
Modern Database

Systems

Other types of modern (not only) database systems

Doc. RNDr. Irena Holubova, Ph.D.
Irena.Holubova@matfyz.cuni.cz

mailto:Irena.Holubova@matfyz.cuni.cz

Modern Data Management

Systems

 NoSQL databases
 Non-core – XML, object, …

 Core – key/value, column, document, graph

 Multi-model databases and polystores

 NewSQL databases

 Array databases

 Search engines
 Elasticsearch, Splunk, Solr, …

 …

 And there is also a number of specialized DBMSs
 Navigational, multi-value, event, content, time-series, ...

NewSQL

Databases

NewSQL Databases

 Idea (from 2011): scalable storage + all
functionality known from traditional relational
databases
 Not just SQL access, but classical relational model,

ACID properties, …

 Previously ScalableSQL

Aslett, M.: What We Talk about When We Talk about NewSQL. 452 Group, 2011.

http://blogs.the451group.com/information_management/2011/04/06/what-we-talk-

about-when-we-talk-about-newsql/

Stonebraker, M.: New SQL: An Alternative to NoSQL and Old SQL for New OLTP

Apps, 2011. https://cacm.acm.org/blogs/blog-cacm/109710-new-sql-an-alternative-

to-nosql-and-old-sql-for-new-oltp-apps/fulltext

http://blogs.the451group.com/information_management/2011/04/06/what-we-talk-about-when-we-talk-about-newsql/
https://cacm.acm.org/blogs/blog-cacm/109710-new-sql-an-alternative-to-nosql-and-old-sql-for-new-oltp-apps/fulltext
http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjx2omlxv3TAhUByRQKHZW6DwEQjRwIBw&url=http%3A%2F%2Flabs.sogeti.com%2Fnewsql-whats%2F&psig=AFQjCNGL4stnjdlRkmCkw7mFONA3G7XApw&ust=1495337915909681
http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjx2omlxv3TAhUByRQKHZW6DwEQjRwIBw&url=http%3A%2F%2Flabs.sogeti.com%2Fnewsql-whats%2F&psig=AFQjCNGL4stnjdlRkmCkw7mFONA3G7XApw&ust=1495337915909681

NewSQL Databases

 Approaches:
 Distributed systems which add

advantages of relational model + ACID

 e.g. Clustrix, ScaleArc, MemSQL, VoltDB, …

 Relational DBMSs extended towards horizontal scalability

 e.g. TokuDB, JustOne DB, ..

 Cloud: NewSQL as a Service
 Special type of a cloud service = scalable relational DBMS

 e.g. Amazon Relational Database Service, Microsoft Azure
Database, …

NewSQL Databases

 Why do we need them?
1. There are applications which work with relational databases +

they need to solve new increase of data volumes

 Transformation to any NoSQL data model would be too expensive

2. There are application which still need strong data consistency
+ horizontal scalability

 Consequence: Again NewSQL does not mean the end
of traditional SQL (relational) DBMSs

 An alternative approach – we need alternatives and there will
occur other

Stonebraker, M. et al.: The end of an architectural era: (it's time for a complete

rewrite). VLDB '07.

 Based on academic DBMS H-System
 Developed by researchers from US top universities (including M.

Stonebraker) + Intel

 Aim: relational model + ACID + horizontal scalability

 User perspective: classical relational DBMS
 CREATE / ALTER / DROP TABLE, INSERT INTO, CHECK

constraints, SELECT (including GROUP BY), set operations, nested
queries, stored procedures, database views, …

 Big Data
 Automatic data distribution

 Users can specify according to which column to distribute
 Customers: cities, countries, type, …

 Shared-nothing architecture
 Nodes in the cluster do not share memory, disk space, …

 Autonomous parts which communicate using messages

https://www.voltdb.com/

https://www.voltdb.com/

 Observation: Traditional databases spend less than
10% of their time doing actual work

 Most of the time they focus on:
1. Page Buffer Management

 Assigns database records to fixed-size pages, organizes their
placement within pages, manages which pages are loaded into
memory / are on disk, tracks dirty / clean pages as they are read
and written to, …

2. Concurrency Management
 Multiple user transactions operating concurrently must not conflict

and must read consistent data

 Database software has multiple threads of execution = data
structures must be thread safe

and research behind

 In-memory database
 Data are primarily processed in memory

 Durability: command log (enterprise edition) / snapshots (community edition)

 Eliminating disk waits

 All data operations in VoltDB are single-threaded
 Simple data structures

 Eliminating thread safety or concurrent access costs

 Distributed data processing
 Includes distribution of stored procedures

 Thanks to an analysis and pre-compilation of the data access logic in the procedures

 Procedures work with local part of the data

in separate transactions

 1 stored procedure = 1 transaction

 Local transactions are serialized = no conflicts
 No need for locks etc.

 Distributed data processing works in parallel

 Replication
 Partitions: peer-to-peer
 Whole databases: peer-to-peer or master/slave

 Each node in the cluster contains a unique "slice" of
the data and the data processing

 Data + stored procedures

 Processing:
1. When a procedure works with data on a single node

(partition): no requests for other nodes
 They can handle other requests in parallel

2. Need for data from multiple nodes (partitions):
1. One node in the cluster becomes a coordinator
2. It hands out the necessary work to the other nodes
3. It merges the results and ends the procedure

Array

Databases

Array Databases

 Database systems specific for data

represented as one- or

multi-dimensional arrays

 Usually: We need to represent the respective values in time and/or
space
 Biology, chemistry, physics, geology, …

 Complex research analyses of natural events
 e.g. astronomical measurements, changes of climate, satellite pictures of the

Earth, oceanographic data, human genome, …

 Example: Each satellite picture is a 2D-array (longitude + latitude)
with values informing about the particular positions
 Next dimensions: time when the picture was taken, characteristics of the

tool taking the picture, …

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi2xpTYyf3TAhXBtBQKHSGTBzEQjRwIBw&url=https%3A%2F%2Fwww.climatemodeling.org%2F~forrest%2Fpresentations%2FHoffman_Data-Mining_20020623%2F&psig=AFQjCNGyggraOeOJJjfysMe_-fYhf1xpPA&ust=1495338903369013
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi2xpTYyf3TAhXBtBQKHSGTBzEQjRwIBw&url=https%3A%2F%2Fwww.climatemodeling.org%2F~forrest%2Fpresentations%2FHoffman_Data-Mining_20020623%2F&psig=AFQjCNGyggraOeOJJjfysMe_-fYhf1xpPA&ust=1495338903369013

Array Databases

 In general:
 Big Data of a specific type

 Data not suitable for flat 2D relations
 Some RDBMSs support arrays

 Too simple operations for these purposes

 Not efficient

 Examples: SciDB, Rasdaman, Oracle Spatial
and Graph, …

http://www.paradigm4.com/wp-content/uploads/2014/05/scidb_logo.png
http://www.paradigm4.com/wp-content/uploads/2014/05/scidb_logo.png

 Provided by
 Co-founder: M. Stonebraker

 One of the most popular representatives
 Wide range of functionalities

 Data model
 Multidimensional sorted array

 Assumption: data are not overwritten
 Update = creating a new version of data

 Aim: analyses of evolution/errors/corrections/… in time

http://www.paradigm4.com/

If not explicitly

specified

http://www.paradigm4.com/
http://www.paradigm4.com/wp-content/uploads/2014/05/scidb_logo.png
http://www.paradigm4.com/wp-content/uploads/2014/05/scidb_logo.png

 AFL (Array Functional Language)

 AQL (Array Query Language)
 Inspired by SQL

 Instead of tables we work with arrays
 Wider set of operations for DDL, DML

 Compiled into AFL

CREATE ARRAY A <x: double, err: double> [i=0:99,10,0,
j=0:99,10,0];

LOAD A FROM '../examples/A.scidb';

 Each array has:
 At least one attribute (x, err) with a datatype (2x double)

 At least one dimension (i, j)

 Each dimension has :
 coordinates (0-99)

 size of data chunks (10 fields) and

 eventual overlapping (0)

http://www.paradigm4.com/wp-content/uploads/2014/05/scidb_logo.png
http://www.paradigm4.com/wp-content/uploads/2014/05/scidb_logo.png

 SciDB distributes the chunks of data
 Not too big, not too small

 Recommendation: 10-20 MB
 Depending on the datatypes

 Coordinates do not have to be limited (*)

 Overlapping is optional
 Suitable, e.g., for faster searching nearest neighbours

 The data would probably be otherwise stored on another
cluster node

http://www.paradigm4.com/wp-content/uploads/2014/05/scidb_logo.png
http://www.paradigm4.com/wp-content/uploads/2014/05/scidb_logo.png

// create two 1D arrays

CREATE ARRAY A <val_a:double>[i=0:9,10,0];

LOAD A FROM '../examples/exA.scidb';

CREATE ARRAY B <val_b:double>[j=0:9,10,0];

LOAD B FROM '../examples/exB.scidb';

// print values of coordinate i from array A

SELECT i FROM A;

[(0),(1),(2),(3),(4),(5),(6),(7),(8),(9)]

// print values of attribute val_a from array A and val_b from

// array B

SELECT val_a FROM A;

[(1),(2),(3),(4),(5),(6),(7),(8),(9),(10)]

SELECT val_b FROM B;

[(101),(102),(103),(104),(105),(106),(107),(108),(109),(110)]

http://www.paradigm4.com/wp-content/uploads/2014/05/scidb_logo.png
http://www.paradigm4.com/wp-content/uploads/2014/05/scidb_logo.png

// usage of WHERE clause + sqrt() function

SELECT sqrt(val_b) FROM B WHERE j > 3 AND j < 7;

[(),(),(),(),(10.247),(10.2956),(10.3441),(),(),()]

 SELECT commands
 Basic operation: inner join

 Joined arrays must be compatible (coordinates, chunks,
overlapping)

 Amounts and datatypes of attributes can differ

 Attributes are merged according to the given operation (condition)

 Other joins: MERGE, CROSS, CROSS_JOIN, JOIN ON (a
condition), …

 Nested queries, aggregation (GROUP BY), sorting, …

http://www.paradigm4.com/wp-content/uploads/2014/05/scidb_logo.png
http://www.paradigm4.com/wp-content/uploads/2014/05/scidb_logo.png

// joining values of arrays A and B and storing to array C

SELECT * INTO C FROM A, B;

[(1,101),(2,102),(3,103),(4,104),(5,105),(6,106),(7,107),(8,108),(9,109),(10,110)]

// joining values of arrays C and B and storing to array D

SELECT * INTO D FROM C, B;

[(1,101,101),(2,102,102),(3,103,103),(4,104,104),(5,105,105),(6,106,106),(7,107,107),

(8,108,108),(9,109,109),(10,110,110)]

// print information about array D (see attributes with the same name)

SELECT * FROM show(D);

[("D<val_a:double,val_b:double,val_b_2:double> [i=0:9,10,0]")]

// joining the values by addition

SELECT C.val_b + D.val_b FROM C, D;

[(202),(204),(206),(208),(210),(212),(214),(216),(218),(220)]

// self-joining of values

SELECT a1.val_a, a2.val_a + 2 FROM A AS a1, A AS a2;

[(1,3),(2,4),(3,5),(4,6),(5,7),(6,8),(7,9),(8,10),(9,11),(10,12)]

http://www.paradigm4.com/wp-content/uploads/2014/05/scidb_logo.png
http://www.paradigm4.com/wp-content/uploads/2014/05/scidb_logo.png

More on Arrays

 Loosely based on n-dimensional matrices of linear
algebra

 Each SciDB array consists of
 Name

 Ordered list of named dimensions

 Cell
 Product of an array's dimensions

 Record (tuple) of one or more named, typed, attributes

 Array's dimensions have a precedence order
 E.g., array B is declared with dimensions [x, y, z], C with the

same dimensions in different order [z, y, x] => shape of B
differs from C

More on Arrays

 SciDB arrays can either be sparse or dense
 No internal distinction between them

 Users can apply every operator to sparse or dense arrays

 SciDB can handle:
 Dense data

 e.g., images, mathematical matrices where every cell has value

 Time series data
 Typically with gaps in the series

 Very sparse arrays
 e.g. adjacency matrices to represent graphs

 Handling missing information
 Specify a default value for an attribute or by using a missing code

 Similar to the concept of a SQL null value
 SciDB supports up to 128 codes = different kinds of missing-ness

Algebraic Operators

 Filter array data

 Calculate new values

 Combine data from multiple arrays

 Divide input arrays into partitions and compute various
per-partition aggregates
 Sum of values, centroid of a set of vectors, …

 Compute linear algebraic results
 Matrix/matrix and matrix/vector multiply, array factorizations,

image processing transformations, …

 …

 And they can be chained to form complex operations

between (input, 2, 2, 5, 5)

regrid (input, 2, 2, avg (a) as a_avg)

Query Evaluation

 Query = series of operators

 SciDB figures out an efficient, parallel

execution strategy
 Moves operators, injects new ones, replaces

a particular sequence with a more efficient and

logically equivalent alternative, …

 SciDB engine = data pump
 Does not materialize intermediate results

 Unless it is absolutely necessary

 Passing data from the storage layer through a sequence of operators
to compute the final result

 Contrasts with the Map/Reduce model in Hadoop
 Each link in a chain of Map/Reduce operations writes back to HDFS

Temporary Arrays

 Can improve performance
 User-defined

 Do not offer the transactional guarantees of
persistent arrays (ACID)

 Are not persistent (saved to disk)
 In memory

 Become corrupted if a SciDB instance fails
 When a SciDB cluster restarts, all temporary arrays are

marked as unavailable
 But not deleted; must be deleted explicitly

 Do not have versions
 Any update overwrites existing attribute values

Array Attributes

 Store individual data values in array cells

 Consist of:
 Name

 Data type

 Nullability (optional)

 Default value (optional)

 If unspecified, the system chooses a value:

 If the attribute is nullable: null

 Otherwise:

 0 for numeric types

 empty string "" for string type

 Compression type (optional): zlib or bzlib

Datatype Default value Description

bool false Boolean value, true (1) or false (0)

char \0 Single ASCII character

datetime 1970-01-01 00:00:00 Date and time

datetimetz 1970-01-01 00:00:00 -00:00 Date and time with timezone offset.

double 0 Double-precision floating point number

float 0 Single-precision floating-point number

int8 0 Signed 8-bit integer

int16 0 Signed 16-bit integer

int32 0 Signed 32-bit integer

int64 0 Signed 64-bit integer

string ''
Variable length character string, default is the

empty string

uint8 0 Unsigned 8-bit integer

uint16 0 Unsigned 16-bit integer

uint32 0 Unsigned 32-bit integer

uint64 0 Unsigned 64-bit integer

Array Dimensions

 Form the coordinate system for a SciDB array

 Consist of:
 Name

 If only the name is specified: SciDB leaves the chunk length unspecified,
uses the default overlap of zero, and makes the dimension unbounded.

 Low value – dimension start value

 High value – dimension end value (or * for no limit)

 Chunk overlap (optional) – number of overlapping dimension values for
adjacent chunks

 Chunk length (optional) – number of dimension values between
consecutive chunk boundaries
 1-dimensional array: maximum number of cells in each chunk

 n-dimensional array: maximum number of cells in each chunk is the product
of the chunk length parameters of each dimension

Multidimensional Array Clustering

 Makes sure that:
1. Data that are close to each other in the

user-defined coordinate system are stored
in the same chunk

2. Data are stored in the same order as in
the coordinate system

 Different attributes are stored separately

 Data are split into rectilinear chunks
 Chunks are assigned to different SciDB

instances using a hash function

 Data in each chunk are stored in a
contiguous region

 Data are compressed

 The locations of empty cells are encoded
using a special bitmask EBM

 Coordinate values themselves are not
stored, but are recomputed when needed
from the EBM

Multidimensional Array Clustering

 Users can specify an optional
overlap of chunks
 Data in the overlap regions are

replicated in the logically
adjacent chunks

 Overlap is maintained
automatically by the database
 SciDB turns window queries into

parallel operations that require
no special programming on the
part of the developer

 The overlap uses slightly more
storage space but gives faster
performance
 To speed up windowed queries

SciDB Operators and Functions

 Operators:

https://paradigm4.atlassian.net/wiki/spaces/sci

db/pages/2694414589/SciDB+Operators

 Functions:

https://paradigm4.atlassian.net/wiki/spaces/sci

db/pages/2694416383/SciDB+Functions

https://paradigm4.atlassian.net/wiki/spaces/scidb/pages/2694414589/SciDB+Operators
https://paradigm4.atlassian.net/wiki/spaces/scidb/pages/2694416383/SciDB+Functions

Search

Engines

Search Engines

 Sometimes denoted as search engine data management systems

 Differences from relational DBMSs
 No rigid structural requirements

 Data can be structured, semi-structured, unstructured, …

 No relations, no constraints, no joins, no transactional behaviour, …

 Use cases: relevance-based search, full text search, synonym search,
log analysis, …

 Not typical for databases

 Data can be large
 Distributed computing

 Differences from NoSQL DBMSs
 Primarily designed for searching, not editing

 Specialized functions: full-text search, stemming, complex search
expressions, ranking and grouping of search results, geospatial search,
…
 Big Data analytics

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://wiki.apache.org/solr
https://wiki.apache.org/solr

 Distributed full-text search engine
 Scalable search solution

 Released in 2010

 Written in Java
 Based on Lucene library

 HTTP web interface
 JSON schema-free documents

 Official clients: Java, .NET (C#), PHP, Python, Apache Groovy,
Ruby, …

 Elastic Stack = Elasticsearch +
 Logstash – collects, processes, and forwards events and log messages

 Kibana – analytics and visualization platform

https://www.elastic.co/products/elasticsearch/

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.elastic.co/products/elasticsearch/

 Can be used for all kinds of documents

 Near real-time search
 Slight latency (approx. 1 second) from the time you index (or update or

delete) a document until the time it becomes searchable

 Index = collection of documents with similar characteristics
 e.g., customer data, product catalogue, …

 Has a name

 In a cluster there can be any number of indices

 Indices can be divided into shards
 Each shard can have replicas

 Rebalancing and routing are done automatically

 Each node can act as a coordinator to delegate operations to the
respective shards

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009

 When creating an index, define the number of shards
and number of replicas
 Note: index does not need to be defined beforehand

 Each shard is in itself a fully-functional and independent index

 Shards enable:
 Horizontal scaling of large volumes of data

 Parallelization of operations

 Replicas enable:
 High availability (partial failures)

 Parallelization of operations

 Default: 5 primary shards and 1 replica
 i.e., 10 shards per index

Indices

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009

GET /_cat/indices?v

 Get all indices

PUT /customer?pretty

 Create index “customer” (and pretty print the result, if any)

PUT /customer/_doc/1?pretty

{ "name": "John Doe" }

 Index the given document with ID = 1

GET /customer/_doc/1?pretty

 Get document with ID = 1

DELETE /customer/_doc/1?pretty

 Delete document with ID = 1

DELETE /customer

 Delete index “customer”

Basic Operations

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009

 ID of a document
 If an existing is used: the document is replaced (and

re-indexed)

 If a different is used: a new document is stored
 The same one twice

 If none is specified: a random ID is generated

 Document updates
 No in-place updates

 A document is deleted and a new one is created and
indexed

Data Modification

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009

ctx._source = document content

ctx._index = document metadata

…

POST /customer/_doc/1/_update?pretty

{ "doc": { "name": "Jane Doe" } }

 Change value of field “name” of document with ID = 1

POST /customer/_doc/1/_update?pretty

{ "doc": { "name": "Jane Doe", "age": 20 } }

 … and add a new field

POST /customer/_doc/1/_update?pretty

{ "script" : "ctx._source.age += 5" }

 … or use a script to specify the change

Data Modification

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009

POST /customer/_doc/_bulk?pretty

{"index":{"_id":"1"}} {"name": "John Doe" }

{"index":{"_id":"2"}} {"name": "Jane Doe" }

 Index two documents

POST /customer/_doc/_bulk?pretty

{"update":{"_id":"1"}}

{"doc": { "name": "John Doe becomes Jane Doe" } }

{"delete":{"_id":"2"}}

 Update the first document, delete the second document

Batch Processing

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009

{ "account_number": 0,

"balance": 16623,

"firstname": "Bradshaw",

"lastname": "Mckenzie",

"age": 29,

"gender": "F",

"address": "244 Columbus Place",

"employer": "Euron",

"email": "bradshawmckenzie@euron.com",

"city": "Hobucken",

"state": "CO" }

 Sample data set

Search API

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009

 Search parameters can be sent by:
 REST request URI

 REST request body
 More expressive

 More readable (JSON)?

GET /bank/_search?q=*&sort=account_number:asc&pretty

 Search (_search) in the bank index,
 match all the documents (q=*),
 sort the results using the account_number field of each document

in an ascending order (sort=account_number:asc)

Search API

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009

{

"took" : 9,

"timed_out" : false,

"_shards" : {

"total" : 1,

"successful" : 1,

"skipped" : 0,

"failed" : 0

},

"hits" : {

"total" : {

"value" : 1000,

"relation" : "eq"

},

"max_score" : 1.0,

"hits" : [

Search API
{

"_index" : "holubova_bank",

"_type" : "_doc",

"_id" : "51",

"_score" : 1.0,

"_source" : {

"account_number" : 51,

"balance" : 14097,

"firstname" : "Burton",

"lastname" : "Meyers",

"age" : 31,

"gender" : "F",

"address" : "334 River Street",

"employer" : "Bezal",

"email" : "burtonmeyers@bezal.com",

"city" : "Jacksonburg",

"state" : "MO"

}

}, …

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009

 In the result we will see:
 took – time in milliseconds to execute the search

 timed_out – if the search timed out or not

 _shards – how many shards were searched

 Total, successful, failed, skipped

 hits – search results

 hits.total – total number of documents matching our search
criteria

 hits.hits – actual array of search results

 Default: first 10 documents

 hits.sort – sort key for results

 …

Search API

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009

GET /bank/_search

{ "query": { "match_all": {} },

"sort": [{ "account_number": "asc" }] }

 The same exact search using the request body method

 When all search results are returned, Elasticsearch does
not maintain any kind of server-side resources or open
cursors etc.
 Contrary to, e.g., traditional relational databases

Search API

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009

 Domain specific language

 JSON-style

GET /bank/_search

{ "query": { "match_all": {} },

"from": 10, // starting index

"size": 10, // number of results

"_source": ["account_number", "balance"]

// include to the result

"sort": { "balance": { "order": "desc" } }

}

Query DSL

https://www.elastic.co/guide/en/elasticsearch/reference/6.5/query-dsl.html

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.elastic.co/guide/en/elasticsearch/reference/6.5/query-dsl.html

"query": { "match": { "account_number": 20 } }

 Return the account numbered 20

"query": { "match": { "address": "mill" } }

 Return all accounts containing the term "mill" in the address

"query": { "match": { "address": "mill lane" } }

 Return all accounts containing the term "mill" or "lane" in the
address

"query": { "match_phrase": { "address": "mill lane"
} }

 Return all accounts containing the phrase "mill lane" in the
address

Query DSL

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009

 Bool query allows us to compose smaller queries into bigger queries
using Boolean logic

"query": { "bool":

{ "must": [

{ "match": { "address": "mill" } },

{ "match": { "address": "lane" } }] } }

 Return all accounts containing "mill" and "lane" in the address

"query": { "bool":

{ "should": [

{ "match": { "address": "mill" } },

{ "match": { "address": "lane" } }] } }

 Return all accounts containing "mill" or "lane" in the address

Query DSL – Bool Query

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009

"query": { "bool": {

"must_not": [

{ "match": { "address": "mill" } },

{ "match": { "address": "lane" } }] } }

 Return all accounts that contain neither "mill" nor "lane" in the
address

"query": { "bool": {

"must": [{ "match": { "age": "40" } }],

"must_not": [{ "match": { "state": "ID" } }] } }

 Return all accounts of anybody who is 40 years old but doesn’t live
in ID(aho):

Query DSL – Bool Query

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009

 _score field in the search results
 Relative measure of how well the document matches the search query

 The bigger, the more relevant

 Practical scoring function evaluates it from 0 to max_score for the set
 Idea: more relevant documents =

 a) with a higher term frequency, and

 b) contain more unique uses of the term compared to other documents in
the index

 When queries filter the set, it is not evaluated
 Y/N depending on the filter

"query": {

"bool": { "must": { "match_all": {} },

"filter": {

"range": { "balance": {

"gte": 20000,

"lte": 30000 } } } } }

 Return all accounts with balances between 20000 and 30000

Query DSL – Filters

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009

 Ability to group and extract statistics
 Like SQL GROUP BY

 We can execute searches returning both hits and aggregated results
 No round tripping

GET /bank/_search {

"size": 0, // not show search hits

"aggs": {

"group_by_state": {

"terms": { "field": "state.keyword" } } } }

 Group all the accounts by state, and returns the top 10 (default)
states sorted by count descending (default)

Query DSL – Aggregations

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009

GET /bank/_search {

"size": 0,

"aggs": {

"group_by_state": {

"terms": { "field": "state.keyword" },

"aggs": {

"average_balance": {

"avg": { "field": "balance" } } } } } }

 Calculate the average account balance by state
 Uses nested aggregations (average_balance in group_by_state)

Query DSL – Aggregations

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjBhNr_vuHfAhUvhaYKHYK9AMEQjRx6BAgBEAU&url=https%3A%2F%2Fwww.op5.com%2Farticles%2Fa-technical-perspective-of-elasticsearch%2F&psig=AOvVaw39Jfw9fUM1WfccZu80up3H&ust=1547150528226009

Apache Lucene

 Used by Elasticsearch, Solr, …

 Released 1999

 Written in Java

 High-performance, text search engine library

 Support for
 Ranked searching

 A number of query types: phrase queries, wildcard queries, proximity queries,
range queries, …

 Fielded searching
 e.g. title, author, contents, …

 Sorting by any field

 Multiple-index searching with merged results

 Simultaneous update and searching

 Flexible faceting, highlighting, joins and result grouping

https://lucene.apache.org/core/

https://lucene.apache.org/core/

 Inverted index

 Document is the unit of search and index

 Does not have to be real documents, but also, e.g., database tables

 Document consists of one or more fields

 Name-value pair

 Searching requires an index to have already been built

 For searching it uses own language

 Matching: keyword, wildcard, proximity, range searches, …

 Logical operators

 Boosting of terms/clauses

 …

Apache Lucene

References

 VoltDB Documentation

https://docs.voltdb.com/

 SciDB Reference Guide

https://paradigm4.atlassian.net/wiki/spaces/sci
db/overview?homepageId=2694289094

 Elastic Stack and Product Documentation

https://www.elastic.co/guide/index.html

https://docs.voltdb.com/
https://paradigm4.atlassian.net/wiki/spaces/scidb/overview?homepageId=2694289094
https://www.elastic.co/guide/index.html

