Modern Database

Systems

Apache Spark

Doc. RNDr. Irena Holubova, Ph.D.

Irena.Holubova@matfyz.cuni.cz

mailto:Irena.Holubova@matfyz.cuni.cz

"
Big Data Related Technologies

[]
e.g., HDFS

Primarily NoSQL databases
And many other types

N
Batch %

Real-time
Stream

e T
Apache Spark Spark’

m [nitial release : 2014

m Unified analytics engine for large-scale data processing
Runs on a cluster of nodes

m Contains:

High-level APIs in Java, Scala, Python and R

Optimized engine that supports general execution graphs
(DAGS)

s MapReduce has only 2 levels
Higher-level tools
N (SQL and structured data processing)
= MLIib (machine learning)
m GraphX (graph processing) i
= Spark Streaming sparksal (PR (machine

learning)

GraphX
(graph)

Apache Spark Core

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiT9YvnoafeAhVoxYUKHYQjBWYQjRx6BAgBEAU&url=https%3A%2F%2Fspark.apache.org%2F&psig=AOvVaw0HbVIAuxowpR7J9O3rhH8o&ust=1540751780140608
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiT9YvnoafeAhVoxYUKHYQjBWYQjRx6BAgBEAU&url=https%3A%2F%2Fspark.apache.org%2F&psig=AOvVaw0HbVIAuxowpR7J9O3rhH8o&ust=1540751780140608

Worker Node

S par k [Erecur

Cache

Task

. . Driver Program /§‘ Task
Application |

/

SparkContext » Cluster Manager
—‘:‘ Worker Node

Cache

&_‘ Executor
-

Task

Task

m Spark application = driver program

Runs the user’s main function

Executes parallel operations on a cluster
m Independent set of processes
m Coordinated by object in the driver program

m SparkContext can connect to several types of cluster managers

They allocate resources across applications
m When connected:
Spark acquires executors on nodes in the cluster
m Processes that run computations and store data for the application
Sends the application code to the executors
m Defined by JAR or Python files passed to SparkContext
Sends tasks to the executors to run

" S
Spark Application

m Each application gets its own executor processes which run tasks in
multiple threads
Pros: isolating of applications
m Scheduling + executing

Cons: data cannot be shared across different Spark applications
(instances of SparkContext) without writing it to an external storage
system

m Driver program

Must listen for and accept incoming connections from its executors
throughout its lifetime

Should be run close to the worker nodes
m Preferably on the same local area network
Has a web Ul
m Displays information about running tasks, executors, and storage usage

" J
Cluster Managers

m Spark is agnostic to the underlying cluster manager

m Cluster managers
Standalone — a simple cluster manager included with Spark
m Makes it easy to set up a cluster
Apache Mesos — a general cluster manager
m Can also run Hadoop MapReduce and service applications
Hadoop YARN — the resource manager in Hadoop 2

Kubernetes — an open-source system for automating
deployment, scaling, and management of containerized
applications

" S
Initializing Spark

1. Build a object
Contains information about application
= application name to show on the cluster Ul
= Spark/Mesos/YARN cluster URL or string “local” to
run in local mode
2. Create a object
Tells Spark how to access a cluster

conf =
new SparkConf () . setAppName () .setMaster () ;
sc =
new JavaSparkContext (conf) ;

Resilient Distributed Dataset (RDD)

m Immutable collection of elements partitioned across the
nodes of the cluster
Can be operated on in parallel
Can be persisted in memory
Automatically recover from node failures

m Ways to create RDDs:
Parallelizing an existing collection in a driver program

Referencing a dataset in an external storage system
m e.g., HDFS, HBase, ...
= In general: any offering a Hadoop InputFormat

= S
Resilient Distributed Dataset (RDD)

Parallelized Collections

m Parallelized collections are created by calling

SparkContext’s method
Elements of the collection are copied to form a distributed
dataset
The distributed dataset () can be operated on in parallel
m See later

List<Integer> data = Arrays.asList(l1, 2, 3, 4, 5);
JavaRDD<Integer> = sc. (data) ;

= S
Resilient Distributed Dataset (RDD)

External Datasets

m Spark can create distributed datasets from any storage source
supported by Hadoop

Local file system, HDFS, Cassandra, HBase, ...

m Supports text files, SequenceFiles, and any other Hadoop
InputFormat

m Example:

Text file RDDs can be created using SparkContext’s method
m Takes an URI for the file (local, HDFS, ...)
m Reads it as a collection of lines
m Optional argument: number of partitions of the file
Default: one partition for each block of the file (128MB by default in HDFS)
Once created, distFile can be acted on by dataset operations

JavaRDD<String> distFile = sc. ("data.txt") ;

RDD Operations
P

1. = create (lazily)
a new dataset from an existing one

e.g., map = passes each dataset element through
a function and returns a new RDD representing the results
2. = return a value to the driver program after running a
computation on the dataset
e.g., reduce = aggregates all the elements of the RDD using some
function and returns the final result to the driver program
m By default: each transformed RDD may be recomputed each time
we run an action on it

We may also persist an RDD in memory using the (or)
method
- Much faster access the next time we query it

There is also support for persisting RDDs on disk or replicated across
multiple nodes

" A
Transformations

m map(func) Returns a new distributed dataset formed by passing each
element of the source through a function func.

m union(otherDataset) Returns a new dataset that contains the union of the
elements in the source dataset and the argument.

intersection, distinct

m filter(func) Returns a new dataset formed by selecting those elements of
the source on which func returns true.

m reduceByKey(func, [numPartitions]) When called on a dataset of (K, V)
pairs, returns a dataset of (K, V) pairs where the values for each key are
aggregated using the given reduce function func, which must be of type
(V,V) => V. The number of reduce tasks is conflgurable through an optional
second argument.

m sortByKey([ascending], [numPartitions]) When called on a dataset of (K, V)
pairs where K implements Ordered, returns a dataset of (K, V) pairs sorted
by keys in ascending or descendlng order, as specified in the Boolean
ascending argument.

Actions

reduce(func) Aggregates the elements of the dataset using a
function func (which takes two arguments and returns one). The
function should be commutative and associative so that it can be
computed correctly in parallel.

count() Returns the number of elements in the dataset.
first() Returns the first element of the dataset.
take(n) Returns an array with the first n elements of the dataset.

takeOrdered(n, [ordering]) Returns the first n elements of the RDD
using either their natural order or a custom comparator.

" J
Shuffle Operations

m Certain operations trigger a = mechanism for re-distributing
data so that it's grouped differently across partitions

m Involves copying data across executors and machines
Complex and costly operation

m Example:

Generates a new RDD where all values for a single key are combined
Into a tuple
m The key and the result of executing a reduce function against all values
associated with that key
Problem: not all values for a single key necessarily reside on the same
partition or the same machine

Shuffle: Spark reads from all partitions to find all the values for all keys,
and then brings together values across partitions to compute the final
result for each key

Simple Spark Example

JavaRDD<String> lines = sc.textFile("data.txt");
JavaRDD<Integer> = lines.map(s -> s.length());
int totallength = linelLengths.reduce((a, b) -> a + b);

1. Defines a base RDD from an external file
Not loaded in memory or otherwise acted on, due to laziness
lines is merely a pointer to the file
2. Defines as the result of a map transformation
Not immediately computed, due to |laziness
3. Runs reduce = action
Spark breaks the computation into tasks to run on separate machines

Each machine runs both its part of the map and a local reduction,
returning its answer to the driver program

" J
Passing Functions to Spark

m |n Java, functions are represented by classes
Implementing the interfaces in the
package

m Two ways to create a function:
<== Use lambda expressions to concisely define an implementation
Implement interface and pass an instance of it to

\//] Spark

JavaRDD<String> lines = sc.textFile('"data.txt");
JavaRDD<Integer> = lines.map (
new Function<String, Integer>() ({
public Integer call(String s) { return s.length(); }
})
int totallength = linelLengths.reduce (
new Function2<Integer, Integer, Integer>() {
public Integer call (Integer a, Integer b) { return a + b; }

})

" J
int counter = 0;
JavaRDD<Integer> rdd =

CIOSU reS sc.parallelize (data) ; ?

rdd. foreach (x -> counter += x);
println("Counter value: " + counter);

1. Spark computes the task’s
Variables and methods visible for the executor to perform computations

2. Spark breaks up the processing of RDD operations into tasks, each
executed by an executor

The closure is serialized and sent to each executor
3. The variables within the closure sent to each executor are copies
The value of counter will still be zero

m Note: In local mode, in some circumstances the foreach function will
actually execute within the same JVM as the driver and will
reference the same original counter, and may actually update it

m Solution: two limited types of shared variables:

Broadcast variables
Accumulators

" A
Broadcast Variables

m Allow the programmer to keep a read-only variable

cached on each machine rather than shipping a copy of
It with tasks

e.g., to give every node a copy of a large input dataset in an
efficient manner

m Created from a variable v by calling
SparkContext. (V)

Its value can be accessed by calling the method.

Broadcast<int[]> broadcastVar = sc.
(new int[] {1, 2, 3});

broadcastVar. () ;
// returns [1, 2, 3]

" A
Accumulators

m Only “added” to through an associative and commutative operation
m Can be used to implement counters (as in MapReduce) or sums

m A numeric accumulator can be created by calling
SparkContext. () or doubleAccumulator()

m Tasks running on a cluster can then add to it using the add method.

m Only the driver program can read the accumulator’s value, using its
value method.

LongAccumulator accum = jsc.sc(). ()7

sc.parallelize (Arrays.asList(1l, 2, 3, 4))
.foreach(x -> accum.add(x));

accum.value() ;
// returns 10

T
Spark SQL spaik’ SQL

m Spark module for structured data processing
m More information about the structure of both the

data and the computation being performed

Internally, Spark SQL uses this extra information to
perform extra optimizations

m Interact with Spark SQL: SQL, Dataset API, ...

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiSoYaipq_eAhUGC-wKHWPbDTIQjRx6BAgBEAU&url=https%3A%2F%2Fmedium.com%2F%40manuelmourato25%2Fhow-spark-dataframe-shuffling-can-hurt-your-partitioning-28d05fdcb6fa&psig=AOvVaw0bF8BG3DJbHj2WUfZc2ZdA&ust=1541027852658508
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiSoYaipq_eAhUGC-wKHWPbDTIQjRx6BAgBEAU&url=https%3A%2F%2Fmedium.com%2F%40manuelmourato25%2Fhow-spark-dataframe-shuffling-can-hurt-your-partitioning-28d05fdcb6fa&psig=AOvVaw0bF8BG3DJbHj2WUfZc2ZdA&ust=1541027852658508

" A
RDD vs. DataFrame vs. Dataset

0 = primary API in Spark since its inception
Since Spark 1.0
Internally each final computation is still done on RDDs

m = data organized into named columns

Since Spark 1.3
Distributed collection of data, which is organized into named
columns

m Designed to make data processing easier

Higher level of abstraction
Similar to a table in a relational database or a data frame in R/Python

Can be constructed from: structured data files, tables in Hive,
external databases, existing RDDs, ...

API. Scala, Java, Python, R

" A
RDD vs. DataFrame vs. Dataset

] = a distributed collection of data
Since Spark 1.6

Provides the benefits of
s RDDs - strong typing, ability to use powerful lambda functions
m Spark SQL - optimized execution engine
I.e. DataFrame processing

Can be constructed from: JVM objects
API: Scala, Java

" A
RDD vs. DataFrame vs. Dataset

m Since Spark 2.0: unification of DataFrame and Dataset

m Two distinct APIs:

Untyped API

m Conceptually: DataFrame ~ collection of generic objects
, where a Row IS a generic untyped JVM object

Strongly-typed API

m Conceptually: Dataset ~ collection of strongly-typed
JVM objects, dictated by a case class

Defined in Scala or a class in Java
Unified Apache Spark 2.0 API

Untyped API

+ DataFrame = Dataset[Row]

DataFrame + Alias
- |:> Dataset
2016
-

Typed API

+ Dataset[T]

@databricks

Basic Examples

SparkSession spark = ().
appName ("Java Spark SQL basic example").
config("spark.some.config.option", "some-value") .getOrCreate()

Dataset<Row> df = | DataFrame - untyped

spark. (0. ("examples/src/main/resources/people. json") ;
af . () ; <§;j
/] +=———p———— +
// | age| name | 4 lines (3 sloc) 73 Bytes
// Fommmdm oo + {"name":"Michael"}

// |null|Michael|
// | 30| Andy|

{"name": "Andy", "age":38}

{"name":"Justin®, "age":19}

// | 19| Justin]|

VA e —— +

df. ()

// root

// |-- age: long (nullable = true)

// |-- name: string (nullable = true)

// Select only the "name" column

df. ("name") .show() ;

/] 4-==mm- ¥

// | name |

/] 4====m- ¥

// |Michael]

// | Andy]|

// | Justin|

/] +======- ¥

// Select everybody, but increment the age by 1
df. (col("name"), col("age"). (1)) .show() ;
/] +--————- +-mm - +

// | name| (age + 1) |

/] +--————- +-mm - +

// |Michael)| null |

// | Andy]| 31|

// | Justin| 20|

/] +--————- +-mm - +

// Select people older than 21

df. (col("age") .gt(21)) .show () ;
/] +-—-—+--———+
// lage|name|
// +-—-—+--——-+

// | 30|Andy|
/] +-——+----+

// Count people by age

df. ("age") . () .show () ;
/] +-——=4-==—- +
// | age|count|
/] +-——=4-==—- +
// | 19| 1]
// |null] 1|
// | 30| 1|
/] +-———+-——-- +

// Register the DataFrame as a SQL temporary view

df. ("people") ;

Dataset<Row> sqlDF = spark. ("SELECT * FROM people") ;

sglDF.show() ;

/] +-———+-——————- + . :

7/ | age| name| 0 Tempprarv views are S_eSS|0n-SCOped_ |

/] 4mm—mfmmm - + Disappear if the session that creates it terminates
// |null|Michael | m Global temporary view = a temporary view shared
// | 30| Andy| among all sessions

// 1 19| Justin| Keeps alive until the Spark application terminates
A e + Tied to a system preserved database

m df.createGlobalTempView ("people™);

m Must use the qualified name to refer it
€.g. SELECT * FROM .people

Creating Datasets

Similar to RDDs

Use a specialized Encoder to serialize the
objects for processing or transmitting over the
network

Encoders

Convert a JVM object of type T to and from the
Internal Spark SQL representation

Are code generated dynamically

Use a format that allows to perform many operations
m E.g., filtering, sorting and hashing without deserializing

public static class Person implements Serializable {
private String name;
private int age;

public String getName () { return name; }
public void setName (String name) { this.name = name; }
public int getAge () { return age; }
public void setAge (int age) { this.age = age; }
}

// Encoders are created for Java beans
Encoder<Person> personEncoder = Encoders.bean (Person.class) ;

// DataFrames can be converted to a Dataset by providing a class.

// Mapping based on name

String path = "examples/src/main/resources/people.json";
Dataset<Person> peopleDS = spark.read().json(path) .as(personEncoder) ;

peopleDS.show () ;

A S S ——— +
// | agel] name |
Y S S —— +

// |null|Michael|
// | 30| Andy |
// | 19| Justin|
/] +-———4-——————- +

" S
Interoperating with RDDs

m Converting existing RDDs into Datasets:

Usage of reflection to of an RDD
0 Leads to more concise code

Through a programmatic interface that allows to
and then apply it to an RDD

More verbose

Allows to construct Datasets when the columns and their
types are not known until runtime, i.e. we cannot create a
class beforehand

// Create an RDD of Person objects from a text file
JavaRDD<Person> peopleRDD = spark.read()
.textFile ("examples/src/main/resources/people. txt")
. javaRDD ()
.map (line -> {
String[] parts = line.split(",");
Person person = new Person() ;
person.setName (parts[0]) ;
person.setAge (Integer.parselInt (parts[1l].trim()));
return person;

})

// Apply a schema to an RDD of JavaBeans to get a DataFrame
Dataset<Row> peopleDF = spark.createDataFrame (peopleRDD, Person.class);

// Register the DataFrame as a temporary view
peopleDF.createOrReplaceTempView ("people") ;

// SQL statements can be run by using the sgl methods provided by spark
Dataset<Row> teenagersDF =
spark.sgl ("SELECT name FROM people WHERE age BETWEEN 13 AND 19");

// Create an RDD
JavaRDD<String> peopleRDD = spark.sparkContext ()
.textFile ("examples/src/main/resources/people.txt", 1).toJavaRDD() ;

// Convert records of the RDD (people) to Rows

JavaRDD<Row> rowRDD = peopleRDD.map ((Function<String, Row>) record -> {
String[] attributes = record.split(","):
return RowFactory.create (attributes[0], attributes[1l].trim())

}) s

// The schema is encoded in a string
String schemaString = "name age";

// Generate the schema based on the string of schema
List<StructField> fields = new ArrayList<>();
for (String fieldName : schemaString.split(" ")) {
StructField field = DataTypes.createStructField(fieldName,
DataTypes.StringType, true);
fields.add(field) ;

}
StructType schema = DataTypes.createStructType (fields) ;

// Apply the schema to the RDD
Dataset<Row> peopleDataFrame = spark.createDataFrame (rowRDD, schema) ;

// Creates a temporary view using the DataFrame
peopleDataFrame.createOrReplaceTempView ("people") ;

// SQL can be run over a temporary view created using DataFrames
Dataset<Row> results = spark.sqgl ("SELECT name FROM people™);

'_
References

m Spark Overview
https://spark.apache.org/docs/latest/index.html

m Apache Spark Examples
https://spark.apache.org/examples.html

m Mastering Apache Spark 2.3.2
https://jaceklaskowski.gitbooks.io/mastering-apache-

spark/

m A Tale of Three Apache Spark APIs: RDDs, DataFrames,
and Datasets https://databricks.com/blog/2016/07/14/a-
tale-of-three-apache-spark-apis-rdds-dataframes-and-
datasets.html

https://spark.apache.org/docs/latest/index.html
https://spark.apache.org/examples.html
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/
https://databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-apis-rdds-dataframes-and-datasets.html

