
Even an Ant Can Create an XSD?

Ondřej Vošta, Irena Mlýnková, and Jaroslav Pokorný

Charles University, Faculty of Mathematics and Physics,
Department of Software Engineering,

Malostranské nám. 25, 118 00 Prague 1, Czech Republic
ondra.vosta@centrum.cz,irena.mlynkova@mff.cuni.cz,

jaroslav.pokorny@mff.cuni.cz

Abstract. The XML has undoubtedly become a standard for data rep-
resentation and manipulation. But most of XML documents are still
created without the respective description of its structure, i.e. an XML
schema. Hence, in this paper we focus on the problem of automatic in-
ferring of an XML schema for a given sample set of XML documents.
In particular, we focus on new features of XML Schema language and
we propose an algorithm which is an improvement of a combination of
verified approaches that is, at the same time, enough general and can be
further enhanced. Using a set of experiments we illustrate the behavior
of the algorithm on both real-world and artificial XML data.

1 Introduction

Without any doubt the XML [17] is currently a de-facto standard for data repre-
sentation. Its popularity is given by the fact that it is well-defined, easy-to-use,
and, at the same time, enough powerful. To enable users to specify own allowed
structure of XML documents, so-called XML schema, the W3C1 has proposed
two languages – DTD [17] and XML Schema [16,32]. The former one is directly
part of XML specification and due to its simplicity it is one of the most pop-
ular formats for schema specification. The latter language was proposed later,
in reaction to the lack of constructs of DTD. The key emphasis is put on sim-
ple types, object-oriented features (such as user-defined data types, inheritance,
substitutability, etc.), and reusability of parts of a schema or whole schemes.
On the other hand, statistical analyses of real-world XML data show that a
significant portion of real XML documents (52% [26] of randomly crawled or
7.4% [27] of semi-automatically collected2) still have no schema at all. What is
more, XML Schema definitions (XSDs) are used even less (only for 0.09% [26] of
randomly crawled or 38% [27] of semi-automatically collected XML documents)
and even if they are used, they often (in 85% of cases [14]) define so-called local
tree grammars [29], i.e. languages that can be defined using DTD as well.

? This work was supported in part by Czech Science Foundation (GAČR), grant num-
ber 201/06/0756.

1 http://www.w3.org/
2 Data collected with the interference of a human operator.

In reaction to this situation a new research area of automatic construction of
an XML schema has opened. The key aim is to create an XML schema for the
given sample set of XML documents that is neither too general, nor too restric-
tive. It means that the set of document instances of the inferred schema is not
too broad in comparison with the provided set of sample data but, also, it is not
equivalent to the sample set. Currently there are several proposals of respective
algorithms (see Section 2), but there is still a space for further improvements.
Primarily, almost all of the existing approaches focus on construction of regular
expressions of DTD (though sometimes expressed in XML Schema language)
which are relatively simple. Hence, our key aim is to focus on new constructs
of XML Schema language, such as, e.g., unordered sequences of elements or
elements having the same name but different structure, that enable to create
more realistic schemes. For this purpose we propose an algorithm which is an
improvement of a combination of verified approaches that is, at the same time,
enough general and can be easily further enhanced. Such algorithm will enable
to increase popularity and exploitation of XML Schema which fails especially in
complexity of schema definition. Having an automatic generator of XSDs, a user
is not forced to specify the whole schema manually, since the inferred one can
serve, at least, as a good initial draft and thus eases the definition.

The paper is structured as follows: Section 2 overviews existing works fo-
cussing on automatic construction of XML schemes. Section 3 introduces the
proposed algorithm in detail and Section 4 discusses the results of experimental
testing. Finally, Section 5 provides conclusions and outlines possible future work.

2 Related Work

The existing solutions to the problem of automatic construction of an XML
schema can be classified according to several criteria. Probably the most inter-
esting one is the type of the result and the way it is constructed, where we can
distinguish heuristic methods and methods based on inferring of a grammar.

Heuristic approaches [21, 28, 33] are based on experience with manual con-
struction of schemes. Their results do not belong to any class of grammars and
they are based on generalization of a trivial schema (similar to the classical
dataguide [23]) using a set of predefined heuristic rules, such as, e.g., “if there
are more than three occurrences of an element, it is probable that it can occur
arbitrary times”. These techniques can be further divided into methods which
generalize the trivial schema until a satisfactory solution is reached [28, 33] and
methods which generate a huge number of candidates and then choose the best
one [21]. While in the first case the methods are threatened by a wrong step which
can cause generation of a suboptimal schema, in the latter case they have to cope
with space overhead and specify a reasonable function for evaluation quality of
the candidates. A special type of heuristic methods are so-called merging state
algorithms [33]. They are based on the idea of searching a space of all possi-
ble generalizations, i.e. XML schemes, of the given XML documents represented
using a prefix tree automaton. By merging its states they construct the opti-

mal solution. In fact, since the space is theoretically infinite, only a reasonable
subspace of possible solutions is searched using various heuristics.

On the other hand, methods based on inferring of a grammar [11, 19] are
based on theory of languages and grammars and thus ensure a certain degree
of quality of the result. They are based on the idea that we can view an XML
schema as a grammar and an XML document valid against the schema as a word
generated by the grammar. Although grammars accepting XML documents are
in general context-free [13], the problem can be reduced to inferring of a set
of regular expressions, each for a single element (and its subelements). But,
since according to Gold’s theorem [22] regular languages are not identifiable
only from positive examples (i.e. sample XML documents which should conform
to the resulting schema), the existing methods exploit various other information
such as, e.g., predefined maximum number of nodes of the target automaton
representing the schema, user interaction specifying (in)correctness of a partial
result, restriction to an identifiable subclass of regular languages, etc.

Finally, let us mention that probably the first approach which focuses directly
on true XML Schema constructs has only recently been published in [15]. The
authors focus on the importance of context of elements for inferring of XSDs.
They define a subclass of XSDs which can be learned from positive examples
and focus especially on constructs which are used in real-world XML schemes.

3 Proposed Algorithm

As we have mentioned, almost all the described papers focus on constructs of
DTD which are quite restricted. All the elements are defined on the same level
thus it is impossible to define two elements having the same name but dif-
ferent structure. But this requirement can have quite reasonable usage due to
homonymy of element names. For instance, we can have an XSD of a library
where each book as well as author have name. In the former case it can be only
a simple string, while in the latter case the name of a human can consist of a
couple of elements each having its own semantics – see Fig. 1.

Fig. 1. Elements with the same name but different structure

Another interesting XSD feature is element all, i.e. unordered sequence of
subelements, which allows to use an arbitrary permutation of the specified el-
ements in respective document instances. This operator does not increase the

expressive power of DTD operators, but it significantly simplifies the notation
of used regular expressions, in particular in case of data-centric documents.

Our proposal focuses mainly on these two constructs. It is inspired especially
by papers [33] and [21]. From the former one we “borrow” the idea of the Ant
Colony Optimization (ACO) heuristic [18] for searching the space of possible
generalizations, from the latter one we use a modification of the MDL principle
[24] of their evaluation. The ACO heuristic enables to join several approaches into
a single one and thus to infer more natural XML schemes. The MDL (Minimum
Description Length) principle enables their uniform evaluation.

The main body of the algorithm can be described as follows: Firstly, each doc-
ument D from the input set ID is transformed into tree T . The trees hence form
a set of input document trees IT . (Note that for simplicity we omit attributes
that can be considered as special types of elements.)

Definition 1. A document tree of a document D is a directed graph T =
(VT , ET), where VT is a set of nodes corresponding to element instances in D,
and ET is a set of edges s.t. 〈a, b〉 ∈ ET if b is a (direct) subelement of a in D.

Now, for each distinct element name in IT , we perform clustering of respec-
tive element instances (see Section 3.1) with regard to the above described XSD
feature. Then, for each cluster we generalize the trivial schema accepting purely
the items in the cluster (see Section 3.2). And finally, we rewrite all the general-
ized schemes into XSD syntax (see Section 3.3). All the three steps involve a kind
of improvement of current approaches. In the first case the existing works simply
group elements on the basis of their names, elements with the same name but
different structure are not supported and, hence, the result can be misleading.
We solve this problem using clustering of elements on the basis of their context
and structure. In the second case we propose a general combination of the best of
the existing approaches which exploit some of the pure XML Schema constructs
and can be easily extended. And in the final step we are able to output XSDs
involving not only DTD constructs but also some of the purely XML Schema
ones.

3.1 Clustering of Elements

To cluster elements having the same name but different structure we need to
specify the similarity measure and the clustering algorithm.

Similarity of Elements As an XML element e can be viewed as a subtree Te (in
the following text denoted as an element tree) of corresponding document tree
T , we use a modified idea of tree edit distance, where the similarity of trees Te

and Tf is expressed using the number of edit operations necessary to transform
Te into Tf (or vice versa). The key aspect is obviously the set of allowed edit
operations. Consider two simple operations – adding and removal of a leaf node
(and respective edge). As depicted in Fig. 2, such similarity is not suitable,
e.g., for recursive elements. The example depicts two element trees of element a

having subelement i having subelement j having subelement k which contains
either subelement z or again i. With the two simple edit operations the edit
distance would be 4, but since the elements have the same XML schema we
would expect the optimal distance of 0.

Fig. 2. Tree edit distance of recursive elements

Therefore, for our purpose we exploit a similarity measure defined in [30]
which specifies more complex XML-aware tree edit operations involving opera-
tions on whole subtrees, each having its cost, as follows:

– Insert – a single node n is inserted to the position given by parent node p
and ordinal number expressing its position among subelements of p

– Delete – a leaf node n is deleted
– Relabel – a node n is relabeled
– InsertTree – a whole subtree T is inserted to the position given by par-

ent node p and ordinal number expressing position of its root node among
subelements of p

– DeleteTree – a whole subtree rooted at node n is deleted

As it is obvious, for given trees Te and Tf there are usually several possible
transformation sequences for transforming Te into Tf . A natural approach is to
evaluate all the possibilities and to choose the one with the lowest cost. But
such approach can be quite inefficient. Thus authors of the approach propose
so-called allowable sequences of edit operations, which significantly reduce the
set of possibilities and, at the same time, speed up their cost evaluation.

Definition 2. A sequence of edit operations is allowable if it satisfies the fol-
lowing two conditions:

1. A tree T may be inserted only if T already occurs in the source tree Te. A
tree T may be deleted only if it occurs in the destination tree Tf .

2. A tree that has been inserted via the InsertTree operation may not subse-
quently have additional nodes inserted. A tree that has been deleted via the
DeleteTree operation may not previously have had children nodes deleted.

The first restriction forbids undesirable operations like, e.g., deleting whole
Te and inserting whole Tf , etc., whereas the second one enables to compute the
costs of the operations efficiently. The evaluating algorithm is based on the idea
of determining the minimum cost of each required insert of every subtree of Te

and delete of every subtree of Tf using a simple bottom-up procedure.
Hence, in the following text we assume that we have a function dist(Te, Tf)

which expresses the edit distance of XML trees Te and Tf .

Clustering Algorithm For the purpose of clustering elements we use a modifi-
cation of mutual neighborhood clustering (MNC) algorithm [25]. We start with
initial clusters c1, c2, ...cK of elements given by the equivalence of their context.

Definition 3. A context of an element e in a document tree T = (VT , ET) is
a concatenation of element names e0e1...eN , where e0 is the root node of T ,
eN = e, and ∀i ∈ (1, N) : 〈ei−1, ei〉 ∈ ET .

Thus, the initial clustering is based on a natural assumption that elements
having the same context (and element name) are likely to have the same schema
definition. The initial clusters are then merged on the basis of element structure
using the tree edit distance dist. Firstly, ∀i ∈ (1,K) we determine a representa-
tive element ri of cluster ci. Then, for each pair of 〈ri, rj〉 s.t. i 6= j; i, j ∈ (1,K)
we determine tree edit distance dist(Tri , Trj) of the respective trees. The MNC
algorithm is parameterized by three parameters – minimum distance distMIN ,
maximum distance distMAX , and factor F – and exploits the definition of mutual
neighborhood :

Definition 4. Let Te and Tf be two element trees, where Te is i-th closest neigh-
bor of Tf and Tf is j-th closest neighbor of Te. Then mutual neighborhood of
Te and Tf is defined as MN(Te, Tf) = i + j.

The MNC algorithm places two element trees Tri and Trj into the same group
if dist(Tri , Trj) 6 distMIN or (dist(Tri , Trj) 6 distMAX and MN(Tri , Trj) 6 F),
resulting is a set of clusters c1, c2, ..., cL (where L 6 K) of elements grouped on
the basis of their context and structure.

3.2 Schema Generalization

Now, for each cluster of elements ci; i ∈ (1, L) we infer an XML schema which
“covers” all the instances in ci and, at the same time, is still reasonably general.
We speak about generalization of a trivial schema accepting purely the given set
of elements. We can view the problem as a kind of optimization problem [12].

Definition 5. A model P = (S, Ω, f) of a combinatorial optimization problem
consists of a search space S of possible solutions to the problem (so-called feasible
region), a set Ω of constraints over the solutions, and an objective function
f : S → R+

0 to be minimized.

In our case S consists of all possible generalizations of the trivial schema.
As it is obvious, S is theoretically infinite and thus, in fact, we can search only
for a reasonable suboptimum. Hence, we use a modification of ACO heuristic
[18]. Ω is given by the features of XML Schema language we are focussing on. In
particular, apart from DTD concatenation (“,”), exclusive selection (“|”), and
iteration (“?”, “+”, and “*”), we want to use also the all operator of XML
Schema representing unordered concatenation (for simplicity denoted as “&”).
And finally, to define f we exploit the MDL principle [24].

Ant Colony Optimization The ACO heuristic is based on observations of na-
ture, in particular the way ants exchange information they have learnt. A set of
artificial “ants” A = {a1, a2, ..., acard(A)} search the space S trying to find the
optimal solution sopt ∈ S s.t. f(sopt) 6 f(s);∀s ∈ S. In i-th iteration each a ∈ A
searches a subspace of S for a local suboptimum until it “dies” after performing
a predefined amount of steps Nant. While searching, an ant a spreads a certain
amount of “pheromone”, i.e. a positive feedback which denotes how good solu-
tion it has found so far. This information is exploited by ants from the following
iterations to choose better search steps.

We modify the algorithm in two key aspects. Firstly, we change the heuristic
on whose basis the ants search S to produce more natural schemes with the
focus on XML Schema constructs. And secondly, we add a temporary negative
feedback which enables to search a larger subspace of S. The idea is relatively
simple – whenever an ant performs a single step, it spreads a reasonable nega-
tive feedback. The difference is that the positive feedback is assigned after i-th
iteration is completed, i.e. all ants die, to influence the behavior of ants from
(i + 1)-st iteration. The negative feedback is assigned immediately after a step
is performed, i.e. it influences behavior of ants in i-th iteration and at the end
of the iteration it is zeroed. The algorithm terminates either after a specified
number of iterations Niter or if s′opt ∈ S is reached s.t. f(s′opt) 6 Tmax, where
Tmax is a required threshold.

The obvious key aspect of the algorithm is one step of an ant. Each step
consist of generating of a set of possible movements, their evaluation using f , and
execution of one of the candidate steps. The executed step is selected randomly
on the basis of probability given by f .

Generating a Set of Possible Movements Each element in cluster ci can be viewed
as a simple grammar production rule, where the left-hand side contains element
name and right-hand side contains the sequence of names of its (direct) subele-
ments. For instance the sample elements name in Fig. 1 can be viewed as

name → #PCDATA
name → first middle last
Hence, we can represent the trivial schema accepting purely elements from ci

as a prefix-tree automaton and by merging its states we create its generalizations.
Each possible merging of states represents a single step of an ant. To generate
a set of possible movements, i.e. possible generalizations, we combine two exist-
ing methods – k,h-context and s,k-string – together with our own method for
inferring of & operators.

The k,h-context method [11] specifies an identifiable subclass of regular lan-
guages which assumes that the context of elements is limited. Then merging
states of an automaton is based on an assumption that two states tx and ty
of the automaton are identical (and can be merged) if there exist two identical
paths of length k terminating in tx and ty. In addition, also h preceding states
in these paths are then identical.

The s,k-string method [33] is based on Nerod’s equivalency of states of an
automaton assuming that two states tx and ty are equivalent if sets of all paths

leading from tx and ty to terminal state(s) are equivalent. But as such condition
is hardly checked, we can restrain to k-strings, i.e. only paths of length of k
or paths terminating in a terminal state. The respective equivalency of states
then depends on equivalency of sets of outgoing k-strings. In addition, for easier
processing we can consider only s most probable paths, i.e. we can ignore singular
special cases.

Finally, the idea of inferring of & operators, i.e. identification of unordered
sequences of elements, can be considered as a special kind of merging states of
an automaton. It enables to replace a set of ordered sequences of elements with
a single unordered sequence represented by the & operator. We describe the
process of inferring the unordered sequences in Section 3.3 in detail.

Evaluation of Movements The evaluation of moving from schema sx to sy, where
sx, sy ∈ S (i.e. the evaluation of merging states of the respective automaton) is
defined as

mov(sx, sy) = f(sx)− f(sy) + pos(sx, sy) + neg(sx, sy)
where f is the objective function, pos(sx, sy) > 0 is the positive feedback of this
step from previous iterations and neg(sx, sy) 6 0 is the respective negative
feedback. For the purpose of specification of f we exploit a modification of
the MDL principle based on two observations [21]: A good schema should be
enough general which is related to the low number of states of the automaton.
On the other hand, it should preserve details which means that it enables to
express document instances using short codes, since most of the information
is carried by the schema itself and does not need to be encoded. Hence, we
express the quality of a schema s ∈ S described using a set of production rules
Rs = {r1, r2, ..., rcard(Rs)} as the sum of the size (in bits) of s and the size of
codes of instances in cluster ci = {e1, e2, ..., ecard(ci)} used for inferring of s.

Let O be the set of allowed operators and E the set of distinct element sym-
bols in ci. Then we can view right-hand side of each r ∈ Rs as a word over O∪E
and its code can be expressed as |r|·dlog2(card(O)+card(E))e, where |r| denotes
length of word r. The size of code of a single element instance e ∈ ci is defined
as the size of code of a sequence of production rules Re = 〈g1, g2, ..., gcard(Re)〉
necessary to convert the initial nonterminal to e using rules from Rs. Since we
can represent the sequence Re as a sequence of ordinal numbers of the rules in
Rs, the size of the code of e is card(Re) · dlog2(card(Rs))e.

Note that since the ACO heuristic enables to use any inferring method to produce
possible movements, i.e. schema generalizations, whereas the MDL principle does
not consider the way they were inferred, the algorithm can easily be extended
to other inferring methods as well as new constructs.

3.3 Inferring of Regular Expressions

The remaining open issue is how to infer the XSD, i.e. the set of regular ex-
pressions, from the given automaton. We exploit this information thrice – for

evaluation of the objective function f , for generation of set of possible move-
ments of an ant, and to output the resulting XSD. The automaton A can be
represented as a directed graph, whose nodes correspond to states and edges
labeled with symbols from the input alphabet E represent the transition func-
tion, i.e. an edge 〈vx, vy〉 labeled with symbol e ∈ E denotes that the transition
function from state vx to state vy on symbol e is defined. The task is to convert
A to an equivalent regular expression. As for the DTD operators we use the
well-known rules for transforming an automaton to a regular expression, simi-
larly to [28, 33]. A brand new one approach we propose to identify a subgraph
of A representing the all operator (& operator for simplicity).

In general the & operator can express the unordered sequence of regular
expressions of any complexity such as, e.g., (e1|e2) ∗ &e3?&(e4, e5, e6), where
e1, e2, ..., e6 are element names. But, in general, the W3C recommendation of
XML Schema language does not allow to specify so-called nondeterministic data
model, i.e. a data model which cannot be matched without looking ahead. A
simple example can be a regular expression (e1, e2)|(e1, e3), where while reading
the element e1 we are not able to decide which of the alternatives to choose
unless we read the following element. Hence, also the allowed complexity of un-
ordered sequences is restricted. The former and currently recommended version
1.0 of XML Schema specification [16,32] allows to specify an unordered sequence
of elements, each with the allowed occurrence of (0, 1), whereas the allowed oc-
currence of the unordered sequence itself is of (0, 1) too. The latter version 1.1
[20, 31], currently in the status of a working draft, is similar but the allowed
number of occurrence of items of the sequence is (0,∞). In our approach we
focus on the more general possibility, since it will probable soon become a true
recommendation.

First-Level Candidates For the purpose of identification of subgraphs represent-
ing the allowed type of unordered sequences, we first define so-called common
ancestors and common descendants.

Definition 6. Let G = (V, E) be a directed graph. A common descendant of a
node v ∈ V is a descendant d ∈ V of v s.t. all paths traversing v traverse also d.

Definition 7. Let G = (V, E) be a directed graph. A common ancestor of a node
v ∈ V is an ancestor a ∈ V of v s.t. all paths traversing v traverse also a.

Considering the example in Fig. 3 we can see that the common descendants
of node 3 are nodes 6 and 7, whereas node 1 has no common descendants, since
paths traversing node 1 terminate in nodes 7 and 9. Similarly, the common
ancestor of node 6 is node 1. Note that in the former case there can exist paths
which traverse d but not v (see node 3 and its common descendant 6), whereas
in the latter case there can exist paths which traverse a but not v.

For the purpose of searching the unordered sequences we need to further
restrict the Definition 7.

Fig. 3. An example of common ances-
tors and descendants

Fig. 4. Automaton P3 – permutation
of three items

Definition 8. Let G = (V, E) be a directed graph. A common ancestor of a node
v ∈ V with regard to a node u ∈ V is an ancestor a ∈ V of v s.t. a is a common
ancestor of each direct ancestor of v occurring on path from u to v.

For example, considering Fig. 3, the common ancestors of node 6 with regard
to node 2 are nodes 2 and 3.

We denote the node v from Definition 6 or the node a from Definitions 7
and 8 as input nodes and their counterparts as output nodes. The set of nodes
occurring on paths starting in an input node and terminating in an output node
are called a block. Using the definitions we can now identify subgraphs which
are considered as first-level candidates for unordered sequences. A node nin is
an input node of block representing a first-level candidate if

1. its out-degree is higher that 1,
2. the set of its common descendants is not empty, and
3. at least one of its common descendants, denoted as nout, whose set of com-

mon ancestors with regard to nin contains nin.

The three conditions ensure that there are at least two paths leading from
nin representing at least two alternatives and that the block is complete meaning
that there are no paths entering or leaving the block otherwise than using nin or
nout. For example, considering Fig. 3, the only first-level candidate is subgraph
consisting od nodes 3, 4, 5, 6.

Second-Level Candidates Having a first-level candidate we need to check it for
fulfilling conditions of an unordered sequence and hence being a second-level
candidate. As we know from the specification of XML Schema, such unordered
sequence can consist only of simple elements which can repeat arbitrarily. Hence,
firstly, we can skip processing of first-level candidates which contain subgraphs
representing other operators or repetitions of more complex expressions. For the
purpose of further checking we exploit the idea of similarity of graphs: For each
n ∈ N we know the structure of the automaton Pn which accepts each permu-
tation of n items having all the states fully merged. (An example of automaton
P3 is depicted in Fig. 4 for three items A, B, C.) Thus the idea is to compare the
similarity of the first-level candidates with Pn automatons. But the situation is
more complicated, since the W3C recommendation allows optional and repeat-
able elements in the unordered sequences, i.e. the allowed number of occurrences

can be also 0 or greater than 1. Together with the fact that the input elements
on whose basis the automaton was built do not need to contain all possible per-
mutations, the candidate graph can have much different structure than any Pn.
And naturally, we cannot check the similarity with all Pn automatons.

To solve the problem of multiple occurrence of an element, we temporarily
modify the candidate graphs by replacing each repeatable occurrence of an el-
ement e with auxiliary element e′ with single occurrence. For the purpose of
similarity evaluation, we can consider the modified graph without repetitions.
The repetitions will influence the resulting regular expression, i.e. the respective
operator will be added. Then, we can denote the maximum path length lmax in
the candidate graph and hence denote the size of the permutation. And finally,
since both the modified candidate graph and Plmax

graph are always acyclic, we
can evaluate their similarity using a classical edit-distance algorithm.

We can also observe, that the candidate graph must be always a subgraph of
Plmax

, otherwise we can skip its processing. Hence, the problem of edit distance
is highly simplified. We use the following types of edit operations:

– Adding an edge between two existing nodes, and
– Splitting an existing edge into two edges, i.e. adding a new node and an

edge.

The first operation is obvious and corresponds to the operation of adding
paths that represent permutations which were not present in the source data
and its cost is > 0. In the latter case the operation corresponds to adding an
item of a permutation which was not present in the source data and its cost is 0,
but it influences the resulting regular expression similarly to the above described
multiple occurrence. Naturally, only nodes and edges which are present in Plmax

and not in the candidate graph or edges from nin to nout can be added. From
all the possible edit sequences we choose the one with the lowest total cost [30].

Extension of Candidates As we can see from the third condition which describes
a first-level candidate, there can exist more candidates for the output node nout.
Hence, the remaining question is which of the candidates ought to be selected.
In our proposal we use an approach which is, at the same time, a kind of a
heuristic. The idea is based on the simple observation that each permutation of
n items contains permutations of n − 1 items. It can be seen in Fig. 4, which
contains not only the P3 automaton for the three items A, B, and C, but also all
three P2 automatons for pairs A and B (see subgraphs on nodes 1, 2, 3, 4), B and
C (see subgraph on nodes 2, 3, 6, 8), C and A (see subgraph on nodes 1, 4, 5, 7).

Hence, for each node of the graph we firstly determine the set of all nodes
which fulfill the condition of first-level candidate and we sort them totally in
ascending order using the size of the respective block. The ordering determines
the order in which we check the conditions of second-level candidates and enables
to exploit the knowledge of previously determined second-level candidates, i.e.
subgraphs corresponding to permutations for subsets of the given items.

4 Experimental Implementation

For the purpose of experimental analysis of the proposed algorithm we have
created a prototype implementation called SchemaMiner. Since our approach
results from existing verified approaches [21,33] and focuses on XSD constructs
which were not considered yet, a comparison with any other method would
either lead to similar results or would be quite unfair. Thus we rather compare
our approach with existing real-world XSDs. From the available real-world XML
documents we have selected subsets having an XSD and classified them on the
basis of their structure. For each collection of documents we have inferred the
schema using SchemaMiner and analyzed the results.

Since the real-world XML documents did not cover all the features of the
proposed algorithm, we have also generated a set of artificial documents which
enable to illustrate the remaining properties. Hence, a natural question may
arise whether these constructs are worth considering since they do not occur
in real applications quite often. As we have mentioned in the Introduction, the
general problem of real-world XML data is that they exploit only a small part
of all constructs allowed by the W3C specifications. On one hand, XML data
processing approaches can exploit this knowledge and focus only on these com-
mon constructs. But, on the other hand, it is also necessary to propose methods
which help users to use also more complex tools which enable to describe and
process XML data more efficiently. In our case it means to find an XSD which
describes the selected situation more precisely.

4.1 Real-World XML Documents

We have classified the used XML documents according to their structure into
the following categories:

– Category 1: Documents having very simple and general structure of type
(e1|e2|...|en)∗. They do not exploit optional elements, deeper hierarchy of
exclusive selections, or sequences of elements. (e.g. [1])

– Category 2: These documents exploit purely optional elements, sequences
of elements, and repetitions. (e.g. [2, 3])

– Category 3: These documents exploit all constructs of DTD, i.e. exclusive
selections, repetitions, optional elements, and sequences of elements. (e.g.
[4–6])

– Category 4: These documents have fairly regular structure suitable for stor-
ing into relational databases. The root element typically contains repetition
of an element corresponding to n-tuple of simple data in fixed order. (e.g.
[2])

– Category 5: These documents exploit the all construct of XSDs. (e.g. [7])
– Category 6: Since each XSD is at the same time an XML document and

there exists an XSD of XML Schema language, we have included also XSDs,
i.e. XML documents describing structure of other XML documents. (e.g.
[8–10])

4.2 Results of Experiments

Comparing the difference between inferred and real-world XML schemes we have
found several interesting observations. The most striking difference was inferring
of less general schema in all the cases. This finding corresponds to the results of
statistical analyses which show that XML schemes are usually too general [27].
Obviously, if a structural aspect is not involved in the sample XML documents,
it can hardly be automatically generated. We can even consider this feature as
an advantage to specify a more precise schema. On the other hand, another
interesting difference was generalization of the inferred schema by setting the in-
terval of repetition to (0,∞) instead of (1,∞), i.e. enabling to omit an element
in case it should not be omitted. This situation occurs usually in case of repe-
tition of a simple sequence of elements, in particular in category 4. But in this
category such behavior is rather natural than harmful. And another significant
difference was “inefficient” notation of the regular expressions, e.g., in case of
expressions of the form ((e1, e2, e3)|e2) that could be rewritten to (e1?, e2, e3?),
though this expression is not equivalent. This property is given by the features
of the algorithm which directly transforms an automaton to a regular expression
and indicates that additional optimization or user interaction would be useful.

Using category 5 we wanted to focus especially on the unordered sequences.
But, unfortunately, the amount of real-world XML data was so small that the
results were not usable. That is why we have decided to use artificial data (see
Section 4.3). And a similar problem occurred in case of elements with the same
name but different structure.

In case of the category 6, i.e. XSDs, we have divided the source data into two
groups – a set of XSDs randomly downloaded from various sources and a set of
XSDs inferred by the algorithm. The result in case of the first set was highly
influenced by the variety of input data and the fact that XML Schema provides
plenty of constructs which enable to specify the same structure in various ways.
Nevertheless, the resulting schema was still recognizable as the XML Schema
XSD. In case of the latter set of XSDs the result was naturally much better since
the data came from the same source. An example is depicted in Fig. 5, where
we can see the inferred XSD fragment of element choice of XML Schema.

4.3 Artificial XML Documents

As we have mentioned, to analyze all the features of the algorithm we have
prepared a set of artificial XML documents. In particular we have focused on
the occurrence of unordered sequences of elements and the occurrence of elements
with the same name but different structure.

Permutated Set We have generated several sets of XML documents which dif-
ferentiate in two aspects – the size of the permutated set and the percentage of
permutations represented in the documents, i.e. having a set of n elements, the
percentage of n! of their possible orders.

Fig. 5. An example of generated XSD

According to our results the size of set has almost no impact on the resulting
schema, whereas the percentage of permutations is crucial. Particular results
are depicted in Table 1 for the size of the set of 3, 4, and 5 (for more than 5
items the results were almost the same) and the percentage of permutations of
10, 20, ..., 100%. Value no denotes that the permutation operator did not occur
in the resulting schema; value partly denotes that it occurred, but not for the
whole set; value yes denotes that it occurred correctly.

Size of
the set

Percentage of permutations
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

3 no partly no partly no no partly yes yes yes

4 no yes partly yes partly partly partly yes yes yes

5 no no partly partly partly partly partly yes yes yes

Table 1. Influence of percentage of permutations

Elements with Different Content Similarly we have created XML documents
containing an element with the same name but different structure in various
contexts. The key parameter of the testing sets was the percentage of the same
subelements within the element. The experiments showed that the algorithm
behaves according to the expectations and joins two elements if they “overlap”
in more than 50% of their content.

5 Conclusion

The aim of this paper was to propose an algorithm for automatic construction of
an XML schema for a given sample set of XML documents exploiting new con-
structs of XML Schema language. In particular we have focussed on unordered
sequences allowed by the all element and the ability to specify elements having

the same name but different content. We have proposed a hybrid algorithm that
combines several approaches and can be easily further enhanced. Our main mo-
tivation was to increase the exploitation of XSDs providing a reasonable draft of
an XML schema that can be further improved manually by a user, if necessary.

Our future work will focus on further exploitation of other XML Schema
constructs, such as, e.g., element groups, attribute groups, or inheritance, i.e.
reusability of parts of a schema that can increase naturalness of the result. This
idea is highly connected with our second future improvement that will focus on
user interaction. This way we can ensure more realistic and suitable results than
using a purely automatic reverse engineering. Even our current approach can be
extended using user interaction in several steps. The first one is the process of
clustering, where a user can specify new clusters, e.g., on the basis of semantics
of elements and attributes. A second example of exploitation of user-provided
information can be a set of negative examples, i.e. XML documents which do
not conform to the target XML schema. Such documents would influence steps
of ants, in particular the objective function and, hence, enable to create better
result. And, finally, the user interaction can be exploited directly for specifying
steps of ants, enabling to find the optimal solution more efficiently.

References

1. Available at: http://arthursclassicnovels.com/.
2. Available at: http://www.cs.wisc.edu/niagara/data.html.
3. Available at: http://research.imb.uq.edu.au/rnadb/.
4. Available at: http://www.assortedthoughts.com/downloads.php.
5. Available at: http://www.ibiblio.org/bosak/.
6. Available at: http://oval.mitre.org/oval/download/datafiles.html.
7. Available at: http://www.rcsb.org/pdb/uniformity/.
8. Available at: http://www.eecs.umich.edu/db/mbench/.
9. Available at: http://arabidopsis.info/bioinformatics/narraysxml/.

10. Available at: http://db.uwaterloo.ca/ddbms/projects/xbench/index.html.
11. H. Ahonen. Generating Grammars for Structured Documents Using Grammatical

Inference Methods. Report A-1996-4, Dep. of Computer Science, University of
Helsinki, 1996.

12. R. Bartak. On-Line Guide to Constraint Programming. 1998. http://kti.mff.

cuni.cz/~bartak/constraints/.
13. J. Berstel and L. Boasson. XML Grammars. In Mathematical Foundations of

Computer Science, volume 1893 of Lecture Notes in Computer Science, pages 182–
191. Springer, 2000.

14. G. J. Bex, F. Neven, and J. Van den Bussche. DTDs versus XML Schema: a
Practical Study. In WebDB ’04: Proc. of the 7th Int. Workshop on the Web and
Databases, pages 79–84, New York, NY, USA, 2004. ACM Press.

15. G. J. Bex, F. Neven, and S. Vansummeren. XML Schema Definitions from XML
Data. In VLDB ’07: Proc. of the 33rd Int. Conf. on Very Large Data Bases, pages
998–1009, Vienna, Austria, 2007. ACM Press.

16. P. V. Biron and A. Malhotra. XML Schema Part 2: Datatypes (Second Edition).
W3C, 2004. http://www.w3.org/TR/xmlschema-2/.

17. T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensible
Markup Language (XML) 1.0 (Fourth Edition). W3C, 2006.

18. M. Dorigo, M. Birattari, and T. Stutzle. Ant Colony Optimization – Artificial Ants
as a Computational Intelligence Technique. Technical Report TR/IRIDIA/2006-
023, IRIDIA, Bruxelles, Belgium, 2006.

19. H. Fernau. Learning XML Grammars. In MLDM ’01: Proc. of the 2nd Int. Work-
shop on Machine Learning and Data Mining in Pattern Recognition, pages 73–87,
London, UK, 2001. Springer-Verlag.

20. S. Gao, C. M. Sperberg-McQueen, and H. S. Thompson. XML Schema Definition
Language (XSDL) 1.1 Part 1: Structures. W3C, 2007. http://www.w3.org/TR/

xmlschema11-1/.
21. M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and K. Shim. XTRACT: a

System for Extracting Document Type Descriptors from XML Documents. In
SIGMOD ’00: Proc. of the 2000 ACM SIGMOD Int. Conf. on Management of
Data, pages 165–176, New York, NY, USA, 2000. ACM Press.

22. E. M. Gold. Language Identification in the Limit. Information and Control,
10(5):447–474, 1967.

23. R. Goldman and J. Widom. DataGuides: Enabling Query Formulation and Opti-
mization in Semistructured Databases. In VLDB ’97: Proc. of the 23rd Int. Conf.
on Very Large Data Bases, pages 436–445, San Francisco, CA, USA, 1997. Morgan
Kaufmann Publishers Inc.

24. P.D. Grunwald. A Tutorial Introduction to the Minimum Description Principle.
2005. http://homepages.cwi.nl/~pdg/ftp/mdlintro.pdf.

25. A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall College
Div, 1988.

26. L. Mignet, D. Barbosa, and P. Veltri. The XML Web: a First Study. In WWW
’03: Proc. of the 12th Int. Conf. on World Wide Web, Volume 2, pages 500–510,
New York, NY, USA, 2003. ACM Press.

27. I. Mlynkova, K. Toman, and J. Pokorny. Statistical Analysis of Real XML Data
Collections. In COMAD ’06: Proc. of the 13th Int. Conf. on Management of
Data, pages 20–31, New Delhi, India, 2006. Tata McGraw-Hill Publishing Company
Limited.

28. C.-H. Moh, E.-P. Lim, and W.-K. Ng. Re-engineering Structures from Web Docu-
ments. In DL ’00: Proc. of the 5th ACM Conf. on Digital Libraries, pages 67–76,
New York, NY, USA, 2000. ACM Press.

29. M. Murata, D. Lee, and M. Mani. Taxonomy of XML Schema Languages Using
Formal Language Theory. ACM Trans. Inter. Tech., 5(4):660–704, 2005.

30. A. Nierman and H. V. Jagadish. Evaluating Structural Similarity in XML Docu-
ments. In WebDB ’02: Proc. of the 5th Int. Workshop on the Web and Databases,
pages 61–66, Madison, Wisconsin, USA, 2002. ACM Press.

31. D. Peterson, P. V. Biron, A. Malhotra, and C. M. Sperberg-McQueen.
XML Schema 1.1 Part 2: Datatypes. W3C, 2006. http://www.w3.org/TR/

xmlschema11-2/.
32. H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema Part 1:

Structures (Second Edition). W3C, 2004. http://www.w3.org/TR/xmlschema-1/.
33. R. K. Wong and J. Sankey. On Structural Inference for XML Data. Technical

Report UNSW-CSE-TR-0313, School of Computer Science, The University of New
South Wales, 2003.

