Doc. RNDr. Irena Holubova, Ph.D. & PROFINIT

NDBIO48

Modern Database Systems

https://www.ksi.mff.cuni.cz/~holubova/NDBI048/

OUTLINE

= NoSQL databases
= Key/value

= Column
= Document
= Graph

= NewSQL databases
= Array databases

= Multi-model databases

CRISP-DM PHASES

I. Business Understanding
II. Data Understanding

III. Data Preparation

IV. Modeling

V. [Evaluation

VI. Deployment

Business Data
Understanding Understanding
Data
Preparation
Modeling

Deployment

https://www.datascience-pm.com/crisp-dm-2/ @

https://www.datascience-pm.com/crisp-dm-2/

NOSQL
DATABASES

DATABASE = RELATIONAL DATABASE?

= A common assumption for many years

= Relational databases are able to store and process various data
structures

= Advantages:
= Simplicity
= of the model
= of the respective query language

= After so many years mature and verified database management systems
(DBMBSs)

= Strong mathematical background

Student Table (Relation)

P',’;‘;;"Y Roll Number Name CGPA

RELATIONAL MODEL R

004 Shreya 9.3

= Proposed by E.F. Codd in 1970 ~ | | —
= Paper: “A relational model of data for large \ ColuTm/
shared data banks” (Attributes)

= [BM Research Labs

= Basic idea:
= Storing of object and their mutual associations in tables (relations)
= Arelation R from X toY is a subset of the Cartesian product X XY.
= Row in a table (member of relation) = object/association
= Column (attribute) = attribute of an object/association
= Table (relational) schema = name of the schema + list of attributes and their

types
= Schema of a relational database = set of relational schemas

RELATIONAL MODEL

= Basic integrity constraints
= Unique identification of a row
= Super key vs. key
= Simple type attributes
= NULL values
= No “holes™

= Keys/foreign keys

BUT THE RELATIONAL MODEL WAS NOT THE FIRST
ONE...

First generation: navigational
Hierarchical model

Network model

Second generation: relational

Third generation: post-relational
Extensions of relational model
[0 Object-relational
New models reacting to popular technologies
O Object
O XML
O NoSQL (key/value, column, document, graph, ...) - Big Data
O Array databases
Multi-model systems

NewSQL
Back to the relations

time

TYPES OF NOSQL DATABASES

Core:

= Key-value databases

= Document databases

= Column-family (column-oriented/columnar) stores
= Graph databases

Non-core:

= Object databases

= XML databases

http://nosql-database.org/

KEY/VALUE
DATABASES

KEY-VALUE STORE
BASIC CHARACTERISTICS

= The simplest NoSQL data stores

= A simple hash table (map), primarily used when all
access to the database 1s via primary key

= A table in RDBMS with two columns, such as ID and
NAME

= ID column being the key
= NAME column storing the value
= A BLOB that the data store just stores

= Basic operations:
= Get the value for the key
= Put a value for a key
= Delete a key from the data store

= Simple — great performance, easily scaled
= Simple — not for complex queries, aggregation needs @

KEY-VALUE STORE

REPRESENTATIVES
. .
Nriak &
9

ORACLE HamsteroB ' F

aaaaaaaaaa

BERKELEY DB <~ g%

MemcachedDB

A not
Ty c

K\\ ~ open-source
amazon | Project
#smazon DynamoDB Voldemort
/ al open-source

version

KEY-VALUE STORE

QUERYING

= We can query by the key

= To query using some attribute of the value column is
(typically) not possible

= We need to read the value to figure out if the attribute meets the
conditions

= What if we do not know the key?
= Some systems enable to retrieve the list of all keys
= Expensive
= Some support searching inside the value

= Using, e.g., a kind of full-text index
= The data must be indexed first
= Riak search (see later)

KEY-VALUE STORE
RIAK

= Open source, distributed database
= First release: 2009

= Implementing principles from Amazon's Dynamo
= OS: Linux, BSD, Mac OS X, Solaris
= Language: Erlang, C, C++, some parts in JavaScript
= Built-in MapReduce support

= Stores keys into buckets = a namespace for keys
= Like tables in a RDBMS, directories in a file system, ...

= Have a set of common properties for its contents
= e.g., number of replicas

AN [e

K

http://en.wikipedia.org/wiki/File:Riak_product_logo.png
http://en.wikipedia.org/wiki/File:Riak_product_logo.png
http://basho.com/riak/

RIAK BUCKETS

namespace
Oracle Riak for keys
database instance Riak cluste/[/
table bucket /s
row key-value
rowid key

Terminology in Oracle vs. Riak

<Bucket = userData>

<Key = sessionID_userProfile>

<Value = UserProfileObject>

Adding type of data to the key, ‘

still everything in a single bucket

<Bucket = userData>

<Key = sessionID=>

<Value = Object>

UserProfile

SessionData

ShoppingCart

CartItem

CartItem

Single object for all data,
everything in a single bucket

Separate buckets for different
types of data

€

KEY-VALUE STORE

EXAMPLE

sriak

Bucket bucket = getBucket (bucketName) ;
IRiakObject riakObject =
bucket.store (key, value) .execute()

Bucket bucket = getBucket (bucketName) ;
IRiakObject riakObject =

bucket. fetch (key) .execute() ;
byte[] bytes = riakObject.getValue()
String value = new String(bytes);

http://en.wikipedia.org/wiki/File:Riak_product_logo.png
http://en.wikipedia.org/wiki/File:Riak_product_logo.png

KEY-VALUE STORE
SUITABLE USE CASES

Storing Session Information

= Every web session is assigned a unique session_id value

" Ever%rt.hing about the session can be stored by a single PUT request
or retrieved using a single GET

= Fast, everything is stored in a single object
User Profiles, Preferences

= Every user has a unique user_id, user_name + preferences such as
language, colour, time zone, which products the user has access to,

= As in the previous case:
= Fast, single object, single GET/PUT

Shopping Cart Data
= Similar to the previous cases

KEY-VALUE STORE
WHEN NOT T0 USE

Relationships among Data
= Relationships between different sets of data

= Some key-value stores provide link-walking features
= Not usual

Multioperation Transactions
= Saving multiple keys

= Failure to save any one of them — revert or roll back the rest of the
operations

Query by Data

= Search the keys based on something found in the value part
Operations by Sets

= Operations are limited to one key at a time

= No way to operate upon multiple keys at the same time

COLUMN
DATABASES

BASIC CHARACTERISTICS

= Also “columnar’ or ‘“column-oriented”

= Column families = rows that have many columns
associated with a row key

= Column families are groups of related data that is often
accessed together

= e.g., for a customer we access all profile information at the same
time, but not orders

'Eéiifn?f -f-a-m-l-l-y- """""""""""""""""""""""""""""

-

/
(’/ Row Columnl Column2 ColumnN
Keyx namel valuel valueZ) QameN valueN)

\

/

/

Row Columnl ColumnN
KeyY (namel:valuel) name9: value9 nameN: valueN

COLUMN-FAMILY STORES

REPRESENTATIVES

Google’s
BigTable

HBASE Cassandra

BH HvPERTABLE "8 SimpleDB

/ (?wi .

cassandra

APACHE CASSANDRA

= Developed at Facebook
= Initial release: 2008
= Stable release: 2013

= Apache Licence
= Written in: Java
= OS: cross-platform

= Operations:
= CQL (Cassandra Query Language)
= MapReduce support
= Can cooperate with Hadoop (data storage instead of HDFS)

http://en.wikipedia.org/wiki/File:Cassandra_logo.svg
http://en.wikipedia.org/wiki/File:Cassandra_logo.svg
http://cassandra.apache.org/

CASSANDRA

RDBMS Cassandra

database instance cluster Usua"y
one per

database keyspace application

table column family

row row

column (same for all rows) column (can be different per row)

= Column = basic unit, consists of a name-value pair

= Name serves as a key § 3-tuple

= Stored with a timestamp (expired data, resolving conflicts; =)

= Row = a collection of columns attached or linked to a

key
= Column family = a collection of similar rows value
= Rows do not have to have the same columns timestamp @

CASSANDRA

DATA MODEL — EXAMPLE

{ "pramod-sadalage" : {
firstName: "Pramod",
lastName: "Sadalage",
lastVisit: "2012/12/12" }

"martin-fowler" : {
firstName: "Martin'
las : wler",

location: "Boston" } }

pramod-sadalage row and martin-fowler row with different columns;
both rows are a part of a column family

me: "firstName",
value: "Martin",
imestamp: 12345667890

= Column key of firstName and the value of Martin

L

COLUMN-FAMILIES VS. RELATIONS

= We do not need to model all of the columns up front
= Each row is not required to have the same set of columns

= Usually we assume similar sets of columns
= Related data
= Can be extended when needed

= No formal foreign keys
= Joining column families at query time is usually not supported
= We need to pre-compute the query / use a secondary index

blog relational database

jbellis ™ 101 1 Today | ...

dhutch CA 102 2 lam..

egilmore NULL 103 1 This is ..

2 1 sports

1 2 fashion

3 3 technology

blog keyspace

- 92dbeb5

name te body user category
g body user category

state

n
ks SR mmm

user category

: body
egilmore 5a0b483 : :
This is ... egilmore | sports

jbellis dhutch egilmore jbellis dhutch eglimore
dhutch jbellis dhutch egilmore dhutch

egilmore jbellis dhutch eglimore

1289847840615

92dbebs

1289847844275

egilmore
6a0b483

CASSANDRA

COLUMN-FAMILIES

= Can define metadata about columns
= Actual columns of a row are determined by client application

= Each row can have a different set of columns

= Static — similar to a relational database table
= Rows have the same set of columns
= Not required to have all of the columns defined

= Dynamic — takes advantage of Cassandra's ability to use arbitrary
application-supplied column names
= Pre-computed result sets
= Stored in a single row for efficient data retrieval
= Row = a snapshot of data that satisfy a given query
= Like a materialized view

CASSANDRA
COLUMN:?ZI:LIEEWL e

address

joellis

jbEds.com 123 main
namea email
dhuteh
namea email
row key columns ...

dhutch egilmore datastax Cass

joellis

egilmore

datastax FPZCA%SS e
egilmore

Users that subscribe to a particular user's blog @

WORKING WITH A TABLE — SET . order

CREATE TABLE users (
user_id text PRIMARY KEY, e S —
first_name text, ' "baggins@caramail.com", " ', "Eb@
last_name text,
emails set<text>);

H
H
i)
&
i)
I
K
i
B
]
]
1
E
H
E
=]
E
I
;
1
]
=]
H
I
%]
(a1
i
i
[y
]
]
¥
%]
=]
Hy
B
H
H
[Y
m
]
=
]
%]
Hi
=]
]
H
=
]
H
]
H
'-|-3_

INSERT INTO users (user._id, first_name, last_name, emails)
VALUES(('frodo', Frodo', 'Baggins', {'f{@baggins.com’, 'baggins@gmail.com'});

UPDATE users SET emails = emails + {'{b@friendsofmordor.org'}
WHERE user_id = 'frodo';

SELECT user_id, emails FROM users WHERE user_id = 'frodo';

UPDATE users SET emails = emails - {fb@friendsofmordor.org'}
WHERE user_id = 'frodo';

UPDATE users SET emails = {} WHERE user_id = 'frodo’;

WORKING WITH A TABLE — LIST

ALTER TABLE users ADD top_places list<text>;

UPDATE users SET top_places = ['rivendell’, 'rohan']
WHERE user_id = 'frodo';

UPDATE users SET top_places = ['the shire'] + top_places
WHERE user_id = 'frodo';

UPDATE users SET top_places = top_places + ['mordor']
WHERE user_id = 'frodo';

UPDATE users SET top_places[2] = 'riddermark'
WHERE user_id = 'frodo';

DELETE top_places[3] FROM users WHERE user_id = 'frodo’;

UPDATE users SET top_places = top_places - ['riddermark']
WHERE user_id = 'frodo';

®

CASSANDRA

WORKING WITH A TABLE — MAP

ALTER TABLE users ADD todo map<timestamp, text>;

UPDATE users SET todo = {'2012-9-24" : 'enter mordor',
'2012-10-2 12:00' : 'throw ring into mount doom' }
WHERE user id = 'frodo';

UPDATE users SET todo['2012-10-2 12:00] =
'throw my precious into mount doom'
WHERE user id = 'frodo';

INSERT INTO users (user_id, todo) VALUES ('frodo’, {
'2013-9-22 12:01' : 'birthday wishes to Bilbo',
'2013-10-1 18:00' : 'Check into Inn of Prancing Pony' });

DELETE todo['2012-9-24"1 FROM users
WHERE user_id = 'frodo';

L

CASSANDRA
WORKING WITH K TABLE

DROP TABLE timeline;
= Delete a table including all data

TRUNCATE timeline;
= Remove all data from a table

CREATE INDEX userIndex ON timeline (posted_by);
= Create a (secondary) index
= Allow efficient querying of other columns than key

DROP INDEX userIndex;
= Drop an index

QUERYING

= No joins, just simple conditions
= For simple data reads

SELECT * FROM users

WHERE firstname = 'jane' and lastname="smith'
ALLOW FILTERING;

= Filtering (WHERE)

SELECT * FROM emp
WHERE emplID IN (130,104)
ORDER BY deptID DESC;

= Ordering (ORDER BY)

QUERYING

SELECT select_expression
FROM keyspace_name.table_name
WHERE relation AND relation ...

GROUP BY columns
ORDER BY (clustering key (ASC | DESC)...)
LIMIT n .
ALLOW FILTERING = relation:
= column_name (= | < | > | <=| >=) key_value
@ name IN ((key_value,...))
= select_expression: | hash (column_name,..) (= | <|> | <= | >=)
= List of columns
= (term KEN (term,...))
= DISTINCT
= COUNT
= Aliases (AS) = term:
= TTL(column_name) = constant
= WRITETIME(column_name) = set/list/map

®

COLUMN-FAMILY STORES

SUITABLE USE CASES

appName: Atlas eventName: Login appUser:wspirk
fc9866e48cab i ’ i a

Event Logging

= Ability to store any data structures — good choice to store event
information

Content Management Systems, Blogging Platforms

= We can store blog entries with tags, categories, links, and trackbacks in
different columns

» Comments can be either stored in the same row or moved to a different
keyspace

= Blog users and the actual blogs can be put into different column families

@

COLUMN-FAMILY STORES
WHEN NOT T0 USE

Systems that Require ACID Transactions

= Column-family stores are not just a special kind of RDBMSs with
variable set of columns!

Aggregation of the Data Using Queries

= (Such as SUM or AVG)

= Have to be done on the client side

For Early Prototypes

= We are not sure how the query patterns may change

: és the query patterns change, we have to change the column family
esign

DATABASES

DOCUMENT DATAF

BASIC CHARACTERISTICS

= Documents are the main concept
= Stored and retrieved
- XML, JSON, ...

= Documents are
= Self-describing
= Hierarchical tree data structures

= Can consist of maps, collections (lists, sets, ...), scalar values,
nested documents, ...

%SES

= Documents in a collection are expected to be similar
= Their schema can differ

= Document databases store documents in the value part
of the key-value store
= Key-value stores where the value is examinable

DOCUMENT DATABASES

DATA — EXAMPLE

{ "firstname"
"likes": [

"lastcity":

: "Martin",
"Biking",
"Photography"],

"Boston",

"lastVisited": }

{ "firstname": "Pramod",
"citiesvisited": ["Chicago",
"addresses": |

{ "state": "AK",
"city": "DILLINGHAM",
"type": "R" },

{ "state": "MH",
"city": "PUNE",
"type": "R" } 1,

"lastcity": "Chicago™ }

"London",

"Pune",

"Bangalore"

1,

®

DOCUMENT DATABASES
DATA — EXAMPLE

= Data are similar, but have differences, e.qg., in attribute
names

= Still belong to the same collection

= We can represent
= A list of cities visited as an array

= A list of addresses as a list of documents embedded inside
the main document

DOCUMENT DATABASES

REPRESENTATIVES

. mongoDB Lg {E-I}

COﬁ‘thDB :|-r|_|T||:'

‘Qﬁ entDB RAVENDS L

Lotus Notes
Storage Facility

http://en.wikipedia.org/wiki/File:Lotus_Notes_8_icon.png
http://en.wikipedia.org/wiki/File:Lotus_Notes_8_icon.png

= Initial release: 2009

= Written in C++
= Open-source

‘ mongoDB

= Cross-platform
= J[SON documents

= Dynamic schemas

= Features:
= High performance - indices

= High availability — replication + eventual consistency + automatic
failover

= Automatic scaling — automatic sharding across the cluster
= MapReduce support

http://www.mongodb.org/

{ |
'; '~ na l—
. 2% nal ¢ o
‘ ag name: "al",
&n st age: 18,
TERMINOLOGY | e states o,
. groups: ["politics”, "news"]
Collection
= Each mongoDB
Oracle MongoDB instance has
database instance MongoDB instance mU.].tlp le databases
schema database = Each database can
. have multiple
table collection .
collections
row document
. _ = When we store a
rowid id

- document, we

join DBRef have to choose

database and

Terminology in Oracle and mongoDB collection

DOCUMENTS

= Use JSON

= Stored as BSON
= Binary representation of JSON

= Have maximum size: 16 MB (in BSON)
= Not to use too much RAM

= GridFS tool divides larger files into fragments

= Restrictions on field names:

= idisreserved for use as a primary key
= Unique in the collection
= Immutable
= Any type other than an array

= The field names cannot start with the $ character
= Reserved for operators

= The field names cannot contain the . character
= Reserved for accessing fields

contact document

_id: <ObjectlId2>,
user_id: <ObjectIdl>,
phone: "123-456-7890",
email: "xyz@example.com”

user document

DATA MODEL — REFERENCES " id: <objectrdrs, }

username: "123xyz” access document

) {

_id: <ObjectId3>,

= References provide more flexibility than Tiiéil% <Oojectldl>,

EBITII)EBCiCiiIIGI group: "dev"
¥

» Use normalized data models:

= When embedding would result in duplication of data not
outweighted by read performance

= To represent more complex many-to-many relationships
= To model large hierarchical data sets

= Disadvantages:

= Can require more roundtrips to the server (follow up
queries)

DATA MODEL — EMBEDDED DATA

= Related data in a single document structure
= Documents can have subdocuments (in a field of array)
= Applications may need to issue less queries

» Denormalized data models

= Allow applications .

_id: <ObjectIdl>,
username: "123xyz",
contact: {

to retrieve and

manipulate related phone: "123-456-7890",
. . email: "xyz@example.com”
data in a single 3
. access: {
database operation level: 5,
group: "dev”
)

DATR MODIFICATION

= Operations:
create, update,
delete
= Modify the
dataof a
single
collection of
documents

= For update /
delete:
criteria to
select the
documents to
update /
remove

Collection Document
Y
db.users.insert(\
{ v
name: “'sue’,
age: 26,
status: "A"
groups:
k
)
Document
{
name: "sue’,
age: 26,
status: "A",
groups: ["news”, "sports"]
il
J

["news", "sports"]

insert |

Collection

name:

"al", age: 18, ...

name:

"lee", age: 28,

name:

"jan", age: 21

name :

"kai1", age: 38, ...

name:

sam”, age: 18, ...

name:

name:

"mel", age: 38,

"ryan"”, age: 31,

name :

Fr I

sue", age: 26, ...

users

L

QUERY

= Targets a specific collection of documents
= Specifies criteria that identify the returned documents

= May include a projection that specifies the fields from the
matching

Collection Query Criteria Modifier

documents db.users.find({ age: { $gt: 18 } }).sort({age: 1 })
to return Coge: 18, -
. { age: 28, ...} { age: 28, ...} { age: 21, ...}
. May lmpose { age: 21, ...} { age: 21, ...} { age: 28, ...}
limits, Sort { age: 38, ...} _C> { age: 38, ...} T { age: 31, ...}
Coage: 18,) Query Criteria Coges 3. odifier Cage: B,
Orders! e { age: 38, ...} { age: 31, ...} { age: 38, ...}
{ age: 31, ...} Results

L

DOCUMENT DATAF
SUITABLE USE CASES

Event Logging

ESES

= Many different applications want to log events
= Type of data being captured keeps changing

i Even;cs can be sharded (i.e. divided) by the name of the application or type of
even

Content Management Systems, Blogging Platforms
= Managing user comments, user registrations, profiles, web-facing documents,

Web Analytics or Real-Time Analytics
= Parts of the document can be updated

= New metrics can be easily added without schema changes
= E.g.adding a member of a list, set,...

E-Commerce Applications
= Flexible schema for products and orders
= Evolving data models without expensive data migration

DOCUMENT DATABASES

WHEN NOT TGSE

Complex Transactions Spanning Different Operations

= Atomic cross-document operations
= Some document databases do support (e.g., RavenDB)

Queries against Varying Aggregate Structure

= Design of aggregate is constantly changing — we need
to save the aggregates at the lowest level of granularity
= 1.e. to normalize the data

GRAPH
DATABASES

GRAPH DATABASE

BASIC CHARACTERISTICS

= To store entities and relationships between these
entities
= Node is an instance of an object
= Nodes have properties
= e.g., hame
= Edges have directional significance
= Edges have types
= e.g., likes, friend, ...

= Nodes are organized by relationships
= Allow to find interesting patterns

= e.g., '‘Get all people (= nodes in the graph) employed by Big Co
that like (book called) NoSQL Distilled”

EXAMPLE:

employee

L~ N
o b A

Elizabeth

Databases

C
Yogs,
¥

p 3 <
men
-
likes]
likes i
Refactoring

” ~
NoSQL category
Distilled ’

Database
Refactoring

autyor

a
or
Martin
or
&(
Iliiiaiiiill

o

GRAPH DATABASE

RDBMS V5. GRAPH DATABASES

= When we store a graph-like structure in RDBMS, it is for
a single type of relationship
= “Who 1s my manager”

= Adding another relationship usually means a lot of
schema changes

= In RDBMS we model the graph beforehand based on the
Traversal we want
= If the Traversal changes, the data will have to change

= In graph databases the relationship is not calculated at query
time but persisted

GRAPH DATABASES

REPRESENTATIVES

® ¢
®)
. - ® ¢
: Neo :
.. 9
:) @ (]
® o . ¥ TheDistrib
(0]
fort

the graph database
i uted Graph Database
loud and Beyond

ﬁyﬁenmg FlockDB

http://en.wikipedia.org/wiki/File:Neo4j.jpg
http://en.wikipedia.org/wiki/File:Neo4j.jpg

GRAPH DATABASES

BASIC CHARACTERISTICS

= Nodes can have different types of relationships between them
= To represent relationships between the domain entities

= To have secondary relationships

= Category, path, time-trees, quad-trees for spatial indexing, linked lists for sorted
access, ...

= There is no limit to the number and kind of relationships a node can
have
= Except for upper limits of a particular system, if any

= Relationships have type, start node, end node, own properties
= e.g., since when did they become friends

EXAMPLE

Dawn

-

friend
since=2085

Elizabeth

-

friend
since=1989

share=[books ,movies, tweets]

Barbara

Anna

EXAMPLE: NEO4]

Node martin = graphDb.createNode () ;
martin.setProperty ("name", "Martin");
Node pramod = graphDb.createNode() ;
pramod.setProperty ("name", "Pramod");

martin.createRelationshipTo (pramod, FRIEND)
pramod.createRelationshipTo (martin, FRIEND) ;

= We have to create a relationship between the nodes in
both directions
= Nodes know about INCOMING and OUTGOING relationships

GRAPH DATABASE

QUERY

= Properties of a node/edge can be indexed
= Indices are queried to find the starting node to begin a

traversal
Transaction transaction = graphDb.beginTx () ;
try | creating index
Index<Node> nodelndex = graphDb.index () .forNodes ("nodes");
add”m; nodeIndex.add (martin, "name", martin.getProperty ("name"));
nodes nodelndex.add(pramod, "name", pramod.getProperty("name"));
transaction.success (); }
finally {

transaction.finish(); } L.
retrieving a node

Node martin = nodelndex.get ("name", "Martin") .getSingle();
allRelationships = martin.getRelationships ()

getting all its relationships

®

GRAPH DATABASES

QUERY — FINDING PATHS

= We are interested in determining if there are multiple
paths, finding all of the paths, the shortest path, ...

Node barbara = nodelndex.get ("name", "Barbara").getSingle();
Node 7jill = nodelIndex.get ("name", "Jill") .getSingle();
PathFinder<Path> finderl = GraphAlgoFactory.allPaths(
Traversal.expanderForTypes (FRIEND, Direction.OUTGOING),
MAX_DEPTH);
ITterable<Path> paths = finderl.findAllPaths (barbara, jJill);

PathFinder<Path> finderZ2 = GraphAlgoFactory.shortestPath (
Traversal.expanderForTypes (FRIEND, Direction.OUTGOING),
MAX DEPTH) ;
Tterable<Path> paths = finder2.findAllPaths (barbara, Jill);

GRAPH DATABASES

SUITABLE USE CASES

Connected Data

= Social networks

= Any link-rich domain is well suited for graph databases
Routing, Dispatch, and Location-Based Services

= Node = location or address that has a delivery

= Graph = nodes where a delivery has to be made

= Relationships = distance

Recommendation Engines

= “your friends also bought this product”

= “when invoicing this item, these other items are usually invoiced”

GRAPH DATABASE

WHEN NOT TO USE&

= When we want to update all or a subset of entities

= Changing a property on all the nodes is not a straightforward
operation

L .9{[., analytics solution where all entities may need to be updated
with a changed property

: (Sioine graph databases may be unable to handle lots of
ata

= Distribution of a graph is difficult

NEWSQL END
ARRAY DATABASES

NEWSOL DATABASES s

=Idea (from 2011): scalable storage + all functionality
known from traditional relational databases

= Not just SQL access, but classical relational model, ACID
properties, ...

= Previously ScalableSQL

http://blogs.the451group.com/information_management/2011/04/06/what-we-talk-about-when-we-talk-about-newsql/
https://cacm.acm.org/blogs/blog-cacm/109710-new-sql-an-alternative-to-nosql-and-old-sql-for-new-oltp-apps/fulltext
http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjx2omlxv3TAhUByRQKHZW6DwEQjRwIBw&url=http://labs.sogeti.com/newsql-whats/&psig=AFQjCNGL4stnjdlRkmCkw7mFONA3G7XApw&ust=1495337915909681
http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjx2omlxv3TAhUByRQKHZW6DwEQjRwIBw&url=http://labs.sogeti.com/newsql-whats/&psig=AFQjCNGL4stnjdlRkmCkw7mFONA3G7XApw&ust=1495337915909681

RLsontennse Tokutek AbSharels

3 ScaleArc s ScaleDB

NEWSOL DATABESES NewS(QL

e - 7RAN5[A TTICE
U SQLFire
Volt (2)-Store

xeround CENIEDB Clustrix

= Approaches:
= Distributed systems which add advantages of relational model + ACID
= e.g. Clustrix, ScaleArc, MemSQL, VoltDB, ...
= Relational DBMSs extended towards horizontal scalability
= e.g.TokuDB, JustOne DB, ..

= Cloud: NewSQL as a Service
= Special type of a cloud service = scalable relational DBMS
= e.g. Amazon Relational Database Service, Microsoft Azure Database, ...

NEWSQL DATABASES

= Why do we need them?

1. There are applications which work with relational databases
+ they need to solve new increase of data volumes

. Transformation to any NoSQL data model would be too
expensive

2. There are application which still need strong data
consistency + horizontal scalability

= Consequence: Again NewSQL does not mean the end
of traditional SQL (relational) DBMSs

= An alternative approach — we need alternatives and there
will occur other

ARRAY DATABASES

= Database systems specific for data represented as one- or multi-dimensional
arrays

= Usually: We need to represent the respective values in time and/or space
= Biology, chemistry, physics, geology, ...
= Complex research analyses of natural events

= e.g.astronomical measurements, changes of climate, satellite pictures of the Earth,
oceanographic data, human genome, ...

= Example: Each satellite picture is a 2D-array (longitude + latitude) with
values informing about the particular positions

= Next dimensions: time when the picture was taken, characteristics of the tool
taking the picture, ...

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi2xpTYyf3TAhXBtBQKHSGTBzEQjRwIBw&url=https://www.climatemodeling.org/~forrest/presentations/Hoffman_Data-Mining_20020623/&psig=AFQjCNGyggraOeOJJjfysMe_-fYhf1xpPA&ust=1495338903369013
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi2xpTYyf3TAhXBtBQKHSGTBzEQjRwIBw&url=https://www.climatemodeling.org/~forrest/presentations/Hoffman_Data-Mining_20020623/&psig=AFQjCNGyggraOeOJJjfysMe_-fYhf1xpPA&ust=1495338903369013

ARRAY DATABASES

=In general:
= Big Data of a specific type
= Data not suitable for flat 2D relations

= Some RDBMSs support arrays

= Too simple operations for these purposes
= Not efficient

raster data management

CRACLE 1 2(;
3 ‘ilnA!A'a! 3

Oracle Spatial

http://www.paradigm4.com/wp-content/uploads/2014/05/scidb_logo.png
http://www.paradigm4.com/wp-content/uploads/2014/05/scidb_logo.png

MULTI-MODEL
DATABASES

POLYGLOT PERSISTENCE

= Idea: Use the right tool for the job

= If you have structured data with some differences
= Use a document store

= [f you have relations between entities and want to efficiently
query them

= Use a graph database

= [f you manage the data structure yourself and do not need
complex queries

= Use a key/value store

ND CONS OF POLYGLOT PERSISTENCE

= Requires the company to
hire people to integrate
different databases

= Developers need to learn
different databases

= How to handle cross-
model queries and
transactions?

Q) “

MULTI-MODEL DATABASE

= One unified database for multi-model data

XML

Multi-model
DB

JSON

Text

Table

Spatial

MULTI-MODEL DATABASES

ORACLE

APACHE

{ DRILL

Asterixcs

A

.mongo MariaDB
@ ArangoDB 8
<QrientDB
e J

'.MarkLogiC“

MULTI-MODEL DATABASES ARE NOT NEW!

= Can be traced to object-
relational databases (ORDBMS)

= ORDBMS framework allows users
to plug in their domain and/or
application specific data models
as user-defined
functions/types/indexes

MOST OF DBS WILL BECOME MULTI-MODEL DATABASES

IN 2011

OOOOOOOOOOOOOOOOOOOO

As of October 2015

*By 2017, all leading
operational DBMSs will
offer multiple data
models, relational and
NoSQlL, in a single
DBMS platform.

-- Gartner report for operational
databases 2016

e.g. MongoDB supports multi-model in
the recent release 3.4 (NOV 29, 2016)

L

PROS AND CONS OF MULTI-MODEL
DATABASES

= Handle multi-model data = A complex system

= One system implements = Immature and developing

fault tolerance = Many challenges and open

= Data consistency problems

= Unified query language for
multi-model data

Y

TW0 EXAMPLES OF MULTI-MODEL
DATABASES

O) DB I}ﬁenfDB‘

& DB

= ArangoDB is a multi-model, open-source database with flexible data models
= Documents, graphs, key/values

= Stores all data as documents

= Vertices and edges of graphs are documents — allows to mix all three data models

AN EXAMPLE OF MULTI-MODEL DATA AND QUERY

Marry (1)

knows/ \knows

William (3) John (2)

Social network graph

"1" -->"34e5e759"
"2"-->"0c6d£508"

Key/value pairs
(Customer_ID, Order_no)

{ "Order no":"0c6df508",

}

"Orderlines": |
{ "Product no":"2724f"
"Product Name":"Toy",
"Price":66 },
{ "Product no":"3424g",
"Product Name":"Book",
"Price":40 }]

Order JSON document _
Customer relation

Customer_ID Credit_limits

1 Mary 5,000
2 John 3,000
3 William 2,000

L

AN EXAMPLE OF MULTI-MODEL DATA AND QUERY

Marry (1) .
Graph—key/value join "1"..>"34e5e759"
knomm/// \\\Enomm

- <:> "2"-->"0c6d£508"
William (3) John (2)

Key/value—=JSON join
Relation—graph join

{ "Order no":"0c6df508",

Customer_ID Credit_limits "Orderlines": [

1 Mary 5,000 { "Product no":"2724f"
"Product Name":"Toy",

2 John 3,000 "Price":66 },
3 William 2,000 { "Product no":"3424g",
. "Product Name":"Book"
Recommendation query: "Price":40 }] }

Return all product_no-s which are ordered by a
friend of a customer whose credit_limit>3000

L

AN EXAMPLE OF MULTI-MODEL DATA AND QUERY

LET CustomerIDs = (
FOR Customer IN Customers
FILTER Customer.CreditLimit > 3000
RETURN Customer.id)
LET FriendIDs = (
FOR CustomerID IN CustomerIDs
FOR Friend IN 1..1 OUTBOUND CustomerID Knows
RETURN Friend.id)
FOR Friend in FriendIDs
FOR Order in 1..1 OUTBOUND Friend CustomerZ20rder
RETURN Order.orderlines[*].Product no

Recommendation query:
Return all product_no-s which are ordered by a friend of a customer whose credit_limit>3000

L

i?rienTDB’

= Supporting graph, document, key/value and object models

= The relationships are managed as in graph databases with
direct connections between records

= [t supports schema-less, schema-full and schema-mixed
modes

= Queries: SQL extended for graph traversal

rientDB

SELECT expand(out ("Knows") .Orders.orderlines.
Product no)

FROM Customers

WHERE CreditLimit > 3000

Recommendation query:
Return all product_no-s which are ordered by a friend of a customer whose credit_limit>3000 @

CLASSIFICATION OF MULTI-MODEL SYSTEMS

Basic approach: on the basis of original (or core) data model

Relational | PostgreSQL, SQL Server, IBM DB2, Oracle DB, Oracle MySQL, Sinew
Column Cassandra, CrateDB, DynamoDB, HPE Vertica

Key/value |Riak, c-treeACE, Oracle NoSQL DB

Document | ArangoDB, Couchbase, MarkLogic, MongoDB, Cosmos DB

Graph OrientDB

Object InterSystems Caché

Special Not yet multi-model — NuoDB, Redis, Aerospike

Multi-use-case — SAP HANA DB, Octopus DB

RELATIONAL MULTI-MODEL DBMSS

Biggest set of multi-model
databases

O The most popular type of databases

O SQL has been extended towards
other data formats (e.g, SQL/XML)

O Simplicity and universality of the
relational model

s
2
=
~ <L
% =
% 5
2 =
] - -
|, 1|3 :
g8 5|5 2|3
S22 Ble g3 7 7
e | o | & =S Ei = @
Type DBMS O KR C | Z
Relational | PostgreSQL Vv vV IV]V
SQL Server v VvV [V
IBM DB2 v V
Oracle DB v N
Oracle MySQL N Vv
Sinew N4 v

Oracle DB CrateDB
(JSON) / Oracle
~——"NoSQL DB Cache

.. Hig.Vertica (XML, JSON)
e ‘ Oracle DB PostgreSQL € ’ SQL Server
"IRRLY ™ L AreeACR (kéyvaliie] (/18R DE2 MaFk'L'dch """"""" OF@'n'tD'B' Arango 8 "son) / Rak Ués's'a' (JSON)
|

I | I
2000 2001 .. 2003 .. 2006 2007 2008 2009

|
2010

2011 2012 2013 2014 2015 2016

RELATIONAL MULTI-MODEL DBMSS %

STORAGE — POSTGRESQL EXAMPLE

SELECT Jjson build object('id',id, 'name', name,'orders', orders)

FROM customer;
json_build_object
json

{"orders":{"Orderlines":[{"Price":66,"Product_Name":"Toy","Product_no":"2724f"},{ "Price":40,"Product_Name":"Book"," Product_no":"3..
{"orders":{"Orderlines":[{"Price":34,"Product_Name":"Computer","Product_no":"2454f"}],"Order_no":"0c6df511"},"id":2,"name":"John"}

SELECT jsonb each(orders) FROM customer; CREATE TABLE customer (
id INTEGER PRIMARY KEY,
jsonb_each name VARCHAR (50) ,
record address VARCHAR (50),
(Order_no,"""0c6df508""") orders JSONB
(Orderlines,"[{""Price™": 66, ""Product_no"": ""2724f"", ""Product_Name"": ""To...) ;
(Order_no,"""0cedf511""")
(Orderlines,”[{""Price™": 34, ""Product_no"™: ""2454f"", ""Product_Name"": ""Co... fsonhy object keys
text
. . Order_no
SELECT Jjsonb_object keys (orders) FROM customer; rderines
Order_no

Orderlines

RELATIONAL MULTI-MODEL DBMSS %

STﬁRﬂGE — POSTGRESQL EXH’MPLE CREATE TABLE customer (

id INTEGER PRIMARY KEY,
name VARCHAR (50) ,
address VARCHAR (50),

INSERT INTO customer
orders JSONB

VALUES (1, 'Mary', 'Prague',
'{"Order no":"0c6df508",) ;

"Orderlines": [
"2724f", "Product Name":"Toy", "Price":

{"Product no":
{"Product no":"3424g", "Product Name":"Book", "Price":40}]

PY)

166},

INSERT INTO customer
VALUES (2, 'John', 'Helsinki',
'{"Order no":"0Oc6df511",

"Orderlines": [
{ "Product no":"2454f", "Product Name":"Computer", "Price":34 }]

P
name address orders
|nt r | character varying (50) | character varying (50) | jsonb
Mary

{"Orderlines”:[{"Price":66," Product_Name":"Toy","Product_no":"2724f"},{"Price":40," Product_Name":

Prague

{"Orderlines”:[{"Price":34," Product_Name":"Computer”,"Product_no":"2454f"}],"Order_no":"0cedf511"}

2 John Helsinki

RELATIONAL MULTI-MODEL DBMSS %

QUERYING — POSTGRESQL EXAMPLE

name address orders
|nt r | character varying (50) | character varying (50) | jsonb

Prague {"Orderlines":[{"Price":66," Product_Name":"Toy","Product_no":"2724f"},{"Price":40," Product_Name":
2 John Helsinki {"Orderlines":[{"Price":34,"Product_Name":"Computer”,"Product_no":"2454f"}],"Order_no":"0c6df511"}
{"Order no":"Oc6df508", SELECT name,
"Orderlines": [orders->>'0Order no' as Order no,
{ "Product no":"2724f", orders#>' {Orderlines,1}'->>'Product Name' as
"Product_Name":"Toy", Product Name
"Price":66 }, FROM customer

{"Product no":"3424g", where orders->>'Order no' <> 'Oc6df511';

"Product Name":"Book",
name order_no product_name
character varying (50) text text

"Price" :40}]
0c6df508 Book

REFERENCES

Pramod IPSadala ge — Martin Fowler: NoSQL Distilled: A Brief Guide to the Emerging World of
Polyglot Persistefice

Eric Redmond — [im R. Wilson: Seven Databases in Seven Weeks: A Guide to Modern Databases
and the NoSQL Movement

Sherif Sakr — Eric Pardede: Graph Data Management: Techniques and Applications
Shashank Tiwari: Professional NoSQL
Neither Fish Nor Fowl: the Rise of Multi-model Databases.The 451 Group, 2013.

Femberg M. Adrian, N. Heudecker, A. M. Ronthal, and T, Palanca. Gartner Magic Quadrant for
Operatlon I Database Management Systems, 12 October 2015.

H. Liu, P, Xu, and C. Zhang. UDBMS: road to unification for multi-model data management.
oRR abs/1612. 08’050 2016

J. Lu: Towards Benchmarking Multi-model Databases. CIDR 2017

o. Abiteboul et al: Research Directions for Principles of Data Management, Dagstuhl Perspectives
Workshop 16151 (2017)

@

http://nosql-database.org/

