
Modern Database

Systems

Practicals: Riak

Doc. RNDr. Irena Holubova, Ph.D.
holubova@ksi.mff.cuni.cz

mailto:holubova@ksi.mff.cuni.cz

Key-value store
Riak

 Open source, distributed database
 First release: 2009

 Implementing principles from Amazon's Dynamo

 OS: Linux, BSD, Mac OS X, Solaris

 Language: Erlang, C, C++, some parts in JavaScript

 Built-in MapReduce support

 Stores keys into buckets = a namespace for keys
 Like tables in a RDBMS, directories in a file system, …

 Have a set of common properties for its content

 e.g., number of replicas

http://basho.com/riak/

http://en.wikipedia.org/wiki/File:Riak_product_logo.png
http://en.wikipedia.org/wiki/File:Riak_product_logo.png
http://basho.com/riak/

Riak Usage

 HTTP – default interface
 GET (retrieve), PUT (update), POST (create), DELETE (delete)

 Other interfaces: Protocol Buffers, Erlang interface

 We will use HTTP via curl (curl --help)

 Keys and buckets in Riak:
 Keys are stored in buckets (= namespaces) with common properties

 n_val – replication factor

 allow_mult – allowing concurrent updates

 …

 If a key is stored into a non-existing bucket, it is created

 Keys may be user-specified or generated by Riak

 Paths:
 /riak/<bucket>

 /riak/<bucket>/<key>

a particular bucket

a key in a bucket

Riak Usage

 Note: If you use the school installation,

note that anyone can access anything. So:

Use your own bucket names (check if they

exist)

 Prefix all the bucket names with your <login>

Save all your command

Basic operations on objects

 Create: POST or PUT methods
 Inserts a key-value pair into a given bucket

 Key is specified manually, or will be generated
automatically

 Read: GET method
 Retrieves a key-value pair from a given bucket

 Update: PUT method
 Updates a key-value pair in a given bucket

 Delete: DELETE method
 Removes a key-value pair from a given bucket

HTTP API

 cURL tool
 Allows to transfer data from / to a server using HTTP (or other

supported protocols)

 Options
 -X command, --request command

 HTTP request method to be used (GET, …)

 -d data, --data data

 Data to be sent to the server (implies the POST method)

 -H header, --header header

 Extra headers to be included when sending the request

 -i, --include

 Prints both headers and (not just) body of a response

Riak Usage – Examples
Working with Buckets

 List all the buckets:
curl http://localhost:10011/riak?buckets=true

 Get properties of bucket foo:

curl http://localhost:10011/riak/foo/ |

python -mjson.tool

 Get all keys in bucket foo (check the difference):

curl http://localhost:10011/riak/foo?keys=true

 Change properties of bucket foo:

curl -X PUT http://localhost:10011/riak/foo

-H "Content-Type: application/json"

-d '{"props" : { "n_val" : 4 } }'

pretty-print JSON output

Riak Usage – Examples
Working with Data

 Storing a plain text into bucket foo using a generated key:

curl -i -H "Content-Type: plain/text"

-d "My text" http://localhost:10011/riak/foo/

 Storing a JSON file into bucket <login>_artists with key Bruce:

curl -i -H "Content-Type: application/json"

-d '{"name":"Bruce"}'

http://localhost:10011/riak/<login>_artists/Bruce

 Getting an object:
curl

http://localhost:10011/riak/<login>_artists/Bruce

HTTP POST

HTTP GET

Riak Usage – Examples
Working with Data

 Updating an object:
curl -i -X PUT -H "Content-Type: application/json"

-d '{"name":"Bruce", "nickname":"The Boss"}'

http://localhost:10011/riak/<login>_artists/Bruce

curl http://localhost:10011/riak/<login>_artists/Bruce

 Deleting an object:
curl -i -X DELETE

http://localhost:10011/riak/<login>_artists/Bruce

curl http://localhost:10011/riak/<login>_artists/Bruce

check the value

HTTP PUT

HTTP DELETE

Riak Links

 Allow to create relationships between objects
 Like, e.g., foreign keys in relational databases, or associations in UML

 Attached to objects via Link header

 Add albums and links to the performer:

curl -H "Content-Type: text/plain"

-H 'Link: </riak/<login>_artists/Bruce>; riaktag="performer"'

-d "The River"

http://localhost:10011/riak/<login>_albums/TheRiver

curl -H "Content-Type: text/plain"

-H 'Link: </riak/<login>_artists/Bruce>; riaktag="performer"'

-d "Born To Run"

http://localhost:10011/riak/<login>_albums/BornToRun

curl -v http://localhost:10011/riak/<login>_albums/TheRiver

check the links-v = more talkative

Riak Links

 Find the artist who performed album The River
curl -i

http://localhost:10011/riak/<login>_albums/TheRiver/<login>_art
ists,performer,1

 Restrict to bucket <login>_artists

 Restrict to tag performer

 1 = include this step to the result

Riak Links

 Which artists collaborated with the artist who performed The River
curl -i

http://localhost:10011/riak/<login>_albums/TheRiver/<login>_artists,

_,0/<login>_artists,collaborator,1

 _ = wildcard (any relationship)

 0 = do not include this step to the result

Assuming

this data

Try to create

it first!

(Optional) Assignment

 Chose your unique problem domain
 E.g., the results of football matches of various teams

 For your selected problem domain think about an
application that uses Riak buckets and Riak links

 Submit a script with respective commands for Riak +
explanatory comments

References

 Riak KV: https://docs.riak.com/riak/kv/2.1.4/

 Riak KV Search:
https://docs.riak.com/riak/kv/2.1.4/developing/usage/search/

https://docs.riak.com/riak/kv/2.1.4/
https://docs.riak.com/riak/kv/2.1.4/developing/usage/search/

