
Modern Database 

Systems 

HDFS

Doc. RNDr. Irena Holubova, Ph.D.
Irena.Holubova@matfyz.cuni.cz

mailto:Irena.Holubova@matfyz.cuni.cz


Big Data Related Technologies

 Distributed file systems
 e.g., HDFS

 Distributed databases
 Primarily NoSQL databases

 And many other types

 Cloud computing

 Data analytics
 Batch

 Real-time

 Stream

 …



Apache Hadoop

 Open-source software framework

 Running of applications on large clusters 
of commodity hardware 

Multi-terabyte data-sets 

Thousands of nodes 

 Derived from Google's MapReduce and 
Google File System (GFS)

Not open-source

http://hadoop.apache.org/

http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/


Apache Hadoop
Modules

 Hadoop Common
 Common utilities 

 Support for other Hadoop modules

 Hadoop Distributed File System (HDFS)
 Distributed file system 

 High-throughput access to application data

 Hadoop YARN
 Framework for job scheduling and cluster resource management

 Hadoop MapReduce
 System for parallel processing of large data sets



Apache Hadoop
Hadoop-related Projects

 Avro – a data serialization system

 Cassandra – a scalable multi-master database with no single points 
of failure

 Chukwa – a data collection system for managing large distributed 
systems

 HBase – a scalable, distributed column-family database that 
supports structured data storage for large tables

 Hive – data warehouse infrastructure that provides data 
summarization and ad hoc querying

 Mahout – scalable machine learning and data mining library

 Pig – high-level data-flow language and execution framework for 
parallel computation

 ZooKeeper – high-performance coordination service for distributed 
applications



HDFS (Hadoop Distributed File System)

Basic Features

 Free and open source

 Crossplatform 

Pure Java

Has bindings for non-Java programming 

languages

 Fault-tolerant

 Highly scalable

http://hadoop.apache.org/hdfs/
http://hadoop.apache.org/hdfs/


HDFS
Fault Tolerance

 Idea: “failure is the norm rather than exception”
 A HDFS instance may consist of thousands of 

machines
 Each storing a part of the file system’s data

 Each component has non-trivial probability of failure

→ Assumption: “There is always some component 
that is non-functional.”
 Detection of faults

 Quick, automatic recovery



HDFS
Data Characteristics

 Assumes:
 Streaming data access

 Batch processing rather than interactive user access

 Large data sets and files

 Write-once / read-many
 A file once created, written and closed does not need to be 

changed 

 Or not often

 This assumption simplifies coherency

 Optimal applications for this model: MapReduce, web-
crawlers, …



HDFS
NameNode, DataNodes

 Master/slave architecture

 HDFS exposes file system namespace

 File is internally split into one or more blocks
 Typical block size is 64MB (or 128 MB)

 NameNode = master server that manages the file 
system namespace + regulates access to files by clients
 Opening/closing/renaming files and directories 

 Determines mapping of blocks to DataNodes 

 DataNode = serves read/write requests from clients + 
performs block creation/deletion and replication upon 
instructions from NameNode
 Usually one per node in a cluster

 Manages storage attached to the node that it runs on





HDFS
Namespace

 Hierarchical file system 
 Directories and files

 Create, remove, move, rename, ...

 NameNode maintains the file system
 Any meta information changes to the file system are 

recorded by the NameNode

 An application can specify the number of replicas 
of the file needed
 Replication factor of the file

 The information is stored in the NameNode



HDFS
Data Replication

 HDFS is designed to store very large files across 
machines in a large cluster
 Each file is a sequence of blocks

 All blocks in the file are of the same size

 Except the last one

 Block size is configurable per file

 Blocks are replicated for fault tolerance
 Number of replicas is configurable per file

 NameNode receives HeartBeat and BlockReport from 
each DataNode
 BlockReport contains a list of all blocks on a DataNode





HDFS
Replica Placement

 Placement of the replicas is critical to reliability and 
performance

 Rack-aware replica placement = to take a node's 
physical location into account while scheduling tasks and 
allocating storage
 Needs lots of tuning and experience

 Idea:
 Nodes are divided into racks

 Communication between racks through switches

 Network bandwidth between machines on the same rack is 
greater than those in different racks

 NameNode determines the rack id for each DataNode



HDFS
Replica Placement

 Any ideas?

 First idea: replicas should be placed on different racks 
 Prevents losing data when an entire rack fails 

 Allows use of bandwidth from multiple racks when reading data 
 Multiple readers

 Writes are expensive (transfer to different racks)
 We need to write to all replicas

 Common case: replication factor is 3
 Replicas are placed: 

 One on a node in a local rack

 One on a different node in the local rack 

 One on a node in a different rack

 Decreases the inter-rack write traffic



HDFS
How NameNode Works?

 Stores HDFS namespace

 Uses a transaction log called EditLog to record every 
change that occurs to the file system’s meta data
 E.g., creating a new file, change in replication factor of a file, ..

 EditLog is stored in the NameNode’s local file system

 FsImage – entire file system namespace + mapping of 
blocks to files + file system properties

 Stored in a file in NameNode’s local file system

 Designed to be compact 

 Loaded in NameNode’s memory

 4 GB of RAM is sufficient



HDFS
How NameNode Works?

 When the filesystem starts up:
1. It reads the FsImage and EditLog from disk

2. It applies all the transactions from the EditLog to the 
in-memory representation of the FsImage

3. It flushes out this new version into a new FsImage 
on disk = checkpoint

4. It truncates the edit log

 Checkpoints are then built periodically

 Recovery = last checkpointed state



HDFS
How DataNode Works?

 Stores data in files in its local file system
 Has no knowledge about HDFS file system

 Stores each block of HDFS data in a separate file

 Does not create all files in the same directory
 Local file system might not be support it

 Uses heuristics to determine optimal number of files per 
directory 

 When the file system starts up:
1. It generates a list of all HDFS blocks = BlockReport

2. It sends the report to NameNode



HDFS
Failures

 Primary objective: to store data reliably in 

the presence of failures

 Three common failures: 

NameNode failure

DataNode failure 

Network partition



HDFS
Failures

 Network partition can cause a subset of DataNodes to 
lose connectivity with NameNode
 NameNode detects this condition by the absence of a Heartbeat 

message

 NameNode marks DataNodes without HearBeat and does not 
send any IO requests to them

 Data registered to the failed DataNode is not available to the 
HDFS

 The death of a DataNode may cause replication factor of 
some of the blocks to fall below their specified value → 
re-replication
 Also happens when replica is corrupted, hard disk fails, 

replication factor is increased, …



Hadoop file system

HDFS
API

 Java API for application to use
 Python access can be used

 C language wrapper for Java API is available

 HTTP browser can be used to browse the files of a 
HDFS instance

 Command line interface called the FS shell
 Lets the user interact with data in the HDFS

 The syntax of the commands is similar to bash

 e.g., to create a directory /foodir

/bin/hadoop fs –mkdir /foodir

 Browser interface is available to view the namespace



References

 Apache Hadoop: http://hadoop.apache.org/

 Hadoop: The Definitive Guide, by Tom White, 2nd edition, Oreilly’s, 2010

http://hadoop.apache.org/

