
Modern Database

Systems

Apache Spark

Doc. RNDr. Irena Holubova, Ph.D.
Irena.Holubova@matfyz.cuni.cz

mailto:Irena.Holubova@matfyz.cuni.cz

Big Data Related Technologies

 Distributed file systems
 e.g., HDFS

 Distributed databases
 Primarily NoSQL databases

 And many other types

 Cloud computing

 Data analytics
 Batch

 Real-time

 Stream

 …

Apache Spark

 Initial release : 2014

 Unified analytics engine for large-scale data processing
 Runs on a cluster of nodes

 Contains:
 High-level APIs in Java, Scala, Python and R

 Optimized engine that supports general execution graphs
(DAGs)
 MapReduce has only 2 levels

 Higher-level tools
 Spark SQL (SQL and structured data processing)

 MLlib (machine learning)

 GraphX (graph processing)

 Spark Streaming

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiT9YvnoafeAhVoxYUKHYQjBWYQjRx6BAgBEAU&url=https%3A%2F%2Fspark.apache.org%2F&psig=AOvVaw0HbVIAuxowpR7J9O3rhH8o&ust=1540751780140608
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiT9YvnoafeAhVoxYUKHYQjBWYQjRx6BAgBEAU&url=https%3A%2F%2Fspark.apache.org%2F&psig=AOvVaw0HbVIAuxowpR7J9O3rhH8o&ust=1540751780140608

Spark

Application

 Spark application = driver program
 Runs the user’s main function

 Executes parallel operations on a cluster
 Independent set of processes

 Coordinated by SparkContext object in the driver program

 SparkContext can connect to several types of cluster managers
 They allocate resources across applications

 When connected:
1. Spark acquires executors on nodes in the cluster

 Processes that run computations and store data for the application

2. Sends the application code to the executors
 Defined by JAR or Python files passed to SparkContext

3. Sends tasks to the executors to run

Spark Application

 Each application gets its own executor processes which run tasks in
multiple threads
 Pros: isolating of applications

 Scheduling + executing

 Cons: data cannot be shared across different Spark applications
(instances of SparkContext) without writing it to an external storage
system

 Driver program
 Must listen for and accept incoming connections from its executors

throughout its lifetime

 Should be run close to the worker nodes
 Preferably on the same local area network

 Has a web UI
 Displays information about running tasks, executors, and storage usage

Cluster Managers

 Spark is agnostic to the underlying cluster manager

 Cluster managers
 Standalone – a simple cluster manager included with Spark

 Makes it easy to set up a cluster

 Apache Mesos – a general cluster manager

 Can also run Hadoop MapReduce and service applications

 Hadoop YARN – the resource manager in Hadoop 2

 Kubernetes – an open-source system for automating
deployment, scaling, and management of containerized
applications

Initializing Spark

1. Build a SparkConf object
 Contains information about application

 appName = application name to show on the cluster UI

 master = Spark/Mesos/YARN cluster URL or string “local” to
run in local mode

2. Create a JavaSparkContext object
 Tells Spark how to access a cluster

SparkConf conf =

new SparkConf().setAppName(appName).setMaster(master);

JavaSparkContext sc =

new JavaSparkContext(conf);

Resilient Distributed Dataset (RDD)

 Immutable collection of elements partitioned across the
nodes of the cluster
 Can be operated on in parallel

 Can be persisted in memory

 Automatically recover from node failures

 Ways to create RDDs:
1. Parallelizing an existing collection in a driver program

2. Referencing a dataset in an external storage system

 e.g., HDFS, HBase, …

 In general: any offering a Hadoop InputFormat

Resilient Distributed Dataset (RDD)
Parallelized Collections

 Parallelized collections are created by calling
SparkContext’s parallelize method
 Elements of the collection are copied to form a distributed

dataset

 The distributed dataset (distData) can be operated on in parallel

 See later

List<Integer> data = Arrays.asList(1, 2, 3, 4, 5);

JavaRDD<Integer> distData = sc.parallelize(data);

Resilient Distributed Dataset (RDD)
External Datasets

 Spark can create distributed datasets from any storage source
supported by Hadoop
 Local file system, HDFS, Cassandra, HBase, …

 Supports text files, SequenceFiles, and any other Hadoop
InputFormat

 Example:
 Text file RDDs can be created using SparkContext’s textFile method

 Takes an URI for the file (local, HDFS, …)

 Reads it as a collection of lines

 Optional argument: number of partitions of the file
 Default: one partition for each block of the file (128MB by default in HDFS)

 Once created, distFile can be acted on by dataset operations

JavaRDD<String> distFile = sc.textFile("data.txt");

RDD Operations

1. Transformations = create (lazily)

a new dataset from an existing one
 e.g., map = passes each dataset element through

a function and returns a new RDD representing the results

2. Actions = return a value to the driver program after running a
computation on the dataset

 e.g., reduce = aggregates all the elements of the RDD using some
function and returns the final result to the driver program

 By default: each transformed RDD may be recomputed each time
we run an action on it

 We may also persist an RDD in memory using the persist (or cache)
method
 Much faster access the next time we query it

 There is also support for persisting RDDs on disk or replicated across
multiple nodes

Transformations

 map(func) Returns a new distributed dataset formed by passing each
element of the source through a function func.

 union(otherDataset) Returns a new dataset that contains the union of the
elements in the source dataset and the argument.
 intersection, distinct

 filter(func) Returns a new dataset formed by selecting those elements of
the source on which func returns true.

 reduceByKey(func, [numPartitions]) When called on a dataset of (K, V)
pairs, returns a dataset of (K, V) pairs where the values for each key are
aggregated using the given reduce function func, which must be of type
(V,V) => V. The number of reduce tasks is configurable through an optional
second argument.

 sortByKey([ascending], [numPartitions]) When called on a dataset of (K, V)
pairs where K implements Ordered, returns a dataset of (K, V) pairs sorted
by keys in ascending or descending order, as specified in the Boolean
ascending argument.

 …

Actions

 reduce(func) Aggregates the elements of the dataset using a
function func (which takes two arguments and returns one). The
function should be commutative and associative so that it can be
computed correctly in parallel.

 count() Returns the number of elements in the dataset.

 first() Returns the first element of the dataset.

 take(n) Returns an array with the first n elements of the dataset.

 takeOrdered(n, [ordering]) Returns the first n elements of the RDD
using either their natural order or a custom comparator.

 …

Shuffle Operations

 Certain operations trigger a shuffle = mechanism for re-distributing
data so that it’s grouped differently across partitions

 Involves copying data across executors and machines
 Complex and costly operation

 Example: reduceByKey
 Generates a new RDD where all values for a single key are combined

into a tuple
 The key and the result of executing a reduce function against all values

associated with that key

 Problem: not all values for a single key necessarily reside on the same
partition or the same machine

 Shuffle: Spark reads from all partitions to find all the values for all keys,
and then brings together values across partitions to compute the final
result for each key

Simple Spark Example

1. Defines a base RDD from an external file
 Not loaded in memory or otherwise acted on, due to laziness

 lines is merely a pointer to the file

2. Defines lineLengths as the result of a map transformation
 Not immediately computed, due to laziness

3. Runs reduce = action
 Spark breaks the computation into tasks to run on separate machines

 Each machine runs both its part of the map and a local reduction,
returning its answer to the driver program

JavaRDD<String> lines = sc.textFile("data.txt");

JavaRDD<Integer> lineLengths = lines.map(s -> s.length());

int totalLength = lineLengths.reduce((a, b) -> a + b);

Passing Functions to Spark

 In Java, functions are represented by classes
implementing the interfaces in the
org.apache.spark.api.java.function package

 Two ways to create a function:
1. Use lambda expressions to concisely define an implementation

2. Implement Function interface and pass an instance of it to
Spark

JavaRDD<String> lines = sc.textFile("data.txt");

JavaRDD<Integer> lineLengths = lines.map (

new Function<String, Integer>() {

public Integer call(String s) { return s.length(); }

});

int totalLength = lineLengths.reduce (

new Function2<Integer, Integer, Integer>() {

public Integer call(Integer a, Integer b) { return a + b; }

});

Closures

1. Spark computes the task’s closure
 Variables and methods visible for the executor to perform computations

2. Spark breaks up the processing of RDD operations into tasks, each
executed by an executor
 The closure is serialized and sent to each executor

3. The variables within the closure sent to each executor are copies
 The value of counter will still be zero

 Note: In local mode, in some circumstances the foreach function will
actually execute within the same JVM as the driver and will
reference the same original counter, and may actually update it

 Solution: two limited types of shared variables:
 Broadcast variables

 Accumulators

int counter = 0;

JavaRDD<Integer> rdd =

sc.parallelize(data);

rdd.foreach(x -> counter += x);

println("Counter value: " + counter);

Broadcast Variables

 Allow the programmer to keep a read-only variable
cached on each machine rather than shipping a copy of
it with tasks
 e.g., to give every node a copy of a large input dataset in an

efficient manner

 Created from a variable v by calling
SparkContext.broadcast(v)
 Its value can be accessed by calling the value method.

Broadcast<int[]> broadcastVar = sc.broadcast

(new int[] {1, 2, 3});

broadcastVar.value();

// returns [1, 2, 3]

Accumulators

 Only “added” to through an associative and commutative operation

 Can be used to implement counters (as in MapReduce) or sums

 A numeric accumulator can be created by calling
SparkContext.longAccumulator() or doubleAccumulator()

 Tasks running on a cluster can then add to it using the add method.

 Only the driver program can read the accumulator’s value, using its
value method.

LongAccumulator accum = jsc.sc().longAccumulator();

sc.parallelize(Arrays.asList(1, 2, 3, 4))

.foreach(x -> accum.add(x));

accum.value();

// returns 10

Spark SQL

 Spark module for structured data processing

 More information about the structure of both the

data and the computation being performed

 Internally, Spark SQL uses this extra information to

perform extra optimizations

 Interact with Spark SQL: SQL, Dataset API, ...

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiSoYaipq_eAhUGC-wKHWPbDTIQjRx6BAgBEAU&url=https%3A%2F%2Fmedium.com%2F%40manuelmourato25%2Fhow-spark-dataframe-shuffling-can-hurt-your-partitioning-28d05fdcb6fa&psig=AOvVaw0bF8BG3DJbHj2WUfZc2ZdA&ust=1541027852658508
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiSoYaipq_eAhUGC-wKHWPbDTIQjRx6BAgBEAU&url=https%3A%2F%2Fmedium.com%2F%40manuelmourato25%2Fhow-spark-dataframe-shuffling-can-hurt-your-partitioning-28d05fdcb6fa&psig=AOvVaw0bF8BG3DJbHj2WUfZc2ZdA&ust=1541027852658508

RDD vs. DataFrame vs. Dataset

 RDD = primary API in Spark since its inception
 Since Spark 1.0

 Internally each final computation is still done on RDDs

 DataFrame = data organized into named columns
 Since Spark 1.3

 Distributed collection of data, which is organized into named
columns

 Designed to make data processing easier

 Higher level of abstraction

 Similar to a table in a relational database or a data frame in R/Python

 Can be constructed from: structured data files, tables in Hive,
external databases, existing RDDs , …

 API: Scala, Java, Python, R

RDD vs. DataFrame vs. Dataset

 Dataset = a distributed collection of data
 Since Spark 1.6

 Provides the benefits of

 RDDs - strong typing, ability to use powerful lambda functions

 Spark SQL - optimized execution engine

 i.e. DataFrame processing

 Can be constructed from: JVM objects

 API: Scala, Java

RDD vs. DataFrame vs. Dataset

 Since Spark 2.0: unification of DataFrame and Dataset

 Two distinct APIs:
 Untyped API

 Conceptually: DataFrame ~ collection of generic objects
Dataset<Row>, where a Row is a generic untyped JVM object

 Strongly-typed API

 Conceptually: Dataset ~ collection Dataset<T> of strongly-typed
JVM objects, dictated by a case class T

 Defined in Scala or a class in Java

SparkSession spark = SparkSession.builder().

appName("Java Spark SQL basic example").

config("spark.some.config.option", "some-value").getOrCreate();

Dataset<Row> df =

spark.read().json("examples/src/main/resources/people.json");

df.show();

// +----+-------+

// | age| name|

// +----+-------+

// |null|Michael|

// | 30| Andy|

// | 19| Justin|

// +----+-------+

df.printSchema();

// root

// |-- age: long (nullable = true)

// |-- name: string (nullable = true)

Basic Examples

DataFrame - untyped

// Select only the "name" column

df.select("name").show();

// +-------+

// | name|

// +-------+

// |Michael|

// | Andy|

// | Justin|

// +-------+

// Select everybody, but increment the age by 1

df.select(col("name"), col("age").plus(1)).show();

// +-------+---------+

// | name|(age + 1)|

// +-------+---------+

// |Michael| null|

// | Andy| 31|

// | Justin| 20|

// +-------+---------+

// Select people older than 21

df.filter(col("age").gt(21)).show();

// +---+----+

// |age|name|

// +---+----+

// | 30|Andy|

// +---+----+

// Count people by age

df.groupBy("age").count().show();

// +----+-----+

// | age|count|

// +----+-----+

// | 19| 1|

// |null| 1|

// | 30| 1|

// +----+-----+

// Register the DataFrame as a SQL temporary view

df.createOrReplaceTempView("people");

Dataset<Row> sqlDF = spark.sql("SELECT * FROM people");

sqlDF.show();

// +----+-------+

// | age| name|

// +----+-------+

// |null|Michael|

// | 30| Andy|

// | 19| Justin|

// +----+-------+

 Temporary views are session-scoped
 Disappear if the session that creates it terminates

 Global temporary view = a temporary view shared
among all sessions
 Keeps alive until the Spark application terminates

 Tied to a system preserved database global_temp
 df.createGlobalTempView("people");

 Must use the qualified name to refer it
 e.g. SELECT * FROM global_temp.people

Creating Datasets

 Similar to RDDs

 Use a specialized Encoder to serialize the

objects for processing or transmitting over the

network

 Encoders

 Convert a JVM object of type T to and from the

internal Spark SQL representation

 Are code generated dynamically

 Use a format that allows to perform many operations

 E.g., filtering, sorting and hashing without deserializing

public static class Person implements Serializable {

private String name;

private int age;

public String getName() { return name; }

public void setName(String name) { this.name = name; }

public int getAge() { return age; }

public void setAge(int age) { this.age = age; }

}

// Encoders are created for Java beans

Encoder<Person> personEncoder = Encoders.bean(Person.class);

// DataFrames can be converted to a Dataset by providing a class.

// Mapping based on name

String path = "examples/src/main/resources/people.json";

Dataset<Person> peopleDS = spark.read().json(path).as(personEncoder);

peopleDS.show();

// +----+-------+

// | age| name|

// +----+-------+

// |null|Michael|

// | 30| Andy|

// | 19| Justin|

// +----+-------+

Interoperating with RDDs

 Converting existing RDDs into Datasets:

1. Usage of reflection to infer the schema of an RDD

 Leads to more concise code

2. Through a programmatic interface that allows to

construct a schema and then apply it to an RDD

 More verbose

 Allows to construct Datasets when the columns and their

types are not known until runtime, i.e. we cannot create a

class beforehand

// Create an RDD of Person objects from a text file

JavaRDD<Person> peopleRDD = spark.read()

.textFile("examples/src/main/resources/people.txt")

.javaRDD()

.map(line -> {

String[] parts = line.split(",");

Person person = new Person();

person.setName(parts[0]);

person.setAge(Integer.parseInt(parts[1].trim()));

return person;

});

// Apply a schema to an RDD of JavaBeans to get a DataFrame

Dataset<Row> peopleDF = spark.createDataFrame(peopleRDD, Person.class);

// Register the DataFrame as a temporary view

peopleDF.createOrReplaceTempView("people");

// SQL statements can be run by using the sql methods provided by spark

Dataset<Row> teenagersDF =

spark.sql("SELECT name FROM people WHERE age BETWEEN 13 AND 19");

// Create an RDD

JavaRDD<String> peopleRDD = spark.sparkContext()

.textFile("examples/src/main/resources/people.txt", 1).toJavaRDD();

// Convert records of the RDD (people) to Rows

JavaRDD<Row> rowRDD = peopleRDD.map((Function<String, Row>) record -> {

String[] attributes = record.split(",");

return RowFactory.create(attributes[0], attributes[1].trim());

});

// The schema is encoded in a string

String schemaString = "name age";

// Generate the schema based on the string of schema

List<StructField> fields = new ArrayList<>();

for (String fieldName : schemaString.split(" ")) {

StructField field = DataTypes.createStructField(fieldName,

DataTypes.StringType, true);

fields.add(field);

}

StructType schema = DataTypes.createStructType(fields);

// Apply the schema to the RDD

Dataset<Row> peopleDataFrame = spark.createDataFrame(rowRDD, schema);

// Creates a temporary view using the DataFrame

peopleDataFrame.createOrReplaceTempView("people");

// SQL can be run over a temporary view created using DataFrames

Dataset<Row> results = spark.sql("SELECT name FROM people");

References

 Spark Overview
https://spark.apache.org/docs/latest/index.html

 Apache Spark Examples
https://spark.apache.org/examples.html

 Mastering Apache Spark 2.3.2
https://jaceklaskowski.gitbooks.io/mastering-apache-
spark/

 A Tale of Three Apache Spark APIs: RDDs, DataFrames,
and Datasets https://databricks.com/blog/2016/07/14/a-
tale-of-three-apache-spark-apis-rdds-dataframes-and-
datasets.html

https://spark.apache.org/docs/latest/index.html
https://spark.apache.org/examples.html
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/
https://databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-apis-rdds-dataframes-and-datasets.html

