
Modern Database

Systems

MapReduce

Doc. RNDr. Irena Holubova, Ph.D.
Irena.Holubova@matfyz.cuni.cz

mailto:Irena.Holubova@matfyz.cuni.cz

MapReduce Framework

 A programming model + implementation

 Developed by Google in 2008
 To replace old, centralized index structure

 Distributed, parallel computing on large data

Google: “A simple and powerful interface that enables automatic
parallelization and distribution of large-scale computations,
combined with an implementation of this interface that achieves
high performance on large clusters of commodity PCs.”

 Programming model in general:
 Mental model a programmer has about execution of application

 Purpose: improve programmer's productivity

 Evaluation: expressiveness, simplicity, performance

Programming Models

 Von Neumann model
 Executes a stream of instructions (machine code)
 Instructions can specify

 Arithmetic operations
 Data addresses
 Next instruction to execute
 …

 Complexity
 Billions of data locations and millions of instructions
 Manages with:

 Modular design
 High-level programming languages

Programming Models

 Parallel programming models
 Message passing

 Independent tasks encapsulating local data
 Tasks interact by exchanging messages

 Shared memory
 Tasks share a common address space
 Tasks interact by reading and writing from/to this space

 Asynchronously

 Data parallelization
 Data are partitioned across tasks
 Tasks execute a sequence of independent operations

MapReduce Framework

 Divide-and-conquer paradigm
 Map breaks down a problem into sub-problems

 Processes a key/value pair to generate a set of intermediate
key/value pairs

 Reduce receives and combines the sub-solutions to solve the
problem

 Processes intermediate values associated with the same
intermediate key

 Many real-world tasks can be expressed this way
 Programmer focuses on map/reduce code

 Framework cares about data partitioning, scheduling execution
across machines, handling machine failures, managing inter-
machine communication, …

MapReduce
A Bit More Formally

 Map
 Input: a key/value pair

 Output: a set of intermediate key/value pairs
 Usually different domain

 (k1,v1) → list(k2,v2)

 Reduce
 Input: an intermediate key and a set of all values for

that key

 Output: a possibly smaller set of values
 The same domain

 (k2,list(v2)) → (k2,possibly smaller list(v2))

MapReduce
Example: Word Frequency

map(String key, String value):

// key: document name

// value: document contents

for each word w in value:

EmitIntermediate(w, "1");

reduce(String key, Iterator values):

// key: a word

// values: a list of counts

int result = 0;

for each v in values:

result += ParseInt(v);

Emit(key, AsString(result));

MapReduce
Example: Word Frequency

MapReduce
More Examples

 distributed grep
 Map: emits <word, line number> if it matches a supplied pattern

 Reduce: identity

 URL access frequency
 Map: processes web logs, emits <URL, 1>

 Reduce: sums values and emits <URL, sum>

 reverse web-link graph
 Map: <target, source> for each link to a target URL found in a

page named source

 Reduce: concatenates the list of all source URLs associated with
a given target URL <target, list(source)>

MapReduce
More Examples

 term vector per host
 “Term vector” summarizes the most important words that occur in

a document or a set of documents

 Map: emits <hostname, term vector> for each input document
 The hostname is extracted from the URL of the document

 Reduce: adds the term vectors together, throws away infrequent
terms

 inverted index
 Map: parses each document, emits <word, document ID>

 Reduce: sorts the corresponding document IDs, emits <word,
list(document ID)>

 distributed sort
 Map: extracts the key from each record, and emits <key, record>

 Reduce: emits all pairs unchanged

MapReduce
Application Parts

 Input reader
 Divides the input into appropriate size 'splits'

 Each assigned to a single Map function

 Reads data from stable storage
 e.g., a distributed file system

 Generates key/value pairs

 Map function
 User-specified processing of key/value pairs

 Partition function
 Map function output is allocated to a reducer

 Partition function is given the key (output of Map) and the
number of reducers and returns the index of the desired reducer
 Default is to hash the key and use the hash value modulo the

number of reducers

MapReduce
Application Parts

 Compare function
 Sorts the input for the Reduce function

 Reduce function
 User-specified processing of key/values

 Output writer
 Writes the output of the Reduce function to stable storage

 e.g., a distributed file system

MapReduce
Execution (Google) – Step 1

1. MapReduce library in the user program

splits the input files into M pieces

 Typically 16 – 64 MB per piece

 Controllable by the user via optional

parameter

2. It starts copies of the program on a

cluster of machines

MapReduce
Execution – Step 2

 Master = a special copy of the program

 Workers = other copies that are assigned

work by master

 M Map tasks and R Reduce tasks to

assign

 Master picks idle workers and assigns

each one a Map task (or a Reduce task)

MapReduce
Execution – Step 3

 A worker who is assigned a Map task:

Reads the contents of the corresponding input
split

Parses key/value pairs out of the input data

Passes each pair to the user-defined Map
function

 Intermediate key/value pairs produced by the
Map function are buffered in memory

MapReduce
Execution – Step 4

 Periodically, the buffered pairs are written
to local disk

Partitioned into R regions by the partitioning
function

 Locations of the buffered pairs on the local
disk are passed back to the master

 It is responsible for forwarding the locations to
the Reduce workers

MapReduce
Execution – Step 5

 Reduce worker is notified by the master about data
locations

 It uses remote procedure calls to read the buffered data
from local disks of the Map workers

 When it has read all intermediate data, it sorts it by the
intermediate keys
 Typically many different keys map to the same Reduce task

 If the amount of intermediate data is too large, an external sort
is used

MapReduce
Execution – Step 6

 A Reduce worker iterates over the sorted

intermediate data

 For each intermediate key encountered:

 It passes the key and the corresponding set of

intermediate values to the user's Reduce function

 The output is appended to a final output file for this

Reduce partition

MapReduce
Function combine

 After a map phase, the mapper transmits over
the network the entire intermediate data file to
the reducer

 Sometimes this file is highly compressible

 User can specify function combine
 Like a reduce function

 It is run by the mapper before passing the job to the
reducer
 Over local data

MapReduce
Counters

 Can be associated with any action that a
mapper or a reducer does

 In addition to default counters
 e.g., the number of input and output key/value

pairs processed

 User can watch the counters in real time to
see the progress of a job

MapReduce
Fault Tolerance

 A large number of machines process a large

number of data → fault tolerance is necessary

 Worker failure

 Master pings every worker periodically

 If no response is received in a certain amount of time,

master marks the worker as failed

 All its tasks are reset back to their initial idle state →

become eligible for scheduling on other workers

MapReduce
Fault Tolerance

 Master failure
 Strategy A:

 Master writes periodic checkpoints of the master data
structures

 If it dies, a new copy can be started from the last
checkpointed state

 Strategy B:
 There is only a single master → its failure is unlikely

 MapReduce computation is simply aborted if the master fails

 Clients can check for this condition and retry the MapReduce
operation if they desire

MapReduce
Stragglers

 Straggler = a machine that takes an unusually
long time to complete one of the map/reduce
tasks in the computation
 Example: a machine with a bad disk

 Solution:
 When a MapReduce operation is close to completion,

the master schedules backup executions of the
remaining in-progress tasks

 A task is marked as completed whenever either the
primary or the backup execution completes

MapReduce
Task Granularity

 M pieces of Map phase and R pieces of Reduce phase
 Ideally both much larger than the number of worker machines

 How to set them?

 Master makes O(M + R) scheduling decisions

 Master keeps O(M * R) status information in memory
 For each Map/Reduce task: state (idle/in-progress/completed)

 For each non-idle task: identity of worker machine

 For each completed Map task: locations and sizes of the R intermediate
file regions

 R is often constrained by users
 The output of each Reduce task ends up in a separate output file

 Practical recommendation (Google):
 Choose M so that each individual task is roughly 16 – 64 MB of input

data

 Make R a small multiple of the number of worker machines we expect to
use

Real-World Example (Google)
Cluster Configuration

 1,800 machines

 Each machine:
 2x 2GHz Intel Xeon processor

 With Hyper-Threading enabled

 4GB memory

 Approx. 1-1.5GB reserved by other tasks

 2x 160GB IDE disks

 Gigabit Ethernet link

 Arranged in a two-level tree-shaped switched network
with approximately 100-200 Gbps of aggregate
bandwidth available at the root

Real-World Example 1
grep

 Search through approx. 1 terabyte of data looking for a
particular pattern
 Rare three-character pattern

 Present in 92,337 records

 M = 15,000

 R = 1

 1,764 workers assigned

 Entire computation?
 150 seconds

 About a minute of start-up overhead

Real World Example 2
sort

 Sorting of approx. 1 terabyte of data

 Map: 3-line function
 Extracts a 10-byte sorting key from a text line and emits the key

and the original text line

 Reduce: identity

 M = 15,000

 R = 4,000

 About 1,700 workers assigned

 Entire computation?
 891 seconds

 5 stragglers increase the time of 44%

MapReduce Criticism
David DeWitt and Michael Stonebraker – 2008

1. MapReduce is a step backwards in database access based on
 Schema describing data structure

 Separating schema from the application

 Advanced query languages

2. MapReduce is a poor implementation
 Instead of indices it uses brute force

3. MapReduce is not novel (ideas more than 20 years old and
overcome)

4. MapReduce is missing features common in DBMSs
 Indices, transactions, integrity constraints, views, …

5. MapReduce is incompatible with applications implemented over
DBMSs

 Data mining, business intelligence, …

 *1943

 Computer scientist – database researcher

 Academic prototypes form the core of various
databases
 Ingres, Postgres, C-store (Vertica), H-store (VoltDB),

SciDB, …

 2015 – Turing award (ACM)
 “Nobel Prize of computing”

 For concepts and practices underlying modern
database systems

 2016 – Tim Berners Lee
 For inventing the WWW

Note: Who is Michael Stonebraker?

http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiol7SV2bPTAhXCKJoKHZXPD8EQjRwIBw&url=http%3A%2F%2Fwww.heidelberg-laureate-forum.org%2Fblog%2Fawards%2Fturing-award%2F&psig=AFQjCNEz_Xc0wa42RSnRHJPwQ5_9Zo0Lrg&ust=1492800435375030
http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiol7SV2bPTAhXCKJoKHZXPD8EQjRwIBw&url=http%3A%2F%2Fwww.heidelberg-laureate-forum.org%2Fblog%2Fawards%2Fturing-award%2F&psig=AFQjCNEz_Xc0wa42RSnRHJPwQ5_9Zo0Lrg&ust=1492800435375030

End of MapReduce?

 FaceBook used MapReduce in 2010

 Hadoop

but…

 Google has shifted towards: Google Cloud

DataFlow

 Based on cloud and stream data processing

 Idea: no need to maintain complex infrastructure

 Data can be easily read, transformed and analyzed in a cloud

https://cloud.google.com/dataflow/

https://cloud.google.com/dataflow/

Hadoop MapReduce

 MapReduce requires:
 Distributed file system

 Engine that can distribute, coordinate, monitor and
gather the results

 Hadoop: HDFS + JobTracker + TaskTracker
 JobTracker (master) = scheduler

 TaskTracker (slave per node) – is assigned a Map or
Reduce (or other operations)
 Map or Reduce run on a node → so does the TaskTracker

 Each task is run on its own JVM

MapReduce
JobTracker (Master)

 Like a scheduler:

1. A client application is sent to the JobTracker

2. It “talks” to the NameNode (= HDFS master) and

locates the TaskTracker (Hadoop client) near the

data

3. It moves the work to the chosen TaskTracker node

MapReduce
TaskTracker (Client)

 Accepts tasks from JobTracker
 Map, Reduce, Combine, …

 Input, output paths

 Has a number of slots for the tasks
 Execution slots available on the machine (or machines on the

same rack)

 Spawns a separate JVM for execution of a task

 Indicates the number of available slots through the
hearbeat message to the JobTracker
 A failed task is re-executed by the JobTracker

Job Launching
Job configuration

 For launching program:
1. Create a Job to define a job

 Using class Configuration

2. Submit Job to the cluster and wait for completion

 Job involves:
 Classes implementing Mapper and Reducer interfaces

 Job.setMapperClass()

 Job.setReducerClass()

 Job outputs
 Job.setOutputKeyClass()

 Job.setOutputValueClass()

 Other options:
 Job.setNumReduceTasks()

 …

Job Launching
Job

 waitForCompletion()– waits (blocks)

until the job finishes

 submit() – does not block

 monitorAndPrintJob() – monitor a job

and print status in real-time as progress is

made and tasks fail

Mapper

 The user provides an instance of Mapper
 Implements interface Mapper

 Overrides function map

 Emits (k2,v2) using context.write(k2, v2)

 Exists in separate process from all other instances of
Mapper
 No data sharing

void map (Object key,

Text value,

Context context)

input key

input value

collects output

keys and values

public static class TokenizerMapper

extends Mapper<Object, Text, Text, IntWritable>{

private final static IntWritable one = new IntWritable(1);

private Text word = new Text();

public void map (Object key, Text value, Context context)

throws IOException, InterruptedException {

StringTokenizer itr

= new StringTokenizer(value.toString());

while (itr.hasMoreTokens()) {

word.set(itr.nextToken());

context.write(word, one);

}

}

}

Reducer

reduce(Text key,

Iterable<IntWritable> values,

Context context)

 Keys & values sent to one partition all go to the

same reduce task

 Calls are sorted by key

public static class IntSumReducer

extends Reducer<Text,IntWritable,Text,IntWritable> {

private IntWritable result = new IntWritable();

public void reduce (Text key,

Iterable<IntWritable> values,

Context context

)

throws IOException, InterruptedException {

int sum = 0;

for (IntWritable val : values) {

sum += val.get();

}

result.set(sum);

context.write(key, result);

}

}

Basic Design Questions to Ask

 From where will my input come?

 How is my input structured?

 Mapper and Reducer classes

 Do I need to count anything while job is in
progress?

 Where is my output going?

 Executor class
 Must I block, waiting for job completion?

Resources

 Jeffrey Dean and Sanjay Ghemawat: MapReduce: Simplified Data
Processing on Large Clusters, Google, Inc.
 http://labs.google.com/papers/mapreduce.html

 Google Code: Introduction to Parallel Programming and MapReduce
 code.google.com/edu/parallel/mapreduce-tutorial.html

 Apache Hadoop: http://hadoop.apache.org/

 Hadoop Map/Reduce Tutorial
 http://hadoop.apache.org/docs/r0.20.2/mapred_tutorial.html

 Open Source MapReduce
 http://lucene.apache.org/hadoop/

 Hadoop: The Definitive Guide, by Tom White, 2nd edition, Oreilly’s, 2010

 David DeWitt and Michael Stonebraker: Relational Database Experts
Jump The MapReduce Shark

http://labs.google.com/papers/mapreduce.html
http://code.google.com/edu/parallel/mapreduce-tutorial.html
http://hadoop.apache.org/
http://hadoop.apache.org/docs/r0.20.2/mapred_tutorial.html
http://lucene.apache.org/hadoop/

