Introduction to Linked Data

Prof. Dr. Christian Bizer
Freie Universität Berlin
Germany
1. Foundations of Linked Data
 - What is the vision and goal?

2. The Web of Linked Data
 - What data is out there?
 - What is being done with the data?

3. How to publish Linked Data?
 - Tasks and Tools

4. How to consume Linked Data?
 - Tasks and Tools

5. Splitting the Data Integration Effort
 - How to reach global data integration in an evolutionary fashion?
Set of best practices for publishing structured data on the Web in accordance with the general architecture of the Web.

1. Use **URIs** as names for things.
2. Use **HTTP URIs** so that people can look up those names.
3. When someone looks up a URI, provide useful **RDF** information.
4. Include RDF statements that link to other URIs so that they can discover related things.

Architecture of the classic Web

Single global information space

Small set of simple standards

1. HTTP URLs as
 - globally unique IDs
 - retrieval mechanism

2. HTML as document format

3. Hyperlinks to connect everything

Applications work on top of the complete information space
Web 2.0 APIs and Mashups

No single global datasource

Shortcomings
1. APIs have proprietary interfaces
2. No hyperlinks between data items within different APIs
3. Mashups are based on a fixed set of data sources
Web APIs slice the Web into Walled Gardens
Extend the Web with a single global dataspace
1. by using RDF to publish structured data on the Web
2. by setting links between data items within different data sources.
Flexible graph-based data model.
Data items are identified with HTTP URIs

HTTP URIs take the role of global primary keys.

pd:cygri = http://richard.cyganiak.de/foaf.rdf#cygri
dbpedia:Berlin = http://dbpedia.org/resource/Berlin
The HTTP protocol brings together identification and retrieval again.
Following Links deeper into the Web

Richard Cyganiak

- foaf:name
- foaf:based_near

- pd:cygri
- rdf:type
 - foaf:Person

3.405.259
- dp:population

- dbpedia:Berlin
 - skos:subject

- dbpedia:Hamburg
 - skos:subject
- dbpedia:Muenchen
 - skos:subject

- dbpedia:Muenchen
 - skos:subject

- dbpedia:Muenchen
 - skos:subject
<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>event</td>
<td>...</td>
<td>G2</td>
</tr>
<tr>
<td>type</td>
<td>http://xmlns.com/foaf/0.1/Person</td>
<td>G1 G2 G3 G4</td>
</tr>
<tr>
<td>seeAlso</td>
<td>http://richard.cyganiak.de/cygri.rdf</td>
<td>G2</td>
</tr>
<tr>
<td>seeAlso</td>
<td>http://richard.cyganiak.de/foaf.rdf</td>
<td>G3</td>
</tr>
<tr>
<td>nearest airport</td>
<td>...</td>
<td>G1</td>
</tr>
<tr>
<td>phone</td>
<td>tel:+49-175-5630408</td>
<td>G1</td>
</tr>
<tr>
<td>sameAs</td>
<td>Richard Cyganiak</td>
<td>G1</td>
</tr>
<tr>
<td>based_near</td>
<td>...</td>
<td>G1</td>
</tr>
<tr>
<td>based_near</td>
<td>Berlin</td>
<td>G1</td>
</tr>
<tr>
<td>based_near</td>
<td>http://sws.geonames.org/2950159/</td>
<td>G1</td>
</tr>
<tr>
<td>currentProject</td>
<td>http://page.mi.fu-berlin.de/~cyganiak/foaf.rdf#StatCvs</td>
<td>G3</td>
</tr>
<tr>
<td>currentProject</td>
<td>http://www.wiwiss.fu-berlin.de/suhl/bizer#d2rq</td>
<td>G3</td>
</tr>
<tr>
<td>depiction</td>
<td></td>
<td>G4</td>
</tr>
<tr>
<td>gender</td>
<td>male</td>
<td>G1</td>
</tr>
</tbody>
</table>
Berlin

URI: http://dbpedia.org/resource/city/Berlin

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>population</td>
<td>3398888</td>
<td>G2</td>
</tr>
<tr>
<td>type</td>
<td>http://dbpedia.org/City</td>
<td>G2</td>
</tr>
<tr>
<td>comment</td>
<td>Berlin is the capital city and one of the sixteen Federal States of Germany. It is the country's largest city in area and population, and the second most populous city in the European Union.</td>
<td>G2</td>
</tr>
<tr>
<td>label</td>
<td>Berlin</td>
<td>G2</td>
</tr>
<tr>
<td>sameAs</td>
<td>http://sws.geonames.org/2950159/</td>
<td>G2</td>
</tr>
<tr>
<td>subject</td>
<td>http://dbpedia.org/resource/category/Berlin</td>
<td>G2</td>
</tr>
<tr>
<td>subject</td>
<td>http://dbpedia.org/resource/category/Capitals_in_Europe</td>
<td>G2</td>
</tr>
<tr>
<td>subject</td>
<td>http://dbpedia.org/resource/category/Cities_in_Germany</td>
<td>G2</td>
</tr>
<tr>
<td>subject</td>
<td>http://dbpedia.org/resource/category/German_state_capitals</td>
<td>G2</td>
</tr>
<tr>
<td>subject</td>
<td>http://dbpedia.org/resource/category/Host_cities_of_the_Summer_Olympic_Games</td>
<td>G2</td>
</tr>
<tr>
<td>subject</td>
<td>http://dbpedia.org/resource/category/States_of_Germany</td>
<td>G2</td>
</tr>
<tr>
<td>sourceURL</td>
<td>Berlin</td>
<td>G1</td>
</tr>
<tr>
<td>depiction</td>
<td></td>
<td>G2</td>
</tr>
<tr>
<td>birthplace</td>
<td>Adolf von Baeyer</td>
<td>G2</td>
</tr>
</tbody>
</table>
Properties of the Web of Linked Data

- Global, distributed data space built on a simple set of standards
 - RDF, URIs, HTTP

- Entities are connected by links
 - Creating a global data graph that spans data sources and
 - Enables the discovery of new data sources

- Provides for data-coexistence
 - Everyone can publish data to the Web of Linked Data
 - Everyone can express their personal view on things
 - Everybody can use the vocabularies/schema that they like
2. Linked Data Deployment on the Web

Is this real?
Grassroots community effort to

- publish existing open license datasets as Linked Data on the Web
- interlink things between different data sources
Over 500 million RDF triples
Around 120,000 RDF links between data sources
LOD Datasets on the Web: September 2008
- Over 26.9 billion RDF triples
- Over 436 million RDF links between data sources
The Growth in Numbers

<table>
<thead>
<tr>
<th>Year</th>
<th>Datasets</th>
<th>Triples</th>
<th>Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>12</td>
<td>500,000,000</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>45</td>
<td>2,000,000,000</td>
<td>300%</td>
</tr>
<tr>
<td>2009</td>
<td>95</td>
<td>6,726,000,000</td>
<td>236%</td>
</tr>
<tr>
<td>2010</td>
<td>203</td>
<td>26,930,509,703</td>
<td>300%</td>
</tr>
</tbody>
</table>
LOD data set statistics as of November 2010

<table>
<thead>
<tr>
<th>Domain</th>
<th>Data Sets</th>
<th>Triples</th>
<th>Percent</th>
<th>RDF Links</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-domain</td>
<td>20</td>
<td>1,999,085,950</td>
<td>7.42</td>
<td>29,105,638</td>
<td>7.36</td>
</tr>
<tr>
<td>Geographic</td>
<td>16</td>
<td>5,904,980,833</td>
<td>21.93</td>
<td>16,589,086</td>
<td>4.19</td>
</tr>
<tr>
<td>Government</td>
<td>25</td>
<td>11,613,525,437</td>
<td>43.12</td>
<td>17,658,869</td>
<td>4.46</td>
</tr>
<tr>
<td>Media</td>
<td>26</td>
<td>2,453,898,811</td>
<td>9.11</td>
<td>50,374,304</td>
<td>12.74</td>
</tr>
<tr>
<td>Libraries</td>
<td>67</td>
<td>2,237,435,732</td>
<td>8.31</td>
<td>77,951,898</td>
<td>19.71</td>
</tr>
<tr>
<td>Life sciences</td>
<td>42</td>
<td>2,664,119,184</td>
<td>9.89</td>
<td>200,417,873</td>
<td>50.67</td>
</tr>
<tr>
<td>User Content</td>
<td>7</td>
<td>57,463,756</td>
<td>0.21</td>
<td>3,402,228</td>
<td>0.86</td>
</tr>
<tr>
<td>Total</td>
<td>203</td>
<td>26,930,509,703</td>
<td>395,499,896</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOD Cloud Data Catalog on CKAN

http://www.ckan.net/group/lodcloud

More statistics

http://www4.wiwiss.fu-berlin.de/lodcloud/state/
The EU is pushing Linked Data (LOD2, LATC, EuroStat)

Several national efforts underway

W3C eGovernment Interest Group
Uptake in the Libraries Community

- **Institutions publishing Linked Data**
 - Library of Congress (subject headings)
 - German National Library (PND dataset and subject headings)
 - Swedish National Library (Libris - catalog)
 - Hungarian National Library (OPAC and Digital Library)
 - Europeana project just released data about 4 million artifacts

- **Growth of Library Linked Data (2009-2010): 1000%**

- **W3C Library Linked Data Incubator Group**

- **Open Archives ORE Standard**

- **Goals:**
 1. Integrate Library Catalogs on global scale.
 2. Interconnect resources between repositories (by topic, by location, by historical period, by ...).
Linked Data Applications

What can I do with this?

Linked Data Browsers

Linked Data Mashups

Search Engines

- A
- B
- C
- D
- E

Linked Data Browsers

Provide for navigating between data sources and for exploring the data space.

- Tabulator Browser (MIT, USA)
- Marbles (FU Berlin, DE)
- OpenLink RDF Browser (OpenLink, UK)
- Zitgist RDF Browser (Zitgist, USA)
- Disco Hyperdata Browser (FU Berlin, DE)
- Fenfire (DERI, Ireland)
Crawl the dataspace and provide best-effort query answers over crawled data.

- Falcons (IWS, China)
- Sig.ma (DERI, Ireland)
- Swoogle (UMBC, USA)
- VisiNav (DERI, Ireland)
- Watson (Open University, UK)
Chicago - Begriff
- label: Chicago
- type: Begriff
http://www4.wiwiss.fu-berlin.de/bookmashup/subject/Chicago

Chicago - City, Community
- label: Chicago
- sameAs: http://www.rdfabout.com/rdf/usgov/geo/us/il/counties/cook_county/chicago
- image: [Image]
- type: Community
http://dbpedia.org/resource/Chicago

chicago
- Title: chicago
http://www.deadjournal.com/interests.bml?int=chicago

Chicago Cubs players - Begriff
- label: Chicago Cubs players
- bevorzugter Name: Chicago Cubs players
- hat Oberbegriff: Chicago Cubs field personnel
- hat Oberbegriff: Chicago Cubs
- type: Begriff
http://dbpedia.org/resource/Category_Chicago_Cubs_players

People from Chicago - Begriff
- label: People from Chicago
- bevorzugter Name: People from Chicago
http://dbpedia.org/resource/Category_People_from_Chicago
| given name: | Chris [3,5,9,10,16] | | | | |
| family name: | Bizer [3,5,9,10,16] |
| is creator of: | DBpedia: A Nucleus for a Web of Open Data | Semantic Web Dog Food [6,18] |
| | The TriQL.P Browser: Filtering Information using Context-, Content- and Rating-Based Trust Policies. [16] |
| | D2R Server - Publishing Relational Databases on the Semantic Web. [16] |
| | Named Graphs, Provenance and Trust [16] |
| | hide value | just this value | which sources | reject sources | RAP: RDF API for PHP [16] |
| | Fresnel: A Browser-Independent Presentation Vocabulary for RDF [16] |
| | NC4L - Named Graphs API for Java [16] |
Domain-specific applications using Linked Data from the Web
http://apps.seme4.com/see-uk/
DBpedia Mobile

- Geospatial entry point into the Web of Data
- Starts with DBpedia, Revyu and Flickr data
What are the big players doing?
jointly proposed vocabularies for embedding data into HTML pages

available since June 2011
Search Engines develop into Answer Engines
3. How to publish Linked Data?

1. Foundations of Linked Data
 - What is the vision and goal?

2. The Web of Linked Data
 - What data is out there?
 - What is being done with the data?

3. How to publish Linked Data?
 - Tasks and Tools

4. How to consume Linked Data?
 - Tasks and Tools

5. Splitting the Data Integration Effort
 - How to reach global data integration in an evolutionary fashion?
Publishing Tasks

1. Make data available as RDF via HTTP
2. Set RDF links pointing at other data sources
3. Make your data self-descriptive

Textbook

Tom Heath, Christian Bizer
Linked Data: Evolving the Web into a Global Data Space
http://linkeddatabook.com/
3.1 Make Data available as RDF via HTTP

Ready to use tools (examples)

1. D2R Server and Triplify
 - provide for mapping relational databases into RDF and for serving them as Linked Data

2. Pubby
 - Linked Data Frontend for SPARQL Endpoints

3. More tools
 - http://esw.w3.org/TaskForces/CommunityProjects/LinkingOpenData/PublishingTools

3.2 Set RDF links pointing at other data sources

- Examples of RDF links

\[
\text{<http://dbpedia.org/resource/Berlin> owl:sameAs} \text{http://sws.geonames.org/2950159> .}
\]

\[
\text{<http://example-bookshop.com/book006251587X> owl:sameAs} \text{http://www4.wiwiss.fu-berlin.de/bookmashup/books/006251587X> .}
\]
How to generate RDF links?

- **Pattern-based Approaches**
 - Exploit naming conventions within URIs (for instance ISBNs, ISINs, …)

- **Similarity-based Approaches**
 - Compare items within different data sources using various similarity metrics

Ready to use tools

1. Silk – Link Discovery Framework
2. LIMES – Link Discovery Tool
3. More tools
 - http://esw.w3.org/TaskForces/CommunityProjects/LinkingOpenData/EquivalenceMining
3.3 Make your Data Self-Descriptive

- Increase the usefulness of your data and ease data integration

- Aspects of self-descriptiveness
 1. Reuse terms from common vocabularies
 2. Enable clients to retrieve the schema
 3. Publish schema mappings for proprietary terms
 4. Provide provenance metadata
 5. Provide licensing metadata
 6. Provide data-set-level metadata using voiD
 7. Refer to additional access methods using voiD
Reuse Terms from Common Vocabularies

Common Vocabularies
- **Friend-of-a-Friend** for describing people and their social network
- **SIOC** for describing forums and blogs
- **SKOS** for representing topic taxonomies
- **Organization Ontology** for describing the structure of organizations
- **GoodRelations** provides terms for describing products and business entities
- **Music Ontology** for describing artists, albums, and performances
- **Review Vocabulary** provides terms for representing reviews

Common sources of identifiers (URIs) for real world objects
- **LinkedGeoData** and **Geonames** locations
- **GeneID** and **UniProt** life science identifiers
- **DBpedia** wide range of things
Enable Clients to retrieve the Schema

Clients can resolve the URIs that identify vocabulary terms in order to get their RDFS or OWL definitions.

Some data on the Web

```xml
<http://richard.cyganiak.de/foaf.rdf#cygri>
  foaf:name "Richard Cyganiak" ;
  rdf:type <http://xmlns.com/foaf/0.1/Person> .
```

Resolve unknown term

```xml
http://xmlns.com/foaf/0.1/Person
```

RDFS or OWL definition

```xml
<http://xmlns.com/foaf/0.1/Person>
  rdf:type owl:Class ;
  rdfs:label "Person";
  rdfs:subClassOf <http://xmlns.com/foaf/0.1/Agent> ;
  rdfs:subClassOf <http://xmlns.com/wordnet/1.6/Agent> .
```
Vocabulary Link

<http://dbpedia.org/ontology/Organization>
owl:equivalentClass
<http://schema.org/Organization> .

Vocabulary Link

<http://dbpedia.org/ontology/OfficeHolder>
rdfs:subClassOf
<http://xmlns.com/foaf/0.1/Person> .

■ Simple Mappings: RDFS, OWL
 ● rdfs:subClassOf, rdfs:subPropertyOf
 ● owl:equivalentClass, owl:equivalentProperty

■ Complex Mappings: R2R
 ● provides value transformation functions
 ● structural transformations
4. How to consume Linked Data?
4. How to consume Linked Data?

Application Layer

Data Access, Integration and Storage Layer

Web of Linked Data

Publication Layer
- Flexible open-source Linked Data crawler
- Crawls RDF/XML and RDFa
R2R Framework

- tool for translating RDF data between different vocabularies
- provides for publication and discovery of mappings on the Web
Silk Server

- add missing links while consuming Linked Data
- designed to work together with LDspider
WIQA Framework

- allows you to filter Web data using different data quality assessment policies
- will be extended towards Data Fusion
Named Graphs

- Extension of the RDF Data Model for representing meta-information about RDF Graphs
- Implemented by most SPARQL stores
- Used by many Linked Data applications for provenance tracking
TriG representation of three Named Graphs:

```
fd:GraphFromPeterSmith {
    fd:ISIN-DE0007236101 fin:news "As Siemens agrees ..."@EN .
    <http://petersmith.com#me> fin:positiveRating fd:JohnReynolds .
}

fd:ProvenanceGraph {
    fd:GraphFromPeterSmith swp:assertedBy fd:PeterSmithWarrant .
    fd:PeterSmithWarrant swp:authority <http://petersmith.com#me> ;
    dc:date "2011-06-21"^^xsd:date .
}

fd:BackgroundInformation {
    <http://petersmith.com#me> rdf:type fin:Analyst ;
    foaf:name "Peter Smith"^^xsd:string ;
    fin:country dpedia:Germany .
}
```
Integrated Linked Data Consumption Tools

- **LDIF – Linked Data Integration Framework**
 - provides for data translation and identity resolution
 - http://www4.wiwiss.fu-berlin.de/bizer/ldif/

- **ALOE - Assisted Linked Data Consumption framework**
 - provides for data translation and identity resolution
 - http://aksw.org/projects/aloe

- **Information Workbench**
 - provides for visualization and application development
 - http://iwb.fluidops.com/
Hands on: How to play around with Linked Data

1. Get some data using a crawler
 - for instance: LDspider (GPL license)
 - http://code.google.com/p/ldspider/

2. Store the data together with Provenance Information
 - using for instance: Virtuoso (GPL), Sesame (BSD), Jena TDB (BSD)
 - decision help: Berlin SPARQL Benchmark (February 2011)

3. Query and analyze the data (data profiling)
 - using the SPARQL query language
 - current version SPARQL 1.1 supports aggregates, subqueries, negation

4. Integrate data in more sophisticated ways
 - using the tools mentioned on the last slide
Shortcut: Billion Triples Challenge Dataset

Download the Billion Triples Challenge Dataset

- 2 billion triples
- crawled from the public Web of Linked Data in March/April 2011
- http://challenge.semanticweb.org/

If you do something interesting with the data

- submit your results to the challenge until October 1st
- present your results at the 10th International Semantic Web Conference (ISWC2011), October 2011, Koblenz, Germany
5. Splitting the Data Integration Effort

- Fix Overall Data Integration Effort
- Publisher’s Effort
- Third Party Effort
- Consumer’s Effort
The Dataspace Vision

Alternative to classic data integration systems in order to cope with growing number of data sources.

- Properties of dataspaces
 - require no upfront investment into a global schema
 - rely on pay-as-you-go data integration
 - give best effort answers to queries

Linked Data relies on the Pay-as-You-Go Idea

- for Identity Management
- for Vocabulary Management
Identity on the Web of Linked Data

Real world objects are identified with multiple URIs.

- Everybody can say everything about everything in a decentralized manner.
- Cheap to set up.

http://www4.wiwiss.fu-berlin.de/is-group/resource/persons/Person4

http://dblp.l3s.de/d2r/resource/authors/Christian_Bizer
Publish Identity Links on the Web

Identity Link

<http://www4.wiwiss.fu-berlin.de/is-group/resource/persons/Person4> owl:sameAs <http://dblp.l3s.de/d2r/resource/authors/Christian_Bizer> .

■ Pay-as-you-go Aspect

1. First: Just put a wrapper in front of your DB
2. Later: You or somebody else invests effort into identity resolution
3. Publishes the results as Identity Links on the Web
Effort Distribution between Publisher and Consumer

Consumer data mines identity links

Effort Distribution

Publishers or third parties provide identity links

Application Layer

Data Access, Integration and Storage Layer

Web of Linked Data

Publication Layer

Everyone can use whatever vocabularies she likes to publish Linked Data on the Web, including

- common vocabularies
- proprietary vocabularies
Publish Vocabulary Links on the Web

Vocabulary Link

```
<http://xmlns.com/foaf/0.1/Person>
owl:equivalentClass
<http://dbpedia.org/ontology/Person> .
```

Pay-as-you-go Aspect

1. Use a mix of common vocabularies and proprietary terms
2. You or somebody else publishes schema mappings afterwards
Effort Distribution between Publisher and Consumer

Consumer defines or data mines mappings

Effort Distribution

Publisher reuses vocabularies

Publisher or third party publishes mappings

The overall data integration effort is split between the data publisher, the data consumer and third parties.

- **Data Publisher**
 - publishes data as RDF
 - sets identity links
 - reuses terms or publishes mappings

- **Third Parties**
 - set identity links pointing at your data
 - publish mappings to the Web

- **Data Consumer**
 - has to do the rest
 - using record linkage and schema matching techniques
Linked Data realizes the data space vision on global scale and adds the social aspect to it.

The Web of Linked Data is growing rapidly
- There are active deployment communities in different domains

Web search is evolving into query answering
- Search engines will increasingly rely on structured data from the Web

Next step: Linked Data within Enterprises
- Alternative to data warehouses and EAI middleware
- Advantages: schema-less data model, pay-as-you go data integration

You are looking for a topic for your PhD thesis?
- There are many exciting research challenges around consuming Linked Data
- Examples: Web-scale data integration, data quality assessment, explorative but expressive user interfaces, …
References

- Linking Open Data Project Wiki http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

- 4th Linked Data on the Web Workshop at WWW 2011 http://events.linkeddata.org/ldow2011/

- 1st Workshop on Consuming Linked Data at ISWC 2010 http://people.aifb.kit.edu/aha/2010/cold/