
Modern Database

Systems

Practicals: Riak

Doc. RNDr. Irena Holubova, Ph.D.
holubova@ksi.mff.cuni.cz

mailto:holubova@ksi.mff.cuni.cz

Key-value store
Riak

 Open source, distributed database
 First release: 2009

 Implementing principles from Amazon's Dynamo

 OS: Linux, BSD, Mac OS X, Solaris

 Language: Erlang, C, C++, some parts in JavaScript

 Built-in MapReduce support

 Stores keys into buckets = a namespace for keys
 Like tables in a RDBMS, directories in a file system, …

 Have a set of common properties for its content

 e.g., number of replicas

http://basho.com/riak/

http://en.wikipedia.org/wiki/File:Riak_product_logo.png
http://en.wikipedia.org/wiki/File:Riak_product_logo.png
http://basho.com/riak/

Riak Usage

 HTTP – default interface
 GET (retrieve), PUT (update), POST (create), DELETE (delete)

 Other interfaces: Protocol Buffers, Erlang interface

 We will use HTTP via curl (curl --help)

 Keys and buckets in Riak:
 Keys are stored in buckets (= namespaces) with common properties

 n_val – replication factor

 allow_mult – allowing concurrent updates

 …

 If a key is stored into a non-existing bucket, it is created

 Keys may be user-specified or generated by Riak

 Paths:
 /riak/<bucket>

 /riak/<bucket>/<key>

a particular bucket

a key in a bucket

Riak Usage

 Note: If you use the school installation,

note that anyone can access anything. So:

Use your own bucket names (check if they

exist)

 Prefix all the bucket names with your <login>

Save all your command

Basic operations on objects

 Create: POST or PUT methods
 Inserts a key-value pair into a given bucket

 Key is specified manually, or will be generated
automatically

 Read: GET method
 Retrieves a key-value pair from a given bucket

 Update: PUT method
 Updates a key-value pair in a given bucket

 Delete: DELETE method
 Removes a key-value pair from a given bucket

HTTP API

 cURL tool
 Allows to transfer data from / to a server using HTTP (or other

supported protocols)

 Options
 -X command, --request command

 HTTP request method to be used (GET, …)

 -d data, --data data

 Data to be sent to the server (implies the POST method)

 -H header, --header header

 Extra headers to be included when sending the request

 -i, --include

 Prints both headers and (not just) body of a response

Riak Usage – Examples
Working with Buckets

 List all the buckets:
curl http://localhost:10011/riak?buckets=true

 Get properties of bucket foo:

curl http://localhost:10011/riak/foo/ |

python -mjson.tool

 Get all keys in bucket foo (check the difference):

curl http://localhost:10011/riak/foo?keys=true

 Change properties of bucket foo:

curl -X PUT http://localhost:10011/riak/foo

-H "Content-Type: application/json"

-d '{"props" : { "n_val" : 4 } }'

pretty-print JSON output

Riak Usage – Examples
Working with Data

 Storing a plain text into bucket foo using a generated key:

curl -i -H "Content-Type: plain/text"

-d "My text" http://localhost:10011/riak/foo/

 Storing a JSON file into bucket <login>_artists with key Bruce:

curl -i -H "Content-Type: application/json"

-d '{"name":"Bruce"}'

http://localhost:10011/riak/<login>_artists/Bruce

 Getting an object:
curl

http://localhost:10011/riak/<login>_artists/Bruce

HTTP POST

HTTP GET

Riak Usage – Examples
Working with Data

 Updating an object:
curl -i -X PUT -H "Content-Type: application/json"

-d '{"name":"Bruce", "nickname":"The Boss"}'

http://localhost:10011/riak/<login>_artists/Bruce

curl http://localhost:10011/riak/<login>_artists/Bruce

 Deleting an object:
curl -i -X DELETE

http://localhost:10011/riak/<login>_artists/Bruce

curl http://localhost:10011/riak/<login>_artists/Bruce

check the value

HTTP PUT

HTTP DELETE

Riak Links

 Allow to create relationships between objects
 Like, e.g., foreign keys in relational databases, or associations in UML

 Attached to objects via Link header

 Add albums and links to the performer:

curl -H "Content-Type: text/plain"

-H 'Link: </riak/<login>_artists/Bruce>; riaktag="performer"'

-d "The River"

http://localhost:10011/riak/<login>_albums/TheRiver

curl -H "Content-Type: text/plain"

-H 'Link: </riak/<login>_artists/Bruce>; riaktag="performer"'

-d "Born To Run"

http://localhost:10011/riak/<login>_albums/BornToRun

curl -v http://localhost:10011/riak/<login>_albums/TheRiver

check the links-v = more talkative

Riak Links

 Find the artist who performed album The River
curl -i

http://localhost:10011/riak/<login>_albums/TheRiver/<login>_art
ists,performer,1

 Restrict to bucket <login>_artists

 Restrict to tag performer

 1 = include this step to the result

Riak Links

 Which artists collaborated with the artist who performed The River
curl -i

http://localhost:10011/riak/<login>_albums/TheRiver/<login>_artists,

_,0/<login>_artists,collaborator,1

 _ = wildcard (any relationship)

 0 = do not include this step to the result

Assuming

this data

Try to create

it first!

(Optional) Assignment

 Chose your unique problem domain
 E.g., the results of football matches of various teams

 For your selected problem domain think about an
application that uses Riak buckets and Riak links

 Submit a script with respective commands for Riak +
explanatory comments

References

 Riak KV: https://docs.riak.com/riak/kv/2.1.4/

 Riak KV Search:
https://docs.riak.com/riak/kv/2.1.4/developing/usage/search/

https://docs.riak.com/riak/kv/2.1.4/
https://docs.riak.com/riak/kv/2.1.4/developing/usage/search/

