
Modern Database

Systems

Techniques and technologies for processing Big

Data. Introduction to NoSQL databases.

Doc. RNDr. Irena Holubova, Ph.D.
Irena.Holubova@matfyz.cuni.cz

mailto:Irena.Holubova@matfyz.cuni.cz

Big Data Tasks

 What do we need to do with Big Data?
 aggregate

 manipulate

 analyze

 visualize

 A number of techniques and technologies
 Combination of statistics, computer science, applied

mathematics, economics, …

 Some adapted from techniques for smaller volumes of data

 Some developed primarily for Big Data

 New approaches appear rapidly

Big Data Analysis Techniques
Examples

 Association rule learning – discovering interesting relationships, i.e.,
“association rules,” among variables in large databases
 e.g., market basket analysis

 Classification – to identify the categories in which new data points
belong, based on a training set containing data points that have
already been categorized
 Supervised learning

 e.g., buying decisions

 Cluster analysis – classifying objects that split a diverse group into
smaller groups of similar objects
 Unsupervised learning

 Data fusion and data integration

 Signal processing

https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/big-data-the-next-frontier-for-innovation

https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/big-data-the-next-frontier-for-innovation

Big Data Analysis Techniques
Examples

 Crowdsourcing - collecting data submitted by a large group of
people or community

 Data mining - extract patterns from large datasets
 Involves association rule learning, cluster analysis, classification,

regression, …

 Time series analysis and forecasting
 e.g., hourly value of a stock market index

 Sentiment analysis - identifying the feature/aspect/product about
which a sentiment is being expressed,
 Determining the type (i.e., positive, negative, or neutral)

 Determining the degree and strength of the sentiment

 Visualization

 …

Big Data Related Technologies

 Distributed file systems
 e.g., HDFS

 Distributed databases
 Primarily NoSQL databases

 And many other types

 Cloud computing

 Data analytics
 Batch

 Real-time

 Stream

 …

Cloud Computing

 Way of creating SW

 Idea: Providing shared IT technologies (HW/SW) and/or
data to computers and other devices on demand
 Software as a Service (SaaS)

 For end-users

 Platform as a Service (PaaS)

 For developers (tools for SW implementation/deployment)

 Infrastructure as a Service (IaaS)

 For providing robust expensive and inaccessible HW

 Users pay for the usage (rent)
 Time of usage, size of the data, …

Cloud Computing

 Services

 Private – for internal

usage of a company

 Public – for anyone

 Community – for a

selected community

 Set of customers

 … and their

combinations

Cloud Computing

 Advantages

 Users do not have to manage the technologies

 Buy, install, upgrade, maintain, …

 Thanks to the Internet can be used anywhere

 Service provider can provide distinct solutions for

distinct requirements

 Within the respective capabilities

 Data stored at server(s) of the cloud can be easily

shared

Cloud Computing

 Disadvantages and challenges
 We store our private data on a public cloud

 Theoretically vulnerable (but the protection techniques are
still being improved)

 Vendor lock-in
 Proprietary technologies and solutions

 High prices
 For small companies, universities, …

 Note: Well-known applications have similar
features
 Google Calendar, Dropbox, Gmail

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi0nOy-2_zTAhWLY1AKHZiGDdkQjRwIBw&url=https%3A%2F%2Fwww.cronofy.com%2Fgoogle-calendar-api%2F&psig=AFQjCNFaWHNybBmR9TqfzNrb3aWudp5XjQ&ust=1495309331343555
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi0nOy-2_zTAhWLY1AKHZiGDdkQjRwIBw&url=https%3A%2F%2Fwww.cronofy.com%2Fgoogle-calendar-api%2F&psig=AFQjCNFaWHNybBmR9TqfzNrb3aWudp5XjQ&ust=1495309331343555
http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=0ahUKEwiv4aHL2_zTAhUIIlAKHZKvCFAQjRwIBw&url=http%3A%2F%2Fwww.minterest.org%2Fwhy-dropbox%2F&psig=AFQjCNEuOL898U5147sAY1BoAukcLr4V6w&ust=1495309355184174
http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=0ahUKEwiv4aHL2_zTAhUIIlAKHZKvCFAQjRwIBw&url=http%3A%2F%2Fwww.minterest.org%2Fwhy-dropbox%2F&psig=AFQjCNEuOL898U5147sAY1BoAukcLr4V6w&ust=1495309355184174
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjs3sXi2_zTAhXSI1AKHcyDCZ4QjRwIBw&url=https%3A%2F%2Fwww.digitalunite.com%2Fguides%2Femail%2Fhow-create-gmail-account&psig=AFQjCNF-QiNoigDPt5Nb1k4zb1FoGvyG3g&ust=1495309397596828
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjs3sXi2_zTAhXSI1AKHcyDCZ4QjRwIBw&url=https%3A%2F%2Fwww.digitalunite.com%2Fguides%2Femail%2Fhow-create-gmail-account&psig=AFQjCNF-QiNoigDPt5Nb1k4zb1FoGvyG3g&ust=1495309397596828

Cloud Computing Platforms

For more details see courses: Virtualization and Cloud Computing (NSWI150)

Cloud Application Development (NSWI152)

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwid3suw2_zTAhVCa1AKHQI6ChQQjRwIBw&url=https%3A%2F%2Fwww.fotoware.com%2Fproducts%2Fdigital-asset-management-on-microsoft-azure-marketplace&psig=AFQjCNFe13kdGpsulEiDY4jjvRsw0cTGWQ&ust=1495309268144706
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwid3suw2_zTAhVCa1AKHQI6ChQQjRwIBw&url=https%3A%2F%2Fwww.fotoware.com%2Fproducts%2Fdigital-asset-management-on-microsoft-azure-marketplace&psig=AFQjCNFe13kdGpsulEiDY4jjvRsw0cTGWQ&ust=1495309268144706
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi67vmB3PzTAhUKElAKHRW2BscQjRwIBw&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAmazon_Web_Services&psig=AFQjCNHJTYwRpzPPGChZ9HWnoGPjEvWGfg&ust=1495309472152718
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi67vmB3PzTAhUKElAKHRW2BscQjRwIBw&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAmazon_Web_Services&psig=AFQjCNHJTYwRpzPPGChZ9HWnoGPjEvWGfg&ust=1495309472152718
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwichZeQ3PzTAhVHJVAKHXg1DHEQjRwIBw&url=https%3A%2F%2Fwww.g2crowd.com%2Fproducts%2Fgoogle-app-engine%2Freviews&psig=AFQjCNHUWCroFG8GqmSQStI-J51qAQ3yeQ&ust=1495309500091623
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwichZeQ3PzTAhVHJVAKHXg1DHEQjRwIBw&url=https%3A%2F%2Fwww.g2crowd.com%2Fproducts%2Fgoogle-app-engine%2Freviews&psig=AFQjCNHUWCroFG8GqmSQStI-J51qAQ3yeQ&ust=1495309500091623
http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjuhoyh3PzTAhXHJVAKHVBBBJIQjRwIBw&url=http%3A%2F%2Fwww.techboard.io%2Fopenshift-dev-to-prod-in-clouds%2F&psig=AFQjCNHqgnNMUk1M8S-Z170Vs-1DI6ZhAQ&ust=1495309528001701
http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjuhoyh3PzTAhXHJVAKHVBBBJIQjRwIBw&url=http%3A%2F%2Fwww.techboard.io%2Fopenshift-dev-to-prod-in-clouds%2F&psig=AFQjCNHqgnNMUk1M8S-Z170Vs-1DI6ZhAQ&ust=1495309528001701

Cloud Computing and Big Data

 We need a cluster of nodes
 Expensive, demanding installation and maintenance, …

 Use cloud computing
 Scalable solutions without the maintenance part

 For Big Data often cheaper than the HW
 When the infrastructure is not used, it can be provided to other

users
 E.g. data analysis is done in particular time intervals

 Easier solutions or even directly particular applications

 Available “immediately”

 We can focus on the specific functionality
 E.g. efficient analytical processing of the data

 But: the other disadvantages (safety, vendor lock-in)
remain

Types of NoSQL Databases

Core:

 Key-value databases

 Document databases

 Column-family (column-oriented/columnar) stores

 Graph databases

Non-core:

 Object databases

 XML databases

 …

Further novel extensions:

 Multi-model databases

 Array databases

 NewSQL databases

 …
http://nosql-database.org/

http://nosql-database.org/

Key-value store
Basic characteristics

 The simplest NoSQL data stores

 A simple hash table (map), primarily used when all
access to the database is via primary key

 A table in RDBMS with two columns, such as ID and
NAME
 ID column being the key

 NAME column storing the value
 A BLOB that the data store just stores

 Basic operations:
 Get the value for the key

 Put a value for a key

 Delete a key from the data store

 Simple  great performance, easily scaled

 Simple  not for complex queries, aggregation needs

Key-value store
Representatives

Project

Voldemort

MemcachedDB

not

open-source

open-source

version

Key-value store
Suitable Use Cases

Storing Session Information

 Every web session is assigned a unique session_id value

 Everything about the session can be stored by a single PUT request
or retrieved using a single GET

 Fast, everything is stored in a single object

User Profiles, Preferences

 Every user has a unique user_id, user_name + preferences such as
language, colour, time zone, which products the user has access to,
…

 As in the previous case:
 Fast, single object, single GET/PUT

Shopping Cart Data

 Similar to the previous cases

Key-value store
When Not to Use

Relationships among Data

 Relationships between different sets of data

 Some key-value stores provide link-walking features
 Not usual

Multioperation Transactions

 Saving multiple keys
 Failure to save any one of them → revert or roll back the rest of the

operations

Query by Data

 Search the keys based on something found in the value part

Operations by Sets

 Operations are limited to one key at a time

 No way to operate upon multiple keys at the same time

Column-Family Stores
Basic Characteristics

 Also “columnar” or “column-oriented”

 Column families = rows that have many columns
associated with a row key

 Column families are groups of related data that is often
accessed together
 e.g., for a customer we access all profile information at the same

time, but not orders

Column-Family Stores
Representatives

Google’s

BigTable

Example: Cassandra

 Column = basic unit, consists of a name-value pair
 Name serves as a key

 Stored with a timestamp (expired data, resolving conflicts, …)

 Row = a collection of columns attached or linked to a key
 Columns can be added to any row at any time without having to

add it to other rows

 Column family = a collection of similar rows
 Rows do not have to have the same columns

Example: Cassandra

 Column key of firstName and the value of Martin

{ name: "firstName",

value: "Martin",

timestamp: 12345667890 }

{ "pramod-sadalage" : {

firstName: "Pramod",

lastName: "Sadalage",

lastVisit: "2012/12/12" }

"martin-fowler" : {

firstName: "Martin",

lastName: "Fowler",

location: "Boston" } }

 pramod-sadalage row and the martin-fowler row with different
columns; both rows are a part of a column family

Column-Family Stores
Suitable Use Cases

Event Logging

 Ability to store any data structures → good choice to store event information

Content Management Systems, Blogging Platforms

 We can store blog entries with tags, categories, links, and trackbacks in
different columns

 Comments can be either stored in the same row or moved to a different
keyspace

 Blog users and the actual blogs can be put into different column families

Column-Family Stores
When Not to Use

Systems that Require ACID Transactions

 Column-family stores are not just a special kind of RDBMSs with
variable set of columns!

Aggregation of the Data Using Queries

 (Such as SUM or AVG)

 Have to be done on the client side

For Early Prototypes

 We are not sure how the query patterns may change

 As the query patterns change, we have to change the column family
design

Document Databases
Basic Characteristics

 Documents are the main concept
 Stored and retrieved

 XML, JSON, …

 Documents are
 Self-describing

 Hierarchical tree data structures

 Can consist of maps, collections (lists, sets, …), scalar values,
nested documents, …

 Documents in a collection are expected to be similar
 Their schema can differ

 Document databases store documents in the value part
of the key-value store
 Key-value stores where the value is examinable

Document Databases
Data – Example

{ "firstname": "Martin",

"likes": ["Biking",

"Photography"],

"lastcity": "Boston",

"lastVisited": }

{ "firstname": "Pramod",

"citiesvisited": ["Chicago", "London", "Pune", "Bangalore"],

"addresses": [

{ "state": "AK",

"city": "DILLINGHAM",

"type": "R" },

{ "state": "MH",

"city": "PUNE",

"type": "R" }],

"lastcity": "Chicago“ }

Document Databases
Data – Example

 Data are similar, but have differences, e.g., in

attribute names

 Still belong to the same collection

 We can represent

 A list of cities visited as an array

 A list of addresses as a list of documents embedded

inside the main document

Document Databases
Representatives

Lotus Notes

Storage Facility

http://en.wikipedia.org/wiki/File:Lotus_Notes_8_icon.png
http://en.wikipedia.org/wiki/File:Lotus_Notes_8_icon.png

Document Databases
Sample Query – MongoDB

 Query language which is expressed via JSON

 Where clause, sorting, count, sum, showing the
execution plan, …

SELECT * FROM order

db.order.find()

SELECT * FROM order WHERE customerId = "883c2c5b4e5b"

db.order.find({"customerId":"883c2c5b4e5b"})

SELECT orderId,orderDate FROM order

WHERE customerId = "883c2c5b4e5b"

db.order.find({customerId:"883c2c5b4e5b"},

{orderId:1,orderDate:1})

Document Databases
Suitable Use Cases

Event Logging

 Many different applications want to log events
 Type of data being captured keeps changing

 Events can be sharded (i.e. divided) by the name of the application or type
of event

Content Management Systems, Blogging Platforms

 Managing user comments, user registrations, profiles, web-facing
documents, …

Web Analytics or Real-Time Analytics

 Parts of the document can be updated

 New metrics can be easily added without schema changes
 E.g. adding a member of a list, set,…

E-Commerce Applications

 Flexible schema for products and orders

 Evolving data models without expensive data migration

Document Databases
When Not to Use

Complex Transactions Spanning Different Operations

 Atomic cross-document operations
 Some document databases do support (e.g., RavenDB)

Queries against Varying Aggregate Structure

 Design of aggregate is constantly changing → we need
to save the aggregates at the lowest level of granularity
 i.e. to normalize the data

Graph Databases
Basic Characteristics

 To store entities and relationships between these entities
 Node is an instance of an object

 Nodes have properties

 e.g., name

 Edges have directional significance

 Edges have types

 e.g., likes, friend, …

 Nodes are organized by relationships
 Allow to find interesting patterns

 e.g., “Get all people (= nodes in the graph) employed by Big Co
that like (book called) NoSQL Distilled”

Example:

Graph Databases
RDBMS vs. Graph Databases

 When we store a graph-like structure in RDBMS, it is for
a single type of relationship
 “Who is my manager”

 Adding another relationship usually means a lot of
schema changes

 In RDBMS we model the graph beforehand based on the
Traversal we want
 If the Traversal changes, the data will have to change

 In graph databases the relationship is not calculated at query
time but persisted

Graph Databases
Representatives

FlockDB

http://en.wikipedia.org/wiki/File:Neo4j.jpg
http://en.wikipedia.org/wiki/File:Neo4j.jpg

Graph Databases
Basic Characteristics

 Nodes can have different types of relationships between
them
 To represent relationships between the domain entities

 To have secondary relationships

 Category, path, time-trees, quad-trees for spatial indexing, linked
lists for sorted access, …

 There is no limit to the number and kind of relationships
a node can have
 Except for upper limits of a particular system, if any

 Relationships have type, start node, end node, own
properties
 e.g., since when did they become friends

Example:

Example: Neo4J

 We have to create a relationship between the nodes in
both directions
 Nodes know about INCOMING and OUTGOING relationships

Node martin = graphDb.createNode();

martin.setProperty("name", "Martin");

Node pramod = graphDb.createNode();

pramod.setProperty("name", "Pramod");

martin.createRelationshipTo(pramod, FRIEND);

pramod.createRelationshipTo(martin, FRIEND);

Graph Databases
Query

 Properties of a node/edge can be indexed

 Indices are queried to find the starting node to begin a
traversal

Transaction transaction = graphDb.beginTx();

try {

Index<Node> nodeIndex = graphDb.index().forNodes("nodes");

nodeIndex.add(martin, "name", martin.getProperty("name"));

nodeIndex.add(pramod, "name", pramod.getProperty("name"));

transaction.success(); }

finally {

transaction.finish(); }

Node martin = nodeIndex.get("name", "Martin").getSingle();

allRelationships = martin.getRelationships();

adding

nodes

creating index

retrieving a node

getting all its relationships

Graph Databases
Query – finding paths

 We are interested in determining if there are
multiple paths, finding all of the paths, the
shortest path, …

Node barbara = nodeIndex.get("name", "Barbara").getSingle();

Node jill = nodeIndex.get("name", "Jill").getSingle();

PathFinder<Path> finder1 = GraphAlgoFactory.allPaths(

Traversal.expanderForTypes(FRIEND,Direction.OUTGOING),

MAX_DEPTH);

Iterable<Path> paths = finder1.findAllPaths(barbara, jill);

PathFinder<Path> finder2 = GraphAlgoFactory.shortestPath(

Traversal.expanderForTypes(FRIEND,Direction.OUTGOING),

MAX_DEPTH);

Iterable<Path> paths = finder2.findAllPaths(barbara, jill);

Graph Databases
Suitable Use Cases

Connected Data

 Social networks

 Any link-rich domain is well suited for graph databases

Routing, Dispatch, and Location-Based Services

 Node = location or address that has a delivery

 Graph = nodes where a delivery has to be made

 Relationships = distance

Recommendation Engines

 “your friends also bought this product”

 “when invoicing this item, these other items are usually invoiced”

Graph Databases
When Not to Use

 When we want to update all or a subset of entities
 Changing a property on all the nodes is not a straightforward

operation

 e.g., analytics solution where all entities may need to be updated
with a changed property

 Some graph databases may be unable to handle lots of
data
 Distribution of a graph is difficult

NoSQL Data Model
Aggregates and NoSQL databases

Key-value database

 Aggregate = some big blob of mostly meaningless bits
 But we can store anything

 We can only access an aggregate by lookup based on
its key

Document database

 Enables to see the structure in an aggregate
 But we are limited by the structure when storing (similarity)

 We can submit queries to the database based on the
fields in the aggregate

NoSQL Data Model
Aggregates and NoSQL databases

Column-family stores

 A two-level aggregate structure
 The first key is a row identifier, picking up the aggregate of

interest

 The second-level values are referred to as columns

 Ways to think about how the data is structured:
 Row-oriented: each row is an aggregate with column families

representing useful chunks of data (profile, order history)

 Column-oriented: each column family defines a record type (e.g.,
customer profiles) with rows for each of the records; a row is the
join of records in all column families

Multi-model stores

 Combine various data models, including aggreagate-
oriented

 Support references and queries across the models

References

 http://nosql-database.org/

 Pramod J. Sadalage – Martin Fowler: NoSQL Distilled:
A Brief Guide to the Emerging World of Polyglot
Persistence

 Eric Redmond – Jim R. Wilson: Seven Databases in
Seven Weeks: A Guide to Modern Databases and the
NoSQL Movement

 Sherif Sakr – Eric Pardede: Graph Data Management:
Techniques and Applications

 Shashank Tiwari: Professional NoSQL

http://nosql-database.org/

