finally we shall compare the performance of Strategy 1 with tuned parameters

(fractions) to the approachwe started the experimentswith: using the Glpk CH

with no time limit to find the optimum. We will compare them on the biggest

of sized test data: 100-500 .

We already have the running times for pure Glpk on 100-500 from the

“TimeUntil Optimum” experiment in Section 4.3.2. The last experiment to find

the performance of tuned Strategy 1without a time limitwill have the following

parameters.

Input data 100-500

Iterations 50

Pool size 10

α, β 1, 1

CH Random

IHs RR → MUT → RR → CX → RW → . . .

The last experimental set will consist of 50 iterations = 50 experimental con-

figurations. As with the previous one, Random will be the CH, IHs will be from

Strategy 1, however this time there will be no time limit. The process of gener-

ating the experimental set is in Algorithm 26.
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Algorithm 26 Chained IHs - Tuned Strategy 1 Performance Set Generation
Output: experimental set ES

ES ← ∅

RW ← RemoveWorst

RR← RandomRemoval (fraction = 0.5)

MUT ← Mutation (fraction = 0.2, limit = 1)

CX ← Crossover (fraction = 0.1, limit = 1)

for i = 1→ 50 do

ES ← ES ∪ {100-500 , CH = Random , IH = (RR , MUT , RR , CX , RW )}

end for

return ES

Results are summarized in Figure 4.15. Both boxplots represent run times

until the optimum is found. It is clear that Strategy 1 is an improvement, achiev-

ing on average almost 4x shorter times thanpure Glpk andfinding the optimum

under 10 seconds in more than a half of the cases.

4.4 The “Best” Algorithm

After answering a lot of questions related to the overall system behavior, pa-

rameter effects and various heuristic combinations we can now summarize our

results and draw conclusions.

The first fact is that if we have the time available, it is best to just let the

GLPK run. It will find the optimum eventually, even though this might take

minutes or hours to complete. For many purposes, this is just fine - we need

to infer something about the schema, we do it only once, so it does not matter

how long it takes.

Secondly, if we do not have enough time, or have to work in a dynamic en-

vironment, we should employ a metaheuristic with a series of improvement

heuristics, more specifically Strategy 1. In all our realistic data sets the opti-
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Figure 4.15: Chained IHs - Pure Glpk vs. Tuned Strategy 1
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Algorithm

mum was found almost instantly, and the most complex and bigges artificial

data sets took only around 1/4 of the time to finish, compared to Glpk .

Furthermore, it is always good to ignore the simple text data nodes, as it will

improve the total run time.

Nowcompare this to the performance of the original algorithm from [BM03]

thatwe have implemented as FIDAX .We cannot use it to find the optimum, even

if we do have enough time: it is greedy, deterministic and always gives us only

one solution. And even if time is constrained, we have shown in Section 4.3.3

that even trivial algorithms such as Random or Fuzzy very often outperform

FIDAX . And Glpk constrained to 1 second run time outperforms FIDAX on ev-

ery data set.

92



5. Future work

A straightforward extension granting the ability to handle more than one input

XML file has already been suggested in [BM03]. However, it was not imple-

mented in this work either, so it remains an obvious first choice of future work.

It is possible (and easy) to add more construction and improvement heuris-

tics, as well as more metaheuristics using the existing IHs. A starting point

is in Section B.1.

As it was mentioned in Section 3.4.2, the combination of Crossover , Muta-

tion and RemoveWorst can be seen as a sort of genetic programming. However

somemodificationswould still be necessary tomake it a real instance of genetic

algorithm metaheuristic.

Likewise it is possible to create an Ant Colony Optimization metaheuristic

solving the same problem. It would be interesting to see all these metaheuris-

tics compared to each other in a set of comprehensive experiments.

The approach used in this work was strictly single-threaded, however there

are in principle no limitations to extending this to a parallel, multi-threaded en-

vironment. For example, creating a pool of initial solutions in Glpk construc-

tion heuristic can be improved by running several instances of GLPK solver

in parallel - as GLPK on its own uses only a single thread.

From the point of view of a user - researcher, the current implementation

of the experimental framework leaves a lot to be desired. As jInfer already

contains support for interchangeable and configurable modules, it is possible

to create GUI for experiment and experimental set configuration on the fly.

jInfer as well as the IDSetSearch module are open source projects, meaning

that anyone wishing to build upon this work can do so easily.
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Conclusion

From all the integrity constraints in XML we chose the ID/IDREF/IDREFS at-

tributes and decided to improve upon the search for them. We discussed the

approach from [BM03] and the equivalence of ID set search and maximum

weighted independent set. Based on this article we introduced the MIP ap-

proach and demonstrated how to find the optimal ID set using external GLPK

solver in the environment of jInfer framework.

However, this approach took too long for some inputs, so we introduced

awhole range of construction as well as improvement heuristics. We combined

these algorithms to create a metaheuristic and performed a number of experi-

ments to understand its behavior. Finally we selected a promising metaheuris-

tic strategy and tuned its parameters to find very good ID sets while maintain-

ing low running times.

To the best of our knowledge, at the time of writing this work is our ap-

proach to finding ID attributes the best one known.

The wisdom found in the experiments in this work might be the following.

While it is important to be able to write a heuristic algorithm tailored to the

specific problem being solved, such as the authors of [BM03] did, it should be

noted that sometimes it is better to solve a more general problem. In this case

the transformation to MIP formulation and using a dedicated solver proved

to produce better results in shorter time.
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A. jInfer

This appendix describes shortly yet comprehensively jInfer - the Java frame-

work for XML schema inference, inwhich the algorithms described in thiswork

were implemented. Please see project web [KMS+11c] for complete informa-

tion, documentation and download options.

jInfer was developed between 2009 and 2011 at the Charles University in

Prague as a Software Project by team consisting ofMichal Klempa,MárioMiku-

la, Robert Smetana, Michal Švirec andMatej Vitásek. The main idea was to cre-

ate a structure in which all aspects of XML schema inference can be easily im-

plemented and evaluated. The goal was achieved: the SW project was success-

fuly defended when jInfer was inferring DTD and XSD schemas based on XML

documents, old DTD and XSD schemas and XPath queries. Since then, Michal

Klempa has successfuly defended his own thesis improving on the grammar

simplification process (see below), Michal Švirec has extended the framework

with capabilities to detect and repair functional dependencies violation (see

[Š11]) and defended his thesis as well. This thesis is the third one based on this

framework, and Mário Mikula’s is on its way, too.

To the best of our knowledge, at the time of writing this thesis is jInfer

the only public, open source and actually working solution for XML schema

inference-related tasks.

At heart of jInfer inference process is a modular system provided by Net-

Beans Platform allowing to define services (interfaces), implement them in any

number of ways and then let the user choose which implementation to use.

Most importantly, the whole process consists of 3 consecutive steps (see A.1),

responsibility of 3 different services - interchangeable modules.

The responsibility of the first module, the Initial Grammar Generator ,

is to parse all input files (documents, schemas and queries) and create a so-

called initial grammar (IG). This is the representation in which will the structure

live until it is used to create the final product - the schema. As the name sug-

gests, IG is a grammar - an extended context-free grammar, to be more precise (see
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Figure A.1: Inference Process in jInfer
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[Nor]). As such, its left-hand side is an element, its right-hand side is a regular

expression representing its content model. IG is used to create the AM model

used in this thesis, too. jInfer contains one such module, the BasicIGG , which

is described in detail in [KMS+11b].

After leaving the Initial Grammar Generator , the IG needs to be made

more general, shortened, simplified. This is the responsibility of an aptly named

module, the Simplifier . To get the full idea about how this can be done

it would be probably best to read Michal Klempa’s thesis [Kle11], which de-

scribes this in great detail. Whatever happens, there is simplified grammar

on the exit of Simplifier , ready to be processed by...

The last module, Schema Generator takes the simplified grammar and cre-

ates the resulting schema from it. This process is not too interesting, but anyone

wishing to find out all about it is invited to read the documentation to the two

Schema Generator s bundled with jInfer - the BasicDTD and BasicXSD mod-

ules.
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B. IDSetSearch

This appendix will shortly describe the IDSetSearch jInfer module. As the

name suggests, its main purpose is to find ID and IDREF sets and provide at-

tribute statistics in general for grammars originating from any stage of XML

schema inference. Virtually every piece of code that was added to jInfer in the

course of creating this thesis is contained in this module.

From jInfer’s point of view, this module resides in codebase cz.cuni.mff.

ksi.jinfer.iss and is a service provider for cz.cuni.mff.ksi.jinfer.base.

interfaces.IDSetSearch interface. Invoking the showIDSetPanel() method

displays a fully-featured window containing all the relevant attribute statistics

as well as possibility to find the ID and IDREF sets for a specified grammar.

Most important packages in IDSetSearch are the following.

• objects, containing classes for attribute mappings and the AMmodel.

• heuristics.construction, containing all theCHshidden behind the Con-

structionHeuristic interface, with sub-packages fidax containing the

whole implementation of FIDAX heuristic (Section 3.4.1). and glpk con-

taining the whole interface the external GLPK solver (Section 3.3).

• heuristics.improvement, containing all the IH hidden behind the Im-

provementHeuristic interface.

• experiments, containing everything related to experimenting.

Experiment is a class representing a single experiment with specified input

data (encapsulated in TestData interface), settings (encapsulated in Experi-

mentParameters) and a metaheuristic as defined in Section 3.4. Its method

run() will launch the metaheuristic, first executing the construction heuris-

tic and then running the specified improvement heuristics in a loop until ter-

mination criteria defined in an implementation of TerminationCriterion are
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met. The quality of a single ID set is measured by an instance of Quality-

Measurement. After the experiment finishes, it invokes the notifyFinished()

method.

However, experiments are almost never run alone. For the purpose of run-

ning a whole experimental set there is the ExperimentSet interface and its

abstract implementation AbstractExperimentSet. Its descendants need only

to provide a list of ExperimentParameters and looping as well as data collec-

tion will be handled for them.

B.1 How to Create a New Heuristic

Decide whether it should be a CH or IH and create a class implementing Con-

structionHeuristic or ImprovementHeuristic, respectively. In each case im-

plement all the get*Name()methods inherited from NamedModule and then the

most important start()method.

In this method use the provided Experiment instance (and List<IdSet>

feasiblePool in case of IH) to create a pool of feasible solutions and in the

end return it by invoking the finished() method of the provided Heuristic-

Callback parameter.

B.2 How to Create a New Experimental Set

Subclass the AbstractExperimentSet class, override getName() to provide the

name of this set and finally override getExperiments() to return the list of Ex-

perimentParameters that will constitute this set.

It is possible to override any of the following methods: notifyStart(),

notifyFinished() and notifyFinishedAll(). They will be invoked before

running the first experiment, after each experiment run and after all exper-

iments finished, respectively. Note that notifyFinished() already can out-

put some information regarding the currently finished experiment to a file, but

it can be safely overriden without a need to call super.notifyFinished().
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C. Experimental Trace

Following is a trace logged from a sample experiment run. It shows all the

relevant information related to this instance, any and every piece of information

we might be interested in.

To save space, 2-column layout is used. Commentary on the particulars

follows right after its end.

CPU info

Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz

Cores: 4

Clock speed: 2983 MHz

Memory info

Size: 8192 MB

OS info

Name: Windows 7

Version: 6.1

Architecture: amd64

Java info

Version: 1.6.0_26

VM: Java HotSpot(TM) 64-Bit Server VM

GLPK info

GLPSOL: GLPK LP/MIP Solver 4.34

Configuration:

File name: graph.xml (101599 b)

Graph representation: 82 vertices, 1101 edges

alpha: 1.0, beta: 1.0

Results:

Total time spent: 7754 ms

Final quality: 0.19951219512195123 (10 AMs)

Highest quality: 0.23463414634146343 (12 AMs)

Construction phase:

Algorithm: Random

Time taken: 248 ms / Time since start: 248 ms

Pool size: 10

Quality: 0.19975609756097568 (11 AMs)

Improvement phase:

pass #1:

Algorithm: RandomRemove, ratio = 0.2

Time taken: 0 ms / Time since start: 841 ms

Pool size: 10

Quality: 0.15878048780487808 (9 AMs)

pass #2:

Algorithm: Mutation, ratio = 0.1, limit = 1 s

Time taken: 1512 ms / Time since start: 2710 ms

Pool size: 11

Quality: 0.21975609756097558 (11 AMs)

<... 7 more passes removed ...>

pass #10:

Algorithm: Remove Worst

Time taken: 80 ms / Time since start: 7676 ms

Pool size: 12

Quality: 0.19951219512195123 (10 AMs)

Termination reason: Maximum iterations exceeded.

Time,Quality,AMs

248,0.19975609756097568,11

841,0.15878048780487808,9

2710,0.21975609756097558,11

2927,0.1890243902439024,9

4421,0.23463414634146343,12

4703,0.23463414634146343,12

4896,0.1960975609756098,10

5793,0.23463414634146337,12

5972,0.19951219512195123,10

7433,0.19951219512195123,10

7676,0.19951219512195123,10

ID

Element,Attribute,Weight

vertex0,attr,0.024146341463414635

vertex2,attr,0.01975609756097561

vertex33,attr,0.016829268292682928

vertex34,attr,0.02219512195121951
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vertex4,attr,0.022682926829268292

vertex41,attr,0.014878048780487804

vertex7,attr,0.02170731707317073

vertex70,attr,0.018780487804878048

vertex76,attr,0.01780487804878049

vertex8,attr,0.02170731707317073

vertex80,attr,0.01780487804878049

vertex97,attr,0.016341463414634147

IDREF

Element,Attribute

The first section deals with system information. Note that some of these

characteristics cannot be easily obtained programmatically and are thus stored

in the source code as constants.

To obtain GLPK information, the program parses the first line of standard out-

put produced by running glpsol -v. It tries to guess whether it’s the Cygwin

version by looking at the path to the binary.

The second section states the input file along with its size and graph repre-

sentation (Section 4.1). The α and β parameters for this instance belong here,

too.

Configuration:

File name: graph.xml (101599 b)

Graph representation: 82 vertices, 1101 edges

alpha: 1.0, beta: 1.0

Results section opens stating themost important information first: how long

did the experiment run and what was the highest and final quality (these two

are potentially different). Numbers of attribute mappings in the best and final

solution respectively are stated as well.

Total time spent: 7754 ms

Final quality: 0.19951219512195123 (10 AMs)

Highest quality: 0.23463414634146343 (12 AMs)

Construction phase results go next. Among reported information are the

full identification of the heuristic (possibly alongwith its parameters), time tak-

en, size of the pool created and the quality of the incumbent solution (again,

with the number of its AMs).

Algorithm: Random
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Time taken: 248 ms / Time since start: 248 ms

Pool size: 10

Quality: 0.19975609756097568 (11 AMs)

Now for each of the improvement phases there is one section in output log.

Information presented here has the same structure as with the construction

phase. Please note that the Pool size is always measured after the improve-

ment run.

Algorithm: Mutation, ratio = 0.1, limit = 1 s

Time taken: 1512 ms / Time since start: 2710 ms

Pool size: 11

Quality: 0.21975609756097558 (11 AMs)

After the last improvement phase, the reason why the metaheuristic termi-

nated is stated. Possible causes are exceeding the maximum time available,

maximum iterations or reaching the known optimum for this file and α / β set-

tings.

To be able to reconstruct the progress of the metaheuristic, the next section

contains CSV formatted data for each iteration. Each row contains the time

in milliseconds, quality of the incumbent solution and the number of its AMs.

Time,Quality,AMs

...

841,0.15878048780487808,9

2710,0.21975609756097558,11

...

And finally, it is important to know what is the ID/IDREF set recommend-

ed by this experiment run. Thus the log is concluded by a CSV formatted list

of element - attribute name pairs to be included in the ID and IDREF set, re-

spectively.

Element,Attribute,Weight

vertex0,attr,0.024146341463414635

...

Note that in this example trace there were no IDREF AMs found.
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