
Modern Database

Concepts

Practicals: Column-family stores

Doc. RNDr. Irena Holubova, Ph.D.
holubova@ksi.mff.cuni.cz

mailto:holubova@ksi.mff.cuni.cz

Apache Cassandra

 Developed at Facebook

 Initial release: 2008

 Stable release: 2013
 Apache Licence

 Written in: Java

 OS: cross-platform

 Operations:
 CQL (Cassandra Query Language)

 MapReduce support

 Can cooperate with Hadoop (data storage instead of HDFS)

http://cassandra.apache.org/

http://en.wikipedia.org/wiki/File:Cassandra_logo.svg
http://en.wikipedia.org/wiki/File:Cassandra_logo.svg
http://cassandra.apache.org/

CQL Shell

cqlsh

 Run the CQL shell

 By default it connects to localhost on default port
 The database should run on our testing server

clear

 Clear the shell terminal window

exit/quit

 Terminate the current connection

Cassandra
CQL

 Cassandra query language

 SQL-like commands
 CREATE, ALTER, UPDATE, DROP, DELETE, TRUNCATE,

INSERT, …

 Much simpler than SQL
 Does not allow joins or subqueries

 Where clauses are simple

 …

 Different approach than column families (since CQL 3
called tables)
 More general

 Closer to key/value and document databases

Cassandra
Working with a Table – Collections

 Collection types:
 set – a set of unique values

 Returned in alphabetical order, when queried

 list – ordered list of elements
 Can store the same value multiple times

 Returned sorted according to index value in the list

 map – name + value pairs

 Each element is internally stored as one Cassandra
column

=> Each element can have an individual time-to-live

Cassandra
Working with a Table – Set

CREATE TABLE users (

user_id text PRIMARY KEY,

first_name text,

last_name text,

emails set<text>);

INSERT INTO users (user_id, first_name, last_name, emails)

VALUES('frodo', 'Frodo', 'Baggins', {'f@baggins.com', 'baggins@gmail.com'});

UPDATE users SET emails = emails + {'fb@friendsofmordor.org'}

WHERE user_id = 'frodo';

SELECT user_id, emails FROM users WHERE user_id = 'frodo';

UPDATE users SET emails = emails - {'fb@friendsofmordor.org'}

WHERE user_id = 'frodo';

UPDATE users SET emails = {} WHERE user_id = 'frodo';

order

Cassandra
Working with a Table – List

ALTER TABLE users ADD top_places list<text>;

UPDATE users SET top_places = ['rivendell', 'rohan']

WHERE user_id = 'frodo';

UPDATE users SET top_places = ['the shire'] + top_places

WHERE user_id = 'frodo';

UPDATE users SET top_places = top_places + ['mordor']

WHERE user_id = 'frodo';

UPDATE users SET top_places[2] = 'riddermark'

WHERE user_id = 'frodo';

DELETE top_places[3] FROM users WHERE user_id = 'frodo';

UPDATE users SET top_places = top_places - ['riddermark']

WHERE user_id = 'frodo';

Cassandra
Working with a Table – Map

ALTER TABLE users ADD todo map<timestamp, text>;

UPDATE users SET todo = { '2012-9-24' : 'enter mordor',

'2012-10-2 12:00' : 'throw ring into mount doom' }

WHERE user_id = 'frodo';

UPDATE users SET todo['2012-10-2 12:00'] =

'throw my precious into mount doom'

WHERE user_id = 'frodo';

INSERT INTO users (user_id, todo) VALUES ('frodo', {

'2013-9-22 12:01' : 'birthday wishes to Bilbo',

'2013-10-1 18:00' : 'Check into Inn of Prancing Pony' });

DELETE todo['2012-9-24'] FROM users

WHERE user_id = 'frodo';

Cassandra
Querying

SELECT select_expression

FROM keyspace_name.table_name

WHERE relation AND relation ...

GROUP BY columns

ORDER BY (clustering_key (ASC | DESC)...)

LIMIT n

ALLOW FILTERING

 select_expression:
 List of columns
 DISTINCT

 COUNT

 Aliases (AS)

 TTL(column_name)

 WRITETIME(column_name)

optional

Cassandra
Querying

 relation:

 column_name (= | < | > | <= | >=) key_value

 column_name IN ((key_value,...))

 TOKEN (column_name, ...) (= | < | > | <= | >=)

(term | TOKEN (term, ...))

 term:

 constant

 set/list/map

hash

Cassandra
Querying – GROUP BY

 Groups rows of a table according to certain
columns

 Only groupings induced by primary key columns
are allowed!

 Aggregate functions
 COUNT, MIN, MAX, SUM, AVG

 User-defined

 When a non-grouping column is selected without an
aggregate function, the first value encounter is always
returned

Cassandra
Querying – ALLOW FILTERING

 Non-filtering queries
 Queries where we know that all records read will be

returned (maybe partly) in the result set

 Have predictable performance

 Attempt a potentially expensive (i.e., filtering)
query

 ALLOW FILTERING

 “We know what we are doing”

 Usually together with LIMIT n

Cassandra
Querying – ALLOW FILTERING

CREATE TABLE users (

username text PRIMARY KEY,

firstname text,

lastname text,

birth_year int,

country text

);

CREATE INDEX ON users(birth_year);

SELECT * FROM users;

SELECT firstname, lastname FROM users

WHERE birth_year = 1981;

query performance proportional to

the amount of data returned

Cassandra
Querying – ALLOW FILTERING

SELECT firstname, lastname

FROM users

WHERE birth_year = 1981 AND country = 'FR';

No guarantee that Cassandra won’t have to scan

large amount of data even if the result is small

SELECT firstname, lastname

FROM users

WHERE birth_year = 1981 AND country = 'FR'

ALLOW FILTERING;

Assignment

 Chose your unique problem domain
 E.g., the results of football matches of various teams

 For your selected problem domain think about an
application that uses CQL (create tables, store data,
create meaningful queries)

 Submit a script with respective commands for Cassandra
+ explanatory comments

References

 Cassandra Web

http://cassandra.apache.org/

 CQL:

http://cassandra.apache.org/doc/latest/cql/

http://cassandra.apache.org/
http://cassandra.apache.org/doc/latest/cql/

