Modern Database

Systems

HDFS

Doc. RNDr. Irena Holubova, Ph.D.

Irena.Holubova@matfyz.cuni.cz

mailto:Irena.Holubova@matfyz.cuni.cz

Big Data Related Technologies

. .

e.g., HDFS

C
Primarily NoSQL databases
And many other types

O

C
Batch
Real-time
Stream

Apache Hadoop ThEdbED

m Open-source software framework

m Running of applications on large clusters
of commodity hardware

Multi-terabyte data-sets
Thousands of nodes

m Derived from Google's MapReduce and
Google File System (GFS)

Not open-source

http://hadoop.apache.orqg/

http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/

Apache Hadoop

Modules

m Hadoop Common
Common utilities
Support for other Hadoop modules

- (HDFS) 4mm

Distributed file system
High-throughput access to application data

m Hadoop YARN

Framework for job scheduling and cluster resource management
m Hadoop

System for parallel processing of large data sets

" J
Apache Hadoop

Hadoop-related Projects

Avro — a data serialization system

Cassandra — a scalable multi-master with no single points
of failure

Chukwa — a data collection system for managing large distributed
systems

HBase — a scalable, distributed column-family that
supports structured data storage for large tables
Hive — that provides data

summarization and ad hoc querying
Mahout — scalable
Pig — high-level data-flow language and execution

ZooKeeper — high-performance for distributed
applications

"
H D FS (Hadoop Distributed File System)
YRS,

Basic Features

m Free and open source

m Crossplatform

Pure Java

Has bindings for non-Java programming
anguages

m Fault-tolerant
m Highly scalable

http://hadoop.apache.org/hdfs/
http://hadoop.apache.org/hdfs/

" S
HDFS

Fault Tolerance

m |dea: “failure is the norm rather than exception”

A HDFS instance may consist of thousands of

machines
m Each storing a part of the file system’s data

Each component has non-trivial probability of failure
— Assumption: “There is always some component
that is non-functional.”

Detection of faults
Quick, automatic recovery

" S
HDFS

Data Characteristics

m Assumes:

Streaming data access
Batch processing rather than interactive user access

m Large data sets and files

m \Write-once / read-many
A file once created, written and closed does not need to be

changed
= Or not often
This assumption simplifies coherency

m Optimal applications for this model: MapReduce, web-
crawlers, ...

" S
HDFS

NameNode, DataNodes

m Master/slave architecture
m HDFS exposes file system namespace

m File is internally split into one or more blocks
Typical block size is 64MB (or 128 MB)
L = master server that manages the file
system namespace + regulates access to files by clients
Opening/closing/renaming files and directories
Determines mapping of blocks to DataNodes

O = serves read/write requests from clients +
performs block creation/deletion and replication upon
Instructions from NameNode

Usually one per node in a cluster
Manages storage attached to the node that it runs on

HDFS Architecture
Metadata (Name, replicas, ...):
Metadatg,ops”{ Namenode /home/foo/data, 3, ...
Block ops
Read Datanodes Datanodes
! | |
Replication L
.\ Blocks
S~ \ / \ y

Rack 1 Write Rack 2

" S
HDFS

Namespace

m Hierarchical file system
Directories and files

m Create, remove, move, rename, ...

m NameNode maintains the file system

Any meta information changes to the file system are
recorded by the NameNode

m An application can specify the number of replicas
of the file needed

Replication factor of the file
The information is stored in the NameNode

" S
HDFS

Data Replication

m HDFS is designed to store very large files across
machines in a large cluster
Each file is a sequence of blocks
All blocks in the file are of the same size
m Except the last one
m Block size is configurable per file
m Blocks are replicated for fault tolerance
Number of replicas is configurable per file
m NameNode receives and from

each DataNode
BlockReport contains a list of all blocks on a DataNode

Block Replication

Namenode (Filename, numReplicas, block-ids, ...

/users/sameerp/data/part-0, r:2, {1,3}, ...
/users/sameerp/data/part-1, :3,/?,4,5},
4 N

Datanodes

" S
HDFS

Replica Placement

Placement of the replicas is critical to reliability and
performance

replica placement = to take a node's
physical location into account while scheduling tasks and
allocating storage
Needs lots of tuning and experience

ldea:
Nodes are divided into racks
Communication between racks through switches
Network bandwidth between machines on the same rack is
greater than those in different racks

NameNode determines the rack id for each DataNode

" S
HDFS

Replica Placement

m Any ideas?
m First idea: replicas should be placed on different racks
Prevents losing data when an entire rack fails
Allows use of bandwidth from multiple racks when reading data
= Multiple readers
Writes are expensive (transfer to different racks)
s We need to write to all replicas

m Common case: replication factor is 3

Replicas are placed:
m One on a node in a local rack
m One on a different node in the local rack
m One on a node in a different rack

Decreases the inter-rack write traffic

HDFS

m Stores HDFS namespace

m Uses a transaction log called to record every
change that occurs to the file system’s meta data
E.g., creating a new file, change in replication factor of a file, ..
EditLog is stored in the NameNode’s local file system

O — entire file system namespace + mapping of
blocks to files + file system properties
Stored in a file in NameNode’s local file system

Designed to be compact

m Loaded in NameNode’s memory
= 4 GB of RAM is sufficient

" S
HDFS

How NameNode Works?

m \When the filesystem starts up:
It reads the FsImage and EditLog from disk

It applies all the transactions from the EditLog to the
IN-memory representation of the Fsimage

It flushes out this new version into a new Fsimage
on disk =

It truncates the edit log
m Checkpoints are then built periodically
m Recovery = last checkpointed state

" S
HDFS

m Stores data In files in its local file system
Has no knowledge about HDFS file system

Stores each block of HDFS data in a separate file

Does not create all files in the same directory
Local file system might not be support it
Uses heuristics to determine optimal number of files per
directory
m When the file system starts up:
It generates a list of all HDFS blocks = BlockReport
It sends the report to NameNode

" S
HDFS

Failures

m Primary objective: to store data reliably In
the presence of failures

m [hree common failures:
NameNode failure

DataNode failure
Network partition

" S
HDFS

Failures

m Network partition can cause a subset of DataNodes to
lose connectivity with NameNode

NameNode detects this condition by the absence of a Heartbeat
message

NameNode marks DataNodes without HearBeat and does not
send any IO requests to them

Data registered to the failed DataNode is not available to the
HDFS
m The death of a DataNode may cause replication factor of
some of the blocks to fall below their specified value —

Also happens when replica is corrupted, hard disk fails,
replication factor is increased, ...

HDFS

API

m Java API for application to use
Python access can be used
C language wrapper for Java APl is available

m HTTP browser can be used to browse the files of a
HDFS instance

m Command line interface called the
Lets the user interact with data in the HDFS
The syntax of the commands is similar to bash
e.g., to create a directory /foodir

/bin/hadoop fs - /foodir
m Browser int/e%ce Is available to view the namespace

Hadoop file system

" A
References

m Apache Hadoop: hitp://hadoop.apache.org/
m Hadoop: The Definitive Guide, by Tom White, 2nd edition, Oreilly’s, 2010

http://hadoop.apache.org/

