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Where we are now
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Outline

1. analytical and modelling approach

2. aim of modelling, basic terms

3. types of models

4. data for modelling: train, test, validation

5. basics of linear modelling

6. model evaluation

7. model regularization

8. model with interactions
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Analytical (inferential) approach

unit (human, animal, picture, action, proces, ...)

› I have data about it

› I have data about other features

– day, time, salary, body height etc.

I want to: understand the world & make conclusions.
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Modelling approach

unit (human, animal, picture, action, proces, ...)

› has (or will have) a feature I don‘t know now

– Man, or woman? Fair, or deceit? Age? How many ºC? 

Which of kinds?

› but I know something else

– living place; history; behaviour; body measures etc.

I want to: estimate / classify / predict the unit‘s

unknown feature.
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Get the difference

Analytical approach

› I have data.

› Trying to describe the world.

› Fitting relations in data.

› outcome = explanation

(inference).

Modelling approach

› I have a problem.

› Trying to get any info.

› Fitting relations in data.

› outcome = prediction, 

classification etc. 

Same methods, same mathematics, different aims. 
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Basic terms

› „unknown feature“ = target, response

› „what I know“ = feature, predictor, explanatory var.

› „result“ = prediction, classification etc. (see later)

› „how we get the result“ = modelling method

› „data for modelling“ = dataset, model matrix
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Types of models

› By info about target (data labeling)

– yes, for enough & representative units → supervised model

– yes, but for few or non-representative units → semi-supervised model

– no → unsupervised model

› Used method?

– linear (regression etc.)

– rule-based (decision trees etc.)

– similarity (kNN etc.)

– „blackbox“ (neural networks, 

gradient boosting etc.)

› By target type

– binary

– categorical (ordinal, non-ordinal)

– numerical

From now: supervised and mostly binary models.
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Data and dataset

› Data need to be understood and prepared.

› Training dataset = table (matrix):

– columns = id, target(s), features

– rows = units

› Dataset division:

– train set – where we fit a model

– test set – where we evaluate a model

› Validation dataset

– where we prove the model is good

› see later
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Remind: linear regression

Given matrix X (n × k).

Random vector Y fits linear regression if vector β exists, so that:

Y = Xβ + ε, where ε ~ N(0, σ2I)

Example:

(x1, y1), (x2, y2), ..., (xn, yn) pairs of numbers

looking for best fit yi = β1xi + β0

least-squares method:

minimize  𝑖=1
𝑛 𝑦𝑖 − 𝛽1𝑥𝑖 − 𝛽0

2 wrt. β0 and β1
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Linear regression and two approaches

analytical approach:

› interested in trend

(inferention)

› „How does the world work?“

› getting β is a goal

modelling approach:

› interested in points

(estimate, prediction)

› „If I have this value of x, how many will

be y?“

› getting β is a mean
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Linear regression with binary response

› fitting a line has no sense

› but we feel: lower x has less positive 

responses than higher x

› how to express it?

→ generalization of linear regression
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General linear model

g(EY) = Xβ EY = g-1(Xβ)

› X – predictor matrix

› β – coefficients (parameters, effects)

› g – link function

– identity: g(t) = t g-1(z) = z

– logit: g(t) = ln
𝑡

1−𝑡
g-1(z) = 

𝑒𝑧

1+𝑒𝑧

– logarithm: g(t) = ln t g-1(z) = ez

– ...

› error distribution: gaussian, binomial, poisson, ...

› „scoring model“:  𝑌𝑖 = 𝑔−1  𝑗=1
𝑘 𝛽𝑗𝑋𝑖𝑗 – additive effects
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Logistic regression

› for binary targets: score → probability

› EY = g-1(Xβ); g-1: R → (0; 1)

› g-1 is logistic function

› g(t) = ln
𝑡

1−𝑡
(logit link function)

ln
𝐸𝑌

1−𝐸𝑌
= 𝑿𝛽

𝑝

1−𝑝
= 𝑒𝑿𝛽

logistic function

𝜑 𝑧 =
𝑒𝑧

1 + 𝑒𝑧

𝑝

1−𝑝
= 𝑒𝛽0+𝛽1𝑥

Interpretation of β:

+1 increment in x → odd ratio increases exp(β1) times
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Logistic function and logits – summary

p = 
𝑒𝑧

1+𝑒𝑧
, 𝑧 ∈ 𝑅 (logistic function)

z = 𝑙𝑛
𝑝

1−𝑝
, 𝑝 ∈ 0; 1 (logit function)

logit = logarithm of odds ratio

p = 0,5 → odds 1 : 1 → logit = 0

+1 logit → odds change e-times
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Probability axes

› For a binary event A
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Logistic and linear regression – parameters

y =
𝑒(𝛽1𝑥+𝛽0)

1 + 𝑒(𝛽1𝑥+𝛽0)
y = 𝛽1𝑥 + 𝛽0

β got by least-squares β got by MLE
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Remind: MLE (maximum likelihood estimate)

probability density: f(x, μ), μ fixed

› what x value do I expect most of all?

likelihood function: L(μ | x) = f(x, μ), x fixed (observed)

› what μ gives best fit?

› maximization L for μ
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Example of fitting model

see Jupyter notebook
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Model needs evaluation
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Model evaluation

How well does my model fit my past data?

How well would I predict (classify, estimate) in reality?

› Can‘t evaluate on the same data as for fit → overfitting

› I need to „simulate unknown reality“→ cross-validation
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Cross-validation

› Take 1/k of data as the test set,

the rest as the train set.

› Fit on train set, predict on the test set.

› Repeat for each 1/k of data.

› Now we have predicted values for all

units. Compare with actual target values.

› Variation: compare for each 1/k separately

and aggregate metrics.
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Model evaluation: metrics (binary target)

› logLik

› Brier score

› metrics on confusion matrix

› ROC & AUC

› Lift

id predicted actual target

1 0.34 1

2 0.76 0

3 0.04 0

4 0.29 0

5 0.88 1

... ... ...
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Model evaluation: metrics (binary target)

logLik

› log(L)

› AIC = −2 log(L) + 2∙(# of params)

only for math purpose, uninterpretable

Brier score

› 2∙∑(actual − predicted)2

› similar to SSE

› good for comparison, bad for interpretation

id predicted actual target

1 0.34 1

2 0.76 0

3 0.04 0

4 0.29 0

5 0.88 1

... ... ...
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Model evaluation: metrics (binary target)

confusion matrix

› give a threshold for pos/neg prediction

› similar to hypothesis testing

(error type I, II)

› recall (true positive rate) = 
𝑇𝑃

𝑇𝑃+𝐹𝑁

› sensitivity = recall

› precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃

› specificity (true negative rate) = 
𝑇𝑁

𝑇𝑁+𝐹𝑃

› false positive rate = 
𝐹𝑃

𝑇𝑁+𝐹𝑃
, false negative rate = 

𝐹𝑁

𝑇𝑃+𝐹𝑁

› accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁

predicted

true

predicted

false

actual

true
TP FN

actual

false
FP TN
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Model evaluation: metrics (binary target)

confusion matrix in one number

› Phi coefficient

(also Matthews corr. coef., MCC)

›
𝑇𝑃∙𝑇𝑁−𝐹𝑃∙𝐹𝑁

(𝑇𝑃+𝐹𝑁)(𝐹𝑃+𝑇𝑁)(𝑇𝑃+𝐹𝑃)(𝐹𝑁+𝑇𝑁)

predicted

true

predicted

false

actual

true
TP FN

actual

false
FP TN
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Model evaluation: confusion matrix, example

› recall (true positive rate), sensitivity =

= 
𝑇𝑃

𝑇𝑃+𝐹𝑁
= 0.8

› precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
= 0.5

› specificity (true negative rate) =

› = 
𝑇𝑁

𝑇𝑁+𝐹𝑃
= 

11

15
~ 0.73

› false positive rate = 
𝐹𝑃

𝑇𝑁+𝐹𝑃
= 

4

15
~ 0.27

› false negative rate = 
𝐹𝑁

𝑇𝑃+𝐹𝑁
= 0.2

› accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
= 0.75

› Phi = 0.48

pred

true

pred

false

total

actual

true
40 10 50

actual

false
40 110 150

total 80 120 200
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Model evaluation: metrics (binary target)

Confusion matrix depends on the threshold value:

› small threshold → high recall, but high FPR too

› and vice versa

→ receiver operation curve (ROC)

› threshold runs 0→1

› for various thresholds, we count TPR & FPR

› we make curve of points [FPR; TPR]

› random guessing – diagonal

› perfect model – through top left

› performance: area under curve – AUC
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Model evaluation: metrics (binary target)

Lift

› precision / overall target rate

› Take positive predicted:

how many times more often

we hit target

than by random guessing?

› Lift chart: threshold runs 0→1
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Model selection

Forward

› start from null model (intercept only)

› try a predictor & evaluate performance

› choose the one with the highest added performance, add it

› repeat until there is no performance gain

Backward

› start from full model (all predictors)

› omit a predictor & test (p-value, ANOVA; but ML metrics possible, too)

› choose the one with highest p-value or added performance, drop it

› repeat until the performance gets lower || p-values > 0.03
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Model regularization

› When some predictors highly correlated – computation numerically

unstable.

› Solution: prefer lower values of coefficients – penalization

› Methods: Lasso, L2 (ridge regression)
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Model with interactions

› effects values not independent

› → effects not additive

› model must be fitted

with interactions
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Questions?


