
Modern Database 

Systems 

HDFS

Doc. RNDr. Irena Holubova, Ph.D.
Irena.Holubova@matfyz.cuni.cz

mailto:Irena.Holubova@matfyz.cuni.cz


Big Data Related Technologies

 Distributed file systems
 e.g., HDFS

 Distributed databases
 Primarily NoSQL databases

 And many other types

 Cloud computing

 Data analytics
 Batch

 Real-time

 Stream

 …



Apache Hadoop

 Open-source software framework

 Running of applications on large clusters 
of commodity hardware 

Multi-terabyte data-sets 

Thousands of nodes 

 Derived from Google's MapReduce and 
Google File System (GFS)

Not open-source

http://hadoop.apache.org/

http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/


Apache Hadoop
Modules

 Hadoop Common
 Common utilities 

 Support for other Hadoop modules

 Hadoop Distributed File System (HDFS)
 Distributed file system 

 High-throughput access to application data

 Hadoop YARN
 Framework for job scheduling and cluster resource management

 Hadoop MapReduce
 System for parallel processing of large data sets



Apache Hadoop
Hadoop-related Projects

 Avro – a data serialization system

 Cassandra – a scalable multi-master database with no single points 
of failure

 Chukwa – a data collection system for managing large distributed 
systems

 HBase – a scalable, distributed column-family database that 
supports structured data storage for large tables

 Hive – data warehouse infrastructure that provides data 
summarization and ad hoc querying

 Mahout – scalable machine learning and data mining library

 Pig – high-level data-flow language and execution framework for 
parallel computation

 ZooKeeper – high-performance coordination service for distributed 
applications



HDFS (Hadoop Distributed File System)

Basic Features

 Free and open source

 Crossplatform 

Pure Java

Has bindings for non-Java programming 

languages

 Fault-tolerant

 Highly scalable

http://hadoop.apache.org/hdfs/
http://hadoop.apache.org/hdfs/


HDFS
Fault Tolerance

 Idea: “failure is the norm rather than exception”
 A HDFS instance may consist of thousands of 

machines
 Each storing a part of the file system’s data

 Each component has non-trivial probability of failure

→ Assumption: “There is always some component 
that is non-functional.”
 Detection of faults

 Quick, automatic recovery



HDFS
Data Characteristics

 Assumes:
 Streaming data access

 Batch processing rather than interactive user access

 Large data sets and files

 Write-once / read-many
 A file once created, written and closed does not need to be 

changed 

 Or not often

 This assumption simplifies coherency

 Optimal applications for this model: MapReduce, web-
crawlers, …



HDFS
NameNode, DataNodes

 Master/slave architecture

 HDFS exposes file system namespace

 File is internally split into one or more blocks
 Typical block size is 64MB (or 128 MB)

 NameNode = master server that manages the file 
system namespace + regulates access to files by clients
 Opening/closing/renaming files and directories 

 Determines mapping of blocks to DataNodes 

 DataNode = serves read/write requests from clients + 
performs block creation/deletion and replication upon 
instructions from NameNode
 Usually one per node in a cluster

 Manages storage attached to the node that it runs on





HDFS
Namespace

 Hierarchical file system 
 Directories and files

 Create, remove, move, rename, ...

 NameNode maintains the file system
 Any meta information changes to the file system are 

recorded by the NameNode

 An application can specify the number of replicas 
of the file needed
 Replication factor of the file

 The information is stored in the NameNode



HDFS
Data Replication

 HDFS is designed to store very large files across 
machines in a large cluster
 Each file is a sequence of blocks

 All blocks in the file are of the same size

 Except the last one

 Block size is configurable per file

 Blocks are replicated for fault tolerance
 Number of replicas is configurable per file

 NameNode receives HeartBeat and BlockReport from 
each DataNode
 BlockReport contains a list of all blocks on a DataNode





HDFS
Replica Placement

 Placement of the replicas is critical to reliability and 
performance

 Rack-aware replica placement = to take a node's 
physical location into account while scheduling tasks and 
allocating storage
 Needs lots of tuning and experience

 Idea:
 Nodes are divided into racks

 Communication between racks through switches

 Network bandwidth between machines on the same rack is 
greater than those in different racks

 NameNode determines the rack id for each DataNode



HDFS
Replica Placement

 Any ideas?

 First idea: replicas should be placed on different racks 
 Prevents losing data when an entire rack fails 

 Allows use of bandwidth from multiple racks when reading data 
 Multiple readers

 Writes are expensive (transfer to different racks)
 We need to write to all replicas

 Common case: replication factor is 3
 Replicas are placed: 

 One on a node in a local rack

 One on a different node in the local rack 

 One on a node in a different rack

 Decreases the inter-rack write traffic



HDFS
How NameNode Works?

 Stores HDFS namespace

 Uses a transaction log called EditLog to record every 
change that occurs to the file system’s meta data
 E.g., creating a new file, change in replication factor of a file, ..

 EditLog is stored in the NameNode’s local file system

 FsImage – entire file system namespace + mapping of 
blocks to files + file system properties

 Stored in a file in NameNode’s local file system

 Designed to be compact 

 Loaded in NameNode’s memory

 4 GB of RAM is sufficient



HDFS
How NameNode Works?

 When the filesystem starts up:
1. It reads the FsImage and EditLog from disk

2. It applies all the transactions from the EditLog to the 
in-memory representation of the FsImage

3. It flushes out this new version into a new FsImage 
on disk = checkpoint

4. It truncates the edit log

 Checkpoints are then built periodically

 Recovery = last checkpointed state



HDFS
How DataNode Works?

 Stores data in files in its local file system
 Has no knowledge about HDFS file system

 Stores each block of HDFS data in a separate file

 Does not create all files in the same directory
 Local file system might not be support it

 Uses heuristics to determine optimal number of files per 
directory 

 When the file system starts up:
1. It generates a list of all HDFS blocks = BlockReport

2. It sends the report to NameNode



HDFS
Failures

 Primary objective: to store data reliably in 

the presence of failures

 Three common failures: 

NameNode failure

DataNode failure 

Network partition



HDFS
Failures

 Network partition can cause a subset of DataNodes to 
lose connectivity with NameNode
 NameNode detects this condition by the absence of a Heartbeat 

message

 NameNode marks DataNodes without HearBeat and does not 
send any IO requests to them

 Data registered to the failed DataNode is not available to the 
HDFS

 The death of a DataNode may cause replication factor of 
some of the blocks to fall below their specified value → 
re-replication
 Also happens when replica is corrupted, hard disk fails, 

replication factor is increased, …



Hadoop file system

HDFS
API

 Java API for application to use
 Python access can be used

 C language wrapper for Java API is available

 HTTP browser can be used to browse the files of a 
HDFS instance

 Command line interface called the FS shell
 Lets the user interact with data in the HDFS

 The syntax of the commands is similar to bash

 e.g., to create a directory /foodir

/bin/hadoop fs –mkdir /foodir

 Browser interface is available to view the namespace



References

 Apache Hadoop: http://hadoop.apache.org/

 Hadoop: The Definitive Guide, by Tom White, 2nd edition, Oreilly’s, 2010

http://hadoop.apache.org/

