
XML Schema Inference: A Study

(Technical Report)

Irena Mlýnková

Charles University
Faculty of Mathematics and Physics
Department of Software Engineering

Malostranske nam. 25
118 00 Prague 1, Czech Republic

Email: irena.mlynkova@mff.cuni.cz

Abstract. The XML has undoubtedly become a standard for data rep-
resentation and manipulation. But most of XML documents are still cre-
ated without the respective description of their structure, i.e. an XML
schema. Hence, in this paper we focus on the problem of automatic infer-
ring of an XML schema for a given sample set of XML documents. We
provide an overview and analysis of existing approaches and compare
their key advantages. We conclude the text with a discussion of open
issues and problems to be solved as well as their possible solutions.

1 Introduction

Without any doubt the XML [8] is currently a de-facto standard for data repre-
sentation. Its popularity is given by the fact that it is well-defined, easy-to-use
and, at the same time, enough powerful. To enable users to specify own allowed
structure of XML documents, so-called XML schema, the W3C1 has proposed
two languages – DTD [8] and XML Schema [7, 33]. The former one is directly
a part of XML specification and due to its simplicity it is one of the most pop-
ular formats for schema specification. The latter language was proposed later,
in reaction to the lack of constructs of DTD. The key emphasis is put on sim-
ple types, object-oriented features (such as user-defined data types, inheritance,
substitutability etc.) and reusability of parts of a schema or whole schemas.

On the other hand, statistical analyses of real-world XML data show that a
significant portion of XML documents (52% [20] of randomly crawled or 7.4% [24]
of semi-automatically collected2) still have no schema at all. What is more, XML
Schema definitions (XSDs) are used even less (only for 0.09% [20] of randomly
crawled or 38% [24] of semi-automatically collected XML documents) and even if
they are used, they often (in 85% of cases [4]) define so-called local tree grammars
[27], i.e. languages that can be defined using DTD as well.

1 http://www.w3.org/
2 Data collected with the interference of a human operator.

In reaction to this situation a new research area of automatic construction
of an XML schema has opened. The key aim is to create an XML schema for
the given sample set of XML documents that is neither too general, nor too
restrictive. It means that the set of document instances of the inferred schema
is not too broad in comparison with the provided set of sample data but, also,
it is not equivalent to the sample set. Currently, there are several proposals of
respective algorithms, but there is still a space for further improvements. In this
paper we provide an analysis and overview of existing approaches and compare
their advantages and disadvantages. In particular, we deal with the problems
that have already been solved and solutions used. We conclude the text with a
discussion of remaining open issues as well as their possible solutions.

The paper is structured as follows: Section 2 provides an introduction to
existing languages for definition of XML schema and their relation to theory
of languages and automata. In Section 3 we discuss the existing algorithms for
schema inference and in Section 4 we sum up the key findings. Section 5 discusses
the related open issues and Section 6 provides conclusions.

2 Schema Definition Languages

A natural requirement for an XML document is well-formedness, i.e. confor-
mance to a set of requirements that ensure correct tree structure. Nevertheless,
if we want to share or exchange XML data between multiple users, it is necessary
to provide also a schema that describes their allowed structure more precisely.

DTD The simplest and most popular language for description of the allowed
structure of XML documents is currently the Document Type Definition (DTD)
[8]. It enables one to specify allowed elements, attributes and their mutual rela-
tionships, order and number of occurrences of subelements (using operators ‘,’,
‘|’, ‘?’, ‘+’ and ‘*’), data types (ID, IDREF, IDREFS, CDATA or PCDATA) and allowed
occurrences of attributes (IMPLIED, REQUIRED or FIXED). A simple example of a
database of employees is depicted in Figure 1.

At first glance it seems that the specification of the allowed structure is
sufficient. Nevertheless, even in this simple example we can find several problems.
For instance, we are not able to specify the correct structure of an e-mail address.
Similarly, we cannot simply specify that a person can have four e-mail addresses
at maximum. And, as we can see, the fact that the order of elements first and
surname is not significant cannot be expressed simply as well. Therefore, the
W3C proposed a more powerful tool – the XML Schema language.

XML Schema The XML Schema language [7,33] has a number of advantages as
well as disadvantages. The main advantages are that:

– each XSD is a well-formed XML document,
– it has a strong support of data types, both simple and complex and both

built-in and user-defined,

2

Fig. 1. An example of a DTD of employees

– it enables one to re-use and re-define existing schemas or their selected parts,
– it enables one to specify the allowed structure using more precise constraints

(e.g. minimum and maximum allowed occurrences, ordered/unordered se-
quences, integrity constraints etc.) and

– it enables one to specify equivalent schemas using distinct constructs.

For example an XSD equivalent to the example of a DTD in Figure 1 is
depicted in Figure 2.

Note that XML Schema has also several disadvantages. In particular, as we
can from the example, the syntax of the language is more complex and more
space-consuming than in case of DTDs. And the second disadvantage is the same
as the last mentioned advantage. It highly complicates the automatic processing
of XSDs, since all the possibilities must be taken into account.

In general, the constructs of XML Schema can be divided into basic, advanced
and auxiliary. The basic constructs involve simple data types (simpleType),
complex data types (complexType), elements (element), attributes (attribute),
groups of elements (group) and groups of attributes (attributeGroup). Simple
data types involve both built-in data types (except for ID, IDREF, IDREFS), such
as, e.g., string, integer, date etc., as well as user-defined data types derived
from existing simple types using simpleType construct. Complex data types
enable one to specify both content models of elements and their sets of at-
tributes. The content models can involve ordered sequences (sequence), choices
(choice), unordered sequences (all), groups of elements (group) or their al-
lowable combinations. Similarly, they enable one to derive new complex types
from existing simple (simpleContent) or complex types (complexContent). El-
ements simply join simple/complex types with respective element names and,
similarly, attributes join simple types with attribute names. And, finally, groups
of elements and attributes enable one to globally mark selected schema frag-
ments and exploit them repeatedly in various parts using so-called references. In
general, basic constructs are present in almost all XSDs.

The set of advanced constructs involves type substitutability and substitu-
tion groups, identity constraints (unique, key, keyref) as well as related simple

3

Fig. 2. An example of an XSD of employees

4

data types (ID, IDREF, IDREFS) and assertions (assert, report). Type substi-
tutability and substitution groups enable one to change data types or allowed
location of elements. Identity constraints enable one to restrict allowed values of
elemets/attributes to unique/key values within a specified area and to specify
references to them. Similarly, assertions specify additional conditions that the
values of elements/attributes need to satisfy, i.e. they can be considered as an
extension of simple types.

The set of auxiliary constructs involves wildcards (any, anyAttribute), ex-
ternal schemas (include, import, redefine), notations (notation) and annota-
tions (annotation). Wildcards and external schemas combine data from various
XML schemas. Notations bear additional information for superior applications.
And annotations can be considered as a kind of advanced comments.

2.1 Relation to Automata and Grammars

An XML schema describing the allowed structure of XML documents is a context-
free grammar [3], i.e. a grammar where nonterminals can be rewritten without
regard to the context in which they occur.

Definition 1. A context-free grammar is quadruple G = (N,T, P, S), where
N and T are finite sets of nonterminals and terminals, P is a finite set of
productions and S is a non terminal called a start symbol. Each production is
of the form A → α, where A ∈ N and α is a regular expression over alphabet
(N ∪ T)∗.

The language generated by grammar G is denoted by L(G).

Definition 2. Given the alphabet Σ, a regular expression (RE) over Σ is in-
ductively defined as follows:

– ∅ (empty set) and ε (empty string) are REs.
– ∀a ∈ Σ : a is a RE.
– If r and s are REs of Σ, then (rs) (concatenation), (r|s) (alternation) and

(r∗) Kleene closure) are REs.

Note that the DTD language adds two abbreviations: (s|ε) = (s?) and
(ss∗) = (s+). Also the concatenation is expressed via the ‘,’ operator. The
XML Schema language adds (among other extensions) another one, so-called
unordered sequence of REs s1, s2, ..., sk, i.e. an alternation of all possible ordered
sequences of s1, s2, ..., sk.

A language specified by a grammar can be accepted by an automaton, in our
case a finite state automaton.

Definition 3. A finite state automaton (FSA) is quintuple A = (Q,Σ, δ, S, F),
where Q is a set of states, Σ is a set of input symbols (alphabet), δ : Q×Σ∗ → Q
is the transition function, S ∈ Q is the start state and F ⊆ Q is the set of final
states.

The language recognized by an automaton A is denoted by L(A).

Note that for each RE we can construct a FSA and vice versa.

5

3 Analysis of Existing Approaches

The studied problem can be described as follows: Being given a set of XML
documents ∆ = {D1, D2, ..., Dn} (i.e. words over an alphabet T), we search for
an XML schema S∆ (i.e. a grammar G∆) s.t. ∀i ∈ [1, n] : Di is valid against S∆

(i.e. ∆ ⊆ L(G∆)). In particular, we are searching for S∆ that is enough concise,
precise and, at the same time, general.

The existing solutions to the problem of automatic construction of an XML
schema can be classified according to several criteria. Probably the most inter-
esting one is the type of the result and the way it is constructed.

From the point of view of the result, we can distinguish methods which
output DTDs or XSDs. The problem is that some of the methods claim to
produce XSDs, but their expressive power is not beyond the expressive power
of DTD. Hence we distinguish only true XSD producing methods. Since most of
the DTD constructs are intended for specification of content models of elements,
the existing approaches focus mainly on them. Consequently, they often ignore
attributes, mixed content or special data types, such as ID, IDREF(S). In case
of XSD constructs the existing methods focus on simple data types, elements
having various contexts and “syntactic sugar” such as unordered sequences.

On the other hand, the types of the inference process can be divided into
heuristic and grammar-inferring. In the former case the result does not belong
to any class of grammar and, hence, we cannot say anything about its features. In
the latter case the algorithms output particular class of languages with specific
characteristics. Although grammars accepting XML documents are context-free,
the problem can be reduced to inferring of a set of REs, each for a single element.
But, since according to Gold’s theorem [14] regular languages are not identifiable
only from positive examples (i.e. sample XML documents which should conform
to the resulting schema), the existing methods need to exploit either heuristics
or restriction to an identifiable subclass of regular languages.

Most of the existing approaches use the following strategy: For each occur-
rence of element e ∈ ∆ and its subelements e1, e2, ..., ek we construct a produc-
tion e → e1 e2 ... ek. The left hand side is called element type, the right hand side
is called a content model of the element type. The productions form so-called
initial grammar. For each element type the productions are then merged, sim-
plified and generalized using various methods and criteria. A common approach
is so-called merging state algorithm, where a prefix tree automaton is built from
the productions of the same element type and the automaton is generalized via
merging of its states. Finally, the generalized grammar/automaton is expressed
in syntax of the respective XML schema language.

An example of an initial grammar and prefix tree automaton is depicted in
Figure 3.

3.1 Heuristic Approaches

Heuristic approaches are based on experience with manual construction of schemas.
Their results do not belong to any special class of grammars and they are based

6

Fig. 3. An example of an initial grammar and a prefix tree automaton for element
person

on generalization of the initial grammar using a set of predefined heuristic rules,
such as, e.g., “if there are more than three occurrences of an element, it is prob-
able that it can occur arbitrary times”. These techniques can be further divided
into methods which generalize the initial grammar until a satisfactory solution
is reached (e.g. [25, 30]) and methods which generate a number of candidates
and then choose the optimal one (e.g. [13]). While in the first case the meth-
ods are threatened by a wrong step which can cause generation of a suboptimal
schema, in the latter case they have to cope with space overhead and specifying
a reasonable function for evaluation of quality of the candidates.

GB-engine Probably the first true XML approach to automatic DTD inference
is system called grammar builder engine (GB-engine) [30]. In this particular
case it outputs SGML DTDs – a predecessor of XML DTDs. The approach is
relative simple and straightforward. Firstly, the initial grammar is created. Then
the productions with the same element type are combined using the alternation
into a common production:

A -> B

A -> C => A -> B | C | D E

A -> D E

In the next step, using a set of heuristic rules the content models of the
productions are simplified and generalized until any of the rules can be applied.
Apart from simple rules that solve trivial cases, the set involves rules dealing
with repetitions, identical bases, redundancy etc.:

A -> B B B B => A -> B+

7

A -> (B C)* | B? C? => A -> (B? C?)*

A -> B C | B C* => A -> B C*

Finally, the productions are rewritten into DTD syntax. Note that apart from
the content models, the system supports attributes, #PCDATA and mixed content.

DTD-miner DTD-miner [25] is one of the first approaches inferring an XML
DTD. It is very similar to the previous case, the key difference is in the repre-
sentation of the input XML documents and in the heuristic rules. Firstly, the
so-called spanning graph, i.e. an equivalent of well-known data guide [15], is built
for the input XML documents. Each node of the graph represents a unique el-
ement e ∈ ∆ and bears information on all its attributes and textual data. The
edges of the graph represent element-subelement relationships occurring in ∆
and their occurrence.

The set of rules involves optionality, repetition and grouping. Optionality
identifies elements that do not occur in all the input documents. Repetition
identifies adjacent elements that occur multiple times. And grouping rule identi-
fies repeating groups of adjacent elements. Finally, the generated DTD is refined
to gain less complex structures using further rules such as:

A?, B?, C? => A | B | C

A, B, C, D, A, D, B, C => (A | B | C | D)+

Note that while in the previous case the alternation was the first to be in-
volved in the result, in this case it is the last one.

XTRACT The XTRACT [13] system is a classical representative of a merging
state algorithm. It differs in two aspects: The approach produces a set of possible
solutions and selects the optimal one, i.e. it is able to evaluate quality of a schema
generalization. The possible solutions are created using heuristic generalization
rules for optionality, repetition and grouping similar to those proposed in DTD-
miner.

For the purpose of schema evaluation the authors exploit so-called minimum
description length (MDL) principle. It expresses the quality of a DTD candidate
using two aspects – conciseness and preciseness. Conciseness of a DTD is ex-
pressed using the number of bits required to describe the DTD (the smaller, the
better). Preciseness of a DTD is expressed using the number of bits required for
description of the input data using the DTD. In other words, the more accurately
the structure is described, the fewer bits are required. Since the two conditions
are contradictory, their balancing brings reasonable and realistic results.

sk-ANT The sk-ANT [35] method extends the previous approach in two aspects.
Firstly, the searching for the optimal solution is performed using the Ant Colony
Optimization (ACO) heuristics and a new merging method called sk-strings is
introduced.

The ACO heuristics is a kind of general heuristics that enables one to find a
suboptimal solution. A set of artificial “ants” B = {a1, a2, ..., al} search a space

8

S of possible solutions (i.e. DTD generalizations) trying to find the optimal
solution. The quality of a solution is evaluated using the MDL principle. In i-th
iteration each a ∈ B searches a subspace of S for a local suboptimum until it
“dies” after performing a predefined amount of steps. A step of an ant represents
an application of any of the merging criterions on the current DTD. While
searching, an ant a spreads a certain amount of “pheromone”, i.e. a positive
feedback which denotes how good solution it has found so far. This information
is exploited by ants from the following iterations to choose better search steps.

On the other hand, the sk-strings merging rule is based on a relaxed variant
of Nerode equivalence. Nerode equivalence assumes that two states p and q are
equivalent if sets of all paths leading from p and q to terminal state(s) in F are
equivalent. But as such condition is hardly checked, we can restrain to k-strings,
i.e. only paths of length of k or paths terminating in a terminal state. The
respective equivalence of states then depends on equivalence of sets of outgoing
k-strings. In addition, for easier processing we can consider only s most probable
paths, i.e. we can ignore singular special cases.

While the ACO heuristics enables one to avoid constructing multiple solu-
tions concurrently, the sk-string provides a better merging criterion.

ECFG The so far described approaches focus on inferring DTDs, in particular
respective content models. But, since the XML Schema language offers wider
range of constructs, there also appear heuristic approaches dealing with pure
XSD structures. Probably the first representative is proposed in paper [9].

The approach focuses on inference of content models consisting of complex
types, sequences and choices, simple data types and exact occurrence ranges.
Using an XSD formalism – so-called extended context-free grammars (ECFG) –
the authors extend a classical merging state algorithm with preserving the exact
ranges of occurrences and adding a step which infers simple data types. For this
purpose each set of values of an element/attribute is analyzed to identify the
minimal data type which contains all of them. Nevertheless, the authors focus
only on numeric data types (such as decimal, float, long, negativeInteger),
date, binary and string.

SchemaMiner The SchemaMiner system proposed in [34] is another representa-
tive of an inference approach that deals with true XSD constructs. It focusses on
inferring elements with the same name but different structure and unordered se-
quences. For this purpose the authors exploit ideas from the previously described
works, such as ACO heuristics, sk-strings, (k, h)-context [2] or MDL principle in
combination with exploitation of tree and graph similarity and clustering.

The elements with the same name but different content are supported only in
XSDs and their inference requires exploitation of more sophisticated approaches
than combining productions with the same element type. On the other hand,
although the unordered sequences are a classical example of XSD “syntactic
sugar”, their exploitation enables to define simple and, hence, realistic and usable
schemas.

9

3.2 Inference of a Grammar

Methods inferring a grammar exploit the theory of languages and grammars
and thus ensure a certain degree of quality of the result. They are based on the
idea that we can view an XML schema as a grammar and an XML document
valid against the schema as a word generated by the grammar. As we have men-
tioned, since the class of the regular languages is not identifiable from positive
examples, the grammar-inferring methods focus on its identifiable subclasses.
All the approaches are classical merging state algorithms, whereas the merging
criteria are mostly directly defined by the characteristics of the output class of
the language.

(k, h)-contextual languages Paper [2] is probably the first approach dealing with
inference of a particular class of XML languages. The approach is based on the
observation that if a sufficiently long sequence of terminals occurs in two places
in the examples, the components that follow are independent on the position of
the sequence within the document.

Definition 4. A regular language L is k-contextual, if there exists a finite au-
tomaton A s.t. L = L(A) and for any two states pk, qk of A and all input
symbols a1a2...ak: if there are two states p0, q0 of A s.t. δ(p0, a1a2...ak) = pk

and δ(q0, a1a2...ak) = qk, then pk = qk.

Definition 5. A regular language L is (k,h)-contextual, if there exists a finite
automaton A s.t. L = L(A) and for any two states pk, qk of A and all input sym-
bols a1a2...ak: if there are two states p0, q0 of A s.t. δ(p0, a1) = p1, δ(p1, a2) = p2,
..., δ(pk−1, ak) = pk and δ(q0, a1) = q1, δ(q1, a2) = q2, ..., δ(qk−1, ak) = qk, then
pi = qi for every i s.t. 0 6 h 6 i 6 k.

The k-contextual and (k, h)-contextual languages form two identifiable sub-
classes of regular languages which assume that the context of elements is limited.
The algorithm is a classical merging state approach starting with a prefix tree
automaton, but the merging is not made on the basis of heuristics, but on the
basis of the respective features of the languages. The merging criterion is based
on an assumption that two states pk and qk of the automaton are identical (i.e.
can be merged) if there exist identical paths of length k terminating in pk and
qk. In case of (k, h)-context, also h preceding states in these paths are then
identical. The resulting grammar is finally refined to acquire more realistic and
concise result.

f -distinguishable languages A different class of identifiable regular languages is
inferred in [12]. These are so-called f -distinguishable languages.

Definition 6. Let T be a set of terminals and F some finite set. A mapping
f : T ∗ → F is called a distinguishing function, if f(w) = f(z) implies f(wu) =
f(zu) for all u,w, z ∈ T ∗.

Language L ∈ T ∗ is called f-distinguishable if, for all u, v, w, z ∈ T ∗ with
f(w) = f(z), we have zu ∈ L ⇔ zv ∈ L whenever {wu, wv} ∈ L.

10

Being given a set of positive examples ∆ and the distinguishing function f ,
the authors propose a merging state algorithm that constructs an automaton A
accepting that smallest f -distinguishable language that contains ∆.

1-unambiguity An important aspect of XML schemas is so-called 1-unambiguity.
According to the W3C specification, all content models in an XML schema must
be 1-unambiguous (deterministic), i.e. they can be matched without looking
ahead. A simple example of an ambiguous (non-deterministic) content model is
(e1, e2)|(e1, e3), where while reading e1 we are not able to decide which of the
alternatives to choose unless we read the following element. Though this topic
is for some research groups controversial and there exist several studies dealing
with (un)necessity of this constraint [18], this condition still remains valid. On
the other hand, we can find XML parsers and validators that are able to process
also ambiguous content models.

Probably for the first time this problem has been faced in paper [21]. For
the purpose of preserving the 1-unambiguity, the authors restrict to so-called
single-occurrence property of all derived content models which ensures the 1-
unambiguity.

Definition 7. A single-occurrence regular expression (SORE) is a regular ex-
pression α over Σ s.t. each s ∈ Σ occurs at most once in α.

The authors propose a set of heuristic transformation rules that modify and
generalize the initial grammar so that the single-occurrence property is fulfilled
in the result. An extension of the proposed approach for XSDs involving simple
data types and attributes (which are not supported in the original method) has
recently been implemented in system XStruct [16].

SOREs and CHAREs The strategy of paper [5] – to define an identifiable class
of regular languages and respective inference algorithm – is similar to the previ-
ous ones, but the motivation is slightly different. The authors result from their
analysis of real-world XML data and XML schemas and define the classes so
that they cover most of the real-world examples. Hence, contrary to the previ-
ous works based purely on results of theory of languages, the usability of this
approach is undeniable.

The authors focus on two classes of identifiable REs to be inferred – the pre-
viously defined SOREs and new, so-called chain regular expressions (CHAREs).

Definition 8. A chain regular expression (CHARE) over Σ is a SORE over Σ
that consists of a sequence of factors f1f2...fn, where every factor is an expres-
sion of the form (a1|a2|...|ak), (a1|a2|...|ak)?, (a1|a2|...|ak)+ or (a1|a2|...|ak)∗,
where k > 1 and every ai ∈ Σ.

The motivation for focusing on CHAREs results from authors’ experience
with inferring DTDs for real-world XML data. They discover that for small data
sets the SOREs are too rich and inference of CHAREs provides more realistic
and concise results. Similarly to the previous cases, both the algorithms are
based on merging states of a prefix tree automaton using rules that ensure that
the result belongs to the required class.

11

k-local single-occurrence grammars Following their previous work [5], the authors
have recently focussed on features and properties of real-world XSDs [6]. Using
a similar strategy, they first discover a subclass of XSDs that is most common
in real-world XML data (occurs in 98% cases) and, at the same time, that can
be identified only from positive examples – so called k-local, single-occurrence
XSDs.

Definition 9. An XSD is k-local, if its content models depend only on labels
up to the k-th ancestor.

The authors then propose a theoretically complete merging state algorithm
called iXSD that enables one to infer k-local, single-occurrence XSDs.

4 Summary

The key characteristics of the described approaches are summed up in Tables 1
and 2.

Name Schema Key Advantages

GB-engine [30] SGML DTD First simple heuristic rules.

DTD-miner [25] DTD Spanning graph, heuristic rules for optionality,
repetition and grouping.

XTRACT [13] DTD Set of candidate solutions, MDL principle.

sk-ANT [35] DTD sk-string merging (based on Nerode equivalence),
ACO heuristics.

ECFG [9] XSD Precise occurrence ranges, simple data types.

SchemaMiner [34] XSD Unordered sequences, elements with the same
name, but different structure.

Table 1. Key characteristics of heuristic methods

Name Schema Key Advantages

[2] DTD k-contextual and (k, h)-contextual languages.

[12] DTD f -distinguishable languages.

[21] DTD 1-unambiguity.

[5] DTD Single-occurrence and chain REs, based on knowledge of
real-wold data.

[6] XSD k-local single-occurrence XSDs, based on knowledge of
real-wold data.

Table 2. Key characteristics of grammar-inferring methods

12

5 Open Issues

Although each of the existing approaches brings certain interesting ideas and
optimizations, there is still a space of possible future improvements. We describe
and discuss them in this section.

User Interaction In all the existing papers the approaches focus on automatic
inference of an XML schema. The problem is that the resulting schema may be
highly unnatural. Although e.g. the MDL principle evaluates the quality of the
schema using a realistic assumption that it should tightly represent the data
and, at the same time, be concise and compact, users’ preferences can be quite
different. (Note that this is not the same motivation as in case of papers [5, 6]
that focus on real-world DTDs and XSDs.) Hence, a natural improvement may
be exploitation of user interaction.

For instance, the user may influence the process of merging by proposing
preferred merging operations/target constructs, clustering similar elements etc.
Such approach will not only enable to find more concise result, but to find it more
efficiently as well. Some of the existing papers (e.g. [2]) mention the aspect of
user interaction, typically in the final step of refinement of the result, but there
seems to be no detailed study and, in particular, respective implementation.
And, naturally, this problem is closely related to a suitable user interface which
does not require complex operations and decisions.

Other Input Information In all the existing works the XML schema is inferred
on the basis of a set of positive examples, i.e. XML documents that should
conform to the inferred schema. As we have mentioned, the Gold’s theorem
highly restricts the existing solutions and, hence, the authors focus on heuristic
approaches or limit the methods to particular identifiable classes of languages.
But another natural solution to the problem is to exploit additional information,
such as XML schema or XML queries.

In the former case we can find the motivation in typical situation [24] when a
user creates an XML schema of XML documents but then modifies and updates
only the data, whereas the schema is considered as a kind of documentation.
Consequently, the schema does not describe the current structure of the data
anymore, however it can be used as a source of information because certain
matching can be still found. Note that a similar problem is being currently
solved in the area of schema evolution (e.g. [19]).

In case of exploitation of XML queries the motivation is similar though more
obvious. In general, the queries restrict only parts of the data structure (those
that should appear on output), however even this partial information can be
exploited for schema inference. Similarly to the previous case, a related problem
is being solved in the area of XML views (e.g. [29]).

In addition, there seems to be no approach that would exploit negative ex-
amples (i.e. XML documents that should not conform to the schema). In this
case we can find a real-world motivation again in the area of data evolution and
versioning.

13

XML Schema Simple Data Types One of the biggest advantages of the XML
Schema language in comparison to DTD is its wide support of simple data
types [7]. It involves 44 built-in data types such as, e.g., string, integer, date
etc., as well as user-defined data types derived from existing simple types using
simpleType construct. In enables one to derive new data types using restriction
of values of an existing type (e.g. a string value having length greater than two),
list of values of an existing type (e.g. list of integer values) or union of values of
existing data types (e.g. union of positive and negative integers).

Hence, a natural improvement of the existing approaches is a precise inference
of simple data types. Most of the existing approaches omit the simple data types
and consider all the values as strings. Two exceptions are proposed in [9,16], but
both the algorithms focus only on selected built-in data types.

Note that the necessity to infer simple data types is naturally closely related
to the purpose the schema is inferred for. Assuming that the resulting XML
schema is used within a kind of XML data editor, the inferring module should
propose also simple data types. On the other hand, if the inferred XML schema
is used as a solution for approaches based on existence of an XML schema, e.g.
schema-driven XML-to-relational mapping methods (e.g. [22, 31]), the simple
data types are of marginal importance and, thus, can be omitted.

XML Schema Advanced Constructs The second big advantage of the XML
Schema language are various complex constructs. The language exploits object-
oriented features, such as user-defined data types, inheritance, polymorphism,
i.e. substitutability of both data types and elements etc. Although most of these
constructs do not extend the expressive power of XML Schema in comparison to
DTD (i.e. they are a kind of “syntactic sugar”) [23], they enable one to specify
more user-friendly and, hence, realistic schemas. Naturally, their usage is closely
related to the previously described problem of user-interaction, since only the
user can specify which of the constructs are preferred.

Integrity Constraints Both DTD and XML Schema enable one to specify not
only the structure of the data, but also various semantic constraints. Both involve
ID and IDREF(S) data types that specify unique identifiers and references to
them. The XML Schema language extends this feature using unique, key and
keyref constructs that have the same purpose but enable one to specify the
unique/key values more precisely, i.e. for selected subsets of elements and/or
attributes and valid within a specified area. In addition, the assert and report
constructs enable one to express specific constraints on values using the XPath
language [10]. Unfortunately, none of the existing approaches focusses on any of
these constraints. In addition, there are also more general integrity constraints
[28] that could be inferred, though they cannot be expressed in the existing
schema specification languages so far. In general, their inference would extend
the optimization of approaches that analyze and exploit information on XML
data from XML schemas.

Currently there exist several works which focus on constraint inference [11,
32], but they focus on restricted cases of integrity constraints in special situ-

14

ations. There seems to exist no method that would combine schema inference
with a more general approach to inference of related integrity constraints.

Other Schema Definition Languages The DTD and XML Schema are naturally
not the only languages for definition of structure of XML data, though they
are undoubtedly the most popular ones. The obvious reason is that these two
have been proposed by the W3C, whereas DTD is even a part of specification of
XML. Nevertheless, there are also other relatively popular schema specification
languages. The most popular ones are RELAX NG [26] and Schematron [17]
which both have already become ISO standards.

The Relax NG has similar strategy as both XML Schema and DTD, i.e. it
describes the structure of XML documents using content models. Contrary to
XML Schema it has much simple syntax, whereas contrary to DTD is supports
a richer set of simple data types. On the other hand, the Schematron uses com-
pletely different strategy. It does not specify a grammar the XML documents
should conform to, but a set of conditions, i.e. integrity constraints, the docu-
ments must follow. The conditions are expressed using XPath. Hence, while the
inference of Relax NG schema can be based on inference of a DTD/XSD without
radical modifications, the approach to inference of Schematron constraints will
probably require a brand new method. On the other hand, it can be a natural
first step towards inferrence of general integrity constraints as described before.

Data Streams A special type of XML data that have only recently become
popular and, hence, the necessity for proposing respective processing approaches
is crucial are so-called XML data streams. In this particular application the
input data are so huge that they cannot be kept in a memory concurrently, they
cannot be read more than once or their processing cannot “wait” for the last
portion of the data. Hence the situation is much more complicated. All the XML
technologies are currently being accommodated to stream processing and it is
only a matter of time when respective efficient schema inference approach will
be required as well.

6 Conclusion

The XML schema of XML documents is currently exploited mainly for two
purposes – for data-exchange approaches as a description of the structure and
for optimization of various XML-related technologies. In the former case we
usually need the inferred schema as a candidate schema further improved by a
user using an appropriate editor. In the latter case the approaches exploit the
knowledge of the schema for optimization purposes such as finding the optimal
storage strategy [22,31] or improving the compression ratio [1]. In general, almost
any approach that deals with XML data can benefit from the knowledge of their
structure, i.e. XML schema. The only question is to what extent. And the first
step towards it are realistic and robust schema inference approaches.

The aim of this paper was to provide an analytical study of existing ap-
proaches to XML schema inference, as well as a discussion of remaining open

15

issues. We have showed that the basic aspects of the problem (such as inference of
REs) have successfully been solved. However, there still remain open issues and
unsolved problems to focus on. Among others we emphasize especially inference
of XML Schema constructs and integrity constraints.

This text should serve as a good starting point for readers searching for an
existing solution to their inference problem, as well as those searching for an
interesting and practical research topic.

Acknowledgement

This work was supported in part by the National Programme of Research (In-
formation Society Project 1ET100300419).

References

1. XML-Xpress: High-Performance Schema-Specific Compression for XML Data For-
mats. ICT – Intelligent Compression Technologies, Inc., 2000. http://www.

ictcompress.com/products_xmlxpress.html.
2. H. Ahonen. Generating Grammars for Structured Documents Using Grammatical

Inference Methods. Report A-1996-4, Dept. of Computer Science, University of
Helsinki, 1996.

3. J. Berstel and L. Boasson. XML Grammars. In Mathematical Foundations of
Computer Science, LNCS, pages 182–191. Springer, 2000.

4. G. J. Bex, F. Neven, and J. Van den Bussche. DTDs versus XML Schema: a
Practical Study. In WebDB’04: Proc. of the 7th Int. Workshop on the Web and
Databases, pages 79–84, New York, NY, USA, 2004. ACM.

5. G. J. Bex, F. Neven, T. Schwentick, and K. Tuyls. Inference of Concise DTDs from
XML Data. In VLDB’06: Proc. of the 32nd Int. Conf. on Very large data bases,
pages 115–126. VLDB Endowment, 2006.

6. G. J. Bex, F. Neven, and S. Vansummeren. Inferring XML Schema Definitions
from XML Data. In VLDB’07: Proc. of the 33rd Int. Conf. on Very Large Data
Bases, pages 998–1009, Vienna, Austria, 2007. ACM.

7. P. V. Biron and A. Malhotra. XML Schema Part 2: Datatypes (Second Edition).
W3C, 2004. http://www.w3.org/TR/xmlschema-2/.

8. T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensible
Markup Language (XML) 1.0 (Fourth Edition). W3C, 2006.

9. B. Chidlovskii. Schema Extraction from XML Collections. In JCDL’02: Proc. of
the 2nd ACM/IEEE-CS Joint Conf. on Digital libraries, pages 291–292, New York,
NY, USA, 2002. ACM.

10. J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0. W3C, Novem-
ber 1999. http://www.w3.org/TR/xpath.

11. F. Fassetti and B. Fazzinga. FOX: Inference of Approximate Functional Dependen-
cies from XML Data. In DEXA’07: Proc. of the 18th Int. Conf. on Database and
Expert Systems Applications, pages 10–14, Washington, DC, USA, 2007. IEEE.

12. H. Fernau. Learning XML Grammars. In MLDM’01: Proc. of the 2nd Int. Work-
shop on Machine Learning and Data Mining in Pattern Recognition, pages 73–87,
London, UK, 2001. Springer.

16

13. M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and K. Shim. XTRACT: a
System for Extracting Document Type Descriptors from XML Documents. In
SIGMOD’00: Proc. of the 2000 ACM SIGMOD Int. Conf. on Management of
Data, pages 165–176, New York, NY, USA, 2000. ACM.

14. E. M. Gold. Language Identification in the Limit. Information and Control,
10(5):447–474, 1967.

15. R. Goldman and J. Widom. DataGuides: Enabling Query Formulation and Opti-
mization in Semistructured Databases. In VLDB’97: Proc. of the 23rd Int. Conf.
on Very Large Data Bases, pages 436–445, San Francisco, CA, USA, 1997. Morgan
Kaufmann.

16. J. Hegewald, F. Naumann, and M. Weis. XStruct: Efficient Schema Extraction
from Multiple and Large XML Documents. In Proc. of the 22nd Int. Conf. on
Data Engineering, Workshops, page 81, Atlanta, GA, USA, 2006. IEEE.

17. R. Jelliffe. The Schematron – An XML Structure Validation Language using Pat-
terns in Trees. 2001. http://xml.ascc.net/resource/schematron/.

18. M. Mani. Keeping Chess Alive: Do We Need 1-Unambiguous Content Models? talk
given at Extreme Markup Languages, Montreal, Canada, 2001.

19. M. Mesiti, R. Celle, M. A. Sorrenti, and G. Guerrini. X-Evolution: A System for
XML Schema Evolution and Document Adaptation. In EDBT’06: Proc. of the 10th
Int. Conf. on Extending Database Technology, LNCS, pages 1143–1146. Springer,
2006.

20. L. Mignet, D. Barbosa, and P. Veltri. The XML Web: a First Study. In WWW’03:
Proc. of the 12th Int. Conf. on World Wide Web, Volume 2, pages 500–510, New
York, NY, USA, 2003. ACM.

21. J.-K. Min, J.-Y. Ahn, and C.-W. Chung. Efficient extraction of schemas for XML
documents. Inf. Process. Lett., 85(1):7–12, 2003.

22. I. Mlynkova. A Journey towards More Efficient Processing of XML Data in
(O)RDBMS. In CIT’07: Proc. of the 7th IEEE Int. Conf. on Computer and In-
formation Technology, pages 23–28, Fukushima, Japan, 2007. IEEE.

23. I. Mlynkova. Similarity of XML Schema Definitions. In DocEng’08: Proc. of the
8th ACM Symposium on Document Engineering, Sao Paulo, Brazil, 2008. ACM.

24. I. Mlynkova, K. Toman, and J. Pokorny. Statistical Analysis of Real XML Data
Collections. In COMAD’06: Proc. of the 13th Int. Conf. on Management of Data,
pages 20–31, New Delhi, India, 2006. Tata McGraw-Hill.

25. C.-H. Moh, E.-P. Lim, and W.-K. Ng. Re-engineering Structures from Web Doc-
uments. In DL’00: Proc. of the 5th ACM Conf. on Digital Libraries, pages 67–76,
New York, NY, USA, 2000. ACM.

26. M. Murata. RELAX (Regular Language Description for XML). 2002. http:

//www.xml.gr.jp/relax/.
27. M. Murata, D. Lee, and M. Mani. Taxonomy of XML Schema Languages Using

Formal Language Theory. ACM Trans. Inter. Tech., 5(4):660–704, 2005.
28. K. Opocenska and M. Kopecky. Incox – a Language for XML Integrity Constraints

Description. In DATESO’08, pages 1–12. CEUR-WS.org, 2008.
29. Y. Papakonstantinou and V. Vianu. DTD Inference for Views of XML Data. In

PODS’00: Proc. of the 19th ACM SIGMOD-SIGACT-SIGART Symp. on Princi-
ples of Database Systems, pages 35–46, New York, NY, USA, 2000. ACM.

30. K. E. Shafer. Creating DTDs via the GB-Engine and Fred. In SGML’95: Conf.
Proc., page 399. Graphic Communications Association, 1995.

31. J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt, and J. F.
Naughton. Relational Databases for Querying XML Documents: Limitations and

17

Opportunities. In VLDB’99: Proc. of the 25th Int. Conf. on Very Large Data
Bases, pages 302–314, San Francisco, CA, USA, 1999. Morgan Kaufmann.

32. H. Shiu, J. Fong, and R. P. Biuk-Aghai. Reverse Engineering XML Documents
Into DTD Graph With SAX. WSEAS Transactions on Computers, 5(6):1236–1241,
2006.

33. H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema Part 1:
Structures (Second Edition). W3C, 2004. http://www.w3.org/TR/xmlschema-1/.

34. O. Vosta, I. Mlynkova, and J. Pokorny. Even an Ant Can Create an XSD. In
DASFAA’08: Proc. of the 13th Int. Conf. on Database Systems for Advance Ap-
plications, LNCS, pages 35–50. Springer, 2008.

35. R. K. Wong and J. Sankey. On Structural Inference for XML Data. Technical
Report UNSW-CSE-TR-0313, School of Computer Science, The University of New
South Wales, 2003.

18

