
Modern Database

Systems

Other types of modern (not only) database systems

Doc. RNDr. Irena Holubova, Ph.D.
Irena.Holubova@matfyz.cuni.cz

mailto:Irena.Holubova@matfyz.cuni.cz

Modern Data Management

Systems

 NoSQL databases
 Non-core – XML, object, …

 Core – key/value, column, document, graph

 Multi-model databases and polystores

 NewSQL databases

 Array databases

 Search engines
 Elasticsearch, Splunk, Solr, …

 …

 And there is also a number of specialized DBMSs
 Navigational, multi-value, event, content, time-series, ...

NewSQL

Databases

NewSQL Databases

 Idea (from 2011): scalable storage + all
functionality known from traditional relational
databases
 Not just SQL access, but classical relational model,

ACID properties, …

 Previously ScalableSQL

Aslett, M.: What We Talk about When We Talk about NewSQL. 452 Group, 2011.

http://blogs.the451group.com/information_management/2011/04/06/what-we-talk-

about-when-we-talk-about-newsql/

Stonebraker, M.: New SQL: An Alternative to NoSQL and Old SQL for New OLTP

Apps, 2011. https://cacm.acm.org/blogs/blog-cacm/109710-new-sql-an-alternative-

to-nosql-and-old-sql-for-new-oltp-apps/fulltext

http://blogs.the451group.com/information_management/2011/04/06/what-we-talk-about-when-we-talk-about-newsql/
https://cacm.acm.org/blogs/blog-cacm/109710-new-sql-an-alternative-to-nosql-and-old-sql-for-new-oltp-apps/fulltext
http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjx2omlxv3TAhUByRQKHZW6DwEQjRwIBw&url=http%3A%2F%2Flabs.sogeti.com%2Fnewsql-whats%2F&psig=AFQjCNGL4stnjdlRkmCkw7mFONA3G7XApw&ust=1495337915909681
http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjx2omlxv3TAhUByRQKHZW6DwEQjRwIBw&url=http%3A%2F%2Flabs.sogeti.com%2Fnewsql-whats%2F&psig=AFQjCNGL4stnjdlRkmCkw7mFONA3G7XApw&ust=1495337915909681

NewSQL Databases

 Approaches:
 Distributed systems which add

advantages of relational model + ACID

 e.g. Clustrix, ScaleArc, MemSQL, VoltDB, …

 Relational DBMSs extended towards horizontal scalability

 e.g. TokuDB, JustOne DB, ..

 Cloud: NewSQL as a Service
 Special type of a cloud service = scalable relational DBMS

 e.g. Amazon Relational Database Service, Microsoft Azure
Database, …

NewSQL Databases

 Why do we need them?
1. There are applications which work with relational databases +

they need to solve new increase of data volumes

 Transformation to any NoSQL data model would be too expensive

2. There are application which still need strong data consistency
+ horizontal scalability

 Consequence: Again NewSQL does not mean the end
of traditional SQL (relational) DBMSs

 An alternative approach – we need alternatives and there will
occur other

Stonebraker, M. et al.: The end of an architectural era: (it's time for a complete

rewrite). VLDB '07.

 Based on academic DBMS H-System
 Developed by researchers from US top universities (including M.

Stonebraker) + Intel

 Aim: relational model + ACID + horizontal scalability

 User perspective: classical relational DBMS
 CREATE / ALTER / DROP TABLE, INSERT INTO, CHECK

constraints, SELECT (including GROUP BY), set operations, nested
queries, stored procedures, database views, …

 Big Data
 Automatic data distribution

 Users can specify according to which column to distribute
 Customers: cities, countries, type, …

 Shared-nothing architecture
 Nodes in the cluster do not share memory, disk space, …

 Autonomous parts which communicate using messages

https://www.voltdb.com/

https://www.voltdb.com/

 Observation: Traditional databases spend less than
10% of their time doing actual work

 Most of the time they focus on:
1. Page Buffer Management

 Assigns database records to fixed-size pages, organizes their
placement within pages, manages which pages are loaded into
memory / are on disk, tracks dirty / clean pages as they are read
and written to, …

2. Concurrency Management
 Multiple user transactions operating concurrently must not conflict

and must read consistent data

 Database software has multiple threads of execution = data
structures must be thread safe

and research behind

 In-memory database
 Data are primarily processed in memory

 Durability: command log (enterprise edition) / snapshots (community edition)

 Eliminating disk waits

 All data operations in VoltDB are single-threaded
 Simple data structures

 Eliminating thread safety or concurrent access costs

 Distributed data processing
 Includes distribution of stored procedures

 Thanks to an analysis and pre-compilation of the data access logic in the procedures

 Procedures work with local part of the data

in separate transactions

 1 stored procedure = 1 transaction

 Local transactions are serialized = no conflicts
 No need for locks etc.

 Distributed data processing works in parallel

 Replication
 Partitions: peer-to-peer
 Whole databases: peer-to-peer or master/slave

 Each node in the cluster contains a unique "slice" of
the data and the data processing

 Data + stored procedures

 Processing:
1. When a procedure works with data on a single node

(partition): no requests for other nodes
 They can handle other requests in parallel

2. Need for data from multiple nodes (partitions):
1. One node in the cluster becomes a coordinator
2. It hands out the necessary work to the other nodes
3. It merges the results and ends the procedure

Array

Databases

Array Databases

 Database systems specific for data

represented as one- or

multi-dimensional arrays

 Usually: We need to represent the respective values in time and/or
space
 Biology, chemistry, physics, geology, …

 Complex research analyses of natural events
 e.g. astronomical measurements, changes of climate, satellite pictures of the

Earth, oceanographic data, human genome, …

 Example: Each satellite picture is a 2D-array (longitude + latitude)
with values informing about the particular positions
 Next dimensions: time when the picture was taken, characteristics of the

tool taking the picture, …

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi2xpTYyf3TAhXBtBQKHSGTBzEQjRwIBw&url=https%3A%2F%2Fwww.climatemodeling.org%2F~forrest%2Fpresentations%2FHoffman_Data-Mining_20020623%2F&psig=AFQjCNGyggraOeOJJjfysMe_-fYhf1xpPA&ust=1495338903369013
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi2xpTYyf3TAhXBtBQKHSGTBzEQjRwIBw&url=https%3A%2F%2Fwww.climatemodeling.org%2F~forrest%2Fpresentations%2FHoffman_Data-Mining_20020623%2F&psig=AFQjCNGyggraOeOJJjfysMe_-fYhf1xpPA&ust=1495338903369013

Array Databases

 In general:
 Big Data of a specific type

 Data not suitable for flat 2D relations
 Some RDBMSs support arrays

 Too simple operations for these purposes

 Not efficient

 Examples: SciDB, Rasdaman, Oracle Spatial
and Graph, …

http://www.paradigm4.com/wp-content/uploads/2014/05/scidb_logo.png
http://www.paradigm4.com/wp-content/uploads/2014/05/scidb_logo.png

 Provided by
 Co-founder: M. Stonebraker

 One of the most popular representatives
 Wide range of functionalities

 Data model
 Multidimensional sorted array

 Assumption: data are not overwritten
 Update = creating a new version of data

 Aim: analyses of evolution/errors/corrections/… in time

http://www.paradigm4.com/

If not explicitly

specified

http://www.paradigm4.com/
http://www.paradigm4.com/wp-content/uploads/2014/05/scidb_logo.png
http://www.paradigm4.com/wp-content/uploads/2014/05/scidb_logo.png

 AFL (Array Functional Language)

 AQL (Array Query Language)
 Inspired by SQL

 Instead of tables we work with arrays
 Wider set of operations for DDL, DML

 Compiled into AFL

CREATE ARRAY A <x: double, err: double> [i=0:99,10,0,
j=0:99,10,0];

LOAD A FROM '../examples/A.scidb';

 Each array has:
 At least one attribute (x, err) with a datatype (2x double)

 At least one dimension (i, j)

 Each dimension has :
 coordinates (0-99)

 size of data chunks (10 fields) and

 eventual overlapping (0)

http://www.paradigm4.com/wp-content/uploads/2014/05/scidb_logo.png
http://www.paradigm4.com/wp-content/uploads/2014/05/scidb_logo.png

 SciDB distributes the chunks of data
 Not too big, not too small

 Recommendation: 10-20 MB
 Depending on the datatypes

 Coordinates do not have to be limited (*)

 Overlapping is optional
 Suitable, e.g., for faster searching nearest neighbours

 The data would probably be otherwise stored on another
cluster node

http://www.paradigm4.com/wp-content/uploads/2014/05/scidb_logo.png
http://www.paradigm4.com/wp-content/uploads/2014/05/scidb_logo.png

// create two 1D arrays

CREATE ARRAY A <val_a:double>[i=0:9,10,0];

LOAD A FROM '../examples/exA.scidb';

CREATE ARRAY B <val_b:double>[j=0:9,10,0];

LOAD B FROM '../examples/exB.scidb';

// print values of coordinate i from array A

SELECT i FROM A;

[(0),(1),(2),(3),(4),(5),(6),(7),(8),(9)]

// print values of attribute val_a from array A and val_b from

// array B

SELECT val_a FROM A;

[(1),(2),(3),(4),(5),(6),(7),(8),(9),(10)]

SELECT val_b FROM B;

[(101),(102),(103),(104),(105),(106),(107),(108),(109),(110)]

http://www.paradigm4.com/wp-content/uploads/2014/05/scidb_logo.png
http://www.paradigm4.com/wp-content/uploads/2014/05/scidb_logo.png

// usage of WHERE clause + sqrt() function

SELECT sqrt(val_b) FROM B WHERE j > 3 AND j < 7;

[(),(),(),(),(10.247),(10.2956),(10.3441),(),(),()]

 SELECT commands
 Basic operation: inner join

 Joined arrays must be compatible (coordinates, chunks,
overlapping)

 Amounts and datatypes of attributes can differ

 Attributes are merged according to the given operation (condition)

 Other joins: MERGE, CROSS, CROSS_JOIN, JOIN ON (a
condition), …

 Nested queries, aggregation (GROUP BY), sorting, …

http://www.paradigm4.com/wp-content/uploads/2014/05/scidb_logo.png
http://www.paradigm4.com/wp-content/uploads/2014/05/scidb_logo.png

// joining values of arrays A and B and storing to array C

SELECT * INTO C FROM A, B;

[(1,101),(2,102),(3,103),(4,104),(5,105),(6,106),(7,107),(8,108),(9,109),(10,110)]

// joining values of arrays C and B and storing to array D

SELECT * INTO D FROM C, B;

[(1,101,101),(2,102,102),(3,103,103),(4,104,104),(5,105,105),(6,106,106),(7,107,107),

(8,108,108),(9,109,109),(10,110,110)]

// print information about array D (see attributes with the same name)

SELECT * FROM show(D);

[("D<val_a:double,val_b:double,val_b_2:double> [i=0:9,10,0]")]

// joining the values by addition

SELECT C.val_b + D.val_b FROM C, D;

[(202),(204),(206),(208),(210),(212),(214),(216),(218),(220)]

// self-joining of values

SELECT a1.val_a, a2.val_a + 2 FROM A AS a1, A AS a2;

[(1,3),(2,4),(3,5),(4,6),(5,7),(6,8),(7,9),(8,10),(9,11),(10,12)]

http://www.paradigm4.com/wp-content/uploads/2014/05/scidb_logo.png
http://www.paradigm4.com/wp-content/uploads/2014/05/scidb_logo.png

More on Arrays

 Loosely based on n-dimensional matrices of linear
algebra

 Each SciDB array consists of
 Name

 Ordered list of named dimensions

 Cell
 Product of an array's dimensions

 Record (tuple) of one or more named, typed, attributes

 Array's dimensions have a precedence order
 E.g., array B is declared with dimensions [x, y, z], C with the

same dimensions in different order [z, y, x] => shape of B
differs from C

More on Arrays

 SciDB arrays can either be sparse or dense
 No internal distinction between them

 Users can apply every operator to sparse or dense arrays

 SciDB can handle:
 Dense data

 e.g., images, mathematical matrices where every cell has value

 Time series data
 Typically with gaps in the series

 Very sparse arrays
 e.g. adjacency matrices to represent graphs

 Handling missing information
 Specify a default value for an attribute or by using a missing code

 Similar to the concept of a SQL null value
 SciDB supports up to 128 codes = different kinds of missing-ness

Algebraic Operators

 Filter array data

 Calculate new values

 Combine data from multiple arrays

 Divide input arrays into partitions and compute various
per-partition aggregates
 Sum of values, centroid of a set of vectors, …

 Compute linear algebraic results
 Matrix/matrix and matrix/vector multiply, array factorizations,

image processing transformations, …

 …

 And they can be chained to form complex operations

between (input, 2, 2, 5, 5)

regrid (input, 2, 2, avg (a) as a_avg)

Query Evaluation

 Query = series of operators

 SciDB figures out an efficient, parallel

execution strategy
 Moves operators, injects new ones, replaces

a particular sequence with a more efficient and

logically equivalent alternative, …

 SciDB engine = data pump
 Does not materialize intermediate results

 Unless it is absolutely necessary

 Passing data from the storage layer through a sequence of operators
to compute the final result

 Contrasts with the Map/Reduce model in Hadoop
 Each link in a chain of Map/Reduce operations writes back to HDFS

Temporary Arrays

 Can improve performance
 User-defined

 Do not offer the transactional guarantees of
persistent arrays (ACID)

 Are not persistent (saved to disk)
 In memory

 Become corrupted if a SciDB instance fails
 When a SciDB cluster restarts, all temporary arrays are

marked as unavailable
 But not deleted; must be deleted explicitly

 Do not have versions
 Any update overwrites existing attribute values

Array Attributes

 Store individual data values in array cells

 Consist of:
 Name

 Data type

 Nullability (optional)

 Default value (optional)

 If unspecified, the system chooses a value:

 If the attribute is nullable: null

 Otherwise:

 0 for numeric types

 empty string "" for string type

 Compression type (optional): zlib or bzlib

Datatype Default value Description

bool false Boolean value, true (1) or false (0)

char \0 Single ASCII character

datetime 1970-01-01 00:00:00 Date and time

datetimetz 1970-01-01 00:00:00 -00:00 Date and time with timezone offset.

double 0 Double-precision floating point number

float 0 Single-precision floating-point number

int8 0 Signed 8-bit integer

int16 0 Signed 16-bit integer

int32 0 Signed 32-bit integer

int64 0 Signed 64-bit integer

string ''
Variable length character string, default is the

empty string

uint8 0 Unsigned 8-bit integer

uint16 0 Unsigned 16-bit integer

uint32 0 Unsigned 32-bit integer

uint64 0 Unsigned 64-bit integer

Array Dimensions

 Form the coordinate system for a SciDB array

 Consist of:
 Name

 If only the name is specified: SciDB leaves the chunk length unspecified,
uses the default overlap of zero, and makes the dimension unbounded.

 Low value – dimension start value

 High value – dimension end value (or * for no limit)

 Chunk overlap (optional) – number of overlapping dimension values for
adjacent chunks

 Chunk length (optional) – number of dimension values between
consecutive chunk boundaries
 1-dimensional array: maximum number of cells in each chunk

 n-dimensional array: maximum number of cells in each chunk is the product
of the chunk length parameters of each dimension

Multidimensional Array Clustering

 Makes sure that:
1. Data that are close to each other in the

user-defined coordinate system are stored
in the same chunk

2. Data are stored in the same order as in
the coordinate system

 Different attributes are stored separately

 Data are split into rectilinear chunks
 Chunks are assigned to different SciDB

instances using a hash function

 Data in each chunk are stored in a
contiguous region

 Data are compressed

 The locations of empty cells are encoded
using a special bitmask EBM

 Coordinate values themselves are not
stored, but are recomputed when needed
from the EBM

Multidimensional Array Clustering

 Users can specify an optional
overlap of chunks
 Data in the overlap regions are

replicated in the logically
adjacent chunks

 Overlap is maintained
automatically by the database
 SciDB turns window queries into

parallel operations that require
no special programming on the
part of the developer

 The overlap uses slightly more
storage space but gives faster
performance
 To speed up windowed queries

SciDB Operators and Functions

 Operators:

https://paradigm4.atlassian.net/wiki/spaces/sci

db/pages/2694414589/SciDB+Operators

 Functions:

https://paradigm4.atlassian.net/wiki/spaces/sci

db/pages/2694416383/SciDB+Functions

https://paradigm4.atlassian.net/wiki/spaces/scidb/pages/2694414589/SciDB+Operators
https://paradigm4.atlassian.net/wiki/spaces/scidb/pages/2694416383/SciDB+Functions

Search

Engines

Search Engines

 Sometimes denoted as search engine data management systems

 Differences from relational DBMSs
 No rigid structural requirements

 Data can be structured, semi-structured, unstructured, …

 No relations, no constraints, no joins, no transactional behaviour, …

 Use cases: relevance-based search, full text search, synonym search,
log analysis, …

 Not typical for databases

 Data can be large
 Distributed computing

 Differences from NoSQL DBMSs
 Primarily designed for searching, not editing

 Specialized functions: full-text search, stemming, complex search
expressions, ranking and grouping of search results, geospatial search,
…
 Big Data analytics

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://wiki.apache.org/solr
https://wiki.apache.org/solr

 Distributed full-text search engine
 Scalable search solution

 Released in 2010

 Written in Java
 Based on Lucene library

 HTTP web interface
 JSON schema-free documents

 Official clients: Java, .NET (C#), PHP, Python, Apache Groovy,
Ruby, …

 Elastic Stack = Elasticsearch +
 Logstash – collects, processes, and forwards events and log messages

 Kibana – analytics and visualization platform

https://www.elastic.co/products/elasticsearch/

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.elastic.co/products/elasticsearch/

 Can be used for all kinds of documents

 Near real-time search
 Slight latency (approx. 1 second) from the time you index (or update or

delete) a document until the time it becomes searchable

 Index = collection of documents with similar characteristics
 e.g., customer data, product catalogue, …

 Has a name

 In a cluster there can be any number of indices

 Indices can be divided into shards
 Each shard can have replicas

 Rebalancing and routing are done automatically

 Each node can act as a coordinator to delegate operations to the
respective shards

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009

 When creating an index, define the number of shards
and number of replicas
 Note: index does not need to be defined beforehand

 Each shard is in itself a fully-functional and independent index

 Shards enable:
 Horizontal scaling of large volumes of data

 Parallelization of operations

 Replicas enable:
 High availability (partial failures)

 Parallelization of operations

 Default: 5 primary shards and 1 replica
 i.e., 10 shards per index

Indices

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009

GET /_cat/indices?v

 Get all indices

PUT /customer?pretty

 Create index “customer” (and pretty print the result, if any)

PUT /customer/_doc/1?pretty

{ "name": "John Doe" }

 Index the given document with ID = 1

GET /customer/_doc/1?pretty

 Get document with ID = 1

DELETE /customer/_doc/1?pretty

 Delete document with ID = 1

DELETE /customer

 Delete index “customer”

Basic Operations

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009

 ID of a document
 If an existing is used: the document is replaced (and

re-indexed)

 If a different is used: a new document is stored
 The same one twice

 If none is specified: a random ID is generated

 Document updates
 No in-place updates

 A document is deleted and a new one is created and
indexed

Data Modification

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009

ctx._source = document content

ctx._index = document metadata

…

POST /customer/_doc/1/_update?pretty

{ "doc": { "name": "Jane Doe" } }

 Change value of field “name” of document with ID = 1

POST /customer/_doc/1/_update?pretty

{ "doc": { "name": "Jane Doe", "age": 20 } }

 … and add a new field

POST /customer/_doc/1/_update?pretty

{ "script" : "ctx._source.age += 5" }

 … or use a script to specify the change

Data Modification

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009

POST /customer/_doc/_bulk?pretty

{"index":{"_id":"1"}} {"name": "John Doe" }

{"index":{"_id":"2"}} {"name": "Jane Doe" }

 Index two documents

POST /customer/_doc/_bulk?pretty

{"update":{"_id":"1"}}

{"doc": { "name": "John Doe becomes Jane Doe" } }

{"delete":{"_id":"2"}}

 Update the first document, delete the second document

Batch Processing

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009

{ "account_number": 0,

"balance": 16623,

"firstname": "Bradshaw",

"lastname": "Mckenzie",

"age": 29,

"gender": "F",

"address": "244 Columbus Place",

"employer": "Euron",

"email": "bradshawmckenzie@euron.com",

"city": "Hobucken",

"state": "CO" }

 Sample data set

Search API

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009

 Search parameters can be sent by:
 REST request URI

 REST request body
 More expressive

 More readable (JSON)?

GET /bank/_search?q=*&sort=account_number:asc&pretty

 Search (_search) in the bank index,
 match all the documents (q=*),
 sort the results using the account_number field of each document

in an ascending order (sort=account_number:asc)

Search API

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009

{

"took" : 9,

"timed_out" : false,

"_shards" : {

"total" : 1,

"successful" : 1,

"skipped" : 0,

"failed" : 0

},

"hits" : {

"total" : {

"value" : 1000,

"relation" : "eq"

},

"max_score" : 1.0,

"hits" : [

Search API
{

"_index" : "holubova_bank",

"_type" : "_doc",

"_id" : "51",

"_score" : 1.0,

"_source" : {

"account_number" : 51,

"balance" : 14097,

"firstname" : "Burton",

"lastname" : "Meyers",

"age" : 31,

"gender" : "F",

"address" : "334 River Street",

"employer" : "Bezal",

"email" : "burtonmeyers@bezal.com",

"city" : "Jacksonburg",

"state" : "MO"

}

}, …

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009

 In the result we will see:
 took – time in milliseconds to execute the search

 timed_out – if the search timed out or not

 _shards – how many shards were searched

 Total, successful, failed, skipped

 hits – search results

 hits.total – total number of documents matching our search
criteria

 hits.hits – actual array of search results

 Default: first 10 documents

 hits.sort – sort key for results

 …

Search API

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009

GET /bank/_search

{ "query": { "match_all": {} },

"sort": [{ "account_number": "asc" }] }

 The same exact search using the request body method

 When all search results are returned, Elasticsearch does
not maintain any kind of server-side resources or open
cursors etc.
 Contrary to, e.g., traditional relational databases

Search API

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009

 Domain specific language

 JSON-style

GET /bank/_search

{ "query": { "match_all": {} },

"from": 10, // starting index

"size": 10, // number of results

"_source": ["account_number", "balance"]

// include to the result

"sort": { "balance": { "order": "desc" } }

}

Query DSL

https://www.elastic.co/guide/en/elasticsearch/reference/6.5/query-dsl.html

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.elastic.co/guide/en/elasticsearch/reference/6.5/query-dsl.html

"query": { "match": { "account_number": 20 } }

 Return the account numbered 20

"query": { "match": { "address": "mill" } }

 Return all accounts containing the term "mill" in the address

"query": { "match": { "address": "mill lane" } }

 Return all accounts containing the term "mill" or "lane" in the
address

"query": { "match_phrase": { "address": "mill lane"
} }

 Return all accounts containing the phrase "mill lane" in the
address

Query DSL

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009

 Bool query allows us to compose smaller queries into bigger queries
using Boolean logic

"query": { "bool":

{ "must": [

{ "match": { "address": "mill" } },

{ "match": { "address": "lane" } }] } }

 Return all accounts containing "mill" and "lane" in the address

"query": { "bool":

{ "should": [

{ "match": { "address": "mill" } },

{ "match": { "address": "lane" } }] } }

 Return all accounts containing "mill" or "lane" in the address

Query DSL – Bool Query

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009

"query": { "bool": {

"must_not": [

{ "match": { "address": "mill" } },

{ "match": { "address": "lane" } }] } }

 Return all accounts that contain neither "mill" nor "lane" in the
address

"query": { "bool": {

"must": [{ "match": { "age": "40" } }],

"must_not": [{ "match": { "state": "ID" } }] } }

 Return all accounts of anybody who is 40 years old but doesn’t live
in ID(aho):

Query DSL – Bool Query

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009

 _score field in the search results
 Relative measure of how well the document matches the search query

 The bigger, the more relevant

 Practical scoring function evaluates it from 0 to max_score for the set
 Idea: more relevant documents =

 a) with a higher term frequency, and

 b) contain more unique uses of the term compared to other documents in
the index

 When queries filter the set, it is not evaluated
 Y/N depending on the filter

"query": {

"bool": { "must": { "match_all": {} },

"filter": {

"range": { "balance": {

"gte": 20000,

"lte": 30000 } } } } }

 Return all accounts with balances between 20000 and 30000

Query DSL – Filters

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009

 Ability to group and extract statistics
 Like SQL GROUP BY

 We can execute searches returning both hits and aggregated results
 No round tripping

GET /bank/_search {

"size": 0, // not show search hits

"aggs": {

"group_by_state": {

"terms": { "field": "state.keyword" } } } }

 Group all the accounts by state, and returns the top 10 (default)
states sorted by count descending (default)

Query DSL – Aggregations

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009

GET /bank/_search {

"size": 0,

"aggs": {

"group_by_state": {

"terms": { "field": "state.keyword" },

"aggs": {

"average_balance": {

"avg": { "field": "balance" } } } } } }

 Calculate the average account balance by state
 Uses nested aggregations (average_balance in group_by_state)

Query DSL – Aggregations

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009

Apache Lucene

 Used by Elasticsearch, Solr, …

 Released 1999

 Written in Java

 High-performance, text search engine library

 Support for
 Ranked searching

 A number of query types: phrase queries, wildcard queries, proximity queries,
range queries, …

 Fielded searching
 e.g. title, author, contents, …

 Sorting by any field

 Multiple-index searching with merged results

 Simultaneous update and searching

 Flexible faceting, highlighting, joins and result grouping

https://lucene.apache.org/core/

https://lucene.apache.org/core/

 Inverted index

 Document is the unit of search and index

 Does not have to be real documents, but also, e.g., database tables

 Document consists of one or more fields

 Name-value pair

 Searching requires an index to have already been built

 For searching it uses own language

 Matching: keyword, wildcard, proximity, range searches, …

 Logical operators

 Boosting of terms/clauses

 …

Apache Lucene

References

 VoltDB Documentation

https://docs.voltdb.com/

 SciDB Reference Guide

https://paradigm4.atlassian.net/wiki/spaces/sci
db/overview?homepageId=2694289094

 Elastic Stack and Product Documentation

https://www.elastic.co/guide/index.html

https://docs.voltdb.com/
https://paradigm4.atlassian.net/wiki/spaces/scidb/overview?homepageId=2694289094
https://www.elastic.co/guide/index.html

