

NDBI048 – Data Science Modelling 2: Model selection

Jan Hučín

22. 11. 2023

Where we are now

Outline

- 1. complex evaluation metrics
- 2. criteria for model
- 3. feature selection
- 4. model methods

id	predicted probabililty
1	0.34
2	0.76
3	0.04
4	0.29
5	0.48

id	predicted probabililty	predicted (thresh 0.5)	predicted (thresh 0.3)	actual target
1	0.34	0	1	1
2	0.76	1	1	1
3	0.04	0	0	0
4	0.29	0	0	0
5	0.48	0	1	0

different threshold \rightarrow different recall, FPR etc.

6

confusion matrix

- > give a threshold for pos/neg prediction
- similar to hypothesis testing (error type I, II)
- > **recall** (true positive rate) = $\frac{TP}{TP+FN}$
- > sensitivity = recall
- > precision = $\frac{TP}{TP+FP}$
- > **specificity** (true negative rate) = $\frac{TN}{TN+FP}$
- > false positive rate = $\frac{FP}{TN+FP}$, false negative rate = $\frac{FN}{TP+FN}$

> **accuracy** =
$$\frac{TP+TN}{TP+FN+FP+TN}$$

	predicted true	predicted false	
actual true	TP	FN	Р
actual false	FP	TN	Ν
	Ŷ	\widehat{N}	S

Confusion matrix depends on the threshold value:

- > small threshold \rightarrow high recall, but high FPR too
- > and vice versa
- \rightarrow receiver operation curve (**ROC**)
- > threshold runs $0 \rightarrow 1$
- > for various thresholds, we count TPR & FPR
- > we make curve of points [FPR; TPR]
- random guessing diagonal
- > perfect model through top left
- > performance: area under curve AUC

8

Gain

- recall in sample by model vs.
 recall in random sample
- > (TP / P) vs. (\hat{P} / S)

Lift

- precision in sample by model over precision in random sample
- > $(TP / \hat{P}) : (P / S) = (TP / \hat{P}) : (P / S)$

Metric limits

- > exact probabilities but low performance
- > why?
- > classification: exact classification possible
- prediction: exact prediction impossible due to randomness

Model requirements

- > meeting customer requirements
- > high performance
- > fast
- > cheap
- > interpretable
- > easy to implement and maintain

Requirements for the model

- > requested mode (real-time, near real-time, batch) \rightarrow **SLA**
- > how much data to process for a result?
- > can I / need I have something precomputed?
- > is partial or approximate result allowed?
- > technologies (SQL, Big Data, R/Python/C/Java)

Implementation requirements

Figure 1: Only a small fraction of real-world ML systems is composed of the ML code, as shown by the small black box in the middle. The required surrounding infrastructure is vast and complex.

- > technologies
- > knowledge
- connection to the world
- > maintenance
 - \rightarrow price

>

Model building

STO 00 m Man

- no or random model
- > simple model

>

- basic / referential model
- > final model

time / price / # features

Model building

simple model

- > domain knowledge
- > DIY

basic / referential model

- > strong and easily available features
- > simple method (regression, small tree)
- > sometimes sufficient

final model

long journey, good to automate (MLops)

time / price / # features

Model selection – features

Forward

- > start from null model (intercept only)
- > try a predictor & evaluate performance
- > choose the one with the highest added performance, add it
- > repeat until there is no performance increase

Backward

- > start from full model (all predictors)
- > omit a predictor & test (p-value, ML metrics)
- > choose the one with highest p-value or added performance, drop it
- > repeat until the performance gets worse

Model selection – forward or backward?

forward

- > in early steps, for referential model building
- > good for simple and interpretable methods

backward

- > exploration of a new feature family
- > estimation of performance limit
- > requires huge sources, regularization, automatized process
- > good for a complex methods

Model selection – method

referential model - preferably simple, interpretable

final model:

- > by customer constraints (e. g. interpretable methods only)
- > by technical limits
- > by performance : price ratio
- > by maintenance requirements (bus factor)

Modeling methods – linear model

- X = predictor matrix, Y = target, β coefficients (parameters, effects)
- > $E Y = X\beta$ linear regression
- > $P(Y=1) = \frac{e^{X\beta}}{1+e^{X\beta}}$ logistic regression
- > "scoring model": $\widehat{Y}_i = f(\sum_{j=1}^k \beta_j X_{ij})$ additive effects

Modeling methods – nearest neighbors

Similar units will have similar target.

- 1. Train set: units with known target (labeled).
- 2. New unit (unknown target) arrives.
- **3**. By some distance metric, we found *k* nearest units from the train set (nearest neighbors).
- 4. Estimated target = aggregation of neighbors' targets.

Distance metric: e. g. euclidean, cosine, Levenshtein...

Aggregation: voting, weighted mean, median

Modeling methods – Bayes classifier

Conditional probability

 $P(A|B) = P(A \cap B)/P(B)$

- probability of event A in case we know B is true
- probability of raining given the fact, we are on Sahara

$$P(H|E) = \frac{P(E|H) \cdot P(H)}{P(E)}$$

- > P(H|E) probability of hypothesis H given observation / evidence E
- > P(E|H) probability of observing E given H aka likelihood of H given E
- > P(H) prior probability of hypothesis H
- > P(E) overall probability of observing evidence E

Modeling methods – Bayes classifier

$$P(Y = C_i | \mathbf{X} = \mathbf{x}) = \frac{P(\mathbf{X} = \mathbf{x} | Y = C_i) \cdot P(Y = C_i)}{P(\mathbf{X} = \mathbf{x})}$$

> Y = target, C_i = category, **X** = predictors, **x** = observed values

- → find *i* where $P(X = x | Y = C_i) \cdot P(Y = C_i)$ biggest → classification
- > for binary target:

$$\frac{P(Y=1|E)}{P(Y=0|E)} = \frac{\frac{P(E|Y=1) \cdot P(Y=1)}{P(E)}}{\frac{P(E|Y=0) \cdot P(Y=0)}{P(E)}} = \frac{P(Y=1)}{P(Y=0)} \cdot \frac{P(E|Y=1)}{P(E|Y=0)}$$

Suppose you live in Scotland (rainy 80% of days). What are the odds of being sunny tomorrow if weather forecast (accurate 2/3 of time) say so?

Modeling methods – naive Bayes classifier

"naive" assumption: all predictors are independent

i. e. $P(X = x) = P(X_1 = x_1) \cdot P(X_2 = x_2) \cdot \ldots \cdot P(X_k = x_k)$

$$P(Y = C_i | \mathbf{X} = \mathbf{x}) = \frac{\prod_j P(X_j = x_j | Y = C_i) \cdot P(Y = C_i)}{P(\mathbf{X} = \mathbf{x})}$$

- 1. From the train set, compute $P(X_j = x | Y = C_i)$ for all *i*, *j* and *x*.
- 2. Give prior probabilities for categories $P(Y = C_i)$.
- 3. For new unit, compute numerator for each *i* and take maximazing.

Model selection – business view

- > quantitative change: beware of complexity (O(N²), O(N³), ...)
- > qualitative change: usually risky
 - technology / version change
 - workflow change
 - data format change
 - new result requirements
 - \rightarrow should be robust
- > stable (champion) vs. candidate (challenger) model
- > automatic monitoring

Don't change a winning team. English proverb

