NDBIO48 - Data Science Modelling 2: Model selection

Jan Hučín

22. 11. 2023

Where we are now

Outline

1. complex evaluation metrics
2. criteria for model
3. feature selection
4. model methods

Model evaluation: metrics (binary target)

id	predicted probabililty
1	0.34
2	0.76
3	0.04
4	0.29
5	0.48
\ldots	\ldots

Model evaluation: metrics (binary target)

id	predicted probabililty	predicted (thresh 0.5)	predicted (thresh 0.3)	actual target
1	0.34	0	1	1
2	0.76	1	1	1
3	0.04	0	0	0
4	0.29	0	0	0
5	0.48	0	1	0
\ldots	\ldots			\ldots

different threshold \rightarrow different recall, FPR etc.

Model evaluation: metrics (binary target)

confusion matrix

, give a threshold for pos/neg prediction
, similar to hypothesis testing (error type I, II)
, recall (true positive rate) $=\frac{T P}{T P+F N}$
) sensitivity = recall
, precision $=\frac{T P}{T P+F P}$

	predicted true	predicted false	
actual true	TP	FN	P
actual false	FP	TN	N
	\hat{P}	\widehat{N}	S

, specificity (true negative rate) $=\frac{T N}{T N+F P}$
, false positive rate $=\frac{F P}{T N+F P}$, false negative rate $=\frac{F N}{T P+F N}$
, accuracy $=\frac{T P+T N}{T P+F N+F P+T N}$

Model evaluation: metrics (binary target)

Confusion matrix depends on the threshold value:
, small threshold \rightarrow high recall, but high FPR too
, and vice versa
\rightarrow receiver operation curve (ROC)
, threshold runs $0 \rightarrow 1$
, for various thresholds, we count TPR \& FPR

, we make curve of points [FPR; TPR]
, random guessing - diagonal
, perfect model - through top left
, performance: area under curve - AUC

Model evaluation: metrics (binary target)

	predicted true	predicted false	
actual true	TP	FN	P
actual false	FP	TN	N
	\hat{P}	\widehat{N}	S

Gain

, (TP / P) vs. (\hat{P} / S)

Lift

, precision in sample by model over
precision in random sample

$$
(\operatorname{TP} / \hat{P}):(P / S)=(T P / \hat{P}):(P / S)
$$

Metric limits

0,41

0
0
, exact probabilities but low performance
, why?
, classification: exact classification possible , prediction: exact prediction impossible due to randomness

Metric limits by population (beta distribution)

Metric limits bv population (beta distribution)
 $\mathrm{a}=1 \mathrm{~b}=4 \mid \mathrm{AUC}=0.779$

Model requirements

, meeting customer requirements
, high performance
, fast
, cheap
, interpretable
, easy to implement and maintain

Requirements for the model

, requested mode (real-time, near real-time, batch) \rightarrow SLA
, how much data to process for a result?
, can I / need I have something precomputed?
, is partial or approximate result allowed?
, technologies (SQL, Big Data, R/Python/C/Java)

Implementation requirements

, technologies

Figure 1: Only a small fraction of real-world ML systems is composed of the ML code, as shown by the small black box in the middle. The required surrounding infrastructure is vast and complex.
, knowledge
, connection to the world
, maintenance
\rightarrow price

Model building

, no or random model) simple model
, basic / referential model
, final model

Model building

simple model
, domain knowledge
, DIY
basic / referential model
, strong and easily available features
, simple method (regression, small tree)
, sometimes sufficient
final model
, long journey, good to automate (MLops)

Model selection - features

Forward

, start from null model (intercept only)
, try a predictor \& evaluate performance
, choose the one with the highest added performance, add it
, repeat until there is no performance increase

Backward

, start from full model (all predictors)
, omit a predictor \& test (p-value, ML metrics)
, choose the one with highest p-value or added performance, drop it
, repeat until the performance gets worse

Model selection - forward or backward?

forward

, in early steps, for referential model building
, good for simple and interpretable methods
backward
, exploration of a new feature family
, estimation of performance limit
) requires huge sources, regularization, automatized process
, good for a complex methods

Model selection - method

referential model - preferably simple, interpretable final model:
, by customer constraints (e. g. interpretable methods only)
, by technical limits
, by performance : price ratio
, by maintenance requirements (bus factor)

Modeling methods - linear model

$\mathrm{X}=$ predictor matrix, $\mathrm{Y}=$ target, β - coefficients (parameters, effects)
, $E Y=X \beta \quad$ linear regression
, $\mathrm{P}(\boldsymbol{Y}=1)=\frac{e^{X \beta}}{1+e^{X \beta}} \quad$ logistic regression
, "scoring model": $\widehat{Y}_{i}=f\left(\sum_{j=1}^{k} \beta_{j} X_{i j}\right)$ - additive effects

Modeling methods - nearest neighbors

Similar units will have similar target.

1. Train set: units with known target (labeled).
2. New unit (unknown target) arrives.
3. By some distance metric, we found k nearest units from the train set (nearest neighbors).
4. Estimated target $=$ aggregation of neighbors ${ }^{\text {© }}$ targets.

Distance metric: e. g. euclidean, cosine, Levenshtein...
Aggregation: voting, weighted mean, median

Modeling methods - Bayes classifier

Conditional probability $\quad P(A \mid B)=P(A \cap B) / P(B)$

- probability of event A in case we know B is true
- probability of raining given the fact, we are on Sahara

Bayes theorem

$$
P(H \mid E)=\frac{P(E \mid H) \cdot P(H)}{P(E)}
$$

) $P(H \mid E)$ - probability of hypothesis H given observation / evidence E
) $P(E \mid H)$ - probability of observing E given H aka likelihood of H given E
, $P(H)$ - prior probability of hypothesis H
, $P(E)$ - overall probability of observing evidence E

Modeling methods - Bayes classifier

Bayes classifier

$$
P\left(Y=C_{i} \mid \boldsymbol{X}=\boldsymbol{x}\right)=\frac{P\left(\boldsymbol{X}=\boldsymbol{x} \mid Y=C_{i}\right) \cdot P\left(Y=C_{i}\right)}{P(\boldsymbol{X}=\boldsymbol{x})}
$$

$Y=$ target, $C_{i}=$ category, $\boldsymbol{X}=$ predictors, $\boldsymbol{x}=$ observed values
find i where $P\left(\boldsymbol{X}=\boldsymbol{x} \mid Y=C_{i}\right) \cdot P\left(Y=C_{i}\right)$ biggest \rightarrow classification for binary target:

$$
\frac{P(Y=1 \mid E)}{P(Y=0 \mid E)}=\frac{\frac{P(E \mid Y=1) \cdot P(Y=1)}{P(E)}}{\frac{P(E \mid Y=0) \cdot P(Y=0)}{P(E)}}=\frac{P(Y=1)}{P(Y=0)} \cdot \frac{P(E \mid Y=1)}{P(E \mid Y=0)}
$$

Suppose you live in Scotland (rainy 80\% of days). What are the odds of being sunny tomorrow if weather forecast (accurate $2 / 3$ of time) say so?

Modeling methods - naive Bayes classifier

„naive" assumption: all predictors are independent
i. e. $P(\boldsymbol{X}=\boldsymbol{x})=P\left(X_{1}=x_{1}\right) \cdot P\left(X_{2}=x_{2}\right) \cdot \ldots \cdot P\left(X_{k}=x_{k}\right)$

$$
P\left(Y=C_{i} \mid \boldsymbol{X}=\boldsymbol{x}\right)=\frac{\prod_{j} P\left(X_{j}=x_{j} \mid Y=C_{i}\right) \cdot P\left(Y=C_{i}\right)}{P(\boldsymbol{X}=\boldsymbol{x})}
$$

1. From the train set, compute $P\left(X_{j}=x \mid Y=C_{i}\right)$ for all i, j and x.
2. Give prior probabilities for categories $P\left(Y=C_{i}\right)$.
3. For new unit, compute numerator for each i and take maximazing.

Model selection - business view

, quantitative change: beware of complexity $\left(\mathrm{O}\left(\mathrm{N}^{2}\right), \mathrm{O}\left(\mathrm{N}^{3}\right), \ldots\right)$
, qualitative change: usually risky

- technology / version change
- workflow change
- data format change
- new result requirements
- \rightarrow should be robust
) stable (champion) vs. candidate (challenger) model
, automatic monitoring

Questions?

