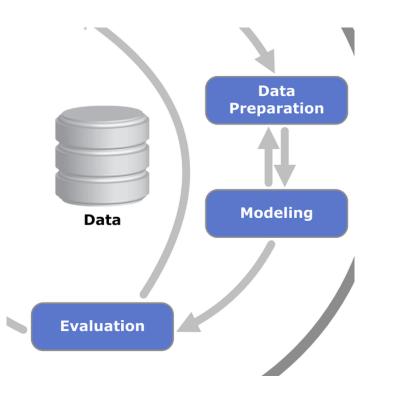


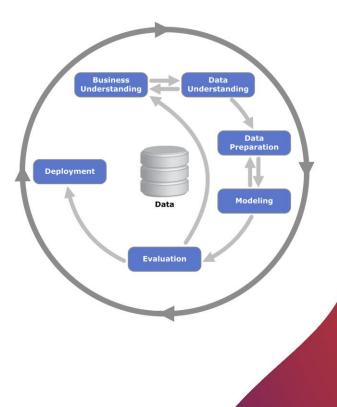
NDBI048 – Data Science Modelling 1: Basics & Linear Models

Jan Hučín

18.11.2021

Where we are now





2

Outline

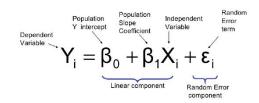
- 1. analytical and modelling approach
- 2. aim of modelling, basic terms
- 3. types of models
- 4. data for modelling: train, test, validation
- 5. basics of linear modelling
- 6. model evaluation
- 7. model regularization
- 8. model with interactions

Analytical (inferential) approach

unit (human, animal, picture, action, proces, ...)

- > I have data about it
- > I have data about other features
 - day, time, salary, body height etc.

I want to: understand the world & make conclusions.



Modelling approach

unit (human, animal, picture, action, proces, ...)

- > has (or will have) a feature I don't know now
 - Man, or woman? Fair, or deceit? Age? How many °C?
 Which of kinds?
- > but I know something else
 - living place; history; behaviour; body measures etc.
- **I want to:** estimate / classify / predict the unit's unknown feature.

\bigcirc		

Get the difference

Analytical approach

- > I have data.
- > Trying to describe the world.
- > Fitting relations in data.
- outcome = explanation (inference).

Modelling approach

- > I have a problem.
- > Trying to get any info.
- > Fitting relations in data.
- outcome = prediction,
 classification etc.

Same methods, same mathematics, different aims.

Basic terms

- > "unknown feature" = target, response
- > "what I know" = feature, predictor, explanatory var.
- > "result" = prediction, classification etc. (see later)
- > "how we get the result" = modelling method
- > "data for modelling" = **dataset**, **model matrix**

Types of models

- > By info about target (data labeling)
 - yes, for enough & representative units \rightarrow supervised model
 - yes, but for few or non-representative units \rightarrow **semi-supervised model**
 - no \rightarrow unsupervised model
- > By target type
 - binary
 - categorical (ordinal, non-ordinal)
 - numerical

> Used method?

- linear (regression etc.)
- rule-based (decision trees etc.)
- similarity (kNN etc.)
- "blackbox" (neural networks, gradient boosting etc.)

From now: **supervised** and mostly **binary** models.

Data and dataset

- > Data need to be **understood** and **prepared**.
- > **Training dataset** = table (matrix):
 - columns = id, target(s), features
 - rows = units
- > Dataset division:
 - train set where we fit a model
 - test set where we evaluate a model
- > Validation dataset
 - where we **prove** the model is good
- > see later

Image Id	No. of	Area of	Larges	st Spot	yellowness
	Exudates	Largest	Major	Minor	
		Span	Axis	Axis	
Image001	12	1061	45.97	29.82	0.55
Image002	11	413	25.92	20.60	0.44
Image003	19	880	44.03	25.96	0.62
Image004	10	530	28.57	24.51	0.15
Image005	4	536	28.23	24.96	0.44
Image006	13	338	25.80	17.29	0.50
Image007	18	14809	169.96	113.87	0.59
Image008	8	5997	152.68	53.95	0.59
Image009	9	1967	64.20	40.08	0.16
Image010	10	4161	99.38	54.83	0.62
Image011	28	4023	86.23	61.83	0.64
Image012	21	630	53.66	15.68	0.62
Image013	8	1748	57.13	39.38	0.67
Image014	15	1079	62.78	22.55	0.53
Image015	12	383	27.64	18.43	0.54
Image016	20	1175	53.81	28.20	0.57
Image017	10	694	36.29	25.36	0.61
Image018	24	1601	71.12	29.01	0.64
Image019	4	535	28.47	24.81	0.61
Image020	11	626	35.54	23.97	0.57

Remind: linear regression

Given matrix X (n × k).

Random vector **Y** fits **linear regression** if vector β exists, so that:

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$
, where $\boldsymbol{\varepsilon} \sim N(0, \sigma^2 \boldsymbol{I})$

Example:

 $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ pairs of numbers



looking for best fit $y_i = \beta_1 x_i + \beta_0$ **least-squares method:** minimize $\sum_{i=1}^{n} (y_i - \beta_1 x_i - \beta_0)^2$ wrt. β_0 and β_1

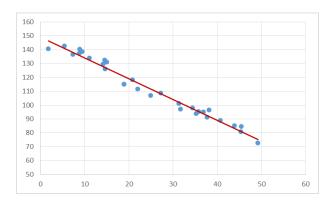
Linear regression and two approaches

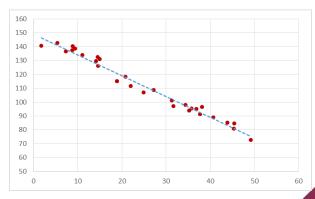
analytical approach:

- interested in trend (inferention)
- > "How does the world work?"
- > getting β is a goal

modelling approach:

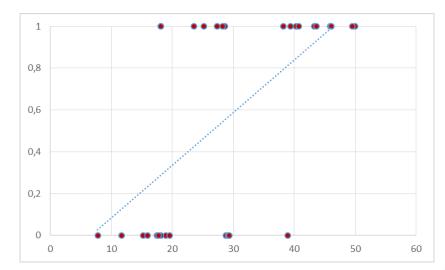
- interested in points (estimate, prediction)
- "If I have this value of x, how many will be y?"
- > getting β is a mean





Linear regression with binary response

- > fitting a line has no sense
- but we feel: lower x has less positive responses than higher x
- > how to express it?
- \rightarrow generalization of linear regression



General linear model

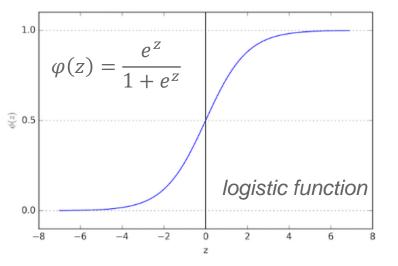
 $g(\mathsf{E} Y) = X\beta$

. . . .

- > X predictor matrix
- > β coefficients (parameters, effects)
- > g link function
 - identity: g(t) = t
 - logit: $g(t) = \ln \frac{t}{1-t}$
 - logarithm: $g(t) = \ln t$
- > error distribution: gaussian, binomial, poisson, ...
- > "scoring model": $\widehat{Y}_i = g^{-1} (\sum_{j=1}^k \beta_j X_{ij})$ additive effects

 $g^{-1}(z) = z$ $g^{-1}(z) = \frac{e^z}{1 + e^z}$ $g^{-1}(z) = e^z$

Logistic regression



> for binary targets: score \rightarrow probability

>
$$E Y = g^{-1}(X\beta); g^{-1}: R \to (0; 1)$$

- > g⁻¹ is **logistic** function
- > $g(t) = \ln \frac{t}{1-t}$ (**logit** link function)

$$\ln \frac{EY}{1-EY} = \boldsymbol{X}\boldsymbol{\beta}$$

 $\frac{p}{1-p} = e^{X\beta}$

Interpretation of β:

$$\frac{p}{1-p} = e^{\beta_0 + \beta_1 x}$$

+1 increment in $x \rightarrow odd$ ratio increases $exp(\beta_1)$ times

Logistic function and logits – summary

 $p = \frac{e^z}{1+e^z}$, $z \in R$ (logistic function)

 $z = ln\left(\frac{p}{1-p}\right), p \in (0; 1)$ (logit function)

logit = logarithm of odds ratio

 $p = 0,5 \rightarrow odds \ 1 : 1 \rightarrow logit = 0$

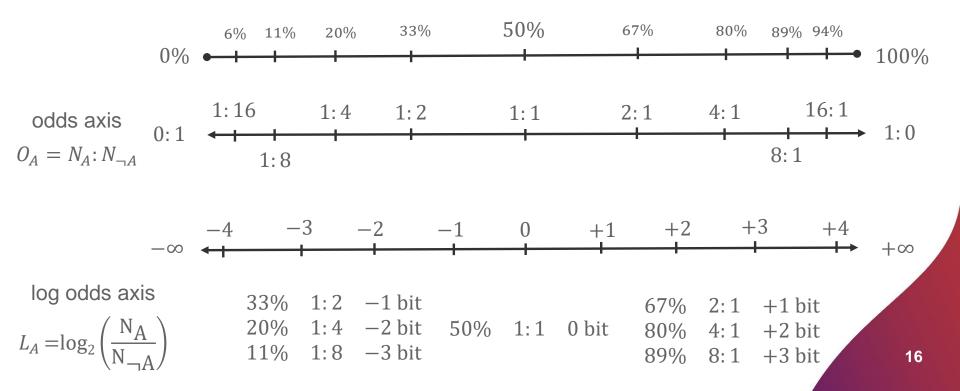
+1 logit \rightarrow odds change *e*-times

Probability axes

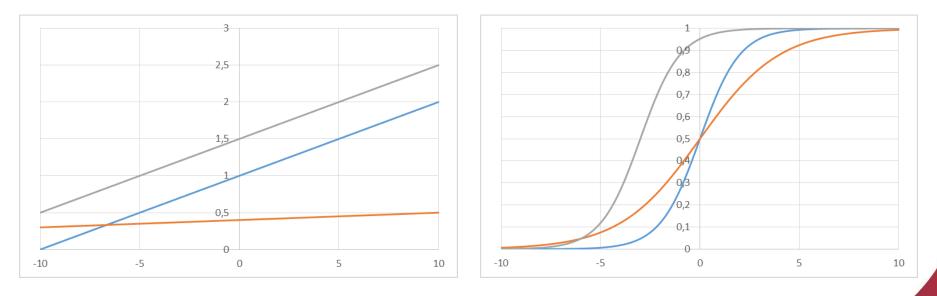
probability axis

> For a binary event A

$$P_A = \frac{N_A}{N_A + N_{\neg A}}$$



Logistic and linear regression – parameters



$$y = \beta_1 x + \beta_0$$

β got by least-squares

$$y = \frac{e^{(\beta_1 x + \beta_0)}}{1 + e^{(\beta_1 x + \beta_0)}}$$

\beta got by MLE

17

Remind: MLE (maximum likelihood estimate)

probability density: $f(x, \mu), \mu$ fixed

> what x value do I expect most of all?

likelihood function: $L(\mu \mid x) = f(x, \mu)$, x fixed (observed)

0.25

0.20

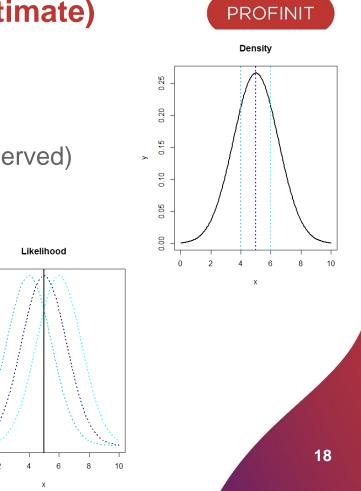
y 0.15

0.10

0.05

0.00

- > what µ gives best fit?
- > maximization L for μ

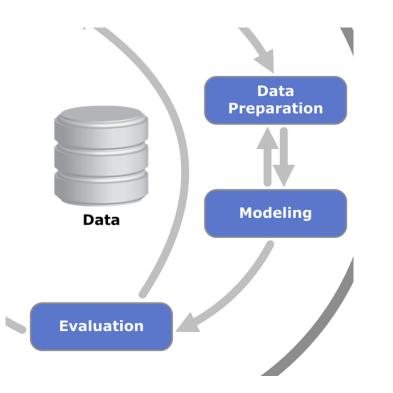


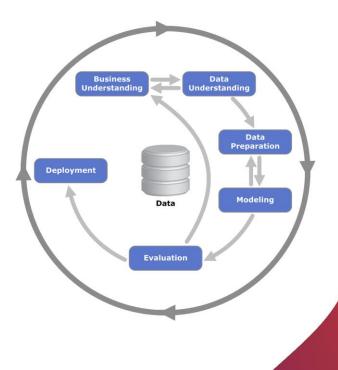
Example of fitting model

PROFINIT

see Jupyter notebook

Model needs evaluation



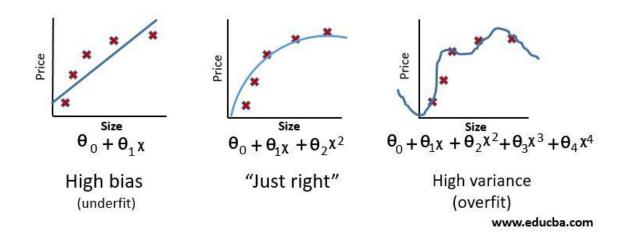


Model evaluation

How well does my model fit my past data?

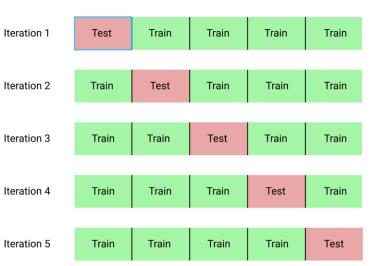
How well would I predict (classify, estimate) in reality?

- > Can't evaluate on the same data as for fit \rightarrow **overfitting**
- > I need to "simulate unknown reality"--> cross-validation



Cross-validation

- Take 1/k of data as the test set, the rest as the train set.
- > Fit on train set, predict on the test set.
- > Repeat for each 1/k of data.
- > Now we have predicted values for all units. Compare with actual target values.
- > Variation: compare for each 1/k separately and aggregate metrics.



- > logLik
- > Brier score
- > metrics on confusion matrix
- > ROC & AUC
- > Lift

id	predicted	actual target
1	0.34	1
2	0.76	0
3	0.04	0
4	0.29	0
5	0.88	1

logLik

- > log(L)
- > AIC = $-2 \log(L) + 2 \cdot (\# \text{ of params})$

only for math purpose, uninterpretable

Brier score

- > $2 \cdot \sum (actual predicted)^2$
- > similar to SSE
- > good for comparison, bad for interpretation

id	predicted	actual target
1	0.34	1
2	0.76	0
3	0.04	0
4	0.29	0
5	0.88	1

confusion matrix

- > give a threshold for pos/neg prediction
- similar to hypothesis testing (error type I, II)
- > recall (true positive rate) = $\frac{TP}{TP+FN}$
- > sensitivity = recall
- > precision = $\frac{TP}{TP+FP}$
- > **specificity** (true negative rate) = $\frac{TN}{TN+FP}$
- > false positive rate = $\frac{FP}{TN+FP}$, false negative rate = $\frac{FN}{TP+FN}$
- > **accuracy** = $\frac{TP+TN}{TP+FN+FP+TN}$

	predicted true	predicted false
actual true	TP	FN
actual false	FP	TN

confusion matrix in one number

Phi coefficient
 (also Matthews corr. coef., MCC)
 TP·TN-FP·FN

 $\overline{\sqrt{(TP+FN)(FP+TN)(TP+FP)(FN+TN)}}$

>

	predicted true	predicted false
actual true	TP	FN
actual false	FP	TN

Model evaluation: confusion matrix, example

- > recall (true positive rate), sensitivity = $=\frac{TP}{TP+FN} = 0.8$
- > precision = $\frac{TP}{TP+FP}$ = 0.5
- > **specificity** (true negative rate) = > $=\frac{TN}{TN+FP} = \frac{11}{15} \sim 0.73$
- > false positive rate = $\frac{FP}{TN+FP} = \frac{4}{15} \sim 0.27$
- > false negative rate = $\frac{FN}{TP+FN} = 0.2$

> **accuracy** =
$$\frac{TP+TN}{TP+FN+FP+TN}$$
 = 0.75

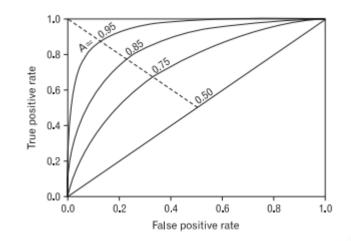
> **Phi** = 0.48

	pred true	pred false	total
actual true	40	10	50
actual false	40	110	150
total	80	120	200

27

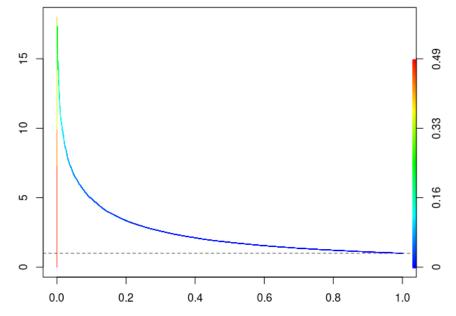
Confusion matrix depends on the threshold value:

- > small threshold \rightarrow high recall, but high FPR too
- > and vice versa
- \rightarrow receiver operation curve (**ROC**)
- > threshold runs $0 \rightarrow 1$
- > for various thresholds, we count TPR & FPR
- > we make curve of points [FPR; TPR]
- random guessing diagonal
- > perfect model through top left
- > performance: area under curve AUC



Lift

- > precision / overall target rate
- Take positive predicted: how many times more often we hit target than by random guessing?
- > Lift chart: threshold runs $0 \rightarrow 1$



Poz. klas./vsichni: (TP+FP)/(P+N)

Model selection

Forward

- > start from null model (intercept only)
- > try a predictor & evaluate performance
- > choose the one with the highest added performance, add it
- > repeat until there is no performance gain

Backward

- > start from full model (all predictors)
- > omit a predictor & test (p-value, ANOVA; but ML metrics possible, too)
- > choose the one with highest p-value or added performance, drop it
- > repeat until the performance gets lower || p-values > 0.03

Model regularization

unstable.

>

- When some predictors highly correlated computation numerically
- > Solution: prefer lower values of coefficients penalization
- > Methods: Lasso, L2 (ridge regression)

Model with interactions

- > effects values not independent
- \rightarrow effects not additive
- model must be fitted with interactions

