
Modern Database 

Systems

Basic Principles

Doc. RNDr. Irena Holubova, Ph.D.
Irena.Holubova@matfyz.cuni.cz

mailto:Irena.Holubova@matfyz.cuni.cz


NoSQL Overview

 Main objective: to implement a distributed state
 Different objects stored on different servers

 The same object replicated on different servers

 Main idea: give up some of the ACID features
 To improve performance

 Simple interface:
 Write (=Put): needs to write all replicas

 Read (=Get): may get only one

 Strong consistency → eventual consistency



Basic Principles

 Scalability

How to handle growing amounts of data 

without losing performance

 CAP theorem

 Distribution models

Sharding, replication, consistency, …

How to handle data in a distributed manner



Scalability
Vertical Scaling (scaling up)

 Traditional choice has been in favour of strong
consistency
 System architects have in the past gone in favour of scaling up 

(vertical scaling)

 Involves larger and more powerful machines

 Works in many cases but…

 Vendor lock-in
 Not everyone makes large and powerful machines

 Who do, often use proprietary formats

 Makes a customer dependent on a vendor for products and 
services

 Unable to use another vendor 



Scalability 
Vertical Scaling (scaling up)

 Higher costs
 Powerful machines usually cost a lot more than commodity 

hardware

 Data growth perimeter
 Powerful and large machines work well until the data grows to fill 

it completely

 Even the largest of machines has a limit

 Proactive provisioning
 Applications often have no idea of the final large scale when they 

start out

 Scaling vertically = you need to budget for large scale upfront



Scalability 
Horizontal Scaling (scaling out)

 Systems are distributed across multiple machines/nodes (horizontal 
scaling)
 Commodity machines (cost effective)

 Often surpasses scalability of vertical approach

 But…

 Fallacies of distributed computing:
 The network is reliable

 Latency is zero

 Bandwidth is infinite

 The network is secure

 Topology does not change

 There is one administrator

 Transport cost is zero

 The network is homogeneous

https://blogs.oracle.com/jag/resource/Fallacies.html

https://blogs.oracle.com/jag/resource/Fallacies.html


ACID

 Typical features of transactions we expect, e.g., 
in traditional relational DBMSs

 Database transaction = a unit of work (a 
sequence of related operations) in a DBMS
 Typical example: transferring $100 from account A to 

account B

 In fact two operations that are expected to be 
performed together:
 Debit $100 to account A

 Credit $100 to account B



ACID

 Atomicity – “all or nothing” = if one part of the 
transaction fails, then the entire transaction fails

 Consistency – brings the database from one consistent 
(valid, correct) state to another
 ICs, triggers, …

 Isolation – effects of an incomplete transaction might 
not be visible to another transaction

 Durability – once a transaction has been committed, it 
will remain so
 Power loss, errors, …

 Distributed systems: 
 Too expensive rules

 Giving up some ACID feature = improvement of performance



CAP Theorem

Consistency

 After an update, all readers in a distributed system see 
the same data

 All nodes are supposed to contain the same data at all 
times

 Example:
 A single database instance is always consistent

 If multiple instances exist, all writes must be duplicated before 
write operation is completed



CAP Theorem

Availability

 All requests (reads, writes) are always answered, 
regardless crashes 

 Example:
 A single instance has an availability of 100% or 0%

 Two servers may be available 100%, 50%, or 0%

Partition Tolerance

 System continues to operate, even if two subsets of 
servers get isolated

 Example:
 Failed connection will not cause troubles if the system is tolerant



CAP Theorem
ACID vs. BASE

 Theorem: Only 2 of the 3 
guarantees can be given in a 
“shared-data” system.
 Proven in 2000, the idea is older

 (Positive) consequence: we can 
concentrate on two challenges

 ACID properties guarantee 
Consistency and Availability 
 pessimistic

 e.g., database on a single 
machine

 BASE properties guarantee 
Availability and Partition 
tolerance 
 optimistic

 e.g., distributed databases 
(key/value stores)



CAP Theorem
Criticism

 Not really a “theorem”, since definitions are 
imprecise
 The real proven theorem has more limiting 

assumptions

 CP makes no “sense”, because it suggest never 
available

 No A vs. no C is asymmetric
 No C = all the time

 No A = only when the network is partitioned



CAP Theorem
Consistency

 A single-server system is a CA system

 Clusters naturally have to be tolerant of network 

partitions

 CAP theorem: you can only get two out of three

 Reality: you can trade off a little Consistency to get 

some Availability

 It is not a binary decision



BASE

 In contrast to ACID

 Leads to levels of scalability that cannot be obtained with ACID 
 At the cost of (strong) consistency

Basically Available

 The system works basically all the time 

 Partial failures can occur, but without total system failure

Soft State

 The system is in flux and non-deterministic 

 Changes occur all the time

Eventual Consistency

 The system will be in some consistent state at some time in future
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Eventual Consistency 
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Distribution Models

 Scaling out = running the database on a cluster 

of servers

 Two orthogonal techniques to data distribution:

 Replication – takes the same data and copies it over 

multiple nodes

 Master-slave or peer-to-peer

 Sharding – puts different data on different nodes

 We can use either or combine them



Distribution Models
Single Server

 No distribution at all

 The database runs on a single machine

 It can make sense to use NoSQL with a single-

server distribution model 

 Graph databases

 The graph is “almost” complete → it is difficult to distribute it



Distribution Models
Sharding

 Horizontal 
scalability → 
putting different 
parts of the data 
onto different 
servers

 Different people 
are accessing 
different parts of 
the dataset



Distribution Models
Sharding – how to?

 The ideal case is rare 

 To get close to it we have to ensure that data that is 
accessed together is stored together 

 How to arrange the nodes:
a. One user mostly gets data from a single server

b. Based on a physical location

c. Distribute across the nodes with equal amounts of the load

 Many NoSQL databases offer auto-sharding

 A node failure makes shard’s data unavailable
 Sharding is often combined with replication



Distribution Models
Master-slave Replication

 We replicate data 
across multiple 
nodes

 One node is 
designed as 
primary (master), 
others as 
secondary 
(slaves)

 Master is 
responsible for 
processing any 
updates to that 
data



Distribution Models
Master-slave Replication

 For scaling a read-intensive dataset
 More read requests → more slave nodes

 The master fails → the slaves can still handle read 
requests
 A slave can be appointed a new master quickly (it is a 

replica)

 Limited by the ability of the master to process 
updates 

 Masters are appointed manually or automatically
 User-defined vs. cluster-elected



Distribution Models
Peer-to-peer Replication

 Problems of master-
slave replication: 
 Does not help with 

scalability of writes
 The master is still a 

bottleneck

 Provides resilience 
against failure of a 
slave, but not of a 
master

 Peer-to-peer 
replication: no 
master
 All the replicas have 

equal weight



Distribution Models
Peer-to-peer Replication

 Problem: consistency

 We can write at two different places: a write-write 

conflict

 Solutions:

 Whenever we write data, the replicas coordinate to 

ensure that we avoid a conflict

 At the cost of network traffic

 But we do not need all the replicas to agree on the 

write, just a majority



Distribution Models
Combining Sharding and Replication

 Master-slave replication and sharding:
 We have multiple masters, but each data item only 

has a single master

 A node can be a master for some data and a slave for 
others

 Peer-to-peer replication and sharding:
 A common strategy, e.g., for column-family databases

 A good starting point for peer-to-peer replication is to 
have a replication factor of 3, so each shard is 
present on three nodes



Consistency
Write (update) Consistency

 Problem: two users want to update the same record 
(write-write conflict)
 Issue: lost update

 A second transaction writes a second value on top of a first value 
written by a first concurrent transaction

 The first value is lost to other transactions running concurrently 
which need, by their precedence, to read the first value

 The transactions that have read the wrong value end with incorrect 
results

 Pessimistic (preventing conflicts from occurring) vs. 
optimistic solutions (lets conflicts occur, but detects them 
and takes actions to sort them out)
 Write locks, conditional update, save both updates and record 

that they are in conflict, …



Consistency
Read Consistency

 Problem: one user reads, other writes (read-write conflict)
 Issue: inconsistent read

 When a transaction reads object x twice and x has different values

 Between the two reads another transaction has modified the value of x

 Relational databases support ACID transactions

 NoSQL databases usually support atomic updates within a single 
aggregate
 But not all data can be put in the same aggregate

 Update that affects multiple aggregates leaves open a time when 
clients could perform an inconsistent read 
 Inconsistency window

 Another issue: replication consistency
 A special type of inconsistency in case of replication

 Ensuring that the same data item has the same value when read from 
different replicas



Consistency
Quorums

 How many nodes need to be involved to get strong 
consistency?

 Write quorum: W > N/2
 N = the number of nodes involved in replication (replication 

factor)

 W = the number of nodes participating in the write

 The number of nodes confirming successful write 

 “If you have conflicting writes, only one can get a majority.”

 How many nodes do we need to contact to be sure we 
have the most up-to-date change?

 Read quorum: R + W > N
 R = the number of nodes we need to contact for a read

 „Concurrent read and write cannot happen.“
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