Modern Database

Systems

MapReduce

Doc. RNDr. Irena Holubova, Ph.D.

Irena.Holubova@matfyz.cuni.cz

mailto:Irena.Holubova@matfyz.cuni.cz

" J Google
MapReduce Framework

m A programming model + implementation
m Developed by Google in 2008

To replace old, centralized index structure
m Distributed, parallel computing on large data

Google: “A simple and powerful interface that enables automatic
parallelization and distribution of large-scale computations,
combined with an implementation of this interface that achieves
high performance on large clusters of commodity PCs.”

O In general:
Mental model a programmer has about execution of application
Purpose: improve programmer's productivity
Evaluation: expressiveness, simplicity, performance

Programming Models

Executes a stream of instructions (machine code)

Instructions can specify
= Arithmetic operations
m Data addresses
= Next instruction to execute
|

Complexity
m Billions of data locations and millions of instructions

m Manages with:
Modular design
High-level programming languages

Programming Models

m Parallel programming models

m Independent tasks encapsulating local data
m Tasks interact by exchanging messages

m Tasks share a common address space

m Tasks interact by reading and writing from/to this space
Asynchronously

m Data are partitioned across tasks
m Tasks execute a sequence of independent operations

" J
MapReduce Framework

m Divide-and-conquer paradigm
breaks down a problem into sub-problems

m Processes a key/value pair to generate a set of intermediate
keyl/value pairs

receives and combines the sub-solutions to solve the
problem

m Processes intermediate values associated with the same
intermediate key

m Many real-world tasks can be expressed this way
Programmer focuses on map/reduce code

Framework cares about data partitioning, scheduling execution
across machines, handling machine failures, managing inter-
machine communication, ...

MapReduce
A Bit More Formally

O
Input: a key/value pair
Output: a set of intermediate key/value pairs
s Usually different domain
(ky,vq) — list(k,,V,)
O

Input: an intermediate key and a set of all values for
that key

Output: a possibly smaller set of values
m The same domain

(k,,list(v,)) — (Kk,,possibly smaller list(v,))

MapReduce

Example: Word Frequency

map (String key, String value):
// key:
// value:

for each word w in value:
EmitIntermediate (w, "1");

reduce (String key, Iterator wvalues):
// kevy:
// values:
int result = 0;
for each v in wvalues:
result += ParselInt (v);
Emit (key, AsString(result));

"
MapReduce

Example: Word Frequency

Input Splitting Mapping Shuffling Reducing Final result

Bear,1 ——»{ Bear, 2
Deer,1 ——» Bear, 1
Deer Bear River ——»{ Bear, 1

River, 1
/ Car, 1
Car,1 ——» Car,3 ——» Bear?2
Deer Bear River Car, 1 Car, 1 Car, 3
Car Car River ——» CarCarRiver —— = Car, 1 Deer, 2
Deer Car Bear River, 1 River, 2
Deer,1 — = Deer,2 —»

Deer, 1
Deer, 1
Deer CarBear ——» Car, 1 o
Bear, 1 River,1 ——»{ River, 2

River, 1

"
MapReduce

More Examples

N
Map: emits <word, line number> if it matches a supplied pattern
Reduce: identity

O
Map: processes web logs, emits <URL, 1>
Reduce: sums values and emits <URL, sum>

O

Map: <target, source> for each link to a target URL found in a
page named source

Reduce: concatenates the list of all source URLSs associated with
a given target URL <target, list(source)>

" J
MapReduce

More Examples

“Term vector” summarizes the most important words that occur in
a document or a set of documents

Map: emits <hostname, term vector> for each input document
m The hostname is extracted from the URL of the document

Reduce: adds the term vectors together, throws away infrequent
terms

Map: parses each document, emits <word, document ID>

Reduce: sorts the corresponding document IDs, emits <word,
list(document ID)>

Map: extracts the key from each record, and emits <key, record>
Reduce: emits all pairs unchanged

MapReduce
Application Parts

Divides the input into appropriate size 'splits'
m Each assigned to a single Map function
Reads data from stable storage
m e.g., a distributed file system
Generates key/value pairs

User-specified processing of key/value pairs

Map function output is allocated to a reducer

Partition function is given the key (output of Map) and the
number of reducers and returns the index of the desired reducer

m Default is to hash the key and use the hash value modulo the
number of reducers

MapReduce
Application Parts

O

Sorts the input for the Reduce function
O

User-specified processing of key/values
O

Writes the output of the Reduce function to stable storage
m e.g., a distributed file system

" J
MapReduce

Execution () —

1. MapReduce library in the user program
splits the input files into [Vl pieces
Typically 16 — 64 MB per piece
Controllable by the user via optional
parameter

2. It starts copies of the program on a
cluster of machines

" J
MapReduce

Execution —

. = a special copy of the program

m = other copies that are assigned
work by master

m |/ Map tasks and R Reduce tasks to
assign

m Master picks idle workers and assigns
each one a Map task (or a Reduce task)

User
Program

(1) fork : K
) : (1) fark 1) fork

= Que)
: ~ @)

N @ assign (]
- .assign reduce . g

split O

(6) write

_ output
split 1 (5) remote read file O

file 1

split 4

worker

Spli[2 3) read L (4) local write
WOIKer -
. output

Input Map Intermediate files Reduce Output
files phase (on local disks) phase files

MapReduce

Execution —

m A worker who Is assigned a Map task:
Reads the contents of the corresponding input
split
Parses key/value pairs out of the input data

Passes each pair to the user-defined Map
function

Intermediate key/value pairs produced by the
Map function are buffered in memory

User
Program

(1) fork : K
) : (1) fark 1) fork

. ()
(2) assign

3 assign reduce .
.7 map

split O

split 1

(5) remote read

split 2

split 3

3) read (4) local write
worker "

split 4

Input
files

Map Intermediate files
phase (on local disks)

©write 1 qutput

file O

output
file 1

Reduce Output
phase files

" J
MapReduce

Execution —

m Periodically, the buffered pairs are written
to local disk
Partitioned into R regions by the partitioning
function
m Locations of the buffered pairs on the local
disk are passed back to the master

It is responsible for forwarding the locations to
the Reduce workers

User
Program

(1) fork .~ . R
U () ik 1) fork

. (2)
(2). ' assi en
_assign reduce .

map

split O

split 1

Ul

(5) remote read

split 2

split 3

split 4

Input
files

worker

3) read (4) local write
worker "

Map [ntermediate files
phase (on local disks)

©)write | qutput

file O

output
file 1

Reduce Output
phase files

" J
MapReduce

Execution —

Reduce worker is notified by the master about data
locations

It uses remote procedure calls to read the buffered data
from local disks of the Map workers

When it has read all intermediate data, it sorts it by the

Intermediate keys
Typically many different keys map to the same Reduce task

If the amount of intermediate data is too large, an external sort
IS used

User
Program

(1) fork .~ . R
U () ik 1) fork

. (2)
(2). ' assi en
_assign reduce .

map

split O

(6) write

ﬂ output

split 1 (5) remote read file O

file 1

split 4

worker

Spli[2 3) read « (4) local write
WOTIKer -
; output

Input Map [ntermediate files Reduce Output
files phase (on local disks) phase files

" J
MapReduce

Execution —

m A Reduce worker iterates over the sorted
Intermediate data

m For each intermediate key encountered:

It passes the key and the corresponding set of
Intermediate values to the user's Reduce function

The output is appended to a final output file for this
Reduce partition

split O

split 1

split 2

User
Program

(1) fork : K
) : (1) fark 1) fork

. (2)
(2). - ' ass_ign
.assign reduce .

map

(5) remote read

(4) local write

split 3

split 4

Input
files

worker

3) read
worker

Map
phase

Intermediate files
(on local disks)

Reduce
phase

4

(6) write

output
file O

output
file 1

Output
files

" J
MapReduce

Function

m After a map phase, the mapper transmits over
the network the entire intermediate data file to

the reducer
m Sometimes this file is highly compressible

m User can specify function
Like a reduce function

It is run by the mapper before passing the job to the
reducer
m Over local data

" J
MapReduce

m Can be associated with any action that a
mapper or a reducer does

In addition to default counters

= €.g., the number of input and output key/value
pairs processed

m User can watch the counters in real time to
see the progress of a job

" J
MapReduce

m Alarge number of machines process a large
number of data — fault tolerance is necessary

Master pings every worker periodically

If no response is received in a certain amount of time,
master marks the worker as failed

All its tasks are reset back to their initial idle state —
become eligible for scheduling on other workers

"
MapReduce

Fault Tolerance

Strategy A:

m Master writes periodic checkpoints of the master data
structures

m If it dies, a new copy can be started from the last
checkpointed state
Strategy B:
m There is only a single master — its failure is unlikely
s MapReduce computation is simply aborted if the master fails

m Clients can check for this condition and retry the MapReduce
operation if they desire

MapReduce
Stragglers

N = a machine that takes an unusually

long time to complete one of the map/reduce
tasks in the computation

Example: a machine with a bad disk

m Solution:
When a MapReduce operation is close to completion,
the master schedules of the

remaining in-progress tasks

Atask Iis marked as completed whenever either the
primary or the backup execution completes

MapReduce

Task Granularity

0 pieces of Map phase and R pieces of Reduce phase
|deally both much larger than the number of worker machines

m Master makes scheduling decisions

m Master keeps status information in memory
For each Map/Reduce task: state (idle/in-progress/completed)
For each non-idle task: identity of worker machine

For each completed Map task: locations and sizes of the R intermediate
file regions

N IS often constrained by users
The output of each Reduce task ends up in a separate output file
m Practical recommendation (Google):

Choose VI so that each individual task is roughly 16 — 64 MB of input
data

Make R a small multiple of the number of worker machines we expect to
use

" J
Real-World Example (Google)

Cluster Configuration

m 1,800 machines

m Each machine:

2x 2GHz Intel Xeon processor
s With Hyper-Threading enabled

4GB memory
m Approx. 1-1.5GB reserved by other tasks

2x 160GB IDE disks
Gigabit Ethernet link
m Arranged in a two-level tree-shaped switched network
with approximately 100-200 Gbps of aggregate
bandwidth available at the root

" S
Real-World Example 1

m Search through approx. 1 terabyte of data looking for a
particular pattern
Rare three-character pattern
Present in 92,337 records

M = 15,000
R=1
1,764 workers assigned

Entire computation?
150 seconds
About a minute of start-up overhead

" J
Real World Example 2

m Sorting of approx. 1 terabyte of data

m Map: 3-line function

Extracts a 10-byte sorting key from a text line and emits the key
and the original text line

Reduce: identity
M = 15,000
R =4,000

About 1,700 workers assigned

Entire computation?
891 seconds
5 stragglers increase the time of 44%

MapReduce Criticism
David DeWitt and Michael Stonebraker — 2008

1. MapReduce is a step backwards in database access based on
Schema describing data structure
Separating schema from the application
Advanced query languages
2. MapReduce is a poor implementation
Instead of indices it uses brute force
3. MapReduce is not novel (ideas more than 20 years old and
overcome)
4. MapReduce is missing features common in DBMSs
Indices, transactions, integrity constraints, views, ...

5. MapReduce is incompatible with applications implemented over
DBMSs

Data mining, business intelligence, ...

" S
Note: Who Is Michael Stonebraker?

m 1943
m Computer scientist — database researcher

m Academic prototypes form the core of various
databases
Ingres, Postgres, C-store (Vertica), H-store (VoltDB),
SciDB, ...
m 2015 — Turing award (ACM)

“Nobel Prize of computing”

For concepts and practices underlying modern
database systems

2016 — Tim Berners Lee _— B
m For inventing the WWW

http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiol7SV2bPTAhXCKJoKHZXPD8EQjRwIBw&url=http%3A%2F%2Fwww.heidelberg-laureate-forum.org%2Fblog%2Fawards%2Fturing-award%2F&psig=AFQjCNEz_Xc0wa42RSnRHJPwQ5_9Zo0Lrg&ust=1492800435375030
http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiol7SV2bPTAhXCKJoKHZXPD8EQjRwIBw&url=http%3A%2F%2Fwww.heidelberg-laureate-forum.org%2Fblog%2Fawards%2Fturing-award%2F&psig=AFQjCNEz_Xc0wa42RSnRHJPwQ5_9Zo0Lrg&ust=1492800435375030

" J
End of MapReduce?

m FaceBook used MapReduce in 2010
Hadoop

but...

m Google has shifted towards: Google Cloud
DataFlow
Based on cloud and stream data processing

ldea: no need to maintain complex infrastructure
m Data can be easily read, transformed and analyzed in a cloud

https://cloud.qgoogle.com/dataflow/

https://cloud.google.com/dataflow/

" J
Hadoop MapReduce

m MapReduce requires:
Distributed file system

Engine that can distribute, coordinate, monitor and
gather the results

m Hadoop: HDFS + JobTracker + TaskTracker

(master) = scheduler

(slave per node) — is assigned a Map or
Reduce (or other operations)

s Map or Reduce run on a node — so does the TaskTracker

m Each task is run on its own JVM
 ThEmRamE)s
maplheduce

"
MapReduce

(Master)

m Like a scheduler:
A client application is sent to the JobTracker
It “talks™ to the NameNode (= HDFS master) and
locates the TaskTracker (Hadoop client) near the
data
It moves the work to the chosen TaskTracker node

" J
MapReduce

(Client)

m Accepts tasks from JobTracker
Map, Reduce, Combine, ...
Input, output paths

m Has a number of slots for the tasks

Execution slots available on the machine (or machines on the
same rack)

m Spawns a separate JVM for execution of a task

m Indicates the number of available slots through the
message to the JobTracker

A failed task is re-executed by the JobTracker

Submit Job

M1

)

/

InputFormat

RAM

splitl
split2
split3

Input .
file split4
splits

Task
Tracker

partition()
combine{}

_ Task
Tracker

_ Task
Tracker

M2

M3

Job
Tracker |

AssignTasktrackers

Co-ordinate map and reduce phases

Provide Job progress info

R1

Task
Tracker

DFS

Cutput
file1

/Task

Tracker sort

Nread

reduce{)

S

V

~

OutputFormat

DFS

Output
file2

X

!

Map Phase

|

Reduce Phase

Job Launching

Job configuration

m For launching program:
Create a to define a job
s Using class Configuration
Submit Job to the cluster and wait for completion

N Involves:

Classes implementing Mapper and Reducer interfaces
m Job.setMapperClass ()

m Job.setReducerClass ()

Job outputs

m Job.setOutputKeyClass ()

m Job.setOutputValueClass ()

Other options:

m Job .setNumReduceTasks ()
[|

Job Launching

Job

B waltForCompletion ()— waits (blocks)
until the job finishes

m submit () —does not block

B monitorAndPrintJob () — monitor a job

and print status in real-time as progress IS
made and tasks fall

" JJE
Mapper

m The user provides an instance of Mapper

Implements interface Mapper
m Overrides function map
Emits (k,,v,) using context.write (k2, v2)

m EXxists in separate process from all other instances of
Mapper
No data sharing

% input key

void (Object key, e
Text value, ————— inputvalue

Context context)
collects output
keys and values

public static class TokenizerMapper
extends <Object, Text, Text, IntWritable>{

private final static IntWritable one = new IntWritable(1l) ;
private Text word = new Text ()

public void (Object , Text , Context context)
throws IOException, InterruptedException {
StringTokenizer itr
= new StringTokenizer (value.toString())
while (itr.hasMoreTokens()) {
word.set (itr.nextToken()) ;
context.write (word, one);

" A
Reducer

reduce (Text key,
Iterable<IntWritable> wvalues,

Context context)

m Keys & values sent to one partition all go to the
same reduce task

m Calls are sorted by key

public static class IntSumReducer
extends <Text,IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();

public void (Text ,
Iterable<IntWritable> ,
Context
)
throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : wvalues) {
sum += val.get() ;
}
result.set (sum) ;
context.write (key, result);

" J
Basic Design Questions to Ask

m From where will my input come?
m How Is my input structured?
m Mapper and Reducer classes
m Do | need to count anything while job is In
progress?
m Where Is my output going?
m Executor class
Must | block, waiting for job completion?

" A
Resources

m Jeffrey Dean and Sanjay Ghemawat: MapReduce: Simplified Data
Processing on Large Clusters, Google, Inc.

http://labs.google.com/papers/mapreduce.html
m Google Code: Introduction to Parallel Programming and MapReduce
code.google.com/edu/parallel/mapreduce-tutorial.html
m Apache Hadoop: hitp://hadoop.apache.org/
m Hadoop Map/Reduce Tutorial
http://hadoop.apache.org/docs/r0.20.2/mapred _tutorial.html
m Open Source MapReduce
http://lucene.apache.org/hadoop/
m Hadoop: The Definitive Guide, by Tom White, 2nd edition, Oreilly’s, 2010

m David DeWitt and Michael Stonebraker: Relational Database Experts
Jump The MapReduce Shark

http://labs.google.com/papers/mapreduce.html
http://code.google.com/edu/parallel/mapreduce-tutorial.html
http://hadoop.apache.org/
http://hadoop.apache.org/docs/r0.20.2/mapred_tutorial.html
http://lucene.apache.org/hadoop/

