
Modern Database

Systems

Techniques and technologies for processing Big

Data. Introduction to NoSQL databases.

Doc. RNDr. Irena Holubova, Ph.D.
Irena.Holubova@matfyz.cuni.cz

mailto:Irena.Holubova@matfyz.cuni.cz

Big Data Tasks

 What do we need to do with Big Data?
 aggregate

 manipulate

 analyze

 visualize

 A number of techniques and technologies
 Combination of statistics, computer science, applied

mathematics, economics, …

 Some adapted from techniques for smaller volumes of data

 Some developed primarily for Big Data

 New approaches appear rapidly

Big Data Analysis Techniques
Examples

 Association rule learning – discovering interesting relationships, i.e.,
“association rules,” among variables in large databases
 e.g., market basket analysis

 Classification – to identify the categories in which new data points
belong, based on a training set containing data points that have
already been categorized
 Supervised learning

 e.g., buying decisions

 Cluster analysis – classifying objects that split a diverse group into
smaller groups of similar objects
 Unsupervised learning

 Data fusion and data integration

 Signal processing

https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/big-data-the-next-frontier-for-innovation

https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/big-data-the-next-frontier-for-innovation

Big Data Analysis Techniques
Examples

 Crowdsourcing - collecting data submitted by a large group of
people or community

 Data mining - extract patterns from large datasets
 Involves association rule learning, cluster analysis, classification,

regression, …

 Time series analysis and forecasting
 e.g., hourly value of a stock market index

 Sentiment analysis - identifying the feature/aspect/product about
which a sentiment is being expressed,
 Determining the type (i.e., positive, negative, or neutral)

 Determining the degree and strength of the sentiment

 Visualization

 …

Big Data Related Technologies

 Distributed file systems
 e.g., HDFS

 Distributed databases
 Primarily NoSQL databases

 And many other types

 Cloud computing

 Data analytics
 Batch

 Real-time

 Stream

 …

Cloud Computing

 Way of creating SW

 Idea: Providing shared IT technologies (HW/SW) and/or
data to computers and other devices on demand
 Software as a Service (SaaS)

 For end-users

 Platform as a Service (PaaS)

 For developers (tools for SW implementation/deployment)

 Infrastructure as a Service (IaaS)

 For providing robust expensive and inaccessible HW

 Users pay for the usage (rent)
 Time of usage, size of the data, …

Cloud Computing

 Services

 Private – for internal

usage of a company

 Public – for anyone

 Community – for a

selected community

 Set of customers

 … and their

combinations

Cloud Computing

 Advantages

 Users do not have to manage the technologies

 Buy, install, upgrade, maintain, …

 Thanks to the Internet can be used anywhere

 Service provider can provide distinct solutions for

distinct requirements

 Within the respective capabilities

 Data stored at server(s) of the cloud can be easily

shared

Cloud Computing

 Disadvantages and challenges
 We store our private data on a public cloud

 Theoretically vulnerable (but the protection techniques are
still being improved)

 Vendor lock-in
 Proprietary technologies and solutions

 High prices
 For small companies, universities, …

 Note: Well-known applications have similar
features
 Google Calendar, Dropbox, Gmail

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi0nOy-2_zTAhWLY1AKHZiGDdkQjRwIBw&url=https%3A%2F%2Fwww.cronofy.com%2Fgoogle-calendar-api%2F&psig=AFQjCNFaWHNybBmR9TqfzNrb3aWudp5XjQ&ust=1495309331343555
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi0nOy-2_zTAhWLY1AKHZiGDdkQjRwIBw&url=https%3A%2F%2Fwww.cronofy.com%2Fgoogle-calendar-api%2F&psig=AFQjCNFaWHNybBmR9TqfzNrb3aWudp5XjQ&ust=1495309331343555
http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=0ahUKEwiv4aHL2_zTAhUIIlAKHZKvCFAQjRwIBw&url=http%3A%2F%2Fwww.minterest.org%2Fwhy-dropbox%2F&psig=AFQjCNEuOL898U5147sAY1BoAukcLr4V6w&ust=1495309355184174
http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=0ahUKEwiv4aHL2_zTAhUIIlAKHZKvCFAQjRwIBw&url=http%3A%2F%2Fwww.minterest.org%2Fwhy-dropbox%2F&psig=AFQjCNEuOL898U5147sAY1BoAukcLr4V6w&ust=1495309355184174
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjs3sXi2_zTAhXSI1AKHcyDCZ4QjRwIBw&url=https%3A%2F%2Fwww.digitalunite.com%2Fguides%2Femail%2Fhow-create-gmail-account&psig=AFQjCNF-QiNoigDPt5Nb1k4zb1FoGvyG3g&ust=1495309397596828
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjs3sXi2_zTAhXSI1AKHcyDCZ4QjRwIBw&url=https%3A%2F%2Fwww.digitalunite.com%2Fguides%2Femail%2Fhow-create-gmail-account&psig=AFQjCNF-QiNoigDPt5Nb1k4zb1FoGvyG3g&ust=1495309397596828

Cloud Computing Platforms

For more details see courses: Virtualization and Cloud Computing (NSWI150)

Cloud Application Development (NSWI152)

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwid3suw2_zTAhVCa1AKHQI6ChQQjRwIBw&url=https%3A%2F%2Fwww.fotoware.com%2Fproducts%2Fdigital-asset-management-on-microsoft-azure-marketplace&psig=AFQjCNFe13kdGpsulEiDY4jjvRsw0cTGWQ&ust=1495309268144706
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwid3suw2_zTAhVCa1AKHQI6ChQQjRwIBw&url=https%3A%2F%2Fwww.fotoware.com%2Fproducts%2Fdigital-asset-management-on-microsoft-azure-marketplace&psig=AFQjCNFe13kdGpsulEiDY4jjvRsw0cTGWQ&ust=1495309268144706
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi67vmB3PzTAhUKElAKHRW2BscQjRwIBw&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAmazon_Web_Services&psig=AFQjCNHJTYwRpzPPGChZ9HWnoGPjEvWGfg&ust=1495309472152718
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi67vmB3PzTAhUKElAKHRW2BscQjRwIBw&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAmazon_Web_Services&psig=AFQjCNHJTYwRpzPPGChZ9HWnoGPjEvWGfg&ust=1495309472152718
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwichZeQ3PzTAhVHJVAKHXg1DHEQjRwIBw&url=https%3A%2F%2Fwww.g2crowd.com%2Fproducts%2Fgoogle-app-engine%2Freviews&psig=AFQjCNHUWCroFG8GqmSQStI-J51qAQ3yeQ&ust=1495309500091623
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwichZeQ3PzTAhVHJVAKHXg1DHEQjRwIBw&url=https%3A%2F%2Fwww.g2crowd.com%2Fproducts%2Fgoogle-app-engine%2Freviews&psig=AFQjCNHUWCroFG8GqmSQStI-J51qAQ3yeQ&ust=1495309500091623
http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjuhoyh3PzTAhXHJVAKHVBBBJIQjRwIBw&url=http%3A%2F%2Fwww.techboard.io%2Fopenshift-dev-to-prod-in-clouds%2F&psig=AFQjCNHqgnNMUk1M8S-Z170Vs-1DI6ZhAQ&ust=1495309528001701
http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjuhoyh3PzTAhXHJVAKHVBBBJIQjRwIBw&url=http%3A%2F%2Fwww.techboard.io%2Fopenshift-dev-to-prod-in-clouds%2F&psig=AFQjCNHqgnNMUk1M8S-Z170Vs-1DI6ZhAQ&ust=1495309528001701

Cloud Computing and Big Data

 We need a cluster of nodes
 Expensive, demanding installation and maintenance, …

 Use cloud computing
 Scalable solutions without the maintenance part

 For Big Data often cheaper than the HW
 When the infrastructure is not used, it can be provided to other

users
 E.g. data analysis is done in particular time intervals

 Easier solutions or even directly particular applications

 Available “immediately”

 We can focus on the specific functionality
 E.g. efficient analytical processing of the data

 But: the other disadvantages (safety, vendor lock-in)
remain

Types of NoSQL Databases

Core:

 Key-value databases

 Document databases

 Column-family (column-oriented/columnar) stores

 Graph databases

Non-core:

 Object databases

 XML databases

 …

Further novel extensions:

 Multi-model databases

 Array databases

 NewSQL databases

 …
http://nosql-database.org/

http://nosql-database.org/

Key-value store
Basic characteristics

 The simplest NoSQL data stores

 A simple hash table (map), primarily used when all
access to the database is via primary key

 A table in RDBMS with two columns, such as ID and
NAME
 ID column being the key

 NAME column storing the value
 A BLOB that the data store just stores

 Basic operations:
 Get the value for the key

 Put a value for a key

 Delete a key from the data store

 Simple great performance, easily scaled

 Simple not for complex queries, aggregation needs

Key-value store
Representatives

Project

Voldemort

MemcachedDB

not

open-source

open-source

version

Key-value store
Suitable Use Cases

Storing Session Information

 Every web session is assigned a unique session_id value

 Everything about the session can be stored by a single PUT request
or retrieved using a single GET

 Fast, everything is stored in a single object

User Profiles, Preferences

 Every user has a unique user_id, user_name + preferences such as
language, colour, time zone, which products the user has access to,
…

 As in the previous case:
 Fast, single object, single GET/PUT

Shopping Cart Data

 Similar to the previous cases

Key-value store
When Not to Use

Relationships among Data

 Relationships between different sets of data

 Some key-value stores provide link-walking features
 Not usual

Multioperation Transactions

 Saving multiple keys
 Failure to save any one of them → revert or roll back the rest of the

operations

Query by Data

 Search the keys based on something found in the value part

Operations by Sets

 Operations are limited to one key at a time

 No way to operate upon multiple keys at the same time

Column-Family Stores
Basic Characteristics

 Also “columnar” or “column-oriented”

 Column families = rows that have many columns
associated with a row key

 Column families are groups of related data that is often
accessed together
 e.g., for a customer we access all profile information at the same

time, but not orders

Column-Family Stores
Representatives

Google’s

BigTable

Example: Cassandra

 Column = basic unit, consists of a name-value pair
 Name serves as a key

 Stored with a timestamp (expired data, resolving conflicts, …)

 Row = a collection of columns attached or linked to a key
 Columns can be added to any row at any time without having to

add it to other rows

 Column family = a collection of similar rows
 Rows do not have to have the same columns

Example: Cassandra

 Column key of firstName and the value of Martin

{ name: "firstName",

value: "Martin",

timestamp: 12345667890 }

{ "pramod-sadalage" : {

firstName: "Pramod",

lastName: "Sadalage",

lastVisit: "2012/12/12" }

"martin-fowler" : {

firstName: "Martin",

lastName: "Fowler",

location: "Boston" } }

 pramod-sadalage row and the martin-fowler row with different
columns; both rows are a part of a column family

Column-Family Stores
Suitable Use Cases

Event Logging

 Ability to store any data structures → good choice to store event information

Content Management Systems, Blogging Platforms

 We can store blog entries with tags, categories, links, and trackbacks in
different columns

 Comments can be either stored in the same row or moved to a different
keyspace

 Blog users and the actual blogs can be put into different column families

Column-Family Stores
When Not to Use

Systems that Require ACID Transactions

 Column-family stores are not just a special kind of RDBMSs with
variable set of columns!

Aggregation of the Data Using Queries

 (Such as SUM or AVG)

 Have to be done on the client side

For Early Prototypes

 We are not sure how the query patterns may change

 As the query patterns change, we have to change the column family
design

Document Databases
Basic Characteristics

 Documents are the main concept
 Stored and retrieved

 XML, JSON, …

 Documents are
 Self-describing

 Hierarchical tree data structures

 Can consist of maps, collections (lists, sets, …), scalar values,
nested documents, …

 Documents in a collection are expected to be similar
 Their schema can differ

 Document databases store documents in the value part
of the key-value store
 Key-value stores where the value is examinable

Document Databases
Data – Example

{ "firstname": "Martin",

"likes": ["Biking",

"Photography"],

"lastcity": "Boston",

"lastVisited": }

{ "firstname": "Pramod",

"citiesvisited": ["Chicago", "London", "Pune", "Bangalore"],

"addresses": [

{ "state": "AK",

"city": "DILLINGHAM",

"type": "R" },

{ "state": "MH",

"city": "PUNE",

"type": "R" }],

"lastcity": "Chicago“ }

Document Databases
Data – Example

 Data are similar, but have differences, e.g., in

attribute names

 Still belong to the same collection

 We can represent

 A list of cities visited as an array

 A list of addresses as a list of documents embedded

inside the main document

Document Databases
Representatives

Lotus Notes

Storage Facility

http://en.wikipedia.org/wiki/File:Lotus_Notes_8_icon.png
http://en.wikipedia.org/wiki/File:Lotus_Notes_8_icon.png

Document Databases
Sample Query – MongoDB

 Query language which is expressed via JSON

 Where clause, sorting, count, sum, showing the
execution plan, …

SELECT * FROM order

db.order.find()

SELECT * FROM order WHERE customerId = "883c2c5b4e5b"

db.order.find({"customerId":"883c2c5b4e5b"})

SELECT orderId,orderDate FROM order

WHERE customerId = "883c2c5b4e5b"

db.order.find({customerId:"883c2c5b4e5b"},

{orderId:1,orderDate:1})

Document Databases
Suitable Use Cases

Event Logging

 Many different applications want to log events
 Type of data being captured keeps changing

 Events can be sharded (i.e. divided) by the name of the application or type
of event

Content Management Systems, Blogging Platforms

 Managing user comments, user registrations, profiles, web-facing
documents, …

Web Analytics or Real-Time Analytics

 Parts of the document can be updated

 New metrics can be easily added without schema changes
 E.g. adding a member of a list, set,…

E-Commerce Applications

 Flexible schema for products and orders

 Evolving data models without expensive data migration

Document Databases
When Not to Use

Complex Transactions Spanning Different Operations

 Atomic cross-document operations
 Some document databases do support (e.g., RavenDB)

Queries against Varying Aggregate Structure

 Design of aggregate is constantly changing → we need
to save the aggregates at the lowest level of granularity
 i.e. to normalize the data

Graph Databases
Basic Characteristics

 To store entities and relationships between these entities
 Node is an instance of an object

 Nodes have properties

 e.g., name

 Edges have directional significance

 Edges have types

 e.g., likes, friend, …

 Nodes are organized by relationships
 Allow to find interesting patterns

 e.g., “Get all people (= nodes in the graph) employed by Big Co
that like (book called) NoSQL Distilled”

Example:

Graph Databases
RDBMS vs. Graph Databases

 When we store a graph-like structure in RDBMS, it is for
a single type of relationship
 “Who is my manager”

 Adding another relationship usually means a lot of
schema changes

 In RDBMS we model the graph beforehand based on the
Traversal we want
 If the Traversal changes, the data will have to change

 In graph databases the relationship is not calculated at query
time but persisted

Graph Databases
Representatives

FlockDB

http://en.wikipedia.org/wiki/File:Neo4j.jpg
http://en.wikipedia.org/wiki/File:Neo4j.jpg

Graph Databases
Basic Characteristics

 Nodes can have different types of relationships between
them
 To represent relationships between the domain entities

 To have secondary relationships

 Category, path, time-trees, quad-trees for spatial indexing, linked
lists for sorted access, …

 There is no limit to the number and kind of relationships
a node can have
 Except for upper limits of a particular system, if any

 Relationships have type, start node, end node, own
properties
 e.g., since when did they become friends

Example:

Example: Neo4J

 We have to create a relationship between the nodes in
both directions
 Nodes know about INCOMING and OUTGOING relationships

Node martin = graphDb.createNode();

martin.setProperty("name", "Martin");

Node pramod = graphDb.createNode();

pramod.setProperty("name", "Pramod");

martin.createRelationshipTo(pramod, FRIEND);

pramod.createRelationshipTo(martin, FRIEND);

Graph Databases
Query

 Properties of a node/edge can be indexed

 Indices are queried to find the starting node to begin a
traversal

Transaction transaction = graphDb.beginTx();

try {

Index<Node> nodeIndex = graphDb.index().forNodes("nodes");

nodeIndex.add(martin, "name", martin.getProperty("name"));

nodeIndex.add(pramod, "name", pramod.getProperty("name"));

transaction.success(); }

finally {

transaction.finish(); }

Node martin = nodeIndex.get("name", "Martin").getSingle();

allRelationships = martin.getRelationships();

adding

nodes

creating index

retrieving a node

getting all its relationships

Graph Databases
Query – finding paths

 We are interested in determining if there are
multiple paths, finding all of the paths, the
shortest path, …

Node barbara = nodeIndex.get("name", "Barbara").getSingle();

Node jill = nodeIndex.get("name", "Jill").getSingle();

PathFinder<Path> finder1 = GraphAlgoFactory.allPaths(

Traversal.expanderForTypes(FRIEND,Direction.OUTGOING),

MAX_DEPTH);

Iterable<Path> paths = finder1.findAllPaths(barbara, jill);

PathFinder<Path> finder2 = GraphAlgoFactory.shortestPath(

Traversal.expanderForTypes(FRIEND,Direction.OUTGOING),

MAX_DEPTH);

Iterable<Path> paths = finder2.findAllPaths(barbara, jill);

Graph Databases
Suitable Use Cases

Connected Data

 Social networks

 Any link-rich domain is well suited for graph databases

Routing, Dispatch, and Location-Based Services

 Node = location or address that has a delivery

 Graph = nodes where a delivery has to be made

 Relationships = distance

Recommendation Engines

 “your friends also bought this product”

 “when invoicing this item, these other items are usually invoiced”

Graph Databases
When Not to Use

 When we want to update all or a subset of entities
 Changing a property on all the nodes is not a straightforward

operation

 e.g., analytics solution where all entities may need to be updated
with a changed property

 Some graph databases may be unable to handle lots of
data
 Distribution of a graph is difficult

NoSQL Data Model
Aggregates and NoSQL databases

Key-value database

 Aggregate = some big blob of mostly meaningless bits
 But we can store anything

 We can only access an aggregate by lookup based on
its key

Document database

 Enables to see the structure in an aggregate
 But we are limited by the structure when storing (similarity)

 We can submit queries to the database based on the
fields in the aggregate

NoSQL Data Model
Aggregates and NoSQL databases

Column-family stores

 A two-level aggregate structure
 The first key is a row identifier, picking up the aggregate of

interest

 The second-level values are referred to as columns

 Ways to think about how the data is structured:
 Row-oriented: each row is an aggregate with column families

representing useful chunks of data (profile, order history)

 Column-oriented: each column family defines a record type (e.g.,
customer profiles) with rows for each of the records; a row is the
join of records in all column families

Multi-model stores

 Combine various data models, including aggreagate-
oriented

 Support references and queries across the models

References

 http://nosql-database.org/

 Pramod J. Sadalage – Martin Fowler: NoSQL Distilled:
A Brief Guide to the Emerging World of Polyglot
Persistence

 Eric Redmond – Jim R. Wilson: Seven Databases in
Seven Weeks: A Guide to Modern Databases and the
NoSQL Movement

 Sherif Sakr – Eric Pardede: Graph Data Management:
Techniques and Applications

 Shashank Tiwari: Professional NoSQL

http://nosql-database.org/

