
Modern Database Systems

Doc. RNDr. Irena Holubová, Ph.D. &

https://www.ksi.mff.cuni.cz/~holubova/NDBI048/

NDBI048

https://www.ksi.mff.cuni.cz/~holubova/NDBI048/

 NoSQL databases

 Key/value

 Column

 Document

 Graph

 NewSQL databases

 Array databases

 Multi-model databases

I. Business Understanding

II. Data Understanding

III. Data Preparation

IV. Modeling

V. Evaluation

VI. Deployment

https://www.datascience-pm.com/crisp-dm-2/

https://www.datascience-pm.com/crisp-dm-2/

 A common assumption for many years

 Relational databases are able to store and process various data
structures

 Advantages:
 Simplicity

 of the model

 of the respective query language

 After so many years mature and verified database management systems
(DBMSs)

 Strong mathematical background

 …

 Proposed by E.F. Codd in 1970
 Paper: “A relational model of data for large

shared data banks”

 IBM Research Labs

 Basic idea:
 Storing of object and their mutual associations in tables (relations)

 A relation R from X to Y is a subset of the Cartesian product X × Y.

 Row in a table (member of relation) = object/association

 Column (attribute) = attribute of an object/association

 Table (relational) schema = name of the schema + list of attributes and their
types

 Schema of a relational database = set of relational schemas

 Basic integrity constraints
 Unique identification of a row

 Super key vs. key

 Simple type attributes
 NULL values

 No “holes”

 Keys/foreign keys

 First generation: navigational
 Hierarchical model

 Network model

 Second generation: relational

 Third generation: post-relational
 Extensions of relational model

 Object-relational

 New models reacting to popular technologies
 Object

 XML

 NoSQL (key/value, column, document, graph, …) - Big Data

 Array databases

 Multi-model systems

 …

 NewSQL
 Back to the relations

time

Core:

 Key-value databases

 Document databases

 Column-family (column-oriented/columnar) stores

 Graph databases

Non-core:

 Object databases

 XML databases

 …

http://nosql-database.org/

http://nosql-database.org/

 The simplest NoSQL data stores

 A simple hash table (map), primarily used when all
access to the database is via primary key

 A table in RDBMS with two columns, such as ID and
NAME
 ID column being the key
 NAME column storing the value

 A BLOB that the data store just stores

 Basic operations:
 Get the value for the key
 Put a value for a key
 Delete a key from the data store

 Simple  great performance, easily scaled

 Simple  not for complex queries, aggregation needs

Project

Voldemort

MemcachedDB

not

open-source

open-source

version

 We can query by the key

 To query using some attribute of the value column is
(typically) not possible
 We need to read the value to figure out if the attribute meets the

conditions

 What if we do not know the key?
 Some systems enable to retrieve the list of all keys

 Expensive

 Some support searching inside the value

 Using, e.g., a kind of full-text index

 The data must be indexed first

 Riak search (see later)

RIAK

 Open source, distributed database
 First release: 2009

 Implementing principles from Amazon's Dynamo

 OS: Linux, BSD, Mac OS X, Solaris

 Language: Erlang, C, C++, some parts in JavaScript

 Built-in MapReduce support

 Stores keys into buckets = a namespace for keys
 Like tables in a RDBMS, directories in a file system, …

 Have a set of common properties for its contents

 e.g., number of replicas

http://basho.com/riak/

http://en.wikipedia.org/wiki/File:Riak_product_logo.png
http://en.wikipedia.org/wiki/File:Riak_product_logo.png
http://basho.com/riak/

Single object for all data,

everything in a single bucket

Terminology in Oracle vs. Riak

Adding type of data to the key,

still everything in a single bucket

namespace

for keys

Separate buckets for different

types of data

Bucket bucket = getBucket(bucketName);

IRiakObject riakObject =

bucket.store(key, value).execute();

Bucket bucket = getBucket(bucketName);

IRiakObject riakObject =

bucket.fetch(key).execute();

byte[] bytes = riakObject.getValue();

String value = new String(bytes);

http://en.wikipedia.org/wiki/File:Riak_product_logo.png
http://en.wikipedia.org/wiki/File:Riak_product_logo.png

Storing Session Information

 Every web session is assigned a unique session_id value

 Everything about the session can be stored by a single PUT request
or retrieved using a single GET

 Fast, everything is stored in a single object

User Profiles, Preferences

 Every user has a unique user_id, user_name + preferences such as
language, colour, time zone, which products the user has access to,
…

 As in the previous case:
 Fast, single object, single GET/PUT

Shopping Cart Data

 Similar to the previous cases

Relationships among Data

 Relationships between different sets of data

 Some key-value stores provide link-walking features
 Not usual

Multioperation Transactions

 Saving multiple keys
 Failure to save any one of them → revert or roll back the rest of the

operations

Query by Data

 Search the keys based on something found in the value part

Operations by Sets

 Operations are limited to one key at a time

 No way to operate upon multiple keys at the same time

 Also “columnar” or “column-oriented”

 Column families = rows that have many columns
associated with a row key

 Column families are groups of related data that is often
accessed together
 e.g., for a customer we access all profile information at the same

time, but not orders

Google’s

BigTable

 Developed at Facebook

 Initial release: 2008

 Stable release: 2013
 Apache Licence

 Written in: Java

 OS: cross-platform

 Operations:
 CQL (Cassandra Query Language)

 MapReduce support

 Can cooperate with Hadoop (data storage instead of HDFS)

http://cassandra.apache.org/

http://en.wikipedia.org/wiki/File:Cassandra_logo.svg
http://en.wikipedia.org/wiki/File:Cassandra_logo.svg
http://cassandra.apache.org/

 Column = basic unit, consists of a name-value pair
 Name serves as a key

 Stored with a timestamp (expired data, resolving conflicts, …)

 Row = a collection of columns attached or linked to a
key

 Column family = a collection of similar rows
 Rows do not have to have the same columns

Usually

one per

application

3-tuple

 Column key of firstName and the value of Martin

{ name: "firstName",

value: "Martin",

timestamp: 12345667890 }

{ "pramod-sadalage" : {

firstName: "Pramod",

lastName: "Sadalage",

lastVisit: "2012/12/12" }

"martin-fowler" : {

firstName: "Martin",

lastName: "Fowler",

location: "Boston" } }

 pramod-sadalage row and martin-fowler row with different columns;
both rows are a part of a column family

{ "pramod-sadalage" : {

firstName: "Pramod",

lastName: "Sadalage",

lastVisit: "2012/12/12" }

"martin-fowler" : {

firstName: "Martin",

lastName: "Fowler",

location: "Boston" } }

 We do not need to model all of the columns up front
 Each row is not required to have the same set of columns

 Usually we assume similar sets of columns

 Related data

 Can be extended when needed

 No formal foreign keys
 Joining column families at query time is usually not supported

 We need to pre-compute the query / use a secondary index

Other column

families /

secondary

indexes for

special queries

 Can define metadata about columns
 Actual columns of a row are determined by client application
 Each row can have a different set of columns

 Static – similar to a relational database table
 Rows have the same set of columns
 Not required to have all of the columns defined

 Dynamic – takes advantage of Cassandra's ability to use arbitrary
application-supplied column names
 Pre-computed result sets
 Stored in a single row for efficient data retrieval
 Row = a snapshot of data that satisfy a given query

 Like a materialized view

static

dynamic

Users that subscribe to a particular user's blog

SET
CREATE TABLE users (

user_id text PRIMARY KEY,

first_name text,

last_name text,

emails set<text>);

INSERT INTO users (user_id, first_name, last_name, emails)

VALUES('frodo', 'Frodo', 'Baggins', {'f@baggins.com', 'baggins@gmail.com'});

UPDATE users SET emails = emails + {'fb@friendsofmordor.org'}

WHERE user_id = 'frodo';

SELECT user_id, emails FROM users WHERE user_id = 'frodo';

UPDATE users SET emails = emails - {'fb@friendsofmordor.org'}

WHERE user_id = 'frodo';

UPDATE users SET emails = {} WHERE user_id = 'frodo';

order

LIST
ALTER TABLE users ADD top_places list<text>;

UPDATE users SET top_places = ['rivendell', 'rohan']

WHERE user_id = 'frodo';

UPDATE users SET top_places = ['the shire'] + top_places

WHERE user_id = 'frodo';

UPDATE users SET top_places = top_places + ['mordor']

WHERE user_id = 'frodo';

UPDATE users SET top_places[2] = 'riddermark'

WHERE user_id = 'frodo';

DELETE top_places[3] FROM users WHERE user_id = 'frodo';

UPDATE users SET top_places = top_places - ['riddermark']

WHERE user_id = 'frodo';

MAP
ALTER TABLE users ADD todo map<timestamp, text>;

UPDATE users SET todo = { '2012-9-24' : 'enter mordor',

'2012-10-2 12:00' : 'throw ring into mount doom' }

WHERE user_id = 'frodo';

UPDATE users SET todo['2012-10-2 12:00'] =

'throw my precious into mount doom'

WHERE user_id = 'frodo';

INSERT INTO users (user_id, todo) VALUES ('frodo', {

'2013-9-22 12:01' : 'birthday wishes to Bilbo',

'2013-10-1 18:00' : 'Check into Inn of Prancing Pony' });

DELETE todo['2012-9-24'] FROM users

WHERE user_id = 'frodo';

DROP TABLE timeline;

 Delete a table including all data

TRUNCATE timeline;

 Remove all data from a table

CREATE INDEX userIndex ON timeline (posted_by);

 Create a (secondary) index

 Allow efficient querying of other columns than key

DROP INDEX userIndex;

 Drop an index

 No joins, just simple conditions
 For simple data reads

SELECT * FROM users

WHERE firstname = 'jane' and lastname='smith'

ALLOW FILTERING;

 Filtering (WHERE)

SELECT * FROM emp

WHERE empID IN (130,104)

ORDER BY deptID DESC;

 Ordering (ORDER BY)

SELECT select_expression

FROM keyspace_name.table_name

WHERE relation AND relation ...

GROUP BY columns

ORDER BY (clustering_key (ASC | DESC)...)

LIMIT n

ALLOW FILTERING

 select_expression:

 List of columns

 DISTINCT

 COUNT

 Aliases (AS)

 TTL(column_name)

 WRITETIME(column_name)

 relation:

 column_name (= | < | > | <= | >=) key_value

 column_name IN ((key_value,...))

 TOKEN (column_name, ...) (= | < | > | <= | >=)

 (term | TOKEN (term, ...))

 term:

 constant

 set/list/map

hash

Event Logging

 Ability to store any data structures → good choice to store event
information

Content Management Systems, Blogging Platforms

 We can store blog entries with tags, categories, links, and trackbacks in
different columns

 Comments can be either stored in the same row or moved to a different
keyspace

 Blog users and the actual blogs can be put into different column families

Systems that Require ACID Transactions

 Column-family stores are not just a special kind of RDBMSs with
variable set of columns!

Aggregation of the Data Using Queries

 (Such as SUM or AVG)

 Have to be done on the client side

For Early Prototypes

 We are not sure how the query patterns may change

 As the query patterns change, we have to change the column family
design

 Documents are the main concept
 Stored and retrieved
 XML, JSON, …

 Documents are
 Self-describing
 Hierarchical tree data structures
 Can consist of maps, collections (lists, sets, …), scalar values,

nested documents, …

 Documents in a collection are expected to be similar
 Their schema can differ

 Document databases store documents in the value part
of the key-value store
 Key-value stores where the value is examinable

{ "firstname": "Martin",

"likes": ["Biking",

"Photography"],

"lastcity": "Boston",

"lastVisited": }

{ "firstname": "Pramod",

"citiesvisited": ["Chicago", "London", "Pune", "Bangalore"],

"addresses": [

{ "state": "AK",

"city": "DILLINGHAM",

"type": "R" },

{ "state": "MH",

"city": "PUNE",

"type": "R" }],

"lastcity": "Chicago“ }

Data are similar, but have differences, e.g., in attribute
names
 Still belong to the same collection

We can represent
 A list of cities visited as an array

 A list of addresses as a list of documents embedded inside
the main document

Lotus Notes

Storage Facility

http://en.wikipedia.org/wiki/File:Lotus_Notes_8_icon.png
http://en.wikipedia.org/wiki/File:Lotus_Notes_8_icon.png

 Initial release: 2009

 Written in C++
 Open-source

 Cross-platform

 JSON documents
 Dynamic schemas

 Features:
 High performance – indices
 High availability – replication + eventual consistency + automatic

failover
 Automatic scaling – automatic sharding across the cluster
 MapReduce support

http://www.mongoDB.org/

http://www.mongodb.org/

Terminology in Oracle and mongoDB

 Each mongoDB
instance has
multiple databases

 Each database can
have multiple
collections

 When we store a
document, we
have to choose
database and
collection

DOCUMENTS
 Use JSON

 Stored as BSON
 Binary representation of JSON

 Have maximum size: 16MB (in BSON)
 Not to use too much RAM

 GridFS tool divides larger files into fragments

 Restrictions on field names:
 _id is reserved for use as a primary key

 Unique in the collection

 Immutable

 Any type other than an array

 The field names cannot start with the $ character
 Reserved for operators

 The field names cannot contain the . character
 Reserved for accessing fields

REFERENCES

 References provide more flexibility than
embedding

 Use normalized data models:
 When embedding would result in duplication of data not

outweighted by read performance

 To represent more complex many-to-many relationships

 To model large hierarchical data sets

 Disadvantages:
 Can require more roundtrips to the server (follow up

queries)

EMBEDDED DATA

 Related data in a single document structure
 Documents can have subdocuments (in a field of array)

 Applications may need to issue less queries

 Denormalized data models

 Allow applications

to retrieve and

manipulate related

data in a single

database operation

DATA MODIFICATION

 Operations:
create, update,
delete
 Modify the

data of a
single
collection of
documents

 For update /
delete:
criteria to
select the
documents to
update /
remove

QUERY

 Targets a specific collection of documents

 Specifies criteria that identify the returned documents

 May include a projection that specifies the fields from the
matching

documents

to return

 May impose

limits, sort

orders, …

Event Logging

 Many different applications want to log events
 Type of data being captured keeps changing

 Events can be sharded (i.e. divided) by the name of the application or type of
event

Content Management Systems, Blogging Platforms

 Managing user comments, user registrations, profiles, web-facing documents,
…

Web Analytics or Real-Time Analytics

 Parts of the document can be updated

 New metrics can be easily added without schema changes
 E.g. adding a member of a list, set,…

E-Commerce Applications

 Flexible schema for products and orders

 Evolving data models without expensive data migration

Complex Transactions Spanning Different Operations

 Atomic cross-document operations
 Some document databases do support (e.g., RavenDB)

Queries against Varying Aggregate Structure

 Design of aggregate is constantly changing → we need
to save the aggregates at the lowest level of granularity
 i.e. to normalize the data

 To store entities and relationships between these
entities
 Node is an instance of an object

 Nodes have properties

 e.g., name

 Edges have directional significance

 Edges have types

 e.g., likes, friend, …

 Nodes are organized by relationships
 Allow to find interesting patterns

 e.g., “Get all people (= nodes in the graph) employed by Big Co
that like (book called) NoSQL Distilled”

 When we store a graph-like structure in RDBMS, it is for
a single type of relationship
 “Who is my manager”

 Adding another relationship usually means a lot of
schema changes

 In RDBMS we model the graph beforehand based on the
Traversal we want
 If the Traversal changes, the data will have to change

 In graph databases the relationship is not calculated at query
time but persisted

FlockDB

http://en.wikipedia.org/wiki/File:Neo4j.jpg
http://en.wikipedia.org/wiki/File:Neo4j.jpg

 Nodes can have different types of relationships between them
 To represent relationships between the domain entities

 To have secondary relationships

 Category, path, time-trees, quad-trees for spatial indexing, linked lists for sorted
access, …

 There is no limit to the number and kind of relationships a node can
have
 Except for upper limits of a particular system, if any

 Relationships have type, start node, end node, own properties
 e.g., since when did they become friends

 We have to create a relationship between the nodes in
both directions
 Nodes know about INCOMING and OUTGOING relationships

Node martin = graphDb.createNode();

martin.setProperty("name", "Martin");

Node pramod = graphDb.createNode();

pramod.setProperty("name", "Pramod");

martin.createRelationshipTo(pramod, FRIEND);

pramod.createRelationshipTo(martin, FRIEND);

 Properties of a node/edge can be indexed

 Indices are queried to find the starting node to begin a
traversal

Transaction transaction = graphDb.beginTx();

try {

Index<Node> nodeIndex = graphDb.index().forNodes("nodes");

nodeIndex.add(martin, "name", martin.getProperty("name"));

nodeIndex.add(pramod, "name", pramod.getProperty("name"));

transaction.success(); }

finally {

transaction.finish(); }

Node martin = nodeIndex.get("name", "Martin").getSingle();

allRelationships = martin.getRelationships();

adding

nodes

creating index

retrieving a node

getting all its relationships

FINDING PATHS

We are interested in determining if there are multiple
paths, finding all of the paths, the shortest path, …

Node barbara = nodeIndex.get("name", "Barbara").getSingle();

Node jill = nodeIndex.get("name", "Jill").getSingle();

PathFinder<Path> finder1 = GraphAlgoFactory.allPaths(

Traversal.expanderForTypes(FRIEND,Direction.OUTGOING),

MAX_DEPTH);

Iterable<Path> paths = finder1.findAllPaths(barbara, jill);

PathFinder<Path> finder2 = GraphAlgoFactory.shortestPath(

Traversal.expanderForTypes(FRIEND,Direction.OUTGOING),

MAX_DEPTH);

Iterable<Path> paths = finder2.findAllPaths(barbara, jill);

Connected Data

 Social networks

 Any link-rich domain is well suited for graph databases

Routing, Dispatch, and Location-Based Services

 Node = location or address that has a delivery

 Graph = nodes where a delivery has to be made

 Relationships = distance

Recommendation Engines

 “your friends also bought this product”

 “when invoicing this item, these other items are usually invoiced”

 When we want to update all or a subset of entities
 Changing a property on all the nodes is not a straightforward

operation
 e.g., analytics solution where all entities may need to be updated

with a changed property

 Some graph databases may be unable to handle lots of
data
 Distribution of a graph is difficult

 Idea (from 2011): scalable storage + all functionality
known from traditional relational databases
 Not just SQL access, but classical relational model, ACID

properties, …

 Previously ScalableSQL

Aslett, M.: What We Talk about When We Talk about NewSQL. 452 Group, 2011.

http://blogs.the451group.com/information_management/2011/04/06/what-we-talk-

about-when-we-talk-about-newsql/

Stonebraker, M.: New SQL: An Alternative to NoSQL and Old SQL for New OLTP

Apps, 2011. https://cacm.acm.org/blogs/blog-cacm/109710-new-sql-an-alternative-

to-nosql-and-old-sql-for-new-oltp-apps/fulltext

http://blogs.the451group.com/information_management/2011/04/06/what-we-talk-about-when-we-talk-about-newsql/
https://cacm.acm.org/blogs/blog-cacm/109710-new-sql-an-alternative-to-nosql-and-old-sql-for-new-oltp-apps/fulltext
http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjx2omlxv3TAhUByRQKHZW6DwEQjRwIBw&url=http://labs.sogeti.com/newsql-whats/&psig=AFQjCNGL4stnjdlRkmCkw7mFONA3G7XApw&ust=1495337915909681
http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjx2omlxv3TAhUByRQKHZW6DwEQjRwIBw&url=http://labs.sogeti.com/newsql-whats/&psig=AFQjCNGL4stnjdlRkmCkw7mFONA3G7XApw&ust=1495337915909681

 Approaches:
 Distributed systems which add advantages of relational model + ACID

 e.g. Clustrix, ScaleArc, MemSQL, VoltDB, …

 Relational DBMSs extended towards horizontal scalability

 e.g. TokuDB, JustOne DB, ..

 Cloud: NewSQL as a Service
 Special type of a cloud service = scalable relational DBMS

 e.g. Amazon Relational Database Service, Microsoft Azure Database, …

 Why do we need them?
1. There are applications which work with relational databases

+ they need to solve new increase of data volumes

 Transformation to any NoSQL data model would be too
expensive

2. There are application which still need strong data
consistency + horizontal scalability

 Consequence: Again NewSQL does not mean the end
of traditional SQL (relational) DBMSs

 An alternative approach – we need alternatives and there
will occur other

Stonebraker, M. et al.: The end of an architectural era: (it's time for a complete rewrite).

VLDB '07.

 Database systems specific for data represented as one- or multi-dimensional
arrays

 Usually: We need to represent the respective values in time and/or space
 Biology, chemistry, physics, geology, …

 Complex research analyses of natural events

 e.g. astronomical measurements, changes of climate, satellite pictures of the Earth,
oceanographic data, human genome, …

 Example: Each satellite picture is a 2D-array (longitude + latitude) with
values informing about the particular positions
 Next dimensions: time when the picture was taken, characteristics of the tool

taking the picture, …

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi2xpTYyf3TAhXBtBQKHSGTBzEQjRwIBw&url=https://www.climatemodeling.org/~forrest/presentations/Hoffman_Data-Mining_20020623/&psig=AFQjCNGyggraOeOJJjfysMe_-fYhf1xpPA&ust=1495338903369013
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi2xpTYyf3TAhXBtBQKHSGTBzEQjRwIBw&url=https://www.climatemodeling.org/~forrest/presentations/Hoffman_Data-Mining_20020623/&psig=AFQjCNGyggraOeOJJjfysMe_-fYhf1xpPA&ust=1495338903369013

 In general:
 Big Data of a specific type

 Data not suitable for flat 2D relations

 Some RDBMSs support arrays

 Too simple operations for these purposes

 Not efficient

http://www.paradigm4.com/wp-content/uploads/2014/05/scidb_logo.png
http://www.paradigm4.com/wp-content/uploads/2014/05/scidb_logo.png

 Idea: Use the right tool for the job

 If you have structured data with some differences
 Use a document store

 If you have relations between entities and want to efficiently
query them
 Use a graph database

 If you manage the data structure yourself and do not need
complex queries
 Use a key/value store

 Handles multi-model data

 Helps apps to scale well

 A rich experience

 Requires the company to
hire people to integrate
different databases

 Developers need to learn
different databases

 How to handle cross-
model queries and
transactions?

 One unified database for multi-model data

Table

RDFXML

Spatial

Text

Multi-model

DB
JSON

…

NOT
Can be traced to object-

relational databases (ORDBMS)

ORDBMS framework allows users
to plug in their domain and/or
application specific data models
as user-defined
functions/types/indexes

•By 2017, all leading
operational DBMSs will
offer multiple data
models, relational and
NoSQL, in a single
DBMS platform.

-- Gartner report for operational
databases 2016

e.g. MongoDB supports multi-model in
the recent release 3.4 (NOV 29, 2016)

Handle multi-model data

One system implements
fault tolerance

Data consistency

Unified query language for
multi-model data

A complex system

 Immature and developing

Many challenges and open
problems

 ArangoDB is a multi-model, open-source database with flexible data models

 Documents, graphs, key/values

 Stores all data as documents

 Vertices and edges of graphs are documents  allows to mix all three data models

{ "Order_no":"0c6df508",

"Orderlines": [

{ "Product_no":"2724f"

"Product_Name":"Toy",

"Price":66 },

{ "Product_no":"3424g",

"Product_Name":"Book",

"Price":40 }]

}

Marry (1)

John (2)

knowsknows

William (3)

Social network graph

Key/value pairs
(Customer_ID , Order_no)

Order JSON document
Customer relation"1" -- > "34e5e759"

"2"-- > "0c6df508" Customer_ID Name Credit_limits

1 Mary 5,000

2 John 3,000

3 William 2,000

{ "Order_no":"0c6df508",

"Orderlines": [

{ "Product_no":"2724f"

"Product_Name":"Toy",

"Price":66 },

{ "Product_no":"3424g",

"Product_Name":"Book",

"Price":40 }] }

Marry (1)

John (2)

knowsknows

William (3)

"1" -- > "34e5e759"

"2"-- > "0c6df508"

Customer_ID Name Credit_limits

1 Mary 5,000

2 John 3,000

3 William 2,000

Relation-graph join

Graph-key/value join

Key/value-JSON join

Recommendation query:
Return all product_no-s which are ordered by a
friend of a customer whose credit_limit>3000

LET CustomerIDs = (

FOR Customer IN Customers

FILTER Customer.CreditLimit > 3000

RETURN Customer.id)

LET FriendIDs = (

FOR CustomerID IN CustomerIDs

FOR Friend IN 1..1 OUTBOUND CustomerID Knows

RETURN Friend.id)

FOR Friend in FriendIDs

FOR Order in 1..1 OUTBOUND Friend Customer2Order

RETURN Order.orderlines[*].Product_no

Recommendation query:
Return all product_no-s which are ordered by a friend of a customer whose credit_limit>3000

Supporting graph, document, key/value and object models

The relationships are managed as in graph databases with
direct connections between records

 It supports schema-less, schema-full and schema-mixed
modes

Queries: SQL extended for graph traversal

SELECT expand(out("Knows").Orders.orderlines.

Product_no)

FROM Customers

WHERE CreditLimit > 3000

Recommendation query:
Return all product_no-s which are ordered by a friend of a customer whose credit_limit>3000

Relational PostgreSQL, SQL Server, IBM DB2, Oracle DB, Oracle MySQL, Sinew

Column Cassandra, CrateDB, DynamoDB, HPE Vertica

Key/value Riak, c-treeACE, Oracle NoSQL DB

Document ArangoDB, Couchbase, MarkLogic, MongoDB, Cosmos DB

Graph OrientDB

Object InterSystems Caché

Special • Not yet multi-model – NuoDB, Redis, Aerospike

• Multi-use-case – SAP HANA DB, Octopus DB

 Basic approach: on the basis of original (or core) data model

RELATIONAL
 Biggest set of multi-model

databases
 The most popular type of databases

 SQL has been extended towards
other data formats (e.g, SQL/XML)

 Simplicity and universality of the
relational model

RELATIONAL

SELECT json_build_object('id',id,'name',name,'orders',orders)

FROM customer;

SELECT jsonb_each(orders) FROM customer;

SELECT jsonb_object_keys(orders) FROM customer;

CREATE TABLE customer (

id INTEGER PRIMARY KEY,

name VARCHAR(50),

address VARCHAR(50),

orders JSONB

);

RELATIONAL
CREATE TABLE customer (

id INTEGER PRIMARY KEY,

name VARCHAR(50),

address VARCHAR(50),

orders JSONB

);

INSERT INTO customer

VALUES (1, 'Mary', 'Prague',

'{"Order_no":"0c6df508",

"Orderlines":[

{"Product_no":"2724f", "Product_Name":"Toy", "Price":66},

{"Product_no":"3424g", "Product_Name":"Book", "Price":40}]

}');

INSERT INTO customer

VALUES (2, 'John', 'Helsinki',

'{"Order_no":"0c6df511",

"Orderlines":[

{ "Product_no":"2454f", "Product_Name":"Computer", "Price":34 }]

}');

{"Order_no":"0c6df508",

"Orderlines":[

{ "Product_no":"2724f",

"Product_Name":"Toy",

"Price":66 },

{"Product_no":"3424g",

"Product_Name":"Book",

"Price":40}]

}

SELECT name,

orders->>'Order_no' as Order_no,

orders#>'{Orderlines,1}'->>'Product_Name' as

Product_Name

FROM customer

where orders->>'Order_no' <> '0c6df511';

{"Order_no":"0c6df508",

"Orderlines":[

{ "Product_no":"2724f",

"Product_Name":"Toy",

"Price":66 },

{"Product_no":"3424g",

"Product_Name":"Book",

"Price":40}]

}

RELATIONAL

 http://nosql-database.org/

 Pramod J. Sadalage – Martin Fowler: NoSQL Distilled: A Brief Guide to the Emerging World of
Polyglot Persistence

 Eric Redmond – Jim R. Wilson: Seven Databases in Seven Weeks: A Guide to Modern Databases
and the NoSQL Movement

 Sherif Sakr – Eric Pardede: Graph Data Management: Techniques and Applications

 Shashank Tiwari: Professional NoSQL

 Neither Fish Nor Fowl: the Rise of Multi-model Databases. The 451 Group, 2013.

 D. Feinberg, M. Adrian, N. Heudecker, A. M. Ronthal, and T. Palanca. Gartner Magic Quadrant for
Operational Database Management Systems, 12 October 2015.

 J. Lu, Z. H. Liu, P. Xu, and C. Zhang. UDBMS: road to unification for multi-model data management.
CoRR, abs/1612.08050, 2016

 J. Lu: Towards Benchmarking Multi-model Databases. CIDR 2017

 S. Abiteboul et al: Research Directions for Principles of Data Management, Dagstuhl Perspectives
Workshop 16151 (2017)

http://nosql-database.org/

