
Similarity of XML Schema Definitions

Irena Mlýnková
Department of Software Engineering, Charles University in Prague, Czech Republic

irena.mlynkova@mff.cuni.cz

ABSTRACT
In this paper we propose a technique for evaluating simi-
larity of XML Schema fragments. Firstly, we define classes
of structurally and semantically equivalent XSD constructs.
Then we propose a similarity measure that is based on the
idea of edit distance utilized to XSD constructs and enables
one to involve various additional similarity aspects. In par-
ticular, we exploit the equivalence classes and semantic sim-
ilarity of element/attribute names. Using experiments we
show the behavior and advantages of the proposal.

Categories and Subject Descriptors
I.7.1 [Document and Text Processing]: Document and
Text Editing – languages, document management

General Terms
Measurement, Algorithms

Keywords
XML Schema, similarity, equivalence of XSD constructs.

1. INTRODUCTION
The eXtensible Markup Language (XML) [2] has become

a standard for data representation and, thus, it appears in
most of areas of information technologies. A possible opti-
mization of XML-based methods can be found in exploita-
tion of similarity of XML data. In this paper we focus on
similarity of XML schemas that can be viewed from two per-
spectives. We can deal with either quantitative or qualitative
similarity. In the former case we are interested in the degree
of difference of the schemas, in the latter one we also want
to know how the schemas relate, e.g. which of the schemas
is more general. In this paper we deal with quantitative
measure that is the key aspect of schema mapping [4, 5], i.e.
searching for (sub)schemas that describe the same reality.

In this area the key emphasis is currently put on the se-
mantic similarity of element/attribute names reflecting the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DocEng’08, September 16–19, 2008, San Paulo, Brazil.
Copyright 2008 ACM 978-1-60558-081-4/08/09 ...$5.00.

requirements of corresponding applications. And if the ap-
proaches consider schema structure, they usually analyze
only simple aspects such as, e.g., leaf nodes or child nodes.
In addition, most of the approaches deal with XML schemas
expressed in simple DTD language [2].

In this paper we focus on similarity of XML schema frag-
ments in XML Schema language [9, 1]. In particular, we
cover key XML Schema constructs and we deal with their
structural and semantic equivalence. We propose a similar-
ity measure that is based on the idea of edit distance uti-
lized to XSD1 constructs and enables one to involve various
additional similarity aspects. In particular, we exploit the
equivalence classes of XML constructs and semantic similar-
ity of element/attribute names. Using experiments we show
the behavior and advantages of the proposed approach.

2. EQUIVALENCE OF XSD CONSTRUCTS
The XML Schema language contains plenty of “syntactic

sugar”, i.e. constructs that enable one to generate XSDs
that have different structure but are structurally equivalent.

Definition 1. Let Sx and Sy be two XSD fragments. Let
I(S) = {D s.t. D is an XML document fragment valid
against S}. Then Sx and Sy are structurally equivalent,
Sx ∼ Sy, if I(Sx) = I(Sy).

Consequently, having a set X of all XSD constructs, we
can specify the quotient set X/ ∼ of X by ∼ and respective
equivalence classes – see Table 1.

As depicted in Figure 1, for instance classes CST specify
that there is no difference if a simple type is defined locally
or globally, whereas class CSeq expresses the equivalence be-
tween an unordered sequence of elements e1, e2, ..., el and a
choice of its all possible ordered permutations.

Apart from XSD constructs that restrict the allowed struc-
ture of XML data, we can find also constructs that express
various semantic constraints. They involve identity con-
strains and simple data types ID and IDREF(S). (Note that
ID, IDREF(S) can be expressed using key and keyref.) The
idea of semantic similarity is based on the following obser-
vation: A keyref construct refers to a particular part of the
XSD – e.g. having an XSD containing a list of books and a
list of authors, each author can refer to his best book. And
this situation described in a semantically equivalent manner
occurs when the referenced fragment, i.e. the element de-
scribing the best book, is directly present within author ele-
ment. Hence, these constructs enable one to generate XSDs
that have different structure but are semantically equivalent.
1XML Schema Definition

Table 1: XSD equivalence classes of X/ ∼
Class Constructs Canonical representative
CST globally defined simple type, locally defined simple type locally defined simple type
CCT globally defined complex type, locally defined complex type locally defined complex type
CEl referenced element, locally defined element locally defined element
CAt referenced attribute, locally defined attribute, attribute referenced via an attribute

group
locally defined attribute

CElGr content model referenced via an element group, locally defined content model locally defined content model
CSeq unordered sequence of elements e1, e2, ..., el, choice of all possible ordered sequences

of e1, e2, ..., el

choice of all possible ordered
sequences of e1, e2, ..., el

CCTDer derived complex type, newly defined complex type newly defined complex type
CSubSk elements in a substitution group G, choice of elements in G choice of elements in G
CSub data types M1, M2, ..., Mk derived from type M , choice of content models defined in

M1, M2, ..., Mk, M
choice of content models de-
fined in M1, M2, ..., Mk, M

Figure 1: Examples for classes CST and CSeq

Definition 2. Let Sx and Sy be two XSD fragments.
Then Sx and Sy are semantically equivalent, Sx ≈ Sy, if
they abstract the same reality.

Having a set X of all XSD constructs, we can specify the
quotient set X/ ≈ of X by ≈ and respective equivalence
classes – see Table 2. Classes C′IdRef and C′KeyRef express
the fact that both IDREF(S) and keyref constructs, i.e. ref-
erences to schema fragments, are semantically equivalent to
the situation when we directly copy the referenced schema
fragments to the referencing positions. An example of the
equivalent schemas is depicted in Figure 2.

Figure 2: Example for class C′IdRef

Since every key/keyref constraint must contain one ref-
erence (selector) to a set of elements and at least one ref-
erence (field) to their subelements (descendants) and/or
attributes expressed in the following grammar [9, 1]:

Selector := PathS (’|’ PathS)*
Field := PathF (’|’ PathF)*
PathS := (’.//’)? Step (’/’ Step)*

PathF := (’.//’)? (Step ’/’)* (Step | ’@’ NameTest)
Step := ’.’ | NameTest
NameTest := QName | ’*’ | NCName ’:’ ’*’

the referenced fragments can be always easily copied to par-
ticular positions.

Naturally, each of the previously defined classes of ∼ or
≈ equivalence can be represented using a selected canonical
representative as listed in Tables 1 and 2. (Not that each of
the constructs not mentioned in Table 1 or 2 forms a single
class C1, C2, ..., Cn or C′1, C

′
2, ..., C

′
m.)

3. SIMILARITY EVALUATION
The proposed algorithm is based mainly on the work pre-

sented in [7] which focuses on expressing similarity of XML
documents using tree edit distance. The algorithm intro-
duces two new edit operations InsertTree and DeleteTree
which allow manipulating more complex structures than only
a single node. But, repeated structures can be found in an
XSD as well, if it contains shared fragments or recursive
elements. In addition, we will concern both semantic equiv-
alence of XSD fragments as well as semantic similarity of
element/attribute names.

Firstly, the input XSDs Sx and Sy are parsed and their
tree representations are constructed. Next, costs for tree
inserting and tree deleting are computed. And in the final
step we compute the resulting edit distance.

3.1 XSD Tree Construction
The key operation of our approach is tree representation

of the given XSDs. However, since the structure of an XSD
can be quite complex, we normalize and simplify it initially.

Firstly, we normalize the given XSDs using the equiva-
lence classes. In the first step we exploit structural equiva-
lence ∼ and we iteratively replace each non-canonical con-
struct (naturally except for the root element) with the re-
spective canonical representative until there can be found
any. At the same time, for each XSD construct v of the
schema we keep the set veq∼ of classes it originally belonged
to. In the second step we exploit semantic equivalence ≈
and we again replace each non-canonical construct with its
canonical representative and we construct sets veq≈ . Now
the resulting schema involves elements, attributes, operators
choice and sequence, intervals of allowed occurrences, sim-
ple types and assertions. There are also no shared schema
fragments.2

2We will omit the solution for recursive elements for the pa-
per length, assuming that the input XSDs are non-recursive.

Table 2: XSD equivalence classes of X/ ≈
Class Constructs Canonical representative
C′IdRef locally defined schema fragment, schema fragment referenced via IDREF attribute locally defined schema fragment

C′KeyRef locally defined schema fragment, schema fragment referenced via keyref element locally defined schema fragment

Next we simplify the remaining content models. For this
purpose we use a subset of rules for DTD constructs from
[8] as depicted in Figure 3.

I.a) (e1|e2)∗ → e∗1, e∗2 II.a) e++
1 → e+

1 II.b) e∗∗1 → e∗1
I.b) (e1, e2)∗ → e∗1, e∗2 II.c) e∗1? → e∗1 II.d) e1?∗ → e∗1
I.c) (e1, e2)? → e1?, e2? II.e) e+∗

1 → e∗1 II.f) e∗+1 → e∗1
I.d) (e1, e2)+ → e+

1 , e+
2 II.g) e1?+ → e∗1 II.h) e+

1 ? → e∗1
I.e) (e1|e2) → e1?, e2? II.i) e1?? → e1?

Figure 3: Flattening and simplification rules

The rules enable one to convert all element definitions so
that each cardinality constraint operator is connected to a
single element. The second purpose is to avoid usage of
choice construct. Note that some of the rules do not pro-
duce equivalent XML schemes and cause a kind of informa-
tion loss. But this aspect is common for all existing XML
schema similarity measures – it seems that the full generality
of the regular expressions cannot be captured easily.

Now, having a normalized and simplified XSD, its tree
representation is defined as follows:

Definition 3. An XSD tree is an ordered tree T = (V, E),
where

1. V is a set of nodes of the form v = (vType, vName,
vCardinality, veq∼ , veq≈), where vType is the type of a
node (i.e. attribute, element or particular simple data
type), vName is the name of an element or an attribute,
vCardinality is the interval [vlow, vup] of allowed occur-
rence of v, veq∼ is the set of classes of ∼ v belongs to
and veq≈ is the set of classes of ≈ v belongs to,

2. E ⊆ V × V is a set of edges representing relationships
between elements and their attributes or subelements.

3.2 Tree Edit Operations
Having the above described tree representation of an XSD,

we can now easily utilize the tree edit algorithm proposed
in [7]. For a given tree T with a root node r of degree t and
its first-level subtrees T1, T2, ..., Tt, the tree edit operations
involve substitution of r with node rnew (operation Substi-
tute), inserting node x with degree 0 among T1, T2, ..., Tt at
position i (Insert), deleting a leaf node Ti (Delete), insert-
ing tree Tx among T1, T2, ..., Tt at position i (InsertTree) and
deleting tree Ti (DeleteTree).

Transformation of a source tree Tx to a destination tree Ty

can be done using a number of sequences of the operations.
But, we can only deal with so-called allowable sequences,
i.e. the relevant ones. For the purpose of our approach we
only need to modify the original definition as follows:

Definition 4. A sequence of edit operations transform-
ing a source tree Tx to a destination tree Ty is allowable if
it satisfies the following two conditions:

1. A tree T may be inserted only if tree similar to T al-
ready occurs in Tx. A tree T may be deleted only if
tree similar to T occurs in Ty.

2. A tree that has been inserted via the InsertTree oper-
ation may not subsequently have additional nodes in-
serted. A tree that has been deleted via the DeleteTree
operation may not previously have had nodes deleted.

While the original definition requires exactly the same
trees, we relax the requirement only to similar ones.

3.3 Edit Distance
Inserting (deleting) a subtree Ti can be done with a single

operation InsertTree (DeleteTree) or with a combination of
InsertTree (DeleteTree) and Insert (Delete) operations. To
find the optimal variant we adopt the algorithm from pa-
per [7]; we only relax the conditions for exact matching of
elements/attributes to their similarity. To determine the re-
sulting edit distance, the algorithm uses pre-computed cost
for inserting each Ti, CostGraft(Ti) and deleting each tree
Ti, CostPrune(Ti). We omit the exact algorithm for space
limitations referring an interested reader to the original pa-
per and we describe only the similarity measure.

Similarity of Elements/Attributes.
Since the structural similarity is solved via the edit dis-

tance, we focus on semantic and syntactic similarity, cardina-
lity-constraint similarity, similarity of equivalence classes and
similarity of simple data types.

Semantic similarity of element/attribute names is a score
that reflects the semantic relation between the meanings of
two words. We exploit procedure described in [5] which de-
termines ontology similarity between two words vName and
v′Name by comparing vName with synonyms of v′Name.

Syntactic similarity of element/attribute names is deter-
mined by computing the edit distance between vName and
v′Name. For our purpose the classical Levenshtein algorithm
[6] is used that determines the edit distance of two strings
using inserting, deleting or replacing single characters.

Similarity of cardinality constraints is determined by simi-
larity of intervals vCardinality = [vlow, vup] and v′Cardinality =
[v′low, v′up]. It is defined as follows:

CardSim(v, v′)
= 0 ; (vup < v′low) ∨ (v′up < vlow)
= 1 ; vup, v′up = ∞∧ vlow = v′low
= 0.9 ; vup, v′up = ∞∧ vlow 6= v′low
= 0.6 ; vup = ∞∨ v′up = ∞
=

min(vup,v′up)−max(vlow,v′low)

max(vup,v′up)−min(vlow,v′
low

)
; otherwise

Structural/semantic similarity of schema fragments rooted
at v and v′ is determined by the similarity of sets veq∼ , v′eq∼
and veq≈ , v′eq≈ . It is defined as follows:

StrFragSim(v, v′) = 1 ; veq∼ , v′eq∼ = ∅
=

|veq∼∩v′eq∼ |
|veq∼∪v′eq∼ |

; otherwise

SemFragSim(v, v′) = 1 ; veq≈ , v′eq≈ = ∅
=

|veq≈∩v′eq≈ |
|veq≈∪v′eq≈ |

; otherwise

And, finally, similarity of data types vType and v′Type is
specified by type compatibility matrix that determines sim-
ilarity of distinct simple types. For instance, similarity of
string and normalizedString is 0.9, whereas similarity of
string and positiveInteger is 0.5. The table also involves
similarity of restrictions of simple types, similarity between
element and attribute nodes etc. (We omit the whole table
for the paper length.)

The overall similarity, Sim(v, v′) of nodes v and v′ is com-
puted as follows:

Sim(v, v′)
= Max(SemanticSim(v, v′), SyntacticSim(v, v′))× α1

+ CardSim(v, v′)× α2

+ StrFragSim(v, v′)× α3

+ SemFragSim(v, v′)× α4

+ DataTypeSim(v, v′)× α5

where
∑5

i=1 αi = 1 and ∀i : αi > 0.

4. EXPERIMENTS
For the purpose of experimental evaluation of the proposal

we have created three synthetic XSDs that are from various
points of view more or less similar. XSD I and II differ
within classes of ∼ equivalence, XSD III differs in more as-
pects, such as, e.g., simple types, allowed occurrences, glob-
ally/locally defined data types, element/attribute names, at-
tributes vs elements with simple types etc. Results of all the
tests are depicted in Table 3.

Table 3: Similarity of XSDs I, II and III
Test I × II II × III III × I
A α3 = α4 = 0 1.00 0.82 0.82
B α4 = 0, α3 6= 0 0.89 0.70 0.66
C α3 = 0, α4 6= 0 1.00 0.80 0.80
D A without SemanticSim 1.00 0.33 0.33
E B without SemanticSim 0.89 0.255 0.24

In Test A we set α3 = α4 = 0, i.e. we ignore the informa-
tion on original constructs of XML Schema. As we can see,
the similarity of XSD I and XSD II is 1.0, because they are
represented using identical XSD trees. Similarity between
XSD I vs XSD III and XSD II vs XSD III are for the same
reason equivalent, though naturally lower.

If we set α3 6= 0 in Test B (according to our experiments
it should be > 0.2 to influence the algorithm), the resulting
similarity is influenced by the difference between the used
XML Schema constructs. As we can see, the results are
more precise – the similarity of XSD I and II is naturally
6= 1.0 and similarity of XSD II and III is higher than of XSD
III and I due to the respective higher structural similarity
of constructs.

On the other hand, if we set α4 6= 0 and α3 = 0 in Test C,
i.e. we are interested in semantic similarity of schema frag-
ments, the results have the same trend as results in Test A,
because we again omit structural similarity of XML Schema
constructs, but in this case the semantic similarity of schema
fragments called relationships (occurring in XSD I and II)
and connections (occurring in XSD III) specifies the result
more precisely.

Finally, in Test D and E we focus on the most time con-
suming operation of the approach which determines the over-
all complexity of the algorithm – searching the thesaurus in

operation SemanticSim. If we consider the first situation,
i.e. when α3 = α4 = 0, it influences similarity with XSD
III, whereas similarity of XSD I and II remains the same be-
cause the respective element/attribute names are the same.
The results in case α4 = 0 are depicted in Test E. As we can
see, the similarity of XSD I and II remains the same again,
whereas the other values are much lower.

In general, the experiments show that various parameters
of the similarity measure can highly influence the results.
On the other hand, we cannot simply analyze all possible
aspects, since some applications may not be interested, e.g.,
in semantic similarity of used element/attribute names or
the “syntactic sugar”XML Schema involves. Consequently,
a reasonable approach should enable one to exploit various
aspects as well as temporarily omit the irrelevant ones.

5. FUTURE WORK
In our future work we will naturally focus on further im-

provements of our approach. We will deal with other edit
operations (e.g. moving a node [3] or adding/deleting a non-
leaf node), improvements of efficiency of supplemental algo-
rithms, especially the semantic similarity, and on problems
related to reasonable setting of involved weights. We will
also deal with more elaborate experimental testing that will
involve implementation of a simulator that would provide
distinct XSDs.

6. ACKNOWLEDGEMENT
This work was supported by the National Programme of

Research (Information Society Project 1ET100300419).

7. REFERENCES
[1] P. V. Biron and A. Malhotra. XML Schema Part 2:

Datatypes (Second Edition). W3C, 2004.

[2] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler,
and F. Yergeau. Extensible Markup Language (XML)
1.0 (Fourth Edition). W3C, 2006.

[3] G. Cobena, S. Abiteboul, and A. Marian. Detecting
Changes in XML Documents. In ICDE’02, pages 41–52.
IEEE, 2002.

[4] H. H. Do and E. Rahm. COMA – A System for
Flexible Combination of Schema Matching Approaches.
In VLDB’02, pages 610–621. Morgan Kaufmann, 2002.

[5] M. L. Lee, L. H. Yang, W. Hsu, and X. Yang. XClust:
Clustering XML Schemas for Effective Integration. In
CIKM’02, pages 292–299. ACM Press, 2002.

[6] V. I. Levenshtein. Binary Codes Capable of Correcting
Deletions, Insertions and Reversals. Soviet Physics
Doklady, 10:707, 1966.

[7] A. Nierman and H. V. Jagadish. Evaluating Structural
Similarity in XML Documents. In WebDB’02, pages
61–66, 2002.

[8] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He,
D. J. DeWitt, and J. F. Naughton. Relational
Databases for Querying XML Documents: Limitations
and Opportunities. In VLDB’99, pages 302–314.
Morgan Kaufmann, 1999.

[9] H. S. Thompson, D. Beech, M. Maloney, and
N. Mendelsohn. XML Schema Part 1: Structures
(Second Edition). W3C, 2004.

