
Modern Database 

Systems

Practicals: Spark

Doc. RNDr. Irena Holubova, Ph.D.
holubova@ksi.mff.cuni.cz

mailto:holubova@ksi.mff.cuni.cz


Spark Application

 Spark application = driver program
 Runs the user’s main function 
 Executes parallel operations on a cluster

 Independent set of processes
 Coordinated by SparkContext object in the driver program

 SparkContext can connect to several types of cluster 
managers
 They allocate resources across applications

 When connected:
1. Spark acquires executors on nodes in the cluster

 Processes that run computations and store data for the application
2. Sends the application code to the executors

 Defined by JAR or Python files passed to SparkContext
3. Sends tasks to the executors to run



Initializing Spark

1. Build a SparkConf object 

 Contains information about application

 appName = application name to show on the cluster UI

 master = Spark/Mesos/YARN cluster URL or string “local” to run in 

local mode

2. Create a JavaSparkContext object

 Tells Spark how to access a cluster

SparkConf conf = 

new SparkConf().setAppName(appName).setMaster(master); 

JavaSparkContext sc = 

new JavaSparkContext(conf);



Resilient Distributed Dataset (RDD)

 Immutable collection of elements partitioned across the nodes of the cluster 

 Can be operated on in parallel

 Can be persisted in memory

 MapReduce: has to be written od disk between Map and Reduce

 Automatically recover from node failures

 Ways to create RDDs: 

1. Parallelizing an existing collection in a driver program

2. Referencing a dataset in an external storage system

 e.g., HDFS, HBase, … 

 In general: any offering a Hadoop InputFormat

https://spark.apache.org/docs/3.2.0/rdd-programming-guide.html

https://spark.apache.org/docs/3.2.0/rdd-programming-guide.html


Resilient Distributed Dataset (RDD)
Parallelized Collections

 Parallelized collections are created by calling SparkContext’s
parallelize method
 Elements of the collection are copied to form a distributed dataset

 The distributed dataset (distData) can be operated on in parallel

 See later

List<Integer> data = Arrays.asList(1, 2, 3, 4, 5); 

JavaRDD<Integer> distData = sc.parallelize(data);



Resilient Distributed Dataset (RDD)
External Datasets

 Spark can create distributed datasets from any storage 
source supported by Hadoop
 Local file system, HDFS, Cassandra, HBase, … 

 Supports text files, SequenceFiles, and any other 
Hadoop InputFormat

 Example:
 Text file RDDs can be created using SparkContext’s

textFile method
 Takes an URI for the file (local, HDFS, …) 
 Reads it as a collection of lines
 Optional argument: number of partitions of the file

 Default: one partition for each block of the file (128MB by default in HDFS)

 Once created, distFile can be acted on by dataset 
operations

JavaRDD<String> distFile = sc.textFile("data.txt");



RDD Operations

1. Transformations = create (lazily) 
a new dataset from an existing one

 e.g., map = passes each dataset element through 
a function and returns a new RDD representing the results

2. Actions = return a value to the driver program after running a 
computation on the dataset

 e.g., reduce = aggregates all the elements of the RDD using some 
function and returns the final result to the driver program

 By default: each transformed RDD may be recomputed each 
time we run an action on it

 We may also persist an RDD in memory using the persist (or cache) 
method
 Much faster access the next time we query it

 There is also support for persisting RDDs on disk or replicated across 
multiple nodes



Transformations

 map(func) Returns a new distributed dataset formed by passing each element of 
the source through a function func.

 union(otherDataset) Returns a new dataset that contains the union of the elements 
in the source dataset and the argument. 
 intersection, distinct

 filter(func) Returns a new dataset formed by selecting those elements of the 
source on which func returns true. 

 reduceByKey(func, [numPartitions]) When called on a dataset of (K, V) pairs, 
returns a dataset of (K, V) pairs where the values for each key are aggregated 
using the given reduce function func, which must be of type (V,V) => V. The number 
of reduce tasks is configurable through an optional second argument. 

 sortByKey([ascending], [numPartitions]) When called on a dataset of (K, V) pairs 
where K implements Ordered, returns a dataset of (K, V) pairs sorted by keys in 
ascending or descending order, as specified in the Boolean ascending argument.

 …

https://spark.apache.org/docs/3.2.0/rdd-programming-

guide.html#transformations

https://spark.apache.org/docs/3.2.0/rdd-programming-guide.html#transformations


Actions

 reduce(func) Aggregates the elements of the dataset 
using a function func (which takes two arguments and 
returns one). The function should be commutative and 
associative so that it can be computed correctly in 
parallel. 

 count() Returns the number of elements in the dataset. 
 first() Returns the first element of the dataset. 
 take(n) Returns an array with the first n elements of the 

dataset. 
 takeOrdered(n, [ordering]) Returns the first n elements 

of the RDD using either their natural order or a custom 
comparator. 

 …

https://spark.apache.org/docs/3.2.0/rdd-programming-

guide.html#actions

https://spark.apache.org/docs/3.2.0/rdd-programming-guide.html#actions


Passing Functions

 By lambda expression
data.reduceByKey((a, b) -> a + b);

 By interface function

 Java: functions are represented by classes implementing interface 
Function[2,3,4]<IN[,IN[,IN[,IN]]], OUT> from package org.apache.spark.api.java.function

 Pass an instance of implemented class (either as an anonymous inner class or a named 
one)

data.reduceByKey(new Function2<Integer, Integer, Integer>() {

@Override

public Integer call(Integer a, Integer b) throws Exception {

return a + b;

}

});



Spark SQL

 Spark module for structured data processing

 Spark SQL data structures (DataFrame, Dataset) provide 
information about the structure of the data and the 
computation

 Supports execution of SQL queries

 Supports reading data from an existing database (Hive, 
MySQL, ...)

 The entry point is the SparkSession class 

SparkSession spark = 
SparkSession.builder().appName("AppName").getOrCreate(); 



DATAFRAME, DATASET

 DataFrame
 Distributed collection of data, which is organized into named columns

 Conceptually equivalent to a table in a relational database

 Can be constructed from structured data files, external databases, existing RDDs, ...

Dataset<Row> dataFrame = spark.read().json("actors.json"); 

 DataSet
 Distributed collection of data

 Can be constructed from strongly-typed JVM objects and manipulated using 
transformations

 Ability to use lambda functions

Dataset<Person> dataset = 
spark.read().json("actors.json").as(actorEncoder);



(Optional) Assignment

 Chose your unique problem domain
 E.g., the results of football matches of various teams

 Think about an original computation problem in your 
domain which might be solved using Spark

 Create respective sample data 
 They do not need to be large – this is not the aim of the 

assignment

 Submit either a script for the spark-shell or modify any 
on the *.java examples from practicals



References

 Spark Overview 
https://spark.apache.org/docs/latest/index.html

 Apache Spark Examples 
https://spark.apache.org/examples.html

 Mastering Apache Spark 2.3.2 
https://jaceklaskowski.gitbooks.io/mastering-apache-
spark/

 A Tale of Three Apache Spark APIs: RDDs, DataFrames, 
and Datasets https://databricks.com/blog/2016/07/14/a-
tale-of-three-apache-spark-apis-rdds-dataframes-and-
datasets.html

https://spark.apache.org/docs/latest/index.html
https://spark.apache.org/examples.html
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/
https://databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-apis-rdds-dataframes-and-datasets.html

