
Modern Database

Systems

Basic Principles

Doc. RNDr. Irena Holubova, Ph.D.
Irena.Holubova@matfyz.cuni.cz

mailto:Irena.Holubova@matfyz.cuni.cz

NoSQL Overview

 Main objective: to implement a distributed state
 Different objects stored on different servers

 The same object replicated on different servers

 Main idea: give up some of the ACID features
 To improve performance

 Simple interface:
 Write (=Put): needs to write all replicas

 Read (=Get): may get only one

 Strong consistency → eventual consistency

Basic Principles

 Scalability

How to handle growing amounts of data

without losing performance

 CAP theorem

 Distribution models

Sharding, replication, consistency, …

How to handle data in a distributed manner

Scalability
Vertical Scaling (scaling up)

 Traditional choice has been in favour of strong
consistency
 System architects have in the past gone in favour of scaling up

(vertical scaling)

 Involves larger and more powerful machines

 Works in many cases but…

 Vendor lock-in
 Not everyone makes large and powerful machines

 Who do, often use proprietary formats

 Makes a customer dependent on a vendor for products and
services

 Unable to use another vendor

Scalability
Vertical Scaling (scaling up)

 Higher costs
 Powerful machines usually cost a lot more than commodity

hardware

 Data growth perimeter
 Powerful and large machines work well until the data grows to fill

it completely

 Even the largest of machines has a limit

 Proactive provisioning
 Applications often have no idea of the final large scale when they

start out

 Scaling vertically = you need to budget for large scale upfront

Scalability
Horizontal Scaling (scaling out)

 Systems are distributed across multiple machines/nodes (horizontal
scaling)
 Commodity machines (cost effective)

 Often surpasses scalability of vertical approach

 But…

 Fallacies of distributed computing:
 The network is reliable

 Latency is zero

 Bandwidth is infinite

 The network is secure

 Topology does not change

 There is one administrator

 Transport cost is zero

 The network is homogeneous

https://blogs.oracle.com/jag/resource/Fallacies.html

https://blogs.oracle.com/jag/resource/Fallacies.html

ACID

 Typical features of transactions we expect, e.g.,
in traditional relational DBMSs

 Database transaction = a unit of work (a
sequence of related operations) in a DBMS
 Typical example: transferring $100 from account A to

account B

 In fact two operations that are expected to be
performed together:
 Debit $100 to account A

 Credit $100 to account B

ACID

 Atomicity – “all or nothing” = if one part of the
transaction fails, then the entire transaction fails

 Consistency – brings the database from one consistent
(valid, correct) state to another
 ICs, triggers, …

 Isolation – effects of an incomplete transaction might
not be visible to another transaction

 Durability – once a transaction has been committed, it
will remain so
 Power loss, errors, …

 Distributed systems:
 Too expensive rules

 Giving up some ACID feature = improvement of performance

CAP Theorem

Consistency

 After an update, all readers in a distributed system see
the same data

 All nodes are supposed to contain the same data at all
times

 Example:
 A single database instance is always consistent

 If multiple instances exist, all writes must be duplicated before
write operation is completed

CAP Theorem

Availability

 All requests (reads, writes) are always answered,
regardless crashes

 Example:
 A single instance has an availability of 100% or 0%

 Two servers may be available 100%, 50%, or 0%

Partition Tolerance

 System continues to operate, even if two subsets of
servers get isolated

 Example:
 Failed connection will not cause troubles if the system is tolerant

CAP Theorem
ACID vs. BASE

 Theorem: Only 2 of the 3
guarantees can be given in a
“shared-data” system.
 Proven in 2000, the idea is older

 (Positive) consequence: we can
concentrate on two challenges

 ACID properties guarantee
Consistency and Availability
 pessimistic

 e.g., database on a single
machine

 BASE properties guarantee
Availability and Partition
tolerance
 optimistic

 e.g., distributed databases
(key/value stores)

CAP Theorem
Criticism

 Not really a “theorem”, since definitions are
imprecise
 The real proven theorem has more limiting

assumptions

 CP makes no “sense”, because it suggest never
available

 No A vs. no C is asymmetric
 No C = all the time

 No A = only when the network is partitioned

CAP Theorem
Consistency

 A single-server system is a CA system

 Clusters naturally have to be tolerant of network

partitions

 CAP theorem: you can only get two out of three

 Reality: you can trade off a little Consistency to get

some Availability

 It is not a binary decision

BASE

 In contrast to ACID

 Leads to levels of scalability that cannot be obtained with ACID
 At the cost of (strong) consistency

Basically Available

 The system works basically all the time

 Partial failures can occur, but without total system failure

Soft State

 The system is in flux and non-deterministic

 Changes occur all the time

Eventual Consistency

 The system will be in some consistent state at some time in future

Strong Consistency

John

George

Paul

read(a) = 1

read(a) = 1

read(a) = 1

write(a) = 2 read(a) = 2

read(a) = 2

read(a) = 2

time

Eventual Consistency

John

Peter

Paul

read(a) = 1

read(a) = 1

read(a) = 1

write(a) = 2 read(a) = 1

read(a) = 1

read(a) = 2

inconsistent window

read(a) = 2

read(a) = 2

time

Distribution Models

 Scaling out = running the database on a cluster

of servers

 Two orthogonal techniques to data distribution:

 Replication – takes the same data and copies it over

multiple nodes

 Master-slave or peer-to-peer

 Sharding – puts different data on different nodes

 We can use either or combine them

Distribution Models
Single Server

 No distribution at all

 The database runs on a single machine

 It can make sense to use NoSQL with a single-

server distribution model

 Graph databases

 The graph is “almost” complete → it is difficult to distribute it

Distribution Models
Sharding

 Horizontal
scalability →
putting different
parts of the data
onto different
servers

 Different people
are accessing
different parts of
the dataset

Distribution Models
Sharding – how to?

 The ideal case is rare

 To get close to it we have to ensure that data that is
accessed together is stored together

 How to arrange the nodes:
a. One user mostly gets data from a single server

b. Based on a physical location

c. Distribute across the nodes with equal amounts of the load

 Many NoSQL databases offer auto-sharding

 A node failure makes shard’s data unavailable
 Sharding is often combined with replication

Distribution Models
Master-slave Replication

 We replicate data
across multiple
nodes

 One node is
designed as
primary (master),
others as
secondary
(slaves)

 Master is
responsible for
processing any
updates to that
data

Distribution Models
Master-slave Replication

 For scaling a read-intensive dataset
 More read requests → more slave nodes

 The master fails → the slaves can still handle read
requests
 A slave can be appointed a new master quickly (it is a

replica)

 Limited by the ability of the master to process
updates

 Masters are appointed manually or automatically
 User-defined vs. cluster-elected

Distribution Models
Peer-to-peer Replication

 Problems of master-
slave replication:
 Does not help with

scalability of writes
 The master is still a

bottleneck

 Provides resilience
against failure of a
slave, but not of a
master

 Peer-to-peer
replication: no
master
 All the replicas have

equal weight

Distribution Models
Peer-to-peer Replication

 Problem: consistency

 We can write at two different places: a write-write

conflict

 Solutions:

 Whenever we write data, the replicas coordinate to

ensure that we avoid a conflict

 At the cost of network traffic

 But we do not need all the replicas to agree on the

write, just a majority

Distribution Models
Combining Sharding and Replication

 Master-slave replication and sharding:
 We have multiple masters, but each data item only

has a single master

 A node can be a master for some data and a slave for
others

 Peer-to-peer replication and sharding:
 A common strategy, e.g., for column-family databases

 A good starting point for peer-to-peer replication is to
have a replication factor of 3, so each shard is
present on three nodes

Consistency
Write (update) Consistency

 Problem: two users want to update the same record
(write-write conflict)
 Issue: lost update

 A second transaction writes a second value on top of a first value
written by a first concurrent transaction

 The first value is lost to other transactions running concurrently
which need, by their precedence, to read the first value

 The transactions that have read the wrong value end with incorrect
results

 Pessimistic (preventing conflicts from occurring) vs.
optimistic solutions (lets conflicts occur, but detects them
and takes actions to sort them out)
 Write locks, conditional update, save both updates and record

that they are in conflict, …

Consistency
Read Consistency

 Problem: one user reads, other writes (read-write conflict)
 Issue: inconsistent read

 When a transaction reads object x twice and x has different values

 Between the two reads another transaction has modified the value of x

 Relational databases support ACID transactions

 NoSQL databases usually support atomic updates within a single
aggregate
 But not all data can be put in the same aggregate

 Update that affects multiple aggregates leaves open a time when
clients could perform an inconsistent read
 Inconsistency window

 Another issue: replication consistency
 A special type of inconsistency in case of replication

 Ensuring that the same data item has the same value when read from
different replicas

Consistency
Quorums

 How many nodes need to be involved to get strong
consistency?

 Write quorum: W > N/2
 N = the number of nodes involved in replication (replication

factor)

 W = the number of nodes participating in the write

 The number of nodes confirming successful write

 “If you have conflicting writes, only one can get a majority.”

 How many nodes do we need to contact to be sure we
have the most up-to-date change?

 Read quorum: R + W > N
 R = the number of nodes we need to contact for a read

 „Concurrent read and write cannot happen.“

References

 http://nosql-database.org/

 Pramod J. Sadalage – Martin Fowler: NoSQL Distilled:
A Brief Guide to the Emerging World of Polyglot
Persistence

 Eric Redmond – Jim R. Wilson: Seven Databases in
Seven Weeks: A Guide to Modern Databases and the
NoSQL Movement

 Sherif Sakr – Eric Pardede: Graph Data Management:
Techniques and Applications

 Shashank Tiwari: Professional NoSQL

http://nosql-database.org/

