
DOCTORAL THESIS

Pavel Koupil (Čontoš)
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Preface
The proposed thesis presents selected results of the author’s research in the area of
modelling and management of multi-model data. The research has been carried
out at the Department of Software Engineering, Faculty of Mathematics and
Physics, Charles University in Prague in years 2019-2022. The author is a member
of Multi-Model Databases Research Group1 lead by doc. RNDr. Irena Holubová,
Ph.D.

The results are presented as a collection of five selected papers [1, 2, 3, 4, 5]
followed by a unifying commentary. Paper I is a vision of a categorical framework,
Paper II addresses conceptual modelling of multi-model data, Paper III proposes
unifying data structures together with universal schema and data transformation
algorithms, Paper IV deals with the inference of a unifying schema from already
existing data, and Paper V addresses the problem of schema evolution and its
backwards propagation. A complete list of 14 papers – namely, 2 Q1 academic
journal articles (2x Journal of Big Data), 3 CORE A conference papers (EDBT
2022, MODELS 2022, MODELS 2021), 5 CORE B conference papers (IDEAS
2022, SAC 2022, ENASE 2022, 2x IDEAS 2021), 1 CORE C conference paper
(MEDI 2021), 2 workshop papers (PhD@DASFAA 2021, CoMoNoS@ER 2020),
and 1 manuscript under review – is provided at the end of this thesis.

Prior to the summary of the papers, a commentary is provided for each ad-
dressed area, namely a motivation, a brief summary of the state-of-the-art, a list
of open questions and challenges, and a discussion of our contribution. For con-
venience, the references to the author’s original contribution are marked with a
pictogram ⋆(see on the right). Finally, we conclude and outline directions of our
current and future research.

The research included in the selected papers has been supported by several
grants, namely the GAČR project no. 20-22276S, and the project GA UK no.
16222 (principal researcher).

Želivec, July 2022

Pavel Koupil (Čontoš)

1https://www.ksi.mff.cuni.cz/area.html?id=multi-model-data
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Commentary
For decades, relational database management systems (RDBMS) based on the re-
lational model [6] were often the obvious candidate for data management. These
robust and time-verified systems were characterised by a schema-first, data-later
approach and handled structured data very well. However, nowadays, most of
the data consists of very large (volume) and varied (variety) (un)structured data,
which in addition are rapidly generated (velocity) and changed (variability).
Hence, relational databases do not necessarily meet the new data management
requirements.

Around the dawn of the second millennium, a new family, the so-called NoSQL
database systems [7], has emerged, pushing the boundaries of many approaches
to data processing. Compared to the RDBMSs, these systems work much bet-
ter with complex (un)structured data and respond to changes in data and user
requirements, e.g., due to the absence of an explicit schema (data first, schema
later/never approach). In addition, the NoSQL systems are often scalable, i.e.,
they allow us to respond flexibly to the volume of data being processed. Despite
all the advantages of NoSQL systems, they are not a replacement for RDBMS,
but the two families complement each other appropriately.

However, even the advent of NoSQL systems has not solved all the prob-
lems. Currently, one of the most difficult challenges is the variety of data, i.e.,
a large number of various data types and formats. For example, based on the
structure, data can be classified as structured, semi-structured, and unstructured,
and/or based on logical representation, there exists, e.g., relational, array, graph,
key/value, document, and columnar data. Besides, in real-world applications the
logical models are often combined, overlapped, and linked by references. Hence,
the applications deal with so-called multi-model data.

In general, approaches that store and process multi-model data can be divided
into two groups. The first group consists of (mainly) academia-driven systems,
the so-called polystores [8], which are based on the idea of polyglot persistence [7].
These are a combination of single-model database systems that are managed by
a so-called mediator, which allows for the use of a single interface. To name
just a few representatives, there is, e.g., BigDAWG [9] or Estocada [10]. Alter-
natively, there exist industry-driven so-called multi-model database management
systems [11], which support multiple logical models within a single system, where
all models are treated as first-class citizens [12]. Obviously, this provides a single
interface to work with the data. Currently, there are dozens of representatives of
multi-model databases,2 including originally single-model systems now support-
ing additional data models [13] or attempts to natively implement multiple data
models, such as, e.g., Octopus3 and ArangoDB.4

Although there exists a number of mature approaches for various data man-
agement tasks commonly used for single-model DBMSs, most of them cannot be
directly applied to multi-model DBMSs. The aspect of multi-model data intro-
duces a new dimension of complexity and new challenges not seen in single-model

2https://db-engines.com/en/ranking
3https://octopus.com/docs/administration/data/octopus-database
4https://www.arangodb.com
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systems. We need to address issues arising from the representation of data by a
single logical model, as well as from the combination of interconnected and often
contradictory models, e.g., (cross-model) references, full and partial (cross-model)
data redundancy, and (cross-model) integrity constraints. In general, we lack a
family of approaches that focus on:

• Grasping the contradictory features of different data models. Ideally, we
need a unified (abstract) conceptual representation of the data models that
hides the minor differences and puts the corresponding features of the log-
ical models on the same level, allowing us to work with them in a unified
way [14].

• Mutual mapping of conceptual and logical layers. Having a unified con-
ceptual layer, we need a way to transform this layer into a logical layer.
Currently, there exist approaches that transform the conceptual layer into,
e.g., a relational model [15]. However, in the case of a combination of mul-
tiple logical models, this approach is not straightforward at all, mainly due
to the different schema approaches (i.e., schema-full, schema-mixed, and
schema-less) and, again, the contradictory features of logical models.

• Inference of the multi-model schema. To handle schema-mixed and schema-
less data, there exist multiple approaches that infer the implicit schema
from already stored data [16]. However, to the best of our knowledge, none
of them is generally applicable to multi-model data, i.e., one cannot infer
features arising from the combination of multiple models.

• Unified query language. Currently, there are many, often non-standardised
query languages (not only) for multi-model systems [13], which create a
huge burden for the users. The ideal situation is the existence of a single
universal and natural language whose expressive power embraces commonly
used query constructs and which allows efficient querying over multiple
interconnected models.

• Evolution management and correct propagation of changes. As user require-
ments change, the data structures evolve. Hence, we need an approach that
is universally applicable to propagate changes to all affected parts of the
multi-model system correctly and completely. Moreover, changes in schema
and data representation can be exploited to increase the performance of,
e.g., querying and other data tasks.

Outline The rest of the thesis is structured as follows: In this Chapter we give
an introduction to the selected problems, an overview of open questions and we
provide a commentary on our proposed solutions. In Chapter 1 we discuss the
vision of a whole multi-model framework. In Chapter 2, we detail our proposed
approach to abstract modelling of multi-model data. In Chapter 3 we propose a
family of algorithms for data transformation that are independent of the logical
representation of the data. In Chapter 4 we describe the proposed algorithm for
inference of multi-model schemas. In Chapter 5 we present tools for multi-model
schema and data evolution. Finally, we conclude and outline future work.
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0.1 Variety of Data

Besides relational databases representing data as relations, NoSQL databases
allow us to represent and store data using other models, e.g., as a hierarchical
tree data (and structures) or pure graph data. We can classify data models as
aggregate-ignorant and aggregate-oriented.

The traditional representative of aggregate-ignorant models is the relational
model. This group also includes the array model, which allows to represent spa-
tial data, however with certain limitations (e.g. references between arrays are not
supported). An example of a system that implements the array model is, e.g.,
SciDB.5 Another aggregate-ignorant representative is the graph model, imple-
mented, e.g., in Neo4j,6 which allows to represent data in its natural form, i.e., as
a system of connected related real-world objects. These connections then allow
a completely different querying principle (e.g., graph traversal, neighbourhood
search etc.) compared to SQL and its derivatives. Similarly, the RDF model
corresponds to a directed graph composed of triple statements.

The simplest representative of aggregate-oriented models is the key/value
model implemented in, e.g., Redis7 and Riak8 systems. Here, the data is stored
as a pair (key, value), with key (identifier) referring to value, i.e., an object
stored in the database as a black box. The document model, implemented in,
e.g., MongoDB9 or MarkLogic,10 uses a similar principle, i.e., it is also based on
pairs (key, value), however, the pairs may form a hierarchical structure (i.e., nest-
ing of pairs is allowed). In particular we refer to the pairs as (unordered) fields
(JSON) or (ordered) elements (XML). Unlike the key/value model, querying and
referencing over nested data is allowed. Finally, the column model, implemented,
e.g., in Apache Cassandra11 and Apache HBase,12 also allows related data to
be stored together, but in the form of (optional and possibly structured) pairs
(name, value) (i.e., columns) forming rows of column families.

Example 0.1. Figure 0.1 illustrates examples of selected data models. The rela-
tional table Customer (purple) represents customers together with their contact
details, while the graph model (blue) represents the relationships between cus-
tomers, i.e., a social network. The key/value pairs (yellow) represent the shopping
carts of customers. The document model (green) represents the collection of or-
ders of each customer as a hierarchical document. Finally, the column family
Orders (red) represents a list of orders for each customer. Thus, at first sight, we
can see that data from a single domain can be suitably represented by different
logical models.

Note that comprehensive descriptions of the data models along with examples
are provided in ⋆Section 4.3.

5https://www.paradigm4.com
6https://neo4j.com
7https://redis.io
8https://riak.com/products/riak-kv/index.html
9https://www.mongodb.com

10https://www.marklogic.com/product/marklogic-database-overview/
11https://cassandra.apache.org/_/index.html
12https://hbase.apache.org
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relational table Customer

id

1

3

name

Mary

Anne

surname

Smith

Maxwell

street

Letenská

Ke Karlovu

city

Prague

Prague

postalCode

110 00

110 00

4 John Newlin Technická Prague 162 00

6 Pablo Rodriguez Vratislavova Prague 128 00

column family Orders

1

customerId orders

[(1,1), (1,2), ...]

orders

3

customerId

[(3,1), (3,2)]

orders

4

customerId

[(4,1), (4,2), (4,3)]graph Social Network

name: Mary

surname: Smith

name: Anne

surname: Maxwell

name: John

surname: Newlin

name: Pablo

surname: Rodriguez

1 6

34

Customer

Friends

Customer

Customer Customer

Friends

Fr
ie

nd
s

Fr
ie

nd
s

key/value pairs Cart

"value"

"value"

"value"

1

2

3

JSON collection Order

  {

    _id : {

      customer : 1,

      number : 2

    },

    contact: {

      cellphone : +420123456789,

      email : mary@smith.cz },

    items: [

      {
        id: B1,
        name: Pyramids,

        price: 200,

        quantity: 2

      },

      {
        id: A7,
        name: Sourcery,

        price: 200,

        quantity: 1

      }
    ]

  }

Figure 0.1: An example of variety of data

0.1.1 Basic Constructs and Their Unification
Since the terminology for the constructs of the data models varies greatly, in
the following text we will refer to the uniform terminology in Table 0.1. A kind
refers to a single collection of (possibly similar) instances, corresponding to, e.g., a
relational table, a node label, or a collection of documents. A record then denotes
a single instance of its kind, e.g., a tuple in a relational table, a particular node,
or a single document. A record further consists of properties such as:

• A simple property, e.g., a scalar value.

• A complex property, represented, e.g., by a homogeneous13 or heteroge-
neous14 array, or a structure that contains other properties (possibly both
simple and complex).

In addition, complex properties, such as nested documents, form a hierarchy
of properties. Hence, a record can be considered as a special kind of a complex
root property.

The domains correspond to the data types of the values of individual prop-
erties, while the active domain is a set of actively used values. An identifier
(further distinguished as simple, complex, and overlapping) then uniquely identi-
fies a specific record of a kind. Finally, a reference from one kind to an identifier
of another kind allows related data to be associated. Note that references are
only allowed for certain models.

0.1.2 Multi-Model Data
In general, multi-model data is represented by multiple logical models within a
single system. Multi-model data not only adopt the properties of single-model
data, but in addition:

13An array that contains elements of the same type.
14An array that contains elements of multiple types. This form of an array is allowed, e.g.,

in MongoDB document model.
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Table 0.1: Unification of terms in popular models

Unifying
term

Relational Array Graph RDF Key/Value Document Column

Kind Table Matrix Label Set of
triples

Bucket Collection Column
family

Record Tuple Cell Node /
edge

Triple Pair (key,
value)

Document Row

Property Attribute Attribute Property Predicate Value JSON Field
/ XML
element or
attribute

Column

Array – – Array – Array JSON array
/ repeating
XML
elements

Array

Structure – – – – Set / ZSet /
Hash

Nested
document

Super
column

Domain Data type Data type Data
type

IRI /
literal /
blank
node

– Data type Data
type

Value Value Value Value Object Value Value Value

Identifier Key Coordinates Identifier Subject Key JSON
identifier /
XML ID or
key

Row key

Reference Foreign key – – – – JSON
reference /
XML
keyref

–

• Analogous to possibly hierarchical models (e.g., the document model), we
can connect multi-model data by (1) inter-model references or (2) inter-
model embedding (e.g., a JSONB column in a PostgreSQL table embeds a
JSON document into a relational table).

• Similarly to the property labelled graph in Neo4j, we can express cross-
model redundancy. In this case, we represent the same parts of the data
using a combination of data models. We speak about partial redundancy if
only a subset of the data is represented by multiple models, or a complete
redundancy if the entire set of data is represented by two or more data
models.

The combination of data models within a larger unit (a polystore or a multi-
model database) allows us to use the right tool (data model) for the specific
tasks. For instance, we represent structured data with small differences in the
document model, data containing a large number of relationships between entities
with the need for efficient querying over the relationships between entities in the
graph model, or fast generated data without the need for complex querying in
the key/value model.
Example 0.2. Figure 0.1 also illustrates multi-model data. Compared to Exam-
ple 0.1, note that there are cross-model references in the data, e.g. from collection
Order (customerId) to table Customer (id). The data is also redundant, i.e., cus-
tomer information is stored in both the relational table and the graph.
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0.2 Category Theory
Category theory [17] is a branch of mathematics that provides a way to gener-
alise mathematical structures and the relationships between them. Hence, it is a
unifying theory that is useful for finding connections between different areas, not
only in mathematics and theoretical computer science.

In this section, we clarify the choice of category theory, indicate the (apparent)
similarity between category theory and graph theory, and explain how category
theory is applied in the proposed approaches to modelling and managing multi-
model data. Note that the basic definitions underlying our proposal, including
illustrative examples that are closely related to real-world applications in data
modelling approaches, are provided in the Appendix A.

0.2.1 Choice of Category Theory
We have chosen category theory for the unified representation of multi-model
data, because it allows for different levels of abstraction and unifies different
types of tasks at the abstract level in a natural way. Therefore it has been suc-
cessfully applied not only for single-model data modelling [18, 19, 20, 21], but
also in various (related) areas, such as programming language theory [22, 23],
data migration [20], or artificial intelligence (AI) [24, 25] among others. Thus, we
do not need to apply a variety of theories and approaches. Instead, combining
concepts such as category (see Definition 1), functor (see Definition 6), or nat-
ural transformation (see Definition 10) suitably, we are able to represent, e.g.,
the conceptual and logical schema, the relationship between these schemas, data
instances, querying based on pattern matching, data migration, and evolution
management.

0.2.2 Apparent Similarity to Graph Theory
At first sight, category theory is similar to graph theory. That is, both categories
and (directed) graphs are usually visualised using points and arrows. However,
this is where the similarity ends.

A category consists of a collection (class) of objects and a collection of mor-
phisms, where each morphism associates two objects. In addition, (1) morphisms
carry a particular meaning, e.g., they define relations or functions between ob-
jects, (2) each object is equipped with a so-called identity morphism, (3) mor-
phisms are composable using a composition operation for which the associative
and transitive laws hold, and (4) morphisms and their composition can be com-
pared with each other. Hence, one cannot arbitrarily orient morphisms in a
category, but must always respect the composition operation. Finally, categories
can, e.g., be mapped, transformed and translated to each other using the notion
of functor.

In contrast, a graph consists of a set of vertices (i.e. a special case of a
collection) and a set of edges, where each edge connects two vertices. Furthermore,
edges do not carry any additional meaning15 and no operations are defined to

15However, if edges carry meaning, e.g., a cost, then this is an extended definition of the
general graph and its application.
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allow edges to be composed or compared. We consider only the notion of a path
in the graph. In other words, a graph only describes a structure. Finally, graphs
can be compared with each other using the notion of graph homomorphisms.

However, note that each graph generates a category, referred to as a free cat-
egory (see Definition 5) also known as a path category, in which the vertices of
the graph form objects and the paths in the graph form morphisms (see Exam-
ple A.3). In addition, each free category is a small category (see Definition 3)
and each small category has an underlying graph.

0.2.3 Application of Category Theory in the Proposed
Approach

We applied category theory in our approach to multi-model schema and data
representation ⋆(see Chapter 2), data migration ⋆(see Chapter 3), and schema and
data evolution ⋆(see Chapter 5).

The main objective while proposing our approach was to make it user-friendly.
Thus, on the one hand, we utilise a complex unifying theory, but on the other
hand, we deliberately exploit the apparent similarities with graph theory. For
example, we represent the structure of data as a graph (i.e., vertices represent
classes of real-world objects, edges represent links between these classes) that
freely generates a schema category.

Moreover, to avoid unnecessarily burdening the reader with advanced category
theory constructs, e.g., natural transformation (see Definition 10) or universal
constructions (see Definitions 13, 14, 16, and 17), we consider these constructs
implicitly in our proposal. For example, instead of explicitly using the notions
product and coproduct in the case of the representation of an identifier (i.e., a
special case of a product) and a set of (overlapping) identifiers (i.e., a coproduct
of identifiers), we introduce an internal object (or graph vertex) representation
that consists of common notions of a superidentifier and a set of identifiers.

Hence we believe that the model we propose is simple enough that anyone
with a basic knowledge of category theory, i.e., the definition of a category (see
Definition 1), and functor (see Definition 6),16 will find our approach easy-to-use.

Although it may seem that we only apply graph theory, we still (implicitly)
exploit various levels of abstraction and advanced category theory constructs
on which we base the representation of instance data (e.g., functors or natural
transformations), data migration (e.g., functors, universal constructions, or nat-
ural transformations), schema modification (e.g., functors) and, as future work,
querying (e.g., universal constructions or natural transformations).

For the convenience of the reader, all the cases of application of category the-
ory in our approach are summarised in the commentary on data modelling (see
Subsection 0.3.4) and the commentary on schema evolution and data migration
(see Subsection 0.5.3). Finally, in the Appendix A we also outline in which ap-
proaches and for which purpose the above definitions are applied, i.e., we provide
additional examples.

16Or with a basic knowledge of graph theory, i.e., the definition of a graph and a graph
homomorphism.
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0.3 Multi-Model Data Modelling
The objective of data modelling is a mapping of real-world objects and their
structures to data objects and relationships between them. The conceptual layer
captures a generally applicable and platform-independent model of a part of real-
ity. The logical layer is a platform-specific representation of logical data structures
in particular (database) systems. Finally, the physical layer organises data into
physical units and addresses, e.g., data access.

Currently, there exist a number of approaches for modelling at the conceptual
(see Subsection 0.3.1) and logical (see Subsection 0.3.2) layer. However, these
are approaches proposed with a relational or graph model in mind as we analyse
in⋆ [26]. Hence, their general applicability to multi-model data is limited, as the
approaches are often unable to capture new structural properties in the data,
such as, e.g., relations between properties (note that ER and UML only allow to
capture relationships between classes of objects).

In addition, the variety of data models at the logical layer allows to represent
data in different ways. However, due to contradictory features of data models, a
change in logical representation is not straightforward. Both schema and data loss
may occur during this process, e.g. when an order of structural elements carries
some information. There have been attempts to unify logical data models [19, 27,
28, 29, 30], but these are often suboptimal solutions that, moreover, cover only
a limited subset of existing data models. Although attempts in unification have
been made, usually model-specific constructs are inherited [30], thus a broader
applicability is still limited.

In the following subsections, we discuss selected existing approaches to mod-
elling at the conceptual and logical level and demonstrate how and if these ap-
proaches can be used to represent multi-model data. At the logical level, we
mainly focus on approaches that attempt to abstract data models. We compare
the selected solutions and based on their analysis we discuss a set of open ques-
tions and challenges. Finally, we present a novel multi-model data modelling
approach. (Note that in this section we only discuss a static model. Its changes
are addressed in a separate section 0.5.)

0.3.1 Conceptual Layer
The objective of conceptual modelling is to represent data without being bound
by the features of particular logical models, i.e., we speak about so-called platform
independent modelling (PIM).

To achieve such a unified abstraction, traditional conceptual modelling lan-
guages, e.g., the Entity-Relationship model (ER) [31] and the Unified Modelling
Language (UML) [32] (namely class diagram), suffice with the notions of en-
tity, relation, attribute, identifier, and multiplicity. Additionally, there also exist
approaches [18, 33] based on category theory, or currently less widely used ap-
proaches such as the Natural language Information Analysis Method (NIAM) [34],
representatives of the Fact-Oriented Modelling (FORM) [35, 36], or representa-
tives of the Formal Semantic Database Modelling [37], e.g., the Functional Data
Model (FDM) [38, 39], the Semantic Data Model (SDM) [40], and the IFO Model
(IFO) [41]. Last but not least, there also exists an approach [42] allowing to
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represent document and graph data at the conceptual layer.
Taking the best of their features, we have proposed a multi-model schema and

data abstraction approach [2] inspired by ER and UML and based on category
theory. Hence, in this subsection, we mainly discuss the first three mentioned
conceptual modelling approaches.

Entity-Relationship Model

The first representative that enables conceptual modelling of complex structures,
i.e., real-world entities including their attributes and mutual relationships, is the
ER language. The basic constructs are as follows:

• An entity type reflects a class of real-world objects. It must contain an
identifier and (optionally) includes also additional attributes.

• A relationship type represents a binary, n-ary, or reflexive connection be-
tween classes of objects. It is implicitly identified by the participants in the
relationship, and thus explicit identifier is not allowed. However, similarly
to the entity type, the relationship type may contain additional attributes.
Moreover, the ER language also allows to name individual roles in a rela-
tionship.

• The so-called weak entity type is (co-)identified by all other participants
of a selected relationship. Note that the ER language lacks the ability to
include only selected participants in the weak identifier.

• The ISA hierarchy is a possibility to express generalisation (ancestor) or
specialisation (descendant) of entity types.

• An attribute expresses a characteristic of a class of real-world objects or their
relationships in the form of a required, optional, multi-valued, or structured
attribute.

• An identifier is a special type of an attribute. As such it has identifica-
tion functionality within the same class of real-world objects. Moreover,
identifiers can be categorised based on two criteria:

– In terms of its structure, we distinguish between a simple identifier
(consisting of a single attribute), a composite identifier (consisting of
multiple attributes), and an overlapping identifier (i.e., there is at least
one attribute that is part of two different identifiers).

– In terms of entity type membership, a strong identifier (i.e., being
directly an attribute of the entity type), an inherited identifier (i.e., a
member of the ancestor entity within the ISA hierarchy), a weak mixed
identifier (i.e., the entity type is partially identified by an identifier of
another entity type with which it enters into a relationship), or a weak
external identifier (the entity type is fully identified by an identifier of
related entity type) can be distinguished.

• A structured attribute is another special type of a (hierarchical) attribute
that can have only trivial depth of 1 (i.e., no further nesting of attributes
is allowed).
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• A cardinality, described as a pair (min,max), min ∈ {0, 1}, max ∈ {1, ∗},
whereas min ≤ max, expresses multiplicities between an entity type and a
relationship type (within a relationship) or between an entity type and its
attribute.

The ER language exists in several distinct notations [43], e.g., Chen [31],
Reiner et al. [44], Teorey [45], Hoffer et al. [46], and IDEF1X [47], that mutually
differ not only visually but also in the constructs used. In other words, there is
no standardised format for this language.
Example 0.3. Figure 0.2 illustrates the ER diagram of multi-model data from
Figure 0.1. At first glance, the diagram looks complete, i.e., faithfully representing
all the features of the data at the conceptual level. For example, there is an entity
type Customer having two identifiers (id) and (name, surname), a weak entity
type Order having a mixed identifier (id, number), and the ISA hierarchy between
Product and its children Audiobook and Book. Unfortunately, the ER language
only allows us to model traditional structured attributes (e.g., Address), whereas
Contact which can be understood as a structured attribute composed of pairs
(name, value), can only be represented as a binary relationship between Order
and Type.

value

name

(1,*)

(0,*)

Address Customer

idname
surname

street postalCode
city

Friends
(0,*)

(0,*)

id

price

name
(0,*)(0,*)Product Items Order

Audiobook Book

length pages

quantity
OrdersCartquantity

number

(1,1)(0,*)

(0,*) (0,*)

Contact

Type

Figure 0.2: An example of ER schema

Unified Modeling Language

Alternatively, the standardised UML allows us to visually represent not only com-
plex structures, but also entire systems. Using the UML, a number of diagrams
can be created (i.e., so-called behavioural and structural diagrams), of which a
representative of structural diagrams, so-called class diagram, can be used to
model the conceptual schema.

The basic constructs of the class diagram are as follows:
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• A concept is a named set of attributes that represents a class of real-world
objects. It corresponds to an entity type in the ER language.

• An association is a named relationship (connection) between concepts. It
can be defined between two (binary) or more (n-ary) concepts, but also over
a single concept (reflexive). In addition, similarly to the ER language, an
association class can be used to represent the connection between concepts.

• An attribute is a logical and untyped data value of a concept or an associ-
ation. Note that a structured attribute is not an explicit part of the UML,
but it can be expressed as an additional concept attached by an association.

• Multiplicity expresses the number of instances of concept A associable with
an instance of concept B.

• Finally, inheritance allows the expression of generalisation (ancestor) or
specialisation (descendant) of concepts. Similarly to ER, also multiple in-
heritance is allowed.

The expressive power of the class diagram is limited and does not cover all
the important details of the conceptual schema, such as, e.g., identifiers or weak
entity types.
Example 0.4. Figure 0.3 illustrates the UML class diagram corresponding to
schema of the multi-model data from Figure 0.1. Since UML does not provide a
graphical distinction between identifiers and attributes, the identifiers identifying
the Customer concept cannot be visualised. Moreover, the concept Order is not
considered as a weak concept. Also note that the structured attribute Address
is represented as a separate concept that is linked to the parent concept by an
association. Furthermore, Contact is also represented by an association between
the concepts Order and Type, similarly to the ER model in Figure 0.2. The
class diagram also allows us to represent inheritance, specifically the concepts
Audiobook and Book are descendants of the concept Product.

Categorical Conceptual Model (Lippe and Ter Hofstede)

Last but not least, the approach [18] allow to model the conceptual schema and
data using an approach based on category theory. The foundation of the approach
is a directed multi-graph, so-called type graph, that freely generates a category C
(see Definition 5) representing the conceptual schema.

The type graph G = (V, E, L, lbl, pow) is a tuple consisting of:

• A set of vertices V , where each vertex v ∈ V represents a particular type
of real-world objects, a relationship type, or an attribute type.

• A set of edges E, where each edge e ∈ E is an (optionally labelled) directed
pair of vertices e : v1 → v2, v1, v2 ∈ V determining the way how the vertices
participate in various constructions.

• A set of labels L := {role, spec, gen, power role, elt role}, where role rep-
resents a connection between a relationship type and its participant type,
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Figure 0.3: An example of UML schema

spec represents a type specialisation, gen represents a type generalisation,
and power role and elt role representing participants in so-called power
type (i.e., a concept of a multi-valued property, e.g., set), the former one
representing a connection between a power type and a parent type and the
latter one representing the connection between a power type and an element
type.

• Function lbl : E → L associating an edge e ∈ E with a label l ∈ L.

• Function pow is a bijection from edges with label power role to edges with
label elt role, which says that an instance of a power type can be identified
if and only if its elements are identifiable.

• It must hold that no cycles in the graph are composed of edges with labels
spec or gen.

Moreover, in the conceptual schema C = {OC,MC, ◦, 1} the following holds:

• The uniqueness of an attribute is represented by monomorphism mono ∈
MC (see Definition 4), i.e., each element of cod(mono) determines at most
one element in dom(mono).
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• A type of a complex identifier is expressed as a product with projections
(see Definition 13) to the components of the identifier (see Example 0.5).
Moreover, there is a single monomorphism mono : P → I between an
object P ∈ OC corresponding to type of real-world objects vp ∈ V and
object I ∈ OC corresponds to type of a complex identifier vi ∈ V .

• A type of a structured attribute is represented similarly to a type of a
complex identifier. The only difference is that there is an epimorphism (see
Definition 4) epi : P → A between an object P ∈ OC corresponding to
type vp ∈ V and an object A ∈ OC corresponds to type of the structured
attribute va ∈ V . In other words, each value of a structured attribute must
be a part of an instance of the parent type.

• The multiplicity of an attribute is expressed as the product P × E (i.e., a
power type), where an object P ∈ OC corresponding to the parent type vp ∈
V and an object E ∈ OC corresponds to element type ve ∈ V . Moreover,
it must hold that both projections π1 : P × E → P , π2 : P × E → E are
epimorphisms. Note that this approach can be applied to modelling of, e.g.,
sets, but it is not applicable to represent data collections in general, e.g.,
arrays (a collection of ordered and possibly duplicate elements), and maps
(a sets of pairs (name, value)) distinguishable by name).

• Inheritance is represented by a complementable monomorphism (see Def-
inition 15) corresponding to an edge with a spec label. In other words,
each instance of a child must correspond to a unique instance in each of
its ancestors. Also note that multiple inheritance is allowed. Moreover, the
subtype diagram commutes, i.e., the children have an access to attributes
of theirs ancestors.

• Generalisation of objects A, B ∈ OC is represented as pushout A + B (see
Definition 17).

Finally, the approach also allows to represent data instances conceptually. The
foundation for data representation is the so-called instance category, which can
be based on the categories of sets Set, finite sets FinSet, partial sets PartSet
(allowing to represent missing values, i.e., null), relations Rel, etc. [18].
Example 0.5. Figure 0.4 illustrates a conceptual categorical schema of the multi-
model data from Figure 0.1 represented using approach [18]. For the sake of
clarity, we do not show the identity morphisms and we divided the schema into
two parts: Figure 0.4 (a) depicts only types of real-world objects and their rela-
tionships. Figure 0.4 (b) depicts the attributes of type Customer.

Note that relationships (i.e., Friends, Items, Cart, Orders, and Contact) are
modelled as a product with role-labelled projections to the participants of the re-
lationship. On the other hand, inheritance is modelled as a co-product with spec-
labelled inclusions (i.e., the child is a specialisation of the parent). Figure 0.4 (b)
illustrates the representation of identifiers using monomorphisms (explicitly la-
belled with an existence quantifier). In other words, there is only a single mapping
between type Customer and its id. The complex identifier (name, surname) is
represented as a product with projections to attributes name and surname. There
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is once again a single mapping between Customer and the complex identifier. Fi-
nally, a structured attribute is represented as a product with projections, but in
this case Address : Customer → String × String × String is an epimorphism.
Also note that composition street ◦Address allows direct access from Customer
to String.

Customer

Friends

role

Orders

Order

role

Contact

Type

ItemsProduct

Audiobook Book

Cart rolerole

role

rolerole

role

spec spec

rolerole

(a)

String

id

surname

Customer

name

Integer

String

String String

street
city

  postalCode

String Integer

String String Integer

String

Address

(b)

Figure 0.4: An example of a conceptual schema (Lippe and Ter Hofstede)

Comparative Summary

Table 0.2 summarises the expressive power of the three described approaches.
In addition, it involves also a comparison of our approach inspired by them and
described in detail in⋆ Chapter 2.

In principle, all the presented approaches allow for modelling of the traditional
concepts of real-world objects, relationships, and their attributes. They differ
mainly in their ability to model identifiers, where the UML class diagram does
not allow to specify an identifier17 and, therefore, it does not even work with
the principle of a weak entity type partially or completely identified by another
entity type. Note that in ER we can model an identifier as a special type of an
attribute and that in the categorical approach we use monomorphisms. Moreover,
the categorical approach considers an explicit identifier of a relationship type,
whereas in the ER language the relationship type is identified implicitly by the
participants of the relationship. Finally, the selected approaches differ in the
possibility of expressing a structured attribute. The categorical approach allows
expressing a structured attribute with unlimited depth and unrestricted structure,
while the ER language allows only structured attributes of trivial depth and
the UML class diagram expresses structured attributes using a concept and an
association.

0.3.2 Logical Layer
While at the conceptual level we view the data in a platform-independent way,
the objective of so-called platform-specific modelling (PSM) is to capture often

17UML allows us to textually express integrity constraints, including the identifier, using the
Object Constraint Language (OCL) [48].
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Table 0.2: Expressive power of approaches modelling conceptual layer

ER [31] Class diagram
(UML) [32]

Lippe and Ter
Hofstede [18]

MM-cat [3]

Object class Entity type Concept Object Object

Relationship
class

Relationship type Association (class) Product +
projections (role)

Product +
projections

Simple attribute
(property)

Attribute Attribute Epimorphism to
object

Epimorphism to
object

Map-like
property

No No No Product +
projections

Multiplicity Cardinality (Chen) Multiplicity Product +
projections
(power role,
elt role)

Product +
projections

Role Role Named association No No

Inheritance ISA hierarchy Inheritance Morphism (spec) Object +
monomorphism

Generalisation Multiple ISA
hierarchy

Multiple
inheritance

Injection (gen) Injection

Structured
attribute
(property)

Structured
attribute

Concept +
association

Product +
projections

Product +
projections

Reflexive
relationship
class

Reflexive
relationship type

Reflexive
association

Object +
morphisms (role)

Object +
morphisms

N-ary
relationship
class

N-ary relationship
type

N-ary association
(class)

Product +
morphisms (role)

Product +
projections

Weak object
class

Weak entity type No Object +
monomorphism

Object +
monomorphism

Identifier Identifier No Monomorphism Monomorphism

Complex
identifier

Complex identifier No Monomorphism to
product

Monomorphism to
product

Multiple
identifiers

Yes No Yes Coproduct of
products

Overlapping
identifier

Overlapping
identifier

No No Overlapping
products

Relationship
identifier

Implicit No Implicit Implicit / Explicit

Integrity
constraints

Identifier OCL Identifier Identifier,
Reference

non-transferable characteristics of particular database systems. For example, we
consider particular data structures, i.e. graphs, trees, and matrices implemented
by the actual DBMS representatives,18 as well as academic proposals (e.g., the
X-SEM model [49] for XML data).

In this subsection, we discuss selected existing approaches that address the
unification of different logical models, in particular category theory based ap-
proaches [19, 20, 21], the NoSQL abstract model (NoAM) [27], associative arrays
(AA) [28], the tensor data model (TDM) [29], and the U-Schema [30]. We also
verify if the approaches are generic enough to cover various characteristics of
popular data models and multi-model data in general.

18Various popular models based on data structures are discussed in detail in ⋆Section 4.3.
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Categorical Graph-Oriented Object Data Model (CGOOD)

The approach [19], which is based on the Graph-Oriented Object Database Model
(GOOD) [50], enables us to work with object and relational data in a unified
way (i.e., it aims to abstract these two approaches at the logical level). Abstract
data instances are represented as typed graphs, with schema and data defined
solely in terms of categorical constructs. In addition, this approach allows graph
pattern matching, which further provides a basis for evolution management and
querying.

The core structure of the CGOOD model is the directed graph G = (V, E,
srt, tgt), which represents both the schema (i.e., so-called typegraph) and the data.
An object (from the object model), a corresponding tuple (from the relational
model), or an active domain of a property is represented by a vertex v ∈ V ,
whereas the property (i.e., the fact that a certain value is a property of a complex
object) is represented by an edge e ∈ E. Note that an edge also represents a
function between two types of objects, e.g., getter, isAncestor (isa), etc. Finally,
functions src, tgt : E → V assign the source and target vertices to the edge
accordingly.

Categorically speaking, a particular graph G is represented as a set-valued
functor from Example A.5. Moreover, a collection of such graphs forms a category
of all graphs G = (OG,MG, ◦, 1), which corresponds to the functor category from
Example A.8. The category G also provides a fundamental framework for the
definition of a data instance. A so-called typed instance is a morphism Inst : G→
T , where Inst ∈ MG, and G, T ∈ OG. Note that Inst corresponds to a graph
homomorphism between G and T , i.e., there exists a mapping InstV : VG → VT

specifying the type of the value, and a mapping InstE : EG → ET preserving the
structure of G.

Example 0.6. Figure 0.5 (a) illustrates a typegraph representing the logical schema
of the multi-model data from Figure 0.1. Figure 0.5 (b) depicts a part of the data.
For easier understanding, the vertices and edges of the typegraph are labelled by
strings, though this is not necessary from a categorical perspective (CGOOD
works with unlabelled graphs). In addition, we use colours to represent the
mapping of the data to the corresponding types, i.e., values 1, 3, 4, 6 are mapped
to Id, values Mary, Anne, John, Pablo are mapped to Name, etc. Note that the
mapping preserves the structure, i.e., if there exists an edge between two vertices
in the data, then there will be an edge between the corresponding vertices in the
typegraph. Finally, note that the data does not contain explicit identifiers.

To conclude, note that category theory in the context of relational and object-
relational models has also been addressed in the works [18, 51, 52, 53].

Categorical Logical Model (Spivak et al.)

The approach [20] represents the relational database schema as a small category
(see Definition 3) and corresponding data instance as a functor (see Definition 6).
The authors also propose a category of all schemas and allowed operations be-
tween the schemas. Hence, in combination with so-called data migration functors
built on top of the schema operations, the migration of data instances is allowed.
Moreover, these data migration functors form the basis of a categorical query lan-
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Figure 0.5: An example of CGOOD application to multi-model data

guage CQL [54]19 over relational data. Finally, this approach allows to convert
relational data to RDF triples [55] and vice versa.

However, in order to apply this approach, the authors presume that the
database (i.e., a set of named kinds) is in the so-called categorical normal form,
defined as follows:

• Each kind t contains a simple identifier idt.

• For each additional property c of kind t, c ̸= idt, there is a target kind t′

such that each record of kind t is mapped to exactly one record of type t′,
i.e., there is a mapping c : t→ t′.

• If two paths p : t → t′, q : t → t′, p ̸= q represent the same mapping of
records between two kinds, the equivalence p ≃ q must be included in the
schema.

In addition, the authors define the notion of a categorical path equivalence
relation (CPER) on the graph G = (V, E, src, tgt) denoted by ≃, which has the
following properties:

• If p,q are paths of the graph G and p ≃ q, then src(p) = src(q).

• If p,q are paths of the graph G and p ≃ q, then tgt(p) = tgt(q).

• Let p, q : b→ c be paths and m : a→ b be an edge in the graph G. If p ≃ q
holds, so does p ◦m ≃ q ◦m.

• Let p, q : a→ b be paths and n : b→ c be an edge in the graph G. If p ≃ q
holds, so does n ◦ p ≃ n ◦ q.

Finally, the schema of a database in categorical normal form is a pair (G,≃),
where G = (V, E, src, tgt) freely generates the category G = (OG,MG, ◦, 1) as
follows:

• OG correspond to the vertices in V .
19https://www.categoricaldata.net
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• MG correspond to the paths in the graph G composed of edges E.

• ◦ corresponds to the path concatenation operation.

• ≃ is a categorical path equivalence relation on G.

In other words, the kinds (i.e., tables) in the schema are determined by vertices
v ∈ V mapped to objects O ∈ OG, the properties (i.e., columns) are determined
by edges e ∈ E mapped to morphisms m ∈ MG, and the integrity constraints
are represented by a categorical path equivalence relation. A closer look allows
us to further divide the objects into (1) objects T ∈ OG, each corresponding to
a kind of a single property (i.e., a single one-column relational table) and (2)
objects D ∈ OG, each corresponding to a generic data type, e.g. String, Number,
Boolean, etc. As for morphisms, we can distinguish: (1) identity morphisms
idt : T → T , each modelling an identifier of a specific kind (i.e., relational table);
in the case where the kind has no identifier, idt is considered implicitly, (2) identity
morphisms idd : D → D, each modelling an identifier for a domain of a particular
data type, (3) morphisms r : T → T ′, each modelling a reference from T to T ′,
and (4) morphisms c : T → D, for each kind T and its property (distinct from the
identifier and reference) of data type D. Also note that the categorical normal
form does not support complex and overlapping identifiers.

The authors also introduce a set-valued functor InstG : G→ Set representing
a particular instance conforming to the schema G (see Example A.5).

Example 0.7. Figure 0.6 (a) illustrates the multi-model schema from Figure 0.1
represented by the approach [20]. Objects depicted using a solid line represent
particular tables (e.g., Customer), while objects depicted with a dashed line repre-
sent data types (e.g., String). Although the schema appears to faithfully capture
the logical schema of multi-model data, it is in fact expressed in terms of intercon-
nected single-column (non-aggregated) relational tables. Moreover, this approach
does not consider complex or overlapping identifiers, but only trivial one-column
identifiers. Also note that instead of an ISA hierarchy, the specialisation of a
child is represented by addition of the property Type to the kind Product, as the
approach [20] does not allow explicit modelling of the ISA hierarchy.

Finally, the part of the instance is illustrated in Figure 0.6 (b).

Papers [56, 57] extend this approach to support multiple logical models, i.e.,
not just the relational model. However, the proposal only considers separate
models (namely relational, graph, and document) over which the data can be
queried and migrated between using functors and natural transformations.

Algebraic Property Graph (APG)

Yet another approach [21] is based on type theory, algebra, and category theory,
i.e., it is closely related to algebraic databases [58], and aims to cover the area
of property graphs. The authors propose the so-called algebraic property graph
(APG) to represent a general property graph. In addition, a set of rules for trans-
forming selected data models (i.e., relational, RDF, key/value, XML and, JSON
document) into the APG representation is proposed. Also, the basic operations of
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Figure 0.6: An example of a logical categorical schema and data (Spivak et al.)

querying and migration between two APGs are proposed. The whole framework
is implemented as a part of an open-source tool CQL.20

Property graph G = (V, E, L, src, tgt, lblv, lble) is defined as follows:

• V is the set of vertices of the graph G.

• E is the set of edges of the graph G.

• Functions src, tgt realize the edge orientation.

• Unlike the ordinary graph, G also contains a set of labels L and functions
lblv : V → L, lble : E → L that assign labels l ∈ L to vertices v ∈ V and
edges e ∈ E accordingly.

Note that internally each vertex and edge contains a unique identifier and a set
of key/value pairs called properties.

The authors represent the property graph as a category A = (OA,MA, ◦, 1),
where OA = {LA, TA, EA, VA} and MA = {vA, τA, λA, ωA} such that:

• LA represents the set of labels to be assigned to each vertex of the graph.

• TA denotes the set of types that can be assigned to the vertices of the graph.
Each type t ∈ TA is a term of the grammar t := 1 | p | l | t1 + t2 | t1 × t2,
where 1 is a type of a trivial value, p ∈ P is a primitive type, l ∈ LA, t1 + t2
is a complex type (e.g., union type), and t1 × t2 is a type of an edge.

• The set of elements EA = V ∪ E represents the elements of the graph G,
i.e., the vertices and edges.

20https://www.categoricaldata.net

25

https://www.categoricaldata.net


• The set VA, where the elements vi : ti are terms of the typed grammar
v : t := () : 1 | inlt2(v : t1) : t1 + t2 | inrt1(v : t2) : t1 + t2 | (v1, v2) :
t1 × t2 | vp : p | e : λA(e), where t, t1, t2 ∈ TA, p ∈ TA is a primitive type,
and e ∈ EA.

• The function vA : EA → VA assigns a value to each element.

• The function τA : VA → TA associates a data type with each value.

• The function λA : EA → LA attaches a label to each element.

• The function ωA : LA → TA determines the (data) type of each label.

• The structure of the graph must correspond to its schema, i.e., τA ◦ vA =
ωA ◦ λA.

A particular algebraic property graph (i.e., an instance) is then a functor F :
A→ Set (see Example A.5).
Example 0.8. An example of l ∈ LA is, e.g., Customer attached to a vertex
representing a particular customer, and name attached to an edge that assigns a
name to a customer.

Examples of t ∈ TA include Customer (i.e., the type of vertex attached by
label Customer), String (i.e., the type of a vertex that represents an attribute),
Customer × String (i.e., the type of an edge that assigns a name of type String
to the Customer), and Product + Audiobook (i.e., the type of vertex that has
multiple labels attached).

An example of a typed value is, e.g., "Mary":String, ():1 (i.e., a trivial value
of an arbitrary vertex), (c1, "Mary"):Customer × String (i.e., an edge value,
where c1 is a reference to the vertex corresponding to the customer with id = 1).

Then the function λA(c1) = Customer assigns the label Customer to the ver-
tex c1. The function vA(n1) = (c1, ”Mary”) determines the value of the edge ref-
erenced by the reference n1, or vA(c1) = (). Examples of exploitation of the func-
tion to determine the label of a graph element are ωA(Customer) = Customer,
and ωA(name) = Customer × String. Finally, an example of determining the
type of a typed value is τA(”Mary”, String) = String.
Example 0.9. Figure 0.7 (a) illustrates the schema of the data from Figure 0.1
represented as APG. The green objects correspond to real-world objects, the black
and white objects represent property values, and the blue arrows, each crossing
a blue object, represent directed relationships between the objects. Note that
properties of objects or relationships are represented by the edge leading to the
black and white objects.

Figure 0.7 (b) illustrates a part of the multi-model data from Figure 0.1 that
corresponds to the schema in Figure 0.7 (a). Note that the approach allows us
to represent the ISA hierarchy by attaching multiple labels to a single vertex.
Moreover, vertices are identified only by a simple implicit identifier, i.e., complex
identifiers are not allowed. Finally, the structured attribute Address is inlined to
the Customer.

APG is also suitable for data and schema migration. As every instance of APG
corresponds to a functor F1,2 : A→ Set, the migration between two instances of
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Figure 0.7: An example of APG (a) corresponding to data (b)

APGs can be formally described as a natural transformation α : F1 → F2 (see
Definition 10).

Finally, the authors also propose a method for APG to represent the schema of
other data models (i.e., relational, RDF, key/value, XML and JSON document),
but do not cover all the properties of the models, e.g., uniqueness of values, order
of properties, structured and overlapping identifiers.

NoSQL Abstract Model

The approach [27] is a system-independent model of aggregate-oriented NoSQL
database systems, i.e., it covers key/value, document, and columnar models. In
addition, it is designed for performance, scalability and data consistency.

The basic constructs of the proposed abstract model are as follows:

• The NoAM database D = {C1, . . . , Cn} is a set of collections.

• Each collection C = (idC , B) is uniquely identified by the collection key idC

and contains the set of blocks B = {b1, . . . , bm}. Examples of collections
include bucket, document collection, and column family.

• Each block b = (idb, E) is uniquely identified by the block key idb and
contains a non empty set of entries E = {e1, . . . , ep}. Each block corre-
sponds to an aggregate, e.g., a single key/value pair, a document, or a row
of a column family. A block is also the largest data unit for which atomic
operations are considered.

• Entry e = (ek, ev), where ek uniquely identifies an entry within a block
and ev represents a primitive or complex value. An entry corresponds to a
document field and a table column.

NoAM employs two data representation strategies, i.e., input per each top-level
property (ETF) and input per each aggregated object (EAO).

When applying the ETF strategy, each block b represents a single record,
wherein the block key idb corresponds to the identifier of the record, and the set
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of entries E contains one pair (ek, ev) for each property except for the property
having the identification feature. If the top-level property represents a complex
property, i.e., it is not an atomic property, this property is also represented as an
entry and not as a set of nested entries (e.g., a nested block).

Alternatively, when applying the EAO strategy, each record is represented by
its own block, where the block key idb corresponds to an identifier and the set of
entries is constituted by a single entry (ek, ev). Note that ek = ϵ and the value is
the aggregate corresponding to the record without the identifier ( as it is already
used as idb).
Example 0.10. Figure 0.8 (a) illustrates the application of the ETF strategy to
the kinds Order and Customer from Figure 0.1, while Figure 0.8 (b) illustrates
the application of the EAO strategy to the same data. A comparison of the two
strategies demonstrates that the block identifiers are the same and the blocks
differ only internally. While the block contains only a single complex entry iden-
tified by the (meta)value ϵ when using the ETF strategy, the block consists of a
set of uniquely recognisable entries when using the EAO strategy. However, even
if using the EAO strategy, the entries corresponding to a complex structure are
not split further into smaller units (e.g., see properties contact and items).

{
  contact : {

    cellphone : +420123456789,

    email : mary@smith.cz },

  items : [

    { id : B1, name : Pyramids, price : 200, quantity : 2},

    { id : A7, name : Sourcery, price : 200, quantity : 1 }

  ]
}

{
  customer : 1,
  number : 2
}

collection Order

collection Customer

6 {
  name : Pablo,

  surname : Rodriguez

  street : Vratislavova,

  city : Prague,

  postalCode : 128 00,

  friends : 3

}

1 {
  name : Mary,

  surname : Smith

  street : Letenská,

  city : Prague,

  postalCode : 110 00,

  friends : [ 4, 6 ]

}

(a)

collection Order

{
  customer : 1,
  number : 2
}

contact
{
  cellphone : +420123456789,

  email : mary@smith.cz

}

items
[

  { id : B1, name : Pyramids, price : 200, quantity : 2 },

  { id : A7, name : Sourcery, price : 200, quantity : 1 }

]

collection Customer

6 name

surname

friends

street

city

postalCode

Pablo

Rodriguez

3

Vratislavova

Prague

128 00

1 name

surname

friends

street

city

postalCode

Mary

Smith

[ 4, 6 ]

Letenská

Prague

110 00

(b)

Figure 0.8: An example of (a) ETF and (b) EAO strategies

In addition, the so-called access paths ap are considered, allowing to represent
the complex property p as a set of entries {(ap1, v1), . . . , (apn, vn)}. As such, each
nested property c is represented as an entry (apc, c), where the entry key apc is
the sequence of steps required to access property c from parent p, and the value
c is the accessed nested property.

In order to select an appropriate aggregate representation strategy, the au-
thors propose a set of rules for partitioning the data model. As the authors
suggest, the chosen strategy should reflect, e.g., data access patterns and support
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strong consistency and efficient execution of update operations. Unfortunately,
the approach does not consider general multi-model data, i.e., a combination of
possibly overlapping data models, but only aggregate-oriented data. Note also
that the approach only allows for so-called embedding of kinds (i.e., nested com-
plex properties representing an additional structure), but it does not consider
references between different kinds (i.e., across different data collections) at all.

Associative Arrays

The next approach [28] is a system-independent model that allows selected data
models to be represented uniformly at the logical and physical layers. As such,
it is based on a generic data structure, so-called associative arrays.

The core of the approach is the associative array A, i.e., a mapping of a
two-dimensional key to the value A : K1 ×K2 → V, where:

• Key K1 corresponds to an array row.

• Key K2 corresponds to an array column.

• A domain of a key can be an arbitrary set of ordered values, e.g., integers,
strings, etc.

• The values k ∈ Ki must be unique within the key Ki, i.e. there does not
exist ki, kj ∈ K : ki = kj, but there may exist two keys k1 ∈ K1, k2 ∈ K2
such that k1 = k2.

• There is no row or column that is completely empty, i.e., an associative
array does not allow us to represent an empty record or a property having
an empty active domain.

Associative arrays allow to represent both aggregate-ignorant and aggregate-
oriented models. In the former case, the models are represented as a matrix
where the row key corresponds to the recorder identifier and the column key cor-
responds to the property name, while in the latter case it is a sparse matrix that
additionally represents a hierarchical arrangement of data in the keys. For ex-
ample, the row key contains not only the document identifier, but additionally a
unique index for nested array elements to determine their order, and the column
key reflects the hierarchy between properties, i.e., top-level properties are repre-
sented by the property name, while further nested properties are represented by
the minimum sequence of steps required to access the property (similarly to the
access paths in NoAM). However, the approach does not model, e.g., references,
multiple (possible overlapping) identifiers, and the ISA hierarchy at all.
Example 0.11. Figure 0.9 illustrates the application of the approach [28] to the
multi-model data from Figure 0.1. As illustrated, the approach allows to repre-
sent heterogeneous models as a disjunctive set of associative fields. Note that the
approach allows to represent a complex identifier or complex and nested prop-
erties, including capturing the order of elements in the array, as illustrated by
associative array representing kind Order.

The proposed approach also provides querying and transformations. It uses
basic operations, e.g., element-wise addition, element-wise multiplication, and
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Figure 0.9: An example of Associative Arrays

array multiplication, which correspond, e.g., to the database operations of table
union, intersection, and transformation.

Tensor Data Model (TDM)

Last but not least, the approach [29] allows us to represent multi-model data in
terms of tensors [59], i.e., the following matrix generalisation: 0th order tensor is
a scalar, 1st order tensor is a vector, 2nd order tensor is a matrix, and n-th order
tensor is so-called higher-order tensor.

In TDM, tensors are defined as the mapping T : K1 × · · · ×Kn → V, where:
n ∈ N is the order of the tensor, Ki is the dimension of the identifier K1×· · ·×Kn,
and V is a set of values. In addition, tensors are unambiguously named and typed.

Tensors are used in three possible ways in TDM:

1. Associative arrays, denoted by Ai for i = 1, . . . , n, model dimensions of a
tensor X. Such arrays have only one set of keys associated with integers
using bijective function Ai : Ki → N.

2. At a lower level, an associative array is used to represent the values of a
sparse n-order tensor by associating compound keys from dimensions to
values Avst : K1 × ...×Kn → V.

3. For tensors with non-numerical values, two associative arrays are used: (i)
to map keys dimensions to a set of integer keys (Avst) and (ii) to map the
integer keys to non-numeric domains values (one integer is associated with
each different value).

Operations with tensors are analogous to operations with matrices and vec-
tors, e.g. multiplication, transpose, unfolding (transformation of a tensor into a
matrix), factorisation (decomposition), etc.
Example 0.12. Figure 0.10 illustrates the application of the approach [29] to the
multi-model data from Figure 0.1. At first sight, the approach is identical to
associative arrays proposed in [28]; however, the document and column models are
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not considered. That is, a hierarchy between individual properties and complex
properties such as nested documents, arrays, etc. cannot be represented. On
the other hand, this approach allows us to apply higher-order tensors, e.g., to
represent n-ary relations. In this case, we could use a third-order tensor to
represent, e.g., graph data illustrating relationships between two customers.

cart

1 product : T1, quantity : 2, product : B4, quantity : 1

3 product : H1, quantity : 1

6 product : B3, quantity : 2

name surname street city postalCode

1 SmithMary Letenská Prague 110 00

3 MaxwellAnne Ke Karlovu Prague 110 00

4 NewlinJohn Technická Prague 162 00

6 RodriguezPablo Vratislavova Prague 128 00

name surname 1 3 4

1 SmithMary 0 0 1

3 MaxwellAnne 0 0 1

4 NewlinJohn 0 0 0

6 RodriguezPablo 0 1 0

6

1

0

0

0

Figure 0.10: An example of TDM

U-Schema

Recently, the approach [30] integrating schemas of distinct logical models, namely
relational, graph, key/value, document and columnar models, was proposed. The
proposal also includes a mapping between the respective logical model schema
and the integrating schema and vice versa.

The basic structural constructs of the proposed approach are as follows:

• Model U-Schema U = {s1, . . . , sn} ⊆ S , n ∈ N is a set of SchemaTypes
s ∈ S.

• The set of SchemaTypes S is the union of EntityTypes (E ⊆ S) representing
classes of real-world objects and RelationshipTypes (R ⊆ S) representing
relationships between them. Internally, EntityType e ∈ E is represented as
a tuple (ns, root, Vs) and RelationshipType r ∈ R is a tuple (ns, Vs), i.e.,
each SchemaType is assigned a name ns and contains a subset of Structural-
Variations Vs ⊆ V . In addition, EntityType e contains a Boolean feature
root indicating whether it is a standalone or nested entity type. Hence,
only the EntityType can form a hierarchical structure.

• Each StructuralVariation v ∈ V is represented as a tuple (id, Fv, count,
firstTS, lastTS) such that id is an integer identifier, Fv ⊆ F is a sub-
set of the properties, count is a feature capturing the number of existing
instances of a particular StructuralVariation, and the timestamps firstTS
and lastTS store the time of creation of the first and last instance of that
variation.

• The set of properties F is composed of LogicalFeatures (i.e., keys KEY ⊆ F
and references REF ⊆ F ) and StructuralFeatures (i.e., attributes ATT ⊆
F , and aggregates AGG ⊆ F ) such that:
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– The attribute att ∈ ATT can be primitive (e.g., Number, String,
Boolean, JSON,21 BLOB), collections (e.g., list, tuple, set, map), or
the special type Null. Each attribute att is modeled as a tuple (natt,
tatt, optatt, keyatt, REFatt, isatt) such that natt assigns a name to the
attribute, tatt is the data type of the attribute, optatt specifies the op-
tionality of the attribute, keyatt ∈ KEY is a reference to the (none or
only) key of which the attribute may be a part, REFatt ⊆ REF is a
subset of the references of which the attribute is a part, and the isatt

attribute models specific behaviour based on the attribute type.
– The key key ∈ KEY is modelled as a tuple (nkey, Akey) such that nkey

is the name of the key and Akey ⊆ ATT is a subset of attributes that
constitute the key.22

– The reference ref ∈ REF is modelled as a tuple (nref , Aref , refsTo,
lBound, uBound) such that nref is the name of the reference, Aref ⊆
ATT is a subset of the referencing attributes,23 refsTo ∈ E is the
referenced EntityType, and lBound, rBound are the lower and upper
cardinality bounds, respectively.

– The aggregation agg ∈ AGG is modeled as a tuple (nagg, optagg,
lBound, uBound, Vagg) such that nagg assigns a name to the aggre-
gation, optagg determines the optionality of the aggregation, lBound,
rBound are the lower and upper cardinality bounds, and Vagg ⊆ V is
the set of structural variations that are aggregated (nested).

Example 0.13. Figure 0.11 (a) illustrates the U-Schema of the graph data and
Figure 0.11 (b) the U-Schema of the document data from the Example 0.1. Note
that although edges are represented internally in the graph as a pair of proper-
ties from, to, U-Schema represents an edge as a RelationshipType without any
properties, and the connection between two customers (otherwise realised by an
edge) is represented by a reference at Customer. In the case of the U-Schema
document model, note that only the EntityType Order is root, reflecting the fact
that all other EntityTypes are nested.

U-Schema allows to define two variants of the model: (1) in the so-called
full variability all structural variations of all EntityTypes and RelationshipTypes
are stored, while (2) in the so-called union schema there is only one structural
variation for each SchemaType. Note that the conversion from the full variability
to the union schema version is a lossy conversion, hence the reverse conversion is
not possible.

Furthermore, the authors introduce so-called forwards mapping (i.e., a map-
ping of the logical model schema to the U-Schema) and reverse mapping (i.e., a
mapping in the opposite direction). In the former case, there is a natural cor-
respondence between each element of the logical schema and an element of the
U-Schema. However, in the latter case, the U-Schema may contain elements that

21Note that the authors consider the nested data model represented by JSON or JSONB type
in PostgreSQL as a black box and not as a structure.

22Note that U-Schema allows primitive attributes as part of the key, as well as collections
and the special type Null [30].

23Note that, similar to the key, references can be collections and the special value Null in
U-Schema.
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USchema
Neo4j

EntityType
name : "Customer"

root : "true"

RelationshipType
name : "Friends"

StructuralVariation
variationId : 1

count : 4

StructuralVariation
variationId : 1

count : 4

Attributes
"Name" : String

"Surname" : String
References

Friends : Customer

(a)

USchema
MongoDB

EntityType
name : "Order"

root : "true"

EntityType
name : "_id"
root : "false"

EntityType
name : "Contact"

root : "false"

EntityType
name : "Items"
root : "false"

StructuralVariation
variationId : 1

count : 1

StructuralVariation
variationId : 1

count : 1

StructuralVariation
variationId : 1

count : 1

StructuralVariation
variationId : 1

count : 2

Aggregates
_id : _id[1]

Contact : Contact[1]
Items : Items[1]

Attributes
"Cellphone" : String

"Email" : String

Attribute
"Customer" : Number
"Number" : Number

Attribute
"Id" : String

"Name" : String
"Price" : Number

"Quantity" : Number

(b)

Figure 0.11: An example of U-Schema for graph (a) and document model (b)

are not present in a particular logical model, e.g., the relational model does not
contain structural variations,24 the graph model does not support aggregates, and
conversely, most logical models do not contain the RelationshipType. Hence, the
unification of data models is limited, as model-specific constructs are introduced
into U-Schema, which also makes it difficult to extend the approach to support
other logical models if needed.

Finally, the authors proposed the language Athena [60], which allows the
definition of logical schemas as U-Schemas.

Comparative Summary

Table 0.3 summarises the features of selected abstract models at the logical layer.
All the observed approaches allow us to represent data, however, the schema is
approached in various ways. Most approaches can be considered schema-full,
however, NoAM approach lacks an explicit schema, thus representing a schema-
less approach. The abstraction of logical data models varies. Typically, if the
abstract model is based on the graph (or category), it allows to represent rela-
tional or graph data (i.e., aggregate-ignorant models). Conversely, if the model is
an array-like or aggregate-like, mostly aggregate-oriented models are supported.
However, multi-model data is only considered in the U-Schema approach, and

24Note that the U-Schema treats missing value differently. While in the relational model,
missing value leads to an optional property within one structural variation, in the graph model,
missing value leads to two different structural variations, and in the document model we further
distinguish a variation with the special type Null.
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Table 0.3: Comparison of logical layer modeling approaches

CGOOD [19] Spivak et
al. [20]

APG [21] NoAM [27] AA [28] TDM [29] U-Schema [30] MM-cat [3]

Data structure Typegraph Category Category Aggregate Matrix Tensor Graph Category

Schema Yes Yes Yes No Yes Yes Yes Yes

Data Yes Yes Yes Yes Yes Yes No Yes

Relational model Partial Partial Partial No Partial Partial Partial Yes

Array model No No No No No No No Yes

Graph model No No Yes No Yes Yes Yes Yes

RDF model No Yes No No No No No Yes

Key/value model No No No Yes Yes Yes Yes Yes

Document model No No No Yes Yes No Yes Yes

Columnar model No No No Yes Yes No Yes Yes

Multi-model data No No No No No No No Yes

Complex ID No No No Yes Yes No Yes Yes

Multiple IDs No No No No No No No Overlapping

References Implicit Intra Implicit No No No Yes Intra, Inter

Complex IC No ∼ ∼ No No No No No

Complex types Structure, Array No Array Structure, Array Implicit No Structure,
Array, Tuple,
Set, Map

Structure,
Array, Tuple,
Set, Map

Union type No No Yes Implicit No No Yes Yes

Ordering No No No Yes Yes No No Yes

Data redundancy No No No No No No No Yes

Querying Graph patterns CQL CQL No Matrix algebra Tensor algebra No No

Data Migration Intra Yes Yes No No Yes Yes Yes

Evolution
management

Yes Partial Partial No No Partial Yes Yes
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only in a limited way. The approach treats multi-model data as a set of disjunc-
tive models, i.e., it does not consider features arising from their connections, e.g.,
inter-model references, redundancy ⋆(see Chapter 3) and (in)consistency [61].

Nevertheless, even in the case of support for individual data models, ap-
proaches are often limited to a minimal set of constructs, e.g., simple identifiers,
simple properties and basic data structures (i.e., a subset of complex properties).
Only approaches NoAM and AA allow to model complex identifiers, while com-
pletely missing, e.g., the possibility to specify multiple identifiers and thus to
represent overlapping identifiers typical, e.g., for a relational model, hence multi-
model data. In the case of references, the approaches are limited to (implicit)
intra-model references only.

Finally, approaches often introduce minimal sets of operations that can be
composed to perform more complex operations that express, e.g., querying, data
migration and some evolution management operations.

0.3.3 Open Questions and Challenges in Data Modelling
Indeed, existing data modelling approaches seem promising for representation of
multi-model data at the conceptual and logical layers. However, none of these
approaches allows us to represent all the features of multi-model and underlying
data in their natural form. Hence, there remain open questions that need to be
addressed.

Conceptual Layer

Naturally, approaches that model the conceptual layer should support multi-
model data, as they intentionally hide the specific properties of platform-specific
(logical) representations. However, traditional approaches, such as ER and UML,
are primarily closely associated with the relational model (i.e., normalised data)
and do not necessarily reflect the properties of additional models (e.g., denor-
malised data). In other words, the translation of the conceptual schema is not
straightforward and is often ambiguous in the case of a combination of models.

The following challenges C1 – C9 need to be discussed accordingly in order
to design an extended approach that fully represents multi-model data at the
conceptual level:

C1: Elements of the conceptual layer. The question is whether we need to distin-
guish classes of objects from relationships and properties at the conceptual
level. In practice, conceptually equivalent constructs are often represented
differently at the logical level, and different conceptual constructs are rep-
resented in the same way. This is particularly obvious in aggregate-oriented
models where, e.g., a structured attribute is interchangeable with a combi-
nation of a class of parent object, a class of (nested) objects, and respective
relationships.

C2: Updated concept of a property. The traditional concept of a property can
be understood as a pair (name, value), where name is statically bound to
value (thus easily representable at the conceptual level). However, with
the advent of data models that allow data to be represented by a property
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of type map, the static binding is replaced by a dynamic one, i.e. name
becomes a part of the data. This trait, i.e., the dynamic naming of a
(nested) property, would also be useful to represent at the conceptual layer.

C3: Required explicit/implicit identifier. We believe that the motivation for the
introduction of a required and explicit identifier for classes of objects at the
conceptual level was, among other things, to enable the unambiguous con-
nection of different instances of classes, i.e., to realise relationships between
them, whereby a particular instance of a relationship is implicitly identified
just by the participants. Moreover, properties can be seen as trivial object
classes that contain only an identifier and thus explicitly identify them-
selves [20]. Hence, it is possible to identify all the elements of conceptual
model, which could allow a further level of unification.

C4: Ordering of properties. Currently, the conceptual level only allows to rep-
resent property names within a single class, but their relative order cannot
be captured.

C5: Structured property. Arguably, given the properties of the relational model,
a structured property, e.g., in ER, can only have trivial depth and allows
only trivial cardinality (i.e. one-to-one). However, in practice we also en-
counter unrestricted structured properties that have non-trivial depth and
where sub-properties are repeated. Traditionally, such a state can be rep-
resented by a combination of object classes and relations, but this goes
against the concept of conceptual modelling, as it is a structured property
and not a combination of classes and relationships.

C6: Multivalued identifier. Considering simple (single-property) identifiers, cur-
rently only properties with trivial cardinality (i.e., one-to-one) can be used
to identify an instance within an object class.

C7: Identifier of a weak class type. The identifier of the weak class type is
formed by the identifiers of all types involved in the relationship. In some
cases, it may be sufficient for the weak identifier to consist of only a subset
of the identifiers of the types participating in the relationship.

C8: Complex integrity constraints. Ideally, we need to capture integrity con-
straints (even complex ones) at the conceptual layer, as integrity constraints
are a natural and often overlooked part of the schema. In particular, ER
is limited to the representation of identifiers, whereas UML using OCL al-
lows the description of multiple types of integrity constraints including, e.g.,
business rules.

C9: Aliasing properties. Each element of the conceptual schema is assigned
only with a single name. However, in certain cases it is useful to introduce
synonyms, e.g., properties father and mother could be referred to as prop-
erty parent. Consequently, the special case of inheritance, though at the
property level, could, e.g., simplify (conceptual) querying.
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Logical Layer

Based on our findings, a fundamental construct of popular logical data models is
a property, i.e., the mapping p : N → V , where n ∈ N is the name and v ∈ V
is the value. Yet the models differ, e.g., in the way the properties are aggregated
into larger logical units (e.g., a flat table or a hierarchical tree structure), in
the enforcement of the order of properties (i.e., order-oriented/ignorant models),
the possibilities of identifying larger units, the support for references between
larger units, the way missing data is represented, or the attachment of structural
information to the data (i.e., structured, semi-structured, unstructured formats).
A common underlying construct (i.e., name-value pair) can be used to design a
unified (abstract, not necessarily logical) model. In designing such a model, the
following challenges L1 – L7 must be properly tackled:

L1: Unified logical model. A question is whether we need a unified layer of
multi-model data at the logical level in the sense of a single data model
(more or less painfully combining the properties of the models) or rather
an abstract model that merely overlays the existing logical models. In
the latter case, we could continue to take advantage of features of existing
approaches, e.g., representing data as a graph if we query primarily over
relationships, or aggregates if we repeatedly call queries aggregating data,
etc., while treating all models uniformly.

L2: Representation of model-specific constructs. The unifying layer should allow
for uniform capturing of semantically similar constructs across different
models (e.g., a nested JSON document as a map or a tuple as an array)
and also capture model-specific constructs (e.g., complex and overlapping
identifiers).

L3: Missing data. Logical models differ in the way they represent missing
data. For instance, the relational model represents missing data as a null
(meta)value, the graph model (e.g., property labelled graph implemented in
Neo4j) as non-existent properties, while the document model allows com-
bining both approaches. The question is whether it is possible to represent
missing data in a unified abstract way.

L4: Inter-model links and references. Logical models support various forms of
intra-model references (e.g., traditional references and embedding). How-
ever, references and embedding across different models are a natural feature
of multi-model data. For example, PostgreSQL allows embedding of XML
and JSON document data into a relational table by introducing a special
column type.25 Hence, we need an abstract model that considers both intra-
and inter-model references.

L5: Conceptual to logical layer mapping. Ideally, we need a unified algorithm
that allows mapping between conceptual and logical layers, regardless of
the specific properties of the logical layer.

25https://www.postgresql.org/docs/current/
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L6: Propagation of changes. The unified data model should be designed with
a perspective of a uniform way of propagating changes in different (under-
lying) logical models, but also across these models. The propagation of
schema and data changes should also be accompanied with the propagation
of query changes.

L7: Extensibility towards new data models that currently does not exists but
are based on similar idea, e.g., where the most general construct is a pair
(name, value).

0.3.4 Contribution: Framework MM-cat
So far, we have discussed existing approaches and challenges that need to be
addressed in order to appropriately represent multi-model data at the conceptual
and logical level. Now, we turn to a commentary of the actual solution and its
incremental extension to meet additional requirements, i.e., not just representing
multi-model data in a unified way, but enabling data migration, querying, and
evolution management. In this subsection, we mainly discuss data representation,
while migration and evolution management are addressed in separate Section 0.5
and querying forms our future work.

We have first analysed selected existing data representation solutions at the
conceptual level [31, 32, 18] and logical level [19, 20, 21, 27, 28, 29], as well as other
approaches [48, 62] describing, e.g., integrity constraints, and we have verified
their applicability to multi-model data [26], thereby also revealing drawbacks
and open questions. Being aware of the limitations of the solutions, we have
outlined the concept of a unified schema representation⋆ [63] and the vision of a
comprehensive framework built on top of solid formal foundations and allowing
the management of multi-model data in a unified yet natural way⋆ (see Chapter 1).

As mentioned above, the development of our approach has been gradual.
In the beginning, we mainly considered schema and data representation at the
conceptual level. The goal of developing an early concept was to test whether we
could apply category theory at all to the representation of multi-model data. In
the second stage, we added support for logical-level mappings and introduced the
notion of mapping between logical and conceptual levels. In addition, we used
this mapping in the design of algorithms implementing data migration. Finally,
we have extended the approach to naturally support complex schema and data
change operations, i.e., to enable evolution management.

Early / Original Concept

In the early stages of designing the unifying conceptual model, we tried to rep-
resent multi-model data as simply as possible, i.e., using only the elementary
constructs of category theory (e.g., categories, functors, and their composition).
The motivation for this decision was the desire to create a model that has the
potential for broad extension and application, and thus it is appropriate to avoid
complex constructs at this elementary level. Our inspiration came from the
works [18, 19, 20] modelling conceptual, object-relational, or relational schemas,
as well as vision [56], in which the authors outlined an extension of the [20]
approach towards supporting additional data models.
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Our approach ⋆(see Chapter 2) is based on definition of a schema category,
an instance category, and their mutual mapping. The schema category S =
(OS,MS, ◦S, 1) captures the data structure and describes the basic integrity con-
straints. Objects in OS represent the classes of real-world objects, relationships
between them, and properties of both object and relationships (challenge C1)
in a uniform way. Although the user may still distinguish between the three
object types (i.e., object, relationship, and property), this is not necessary from
the categorical point of view. Additionally, an object is internally represented
as a pair (superid, ids), with superid representing a concept of a superidentifier
and ids being a set of identifiers. Such representation allows us explicitly include
the identifier also for relationships and properties, if appropriate (challenge C3).
Morphisms inMS model the concept of object relations. Internally, a morphism
is represented as a pair (min, max), which allows us to model the traditional
concept of cardinalities, while at this stage we only consider trivial cardinalities
having min ∈ {0, 1}, max ∈ {1, ∗}, min ≤ max. The composition of morphisms
◦S also reflects the composition of cardinalities. For convenience, the user can
also still distinguish morphisms based on the type of linked objects into property,
relation, and ISA hierarchy morphisms, but from a categorical point of view this
is again not essential.

Instance category I = (OI,MI, ◦I, 1) represents data in a unified way. This
category structurally corresponds to the schema category, i.e., there is a functor
F : I → S that assigns a schema to the data (as inspired by the approach [19]).
Alternatively, we can represent the instance category as a category of sets and
functions, i.e., we can build it on top of category Set ⋆(this variant is described
in Chapter 2) or PartSet allowing to additionally represent missing data (as
inspired by the approach [20]). In contrast, if we were to represent schema and
data directly using graph theory or set theory instead of category theory, the
choice of instance representation would not be so straightforward.

Finally, we propose an algorithm to translate the ER schema into the corre-
sponding schema category. In other words, the expressive power of our approach
is at least comparable to the ER model. In fact, our approach even extends ER
as it represents properties of other logical models (i.e., not only relational, but
also array, graph, RDF, key/value, document, and column) at the conceptual
level (challenge C2, challenge C5).

Extension towards Data Migration

In the course of proposing the data migration algorithms, we decided to extend
the internal representation of objects and morphisms of the schema category
and added dual (not necessary inverse) morphisms to the so-called property mor-
phisms. The internal representation of schema category objects has been extended
to (key, label, superid, ids), where elements key and label have been added. The
former is represented as key ∈ N and allows unambiguous identification of the
object O ∈ OS. The latter allows the object to be assigned a name, which, unlike
the previous proposal, now need not be globally unique.

Morphisms are modelled internally as (signature, dom, cod, min, max). Com-
pared to the previous design, signature, dom and cod are added. The signature
assigns ϵ to identity morphisms, n ∈ N to base morphisms, and concatenation
of signatures of morphisms being composed separated by ‘.’ (dot) to compound
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morphisms. The pair dom, cod represents the domain and codomain of the mor-
phism. The new features allow morphism identification as follows: (1) an identity
morphism having signature := ϵ is determined by the pair dom, cod, since each
object can have just one identity morphism, and (2) a non-identity morphism is
identifiable only by signature, as this value is unique for non-identity morphisms.
Note that the ◦S is also modified to reflect the composition of signature, dom,
and cod.

The previous definition of the schema (and instance) category considered dual
morphisms only between pairs of objects O1, O2 ∈ OS corresponding to classes of
real-world objects and their relationships. The new definition of schema category
considers dual morphisms even when O1 or O2 correspond to a property object.
The reason for this change is to allow arbitrary (directed graph) traversal of
the schema category, which we exploit during data migration and it is also a
preparation for querying based on pattern matching.

In addition, we introduce a concept of mapping between logical and conceptual
layers, specified for each kind κ by Mκ := (D, nameκ, rootκ, morphκ, pkeyκ, refκ,
Pκ), where D denotes a particular database component, nameκ represents the
name of the kind κ, rootκ or morphκ refers to the root property of κ, pkeyκ

describes the structure of its identifier, refκ captures the references from κ to κ′

(challenge L4), and Pκ captures the hierarchical structure along with the model-
specific constructs of the logical representation of kind κ (challenge L2)⋆ (see
Subsection 3.3.1 for more details). Hence, the mapping allows us to decompose
the schema category into logical units corresponding to each kind κ (challenge
L5, challenge L1). Note that by the addition of the mapping of the logical to the
conceptual layer, the approach is also ready to extend the support for additional
data models (challenge L7).

The mapping, together with the extended schema category, forms the foun-
dation of universal algorithms of data transformation from logical to categorical
representation and vice versa. Moreover, these algorithms allow data migration
from any input to any output combination of logical models, i.e. the multi-model
to multi-model migration. Finally, also a uniform approach to missing data,
even though they may be represented differently at the logical level, is supported
(challenge L3).

A complete solution is implemented as the open-source academic prototype
MM-cat⋆ [64]. This tool allows a multi-model schema to be represented by a
graph freely generating a schema category (see Definition 5). In addition, the
tool allows the schema to be automatically extracted from a conceptual model
(e.g., ER and UML). Naturally, the tool provides a unified approach to logical
models (including their specific properties) by mapping the logical model to a
schema category. Finally, MM-cat implements transformation algorithms imple-
menting data migration. For proof-of-concept purposes, the prototype supports
PostgreSQL (relational and document model, i.e., multi-model representative),
MongoDB (document model representative) and Neo4j (graph model represen-
tative). The specific properties of the database systems are implemented using
so-called wrappers⋆ (see Subsection 3.5.1 for more details).

40



0.4 Schema Inference
An attractive feature of a majority of NoSQL databases is the possibility of storing
data in kinds without a previously defined schema. From the user’s perspective,
this is a simple and flexible way of storing data. However, in various use cases
we still require the knowledge of an explicit schema, e.g., in the case of querying,
migration, and data evolution. In such cases, it is necessary to infer the non-
existing schema secondarily, from the already stored data.

Currently, there are a number of approaches for schema inference over a single
data model, mostly for aggregate-oriented database systems based on JSON and
XML document models. However, these approaches often suffer from various
drawbacks, e.g., the inferred entities contain too many (optional) properties (i.e.,
the schema is not very clear to users), the inferred schema does not respect the
order of the properties (e.g., approaches that infer the schema of JSON documents
rarely consider the order of the elements in a JSON array), or they infer integrity
constraints in a very limited way or not at all. Moreover, the inferred schemas
are often complicated also from the data modelling perspective. For example,
the UML [32] does not allow to model an inferred schema if it contains a union
type. Therefore, also new schema description formats have emerged, though often
non-standardised, tailored to a single particular system, or supported only by a
particular schema inference approach (e.g., Baazizi’s proprietary language [65]),
making it difficult to compare schemas inferred by different approaches or even
over different database systems. Hence, we aim to thoroughly analyse the problem
of schema inference over multi-model data and verify whether it is possible to
extend any of the existing approaches in order to infer a schema for multi-model
data, or if a completely new approach is necessary.

In this section, we first describe the state-of-the-art approaches to schema
inference over individual data models. We then elaborate on five recent JSON
schema inference approaches and compare them statically to answer the question
of whether any of the selected approaches can be used to infer a schema of multi-
model data. Based on the analysis of the selected schema inference approaches,
we discuss a set of open questions and issues in schema inference in the context
of multi-model data. Finally, we present our fully multi-model schema inference
approach.

0.4.1 State of the art
The research on inferring the implicit schema of data is not new. It includes
not only modern single-model NoSQL databases, but also older technologies such
as XML and RDF [66]. The principles of the different algorithms are similar,
differing only in the features supported by each format, e.g., capturing the order
of properties in case of XML. In addition, the approaches are often scalable and
support parallel processing of Big Data.

Graph and Linked Data Schema Inference There are several approaches
dealing with schema inference in the graph model and Linked Data. Lbath et
al. [67] focus on inferring simple and complex types in a property labelled graph,
including its hierarchy and cardinality of edges. Galinucci et al. [68] address
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schema inference for RDF documents, where they identify aggregated hierarchies
and repeating patterns in Linked Open Data. Finally, Bouhamoun et al. [69]
tackle the horizontal scaling problem of processing large amounts of RDF data
and present a method based on pattern extraction in linked data.

Key/Value Schema Inference The problem of inferring schema in key/value
stores and then transforming the data into (flat) relational tables is studied by
DiScala and Abadi [70]. In this case, the authors work with systems that store
structured JSON documents in place of values, but treat them as black boxes at
the database system level.

XML Schema Inference There are several comprehensive papers dealing with
approaches to inferring schemas in XML documents [71]. A comparison of exist-
ing heuristically based approaches, including open problems, is provided in [72].
These are primarily older approaches, popular before the advent of a more popu-
lar format – JSON. A comparison of the grammar inferring approaches can then
be found in [73].

Heuristic approaches [74, 75, 76, 77, 78, 79] are based on generalising the
schemas of individual XML documents based on a set of predefined heuristic rules.
These methods can be further subdivided according to the chosen strategy: (1)
The approaches [75, 76, 78] gradually generalise the schema until they reach the
desired solution. (2) The approach [77] generates a large number of candidates
and selects the most suitable schema. (3) Algorithms called merging state [76, 78]
are based on searching a heuristically selected subspace of all possible schema
generalisations of a given XML document. They represent the schemas as states
of a prefix tree automaton and construct sub-optimal solutions by merging its
states.

Alternatively, there are methods based on grammar inference [80, 81, 82, 83,
84, 85, 86]. These methods consider an XML schema as a grammar and the XML
document corresponding to the schema is the word generated by the grammar.
Moreover, this problem can be reduced to the extraction of a set of regular ex-
pressions, where one regular expression describes one XML element. Moreover,
the approaches exploit additional information besides the XML documents, e.g.,
a predefined maximum number of nodes of the target automaton, since according
to Gold’s theorem [87], regular languages cannot be identified based on positive
examples alone.

The majority of the existing approaches represent the resulting schema using
the DTD language. Only the approaches [86, 78, 88] represent the schema using
the XML Schema language.

JSON Schema Inference Although the JSON and XML document formats
are very similar (i.e., both are semi-structured hierarchical data formats), schema
inference approaches for XML documents are often not applicable to large col-
lections of JSON documents⋆ [16], not only because of the differences between
these formats (e.g., XML is order-preserving and duplicate-allowing while JSON
is order-ignorant and duplicate-prohibiting), but also because the existing schema
inference approaches for XML documents do not assume large data collections
(i.e., Big Data) and their scalability and parallelisability are thus limited.
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A comparison of the static properties of selected JSON schema inference ap-
proaches is addressed in works [89, 90]. At the same time, popular approaches
are also described in our work ⋆[16], where we additionally investigate the applica-
bility of selected approaches for schema inference over multi-model data. Finally,
the comparison of dynamic properties is addressed in our paper ⋆[91].

Sevilla Ruiz et al. [92] propose an approach of inferring versioned schemas
from document-based NoSQL databases. The foundation of the approach is
an abstract model based on the Model-Driven Engineering (MDE). This work
is followed up by Chillon et al. [93], who address the visualisation of NoSQL
database schemas and propose extensions needed to visualise aggregate-oriented
data. Most recently, Fernandez et al. extend the abstract model by adding the
support for relational and graph data [30].

Klettke et al. present a complex solution for managing NoSQL schemas [94],
including an approach for reconstructing schema evolution history in so-called
data lakes [95]. This research is followed by a tool jHound [96] that enables
profiling of JSON data, e.g., searching for structural outliers. Finally, the tool
Josch [97] allows schema extraction from JSON data, schema refactoring, and
subsequent validation against the original dataset.

Baazizi et al. [65] propose a horizontally scalable approach for parameterised
schema inference from large collections of JSON documents. They also introduce
a custom and compact language for describing the resulting JSON schema.

Izquierdo and Cabot [98] proposes an approach to infer schemas for web ser-
vices based on JSON documents. The authors also provide a web application
along with a visualisation tool [99].

An approach of inference of schema over collections of JSON documents is also
presented by Frozza et al. [89]. In contrast to previous works, the authors consider
inference of data types specified by the BSON standard.26 Unfortunately, their
approach has limited parallelisability.

Last but not least, Wang et al. [100] propose a schema inference method
over document repositories based on finding equivalent subtrees (i.e., frequently
repeated hierarchical structures).

The JSON Schema language is primarily used to describe the inferred schema
of JSON documents. The formal model of this language is discussed by Pezoa et
al. [101], while the general description of the JSON type system is discussed by
Baazizi et al. [102].

Columnar Schema Inference Frozza et al. have also proposed an approach
for schema inference over columnar NoSQL databases [103], specifically support-
ing the inference of implicit schema from the HBase.27

Summary There is a number of approaches aimed at inferring a schema over
a particular data model. Unfortunately, to the best of our knowledge, there is
currently no approach applicable to infer a schema over a combination of data
models, i.e., multi-model data. At first sight, it may seem that existing single-
model approaches can be also applied to infer a multi-model schema, but as we will
show in the next subsection, this idea is not feasible in practice, as the individual

26https://bsonspec.org
27http://hbase.apache.org
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data models often have contradictory features. Moreover, the combination of
models itself is a complication, as we must additionally consider references and
redundancy across models, not just within a single data model.

0.4.2 Closely Related Single-Model Approaches

The utilisation and extension of verified single-model approaches seems promising
for the inference of a multi-model schema. To validate this idea, we chose infer-
ence approaches over JSON documents because the JSON format is sufficiently
complex to cover a variety of data constructs, at least at first sight. Moreover,
these approaches are often horizontally scalable and thus covering also high vol-
umes of data.

In particular, we focus on five selected schema inference approaches, namely:

1. The approach proposed by Sevilla Ruiz et al. [92] working with the concept
of distinct versions of entities.

2. The approach of Klettke et al. [94] using a graph structure to represent a
schema and able to detect outliers.

3. The approach of Baazizi et al. [65] which introduces a comprehensive and
massively parallelisable method for inferring of schemas.

4. Izquierdo and Cabot [98] approach which can infer a schema from multiple
document collections.

5. The approach of Frozza et al. [89] which is able to infer schemas including
data types as introduced in BSON.

We compare the approaches statically, i.e., we focus mainly on their basic
principles and algorithm scalability, input and output parameters, possible sup-
port for structural components beyond the JSON format, distinguishing between
optional and required properties, support for inference of integrity constraints,
and detection of redundancy in the data. We also verify whether the selected
approaches are applicable to infer a multi-model schema. Table 0.4 summarises
the comparison of key characteristics of the selected approaches. (A comparison
with our approach is also included; however, our approach is not discussed in the
following paragraphs. It is introduced in⋆ Chapter 4.)

Inference Process The majority of approaches generate a schema based on all
documents in the input collection. An exception is the approach of Izquierdo and
Cabot which retrieves documents from web services. Moreover, the approaches
of Sevilla Ruiz et al. and Frozza et al. minimise the input document collection
into a collection that contains only structurally distinct documents. A common
feature of all approaches is the replacement of property values by the names of
the supported primitive data types they encounter.
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Scalability Design Based on the theoretical design, most approaches are hor-
izontally scalable. Unfortunately, their implementations are usually not paral-
lelised. Sevilla Ruiz et al. use MapReduce in order to select structurally distinct
documents from the input collection. Unfortunately, in the worst case, where
all documents are structurally distinct, the scalability of this approach is limited
since the subsequent processing of the minimal collection of structurally distinct
documents (i.e., in this particular worst case, the entire input document collec-
tion) is not parallelised. In contrast, the approach of Baazizi et al. is fully hori-
zontally scalable because Apache Spark is used throughout the schema inference
process.

Implementation The approaches of Sevilla Ruiz et al. and Izquierdo and
Cabot are Java applications running in the platform-independent Eclipse envi-
ronment. Klettke et al. implement their approach as a Spring Boot application
(i.e., as a platform-independent application built in Java) and additionally allow
the approach to be deployed as a Docker container. Baazizi et al. implement the
approach using Scala as an Apache Spark job. Finally, Frozza et al. approach is
implemented as a javascript web application.

Input All approaches support schema inference from a collection of JSON doc-
uments. Frozza et al. approach also supports BSON data. In addition, the
approaches of Sevilla Ruiz et al. and Klettke et al. allow arbitrary aggregate-
oriented data to be converted to JSON data, and thus apply their approach for
schema inference over these models as well. However, by converting data from
other models to JSON documents, we may lose structural information, e.g., be-
cause JSON does not preserve the order of features and does not allow explicit
representation of complex data structures such as maps, sets, and tuples. Hence,
a schema inferred this way may not be accurate.

Moreover, only the approaches of Sevilla Ruiz et al. and Izquierdo and Cabot
allow the inference of a schema from the entire input database, i.e., from a set of
collections. The remaining algorithms infer schemas only over individual collec-
tions.

Output The approaches represent the inferred schema by means of textual or
graphical languages. Klettke et al. and Frozza et al. approaches use the JSON
Schema language to describe the schema, although they differ in the details of
use. Baazizi et al. represent the schema with their own compact but complex pro-
prietary language. Finally, Sevilla Ruiz et al. and Izquierdo and Cabot represent
the inferred schema as a UML class diagram.

Structural Components The selected approaches differ in the extent to which
they support the inference of different structural components of JSON documents.
Most approaches are only able to infer a basic set of primitive types (i.e., String,
Number, and Boolean) and some complex types (i.e., nested objects and arrays).
Whereas, of the approaches we observed, only Frozza et al. allows the inference of
the extended data types introduced in BSON. Unfortunately, the approaches do
not allow distinguishing other complex data structures, namely maps, sets, and
tuples, as even the JSON format does not distinguish these structures from nested
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structured objects (also representing, e.g., maps) and arrays (also representing,
e.g., sets and tuples).

Optional Properties The majority of approaches distinguish between required
and optional properties, differing only in the way they are detected. The ap-
proaches of Klettke et al. and Frozza et al. compute differences in the occurrence
of individual properties compared to the occurrence of parent properties. If the
parent property occurs more frequently, the child is marked as optional. Sevilla
Ruiz et al. are able to detect optional properties using set operations over entity
versions (intersection of properties of two or more entity versions returns required
properties, while union of entity versions minus their intersection returns a list of
optional properties). Baazizi et al. detect optional properties during the merging
of two document schemas. Finally, Izquierdo and Cabot is the only approach
unable to distinguish between optional and required properties. In this case, we
consider all properties as required.

Union Type The majority of the compared approaches work with the concept
of union type. The approaches of Klettke et al. and Frozza et al. use the
JSON schema keyword oneOf, while Baazizi et al. represent a union type as a
concatenation of types with the “+” character. Only the approaches of Sevilla
Ruiz et al. and Izquierdo and Cabot do not consider the concept of union types.
The former consider versions of entities where union types cannot naturally occur.
As for the latter, the type of a property is expressed only by the most general of
the identified types, e.g. as String.

Order Preserving All approaches treat JSON documents as a set of unordered
properties and therefore do not consider order detection. Unfortunately, the order
is not even considered in the case of array elements, where the order matters.

Integrity Constraints Integrity constraints are detected only to a limited ex-
tent or not at all. Identifiers (whether simple or complex) are not detected by
any of the approaches. References are only partially detected in Sevilla Ruiz et
al. approach, based on a naming convention. The inference of other (complex)
integrity constraints is not considered at all, e.g., ranges of values of individual
properties or mutual dependency between values of different properties.

Data Redundancy Although redundancy in data is a common feature of
NoSQL document stores, most of these approaches do not detect this feature.
Only the approach of Izquierdo and Cabot allows merging the schema of two
collections (i.e., considering them as redundant) if they have identically named
properties, but does not verify this fact at the data level.

Additional Features To conclude the comparison, let us also focus on a cou-
ple of specific features supported by just some of the covered approaches. In
particular, the approach by Sevilla Ruiz et al. allows for the visualisation of the
inferred schema [93], including the visualisation of entities and relationships using
UML. The approach by Klettke et al. allows us to analyse documents using a
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proprietary profiling tool jHound [96]. The approach also detects errors and out-
liers, i.e., additional or missing properties. To continue, the approach by Baazizi
et al. is suitable for inferring schemas over large JSON document collections due
to the massive parallelisation applied. Fusion properties, i.e., associativity and
commutativity, enable the evolution of an already inferred schema, making this
approach suitable for collections of documents that are rapidly evolving. The
approach by Izquierdo and Cabot is designed to generate schemas for sets of web
services producing JSON documents with similar features. With a global schema,
the user then gets an idea of which specific services to call to get the requested
information. A part of this approach is also a schema visualisation tool [99],
which produces a schema compliant to JSON Schema. Finally, the approach by
Frozza et al. is designed to work over the MongoDB database and supports the
extended BSON format.

As illustrated in Table 0.4, the approaches do not consider natural features of
multi-model data, e.g., variety of data types, complex structures, ordering of
properties and theirs duplicities, identifiers, inter- and intra- model references
and redundancy, and complex integrity constraints in general. Thus, despite
the complexity of JSON model, the strategy of converting multi-model data into
JSON data and inferring its schema is not sufficient as we lose critical schema
information.

0.4.3 Open Questions and Challenges in Schema Inference
We believe that in order to be able to infer schema even for multi-model data,
we need to address the limitations of existing approaches and extend them ap-
propriately. Therefore, we provide the following list of challenges I1 – I10 in
the area of schema inference for multi-model data.

I1: Integrity constraints. Generally, the schema not only describes the struc-
ture of the data, but it may include a list of integrity constraints, e.g.,
identifiers, references, ranges of property values, and rules describing com-
plex dependencies between properties. At first sight, this challenge goes
beyond the bounds of some data models and the languages describing their
schema. For instance, JSON and JSON Schema do not allow modelling
complex integrity constraints. However, this does not mean that we do not
have implicit integrity constraints in JSON data. In the case of multi-model
data, we could use, e.g., OCL [48] to describe integrity constraints if the
underlying data model does not explicitly support them.

I2: Values of properties. Most of the observed approaches infer the schema only
from the structure of the data, i.e., the names of the features and mutual
hierarchy. The values are only converted to their data types and further
processing of the values themselves is omitted. We believe that, e.g., a
statistical analysis of property values can refine the inferred schema, e.g.,
allowing the inference of identifiers, references, and some other integrity
constraints.

I3: Multiple data models. A multi-model schema is a union of schemas from
data represented by various logical models. Underlying data models may
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Table 0.4: Comparison of the selected schema inference approaches

Sevilla Ruiz et
al. [92]

Klettke et al. [94] Baazizi et al. [65] Izquierdo and
Cabot [98]

Frozza et al. [89] MM-infer [4]

Inference Process MapReduce + MDE Fold into graph Reduction in Apache
Spark

MDE Aggregation + fold
into graph

Aggregation in Apache
Spark

Scalable design Yes Yes Yes Yes No Yes

Scalable
implementation

Yes No Yes No No Yes

Implementation Eclipse bundle Spring Boot
application

Apache Spark
application in Scala

Eclipse bundle Node.js web
application

Apache Spark
application in Java

Input format Aggregate-oriented
NoSQL data

JSON JSON JSON web service
responses

Extended JSON Multi-model data

Input type Multiple kinds Single kind Single kind Multiple kinds Single kind Multiple databases

Output format NoSQL Schema model JSON Schema Custom textual type
language

Ecore model JSON Schema ER, UML, JSON
Schema, XML
Schema, Categorical
schema

Schema root Entity Record Record Entity Record Property

Extended JSON No No No No Yes Yes

Tuple No No No No No Yes

Set No No No No No Yes

Map No No No No No Yes

Optional Yes Yes Yes No Yes Yes

Union type No Yes Yes No Yes Yes

Order preserving No No No No No Yes

Identifiers No No No No No Yes

References Partial No No No No Yes

Complex IC No No No No No Partial

Data redundancy No No No No Partial Yes
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also arbitrarily overlap (intersect), i.e., some data are partially or com-
pletely redundant. Moreover, we combine models that often have con-
tradictory features and are based on different principles, e.g., aggregate-
ignorant/oriented, order-ignorant/preserving, or allow different types of
identifiers and references. Finally, we have to consider not only the features
of the particular models, but other features resulting from their combina-
tion, e.g., cross-model references and cross-model data redundancy. All this
brings a new dimension of complexity to the problem.

I4: Unification and abstraction of complex data types. At first sight, popular
data models seem to approach common data structures (i.e., tuple, list, set,
and map) in a uniform way. A closer look shows that this is not the case.
For example, the column model explicitly distinguishes between all these
structures, whereas the JSON document model explicitly considers only a
list and a nested object. The tuple and set are implicitly represented by
a list and the map as a nested object naturally containing mainly optional
properties. In order to be able to infer a multi-model schema, we need not
only the unification of the corresponding constructs across data models, but
also their appropriate and not too general abstraction.

I5: Scalability. The proposed approach should be able to handle large volumes
of multi-model data, but the inability to scale horizontally is a limitation
of many observed approaches. Moreover, the approaches work with a large
logical unit of data at a time. In particular, in one step the algorithms merge
two records. If the data contains a large number of optional properties,
the merged record is always more complex and an increasingly complex
schema is continuously propagated to the next stages. Conversely, if we
are working with a suitably small logical unit, e.g., merging schemas at the
level of individual properties, then the large number of optional properties
in the data has no effect on the structure of the merged single-property
schema. Hence, algorithms working with a smaller logical unit of data can
be significantly more efficient and scalable.

I6: Ordering of properties. The order of properties is a natural feature of several
popular data models. For example, we can consider the order of elements
in an XML document or the order of elements within a JSON array. Since
multi-model data combines the features of each data model, the schema in-
ference algorithm should be able to infer the order of features and elements.

I7: Data redundancy, i.e., the ability to represent the same data by various
logical models, is another feature typical for multi-model data. A poten-
tial redundancy inference could improve query performance, e.g., to enable
alternative query evaluation strategies.

From a more general point of view, the problem of inference of a multi-model
scheme also involves the following open questions:

I8: Fetching data. Currently, schema inference approaches are tightly bound
to a particular database system that implements a particular variant of the
data model. As a result, the approaches may not be directly applicable
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for schema inference in another system that supports the same data model.
In addition, existing approaches often access data in a specific way. An
optimal algorithm should be independent of the chosen database system
and should also allow for different ways of retrieving data.

I9: Universal processing. The foundation of an ideal algorithm should be
system-independent, e.g., exploiting unification of data model constructs.
However, this universal algorithm can be based on so-called wrappers that
implement the features of individual database systems and convert the in-
put of the algorithm, e.g., structural information of data, into a unified
form.

I10: Schema representation. Various graphical or textual languages are used to
represent the (inferred) schema – for example ER [31], UML [32], DTD [71],
XML Schema [104, 105], JSON Schema [106] and others. However, these
formats are insufficient for representing the schema of multi-model data
because they do not reflect all of its structural features.

0.4.4 Contribution: Framework MM-infer
So far, we have discussed the related work, the applicability of verified schema
inference approaches to multi-model data, and the resulting open questions. We
now turn to a commentary on our approach and explain the connection to the
rest of the project.

At first sight, the JSON format appeared to be comprehensive enough to cover
the structural features of multi-model data. At the same time, schema inference
approaches over the collections of JSON documents scale very well and are capable
of handling Big Data, and therefore seem like good candidates for extensions
towards multi-model schema inference. However, during our research of existing
approaches⋆ [16], we found out that a selected single-model approach will not only
need to be extended but also combined with features of other approaches.

In the thesis of Ivan Veinhardt Latták [107] (supervised by Pavel Koupil), we
tried to extend a chosen approach to support multi-model data. In particular, the
work resulted in the design of an algorithm based on the approaches of Baazizi et
al. [65] and Sevilla Ruiz et al. [92]. However, not even this algorithm is sufficient
for schema inference for multi-model data. Hence, based on the identification of
the drawbacks of the proposed approach, an extended list of requirements that an
optimal schema inference algorithm should satisfy was created⋆ [91]. In addition,
the paper also experimentally compares the dynamic features of the approaches
from Table 0.4.

The core drawback of the proposed algorithms is the lack of coverage of all
structural features of different popular data models. Therefore, we performed a
thorough analysis of selected popular data models and introduced a unification
of semantically similar features (challenge I4). We found out that the basis of the
unified model is the name/value pair. We refer to this pair as a property. Based
on the type of the value part, we divide properties into simple and complex. A
simple property has a scalar value, while the value of a complex property can be
a (homogeneous or heterogeneous) array, a set, or a map. Note that we only need
to consider these three examples if we consider tuples as a special case of arrays
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and nested structures as a special case of maps ⋆(see Chapter 4). The unification of
the constructs allows us to better grasp the general features of multi-model data,
and we are able to introduce universal data structures to describe the schema and
data, as well as a general horizontally scalable algorithm that considers the varied
features of data models from the very beginning and infer the true multi-model
schema (challenge I3).

The foundation of our approach consists of two data structures – the Record
Schema Description (RSD) and the Property Domain Footprint (PDF) ⋆(see Sub-
section 4.4.5). The RSD describes the structure of a single property (or a record
as a special case of a root property) including the name of the property, the fre-
quency of occurrence, the relationship to other properties within the same record
(i.e., the parent/child hierarchy), the order of the children properties (challenge
I6), and other features. The second data structure, PDF, allows us to describe all
values of a given property in a compact way, including, e.g., uniqueness, multi-
plicity, occurrence of a particular value etc. This allows us to efficiently compare
the active domains of two properties (challenge I2).

Altogether, we proposed three universal algorithms for inferring a structure
or integrity constraints in multi-model data (challenge I9):

• The Record-Based Algorithm (RBA) infers a schema by gradually merging
RSDs that describe the schema of a record.

• The Property-Based Algorithm (PBA) was designed to test the hypothesis
that processing smaller logical units of data allows for a more scalable ap-
proach. We validated our hypothesis using experiments ⋆(see Section 4.6)
and we confirmed that PBA is much more suitable for dealing with larger
volumes of highly structured data (challenge I5), while RBA is more suit-
able for small volumes of flat data (i.e., aggregate-ignorant systems).

• The Candidate Miner extracts candidates for basic integrity constraints,
e.g., identifiers, references, ranges of values (challenge I1), and in addition
allows us to detect redundancy in the data (challenge I7). Note that we only
retrieve candidates, because we describe the active domain using, among
other things, Bloom filters, which with certain probability return a false
positive result [108]. The user can then validate the selected candidates or
the candidates are verified by an algorithm.

All listed algorithms are implemented using the Apache Spark framework and are
therefore horizontally scalable.

Finally, the algorithms were verified using the prototype implementation MM-
infer [109],28 which currently supports schema inference for data stored in Post-
greSQL (a representative of a multi-model schema-mixed database), MongoDB (a
representative of a document schema-free database), and Neo4j (a representative
of a graph schema-free database). Access to each database and retrieval of the
data from which the schema is subsequently inferred is done via system-specific
wrappers (challenge I8). And the tool also allows the selection of the format for
representing the resulting inferred schema (challenge I10).

28https://www.ksi.mff.cuni.cz/˜koupil/mm-infer/index.html
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0.5 Evolution Management
Despite the correctness of the database schema design, sooner or later user re-
quirements may change. A process that reflects the change of user requirements
into the schema, data and related queries, integrity constraints, and data stor-
age strategy while maintaining the integrity of the overall system is referred to
as evolution management. Currently, this represents one of the most complex
challenges [110].

Evolution management involves three main tasks: (1) managing structural
changes of data, either explicitly applying schema modification operations (SMOs)
or implicitly by reverse engineering, (2) propagating structural changes to data,
i.e., data migration strategies, and (3) propagating such changes to queries. More-
over, there are, e.g., benchmarks that evaluate the effectiveness of data migra-
tion [111] and querying operations [112, 113].

Currently, there is a number of evolution management approaches for rela-
tional DBMS [20, 114, 115] or NoSQL systems [110, 116, 117, 118, 119] and the
first approaches proposed for multi-model DBMS [120, 121] are emerging. How-
ever, the existing solutions have various limitations, targeting only a small fraction
of data models [122], and partially or completely ignoring integrity constraints
and features arising from the combination of multiple data models [117].

In this section, we elaborate on five selected promising approaches to evolution
management. Based on the analysis of the selected approaches, we discuss a set
of open questions and challenges in evolution management of multi-model data.
Finally, we present our evolution management approach.

0.5.1 Closely Related Approaches
We first review two approaches [19, 20] that build an evolution management ap-
proach on an abstract data model. Next, we discuss approaches applicable to
NoSQL database systems [110, 120, 116] that, in addition to schema changes and
their propagation to the data, also consider other aspects of evolution manage-
ment. Finally, we mutually compare the selected approaches.

Evolution Management in CGODD

The idea of utilising category theory in evolution management is not new. The be-
ginnings can be found, e.g., in the academic approach [19] (see Subsection 0.3.2).
Let us recall that (1) the approach is based on the notion of a typegraph, repre-
senting a schema and corresponding to an object T of a functor category G (see
Lemma 1), (2) the data is represented by a graph corresponding to an object G
of a functor category G, and (3) a data instance is a morphism Inst : G → T
associating data with the schema.

In this approach, schema changes are implemented using a basic set of (SMOs)
based on graph pattern matching as follows:

• The single addition operation, denoted ADD S, retrieves a single part of the
data G corresponding to the pattern PT and extends it according to the
pattern QT . Categorically speaking, this corresponds to a pushout (see
Definition 17) from QT

f←− PT
m−→ G, where m : PT → G is a graph pattern
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matching and morphism f : PT → QT represents the intended modification.
Note that the pattern QT may describe a more complex extension, not just
an addition of a single property.

• The full addition operation, denoted ADD F, finds all occurrences of the
pattern PT in the data G and extends them according to the pattern QT .
Categorically speaking, this is the construction of a limit [19, 123].

• The single deletion operation, denoted DEL S, finds a single part of the
data G corresponding to the pattern QT and preserves only the subpart
corresponding to the pattern PT .

• The full deletion operation, denoted DEL F, finds all occurrences of the
pattern QT in the data G, and preserves only the data corresponding to the
pattern PT . Categorically speaking, this is again a construction of a limit.

Example 0.14. Figure 0.12 illustrates an example of an extension of a particular
address in data G by the vertex named “Czechia”, i.e., a single addition operation.
The intended modification of the data is represented by the morphism f : PT →
QT , i.e., we join edgewise the vertex named “Czechia” to the pattern PT (indicated
in green). Graph pattern matching is represented by the morphism m : PT → G
(indicated in blue). Note that in this particular case there are two morphisms
m, m′ : PT → G, each mapping the graph pattern PT to a different part of the data
G (note that only the morphism m is illustrated). Finally, the data extension is
categorically implemented as a pushout from QT

f←− PT
m−→ G (indicated in red),

i.e., we extend the data from G corresponding to the pattern PT by QT , thus
obtaining the modified data G′.
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Figure 0.12: An example of a single addition (i.e., a pushout)

The schema changes are immediately propagated to the data (i.e., a strategy
commonly known as an eager data migration). Note that the SMOs can be com-
bined and concatenated, resulting in complex operations expressing, e.g., union
and intersection. Finally, the concatenation of operations can also represent pro-
jection, join, and difference, hence the same idea is also applicable to querying
based on graph pattern matching.
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Evolution Management of Relational Data (Spivak et al.)

Yet another academic approach [20], this time relying on the logical model intro-
duced in Subsection 0.3.2, allows relational data migration according to schema
changes. Moreover, the approach enables a change of data representation at the
logical layer.

Let us recall that the schema is represented as a free category C (see Defi-
nition 5) and the corresponding data instance is given by the set-valued functor
InstC : C→ Set. In addition, there is a category of all instances corresponding
to the schema C, i.e., the functor category SetC (see Lemma 1 and Example A.8).

In this approach, an SMO translating the schema C into D categorically
corresponds to the functor F : C→ D. These functors can be used to represent
operations, e.g., rename, delete, copy, intersection, and union for both kinds and
properties. Note that the approach does not implement the operation addition,
but it only introduces SMOs over existing data.

The schema changes, represented by the functor F : C→ D, are then propa-
gated to the data utilising the so-called data migration functors:

• The functor ∆F : SetD → SetC propagates operations rename, delete, and
copy to the data at the level of a kind or a property. Note that although
the functor F : C → D transforms C into D, the functor ∆F propagates
changes in the opposite direction (i.e., pointing “backwards”). Categori-
cally, this is the principle described as “pulling back along functor F” and
functor ∆F is referred to as a pullback [20].29

• The functor ΠF : SetC → SetD propagates operations of intersection and
(again) renaming of both a kind or a property. Categorically speaking, the
functor ΠF corresponds to the right adjunct [20, 123] of the pullback functor
∆F and is referred to as the right pushforward.

• The functor ΣF : SetC → SetD propagates operations of union and (once
again) renaming of both a kind or a property. Categorically, the functor
ΣF corresponds to the left adjunct [123] of the pullback functor ∆F and is
referred to as the left pushforward.

Example 0.15. Figure 0.13 illustrates an example of a schema change represented
by the functor F : C → D (see Figure 0.13 (a)), i.e. merging kinds Audiobook
and Book into a single kind Product.

Pullback functor ∆F (see Figure 0.13 (b)) performs copy, delete and rename
operations, i.e., the data from kind Product is first copied into two new kinds,
the kinds are renamed to Audiobook and Book, and finally a property Pages is
removed from Audiobook and a property Length is removed from Book.

Right pushforward ΠF (see Figure 0.13 (c)) implements the intersection and
rename operations. First, a new kind is created by the intersection of Audiobook
and Book,30 and subsequently the newly created kind is renamed to Product.

The left pushforward ΣF (see Figure 0.13 (d)) implements the union and
rename operations. First, a new kind is created by merging Audiobook and

29Note that the pullback is an overloaded notion in category theory. It denotes not only the
pullback introduced in the Definition 16, but also other constructs [123].

30Note that the identifiers of the corresponding records are merged.
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Book, and then the new kind is renamed to Product. Note that left pushforward
performs a so-called skolemization [124], which can be roughly understood as
utilisation of null meta-values.
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Figure 0.13: An example of schema mapping functor (a) inducing pullback (b),
right pushforward (c) and left pushforward (d), i.e., data migration functors

The approach also allows to change the logical representation of data, in
particular from relational model to RDF data and vice versa. Categorically, the
data transformation is based on the application of the category of elements (also
known as Grothendieck construction) [20, 123].

Recently, the authors of the paper [57] proposed an extension of the ap-
proach [20] to support multi-model data. In particular, the extension allows the
representation and migration of data logically represented as JSON documents
or graphs. However, as far as we know, this is only a theoretical extension and it
is not implemented in CQL.
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Darwin

Among the many academic prototypes, Darwin [110, 125] represents a family
of approaches targeting schema management and data migrations. Basic fea-
tures include semi-automatic declaration of schema changes [126], propagation
of changes to data [127], inference of versioned schema including the historical
sequence of versions [95], and various optimisation proposals [122, 128, 129, 111].

The authors propose a general programming language, the Schema Evolu-
tion Language (SEL), which allows declaring the following platform-independent
SMOs:

• The add operation appends a property to every (selected) record of the
particular kind or adds a new kind.

• The delete operation removes the property from each (selected) record of
the particular kind or performs the removal of the kind.

• The rename operation changes the name of the property in all (selected)
records of the particular kind or renames the kind.

• The move operation moves the property from each (selected) record of the
input kind to the particular records of the destination kind.

• Similarly, the copy operation makes a copy of each (selected) record in
a particular kind and inserts the copy into the particular record of the
destination kind.

In addition, the operations can be assigned specific values (e.g., an added value
in the case of the operation add) or filtering conditions specifying the selection
of a subset of records of a particular kind. Also note that SEL expressions are
subsequently translated into a domain specific language.

As for the propagation of SMOs to the data, the approach allows for multiple
data migration strategies:

• Eager strategy: The changes are propagated immediately after the SMO is
executed.

• Lazy strategy: The migration to a new version is delayed until a new version
is required to perform a data management task.

• Incremental strategy: A hybrid strategy that completely migrates data, e.g.,
after a predetermined number of SMOs have been performed. Otherwise,
the data is migrated lazily.

• Predictive strategy: A hybrid strategy that tracks the number of accesses
to data. Frequently accessed data is migrated immediately after SMO exe-
cution, while the remaining data is migrated lazily.

The complete solution also includes a set of so-called composition rules [130],
which allow to compose SMOs. Since typically composed SMOs are executed
repeatedly, caching is utilised, which significantly improves the performance of
data migration of different versions [131]. In addition, the authors propose a
utilisation of composition rules for query rewriting [132].
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Finally, the family of approaches includes MigCast [122] and EvoBench [111].
The former tool allows comparing different data migration strategies, e.g. in terms
of operational costs, and the latter is a benchmark for schema evolution. The
complete set of tools is then available as a docker container,31 currently support-
ing a number of NoSQL database systems such as, e.g., MongoDB, Couchbase,
Cassandra and ArangoDB.

MM-evolver

The first approach targeting evolution management of multi-model data is the
academic prototype MM-evolver [120]. This tool allows propagating of SMOs to
data represented by different and interconnected models and additionally consid-
ers (in a limited way) cross-model references and redundancy.

The approach implements the set of platform-independent SMOs supported by
Darwin, and in addition introduces a special operation to add/delete a reference.
Note that internally, the operation differs from the Darwin system in propagation
to multiple data models as well as propagation to references. For example, if a
property is removed, all references (including intra- and inter-model) are removed
as well.

Similar to the Darwin approach, the authors propose a general programming
language for declaring platform-independent SMOs, the Multi-Model Schema
Evolution Language (MMSEL). As in the previous case, MMSEL expressions
are subsequently translated into a domain specific languages.

Finally, schema changes are immediately propagated to the data, i.e., only
the eager strategy is applied.

Orion

Recently, the family of academic approaches for representation [30] and manage-
ment [92, 93] of data in NoSQL systems has been extended with the language
Orion [116], which allows declaring SMOs over the U-Schema logical model (see
also Subsection 0.3.2).

From a logical unit perspective, schema modification operations (SMOs) de-
clared by Orion can be classified as kind-level, version-level, and property-level.
Kind-level operations include common operations such as add, delete, rename,
extract (i.e., copy), and in addition:

• The split operation splits the set of properties of one kind to create two
new kinds, the original kind being removed.

• The merge operation merges the properties of two kinds to create a new
kind, replacing the original kinds.

Version-level operations, performed at the level of record version, include:

• The delvar operation removes a specific record version from the schema, and
the change is propagated to the data by deleting all records corresponding
to the deleted version.

31https://sites.google.com/view/evolving-nosql/tools/darwin
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• The adapt operation also removes the record version from the schema,
but the corresponding records are converted (adapted) to another, selected
record version.

• The union operation merges two versions of the records into one of them.

Finally, property-level operations are implemented over simple and complex
properties (including references as a special kind of a property), and allow for the
common operations such as add, delete, rename, extract, and move. They also
include:

• The nest operation allows nesting properties, i.e., moving the selected prop-
erty to the nested complex property.

• The unnest operation, which is inverse to nest.

• The cast operation allowing to change the data type of a simple property
or a reference.

• The promote operation implementing the addition of an attribute to the
key.

• The demote operation, on the other hand, allows the attribute to be re-
moved from the key.

• The mult operation implementing a cardinality change on a reference or a
complex property (e.g., an array).

• The morph operation allows to replace a reference with a nested complex
property (aggregate) and vice versa.

As in the previous cases, the Orion language allows the usage of filter condi-
tions to specify the subset of records over which the SMO is performed. Once
again, SMOs are platform-independent and translated into domain-specific lan-
guages, and the schema changes are propagated eagerly.

Currently, the supported systems include MongoDB, Cassandra, and Neo4j,
i.e., representatives of document, column, and graph databases. However, the
the U-Schema model allows the extension towards the support of key/value and
(a partial support of) relational DBMSs.

Although the authors attempt to create a database-independent language for
describing schema changes, the language is burdened by the integration, (but) not
the unification of data models in U-Schema. As a consequence, the language is
complex as it has to take into account all model-specific constructs and properties
of underlying data models. Hence, the extensibility of the approach is limited.

Comparative Summary

Table 0.5 illustrates a comparison of the described evolution management ap-
proaches. It also includes a comparison with our proposed approach (MM-
evocat), but it is addressed in a separate chapter (see Subsection 0.5.3 and⋆ Chap-
ter 5). All the compared approaches implement a set of SMOs, yet they differ in
the choice of the particular supported operations (see Table 0.6).
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Table 0.5: A comparison of features in the selected evolution management approaches

CGOOD [19] Spivak et al. [20] Darwin [110] MM-evolver [120] Orion [116] MM-evocat [5]

Schema modification Yes Yes Yes Yes Yes Yes

Data migration Eager Eager Eager, lazy, hybrid Eager Eager Eager

Version jumps No No Yes No No No

Propagation to IC No No No Partial Partial Yes

Schema inference No No Tracked, untracked No Untracked No

Query rewriting No No Yes No No No

Benchmarking No No Yes No No No

Self-adaptation No No No No No No

Data models Relational, object,
object-relational

Relational, RDF Graph, key/value,
document, columnar

Relational, graph,
key/value, document,
columnar

Relational, graph,
key/value, document,
columnar

Relational, array,
graph, RDF, key/value,
document, columnar

Multi-model No No No Yes No Yes

Table 0.6: A comparison and classification of supported SMOs in the selected evolution management approaches

CGOOD [19] Spivak et al. [20] Darwin [110] MM-evolver [120] Orion [116] MM-evocat [5]

Model-level - - - - - add, delete, move, copy

Kind-level add, delete delete, rename, copy,
intersection, union

add, delete, rename add, delete, rename add, delete, extract
(copy), rename, split,
merge

add, delete, rename,
copy, move, group,
ungroup

Property-level add, delete delete, rename, copy,
intersection, union

add, delete, move, copy,
rename

add, delete, move, copy,
rename

add, delete, move,
extract, rename, cast,
nest, unnest

add, delete, rename,
copy, move, group,
ungroup, union, split

Identifier-level - - - - promote, demote addId, dropId

Reference-level - - - reference morph addRef, dropRef

Cardinality-level - - - - mult changeCardinality

Version-level - - - - delvar, adapt, union -
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As we can see, the vast majority of approaches only allow for propagating
of changes to the data immediately. The exception is Darwin, which allows
for other data migration strategies, namely lazy and hybrid. The support for
different strategies is reflected in the optimisation capabilities, where once again
only Darwin considers optimising data migration by composing SMOs, caching
the composed SMOs, and performing lazy data migration efficiently.

The propagation of SMOs to integrity constraints is addressed marginally,
with only MM-evolver and Orion addressing references or identifiers in a limited
way. Similarly, propagation of SMOs to queries and benchmarking of SMOs are
less common features.

Next, only Darwin and Orion allow for inference of versioned schema as an al-
ternative to otherwise explicit schema evolution specified using SMOs. Moreover,
in the case of Darwin, the historical sequence of schema versions can be inferred.

Finally, the selected approaches also differ in the extent and support of data
models. While the categorical approaches are mainly bounded with aggregate-
ignorant models (especially the relational model), aggregate-oriented models are
commonly supported in the remaining approaches. However, only the MM-
evolver approach considers a set of linked or overlapping data models, i.e., multi-
model data. In the other cases, a disjunctive set of models is considered.

0.5.2 Open Questions and Challenges in Evolution Man-
agement

We believe that in order to be able to process evolution management for multi-
model data, we need to address the limitations of existing approaches and extend
them appropriately towards the full support of multi-model data. Therefore,
we provide the following list of challenges E1 – E11 in the area of evolution
management of multi-model data.

E1: Multi-model data. The aspect of multi-model data brings new dimension
of complexity to evolution management approaches. In addition to the
model-specific features of (otherwise disjunctive) logical models, we must
consider features arising from the combination of the models, such as cross-
model references, cross-model embedding, cross-model integrity constraints,
redundancy, and inconsistency in data. Moreover, we have to deal with of-
ten contradictory features of the models, e.g., aggregate-oriented/-ignorant,
schema-full/-less/-mixed, and order-preserving/-ignorant.

E2: Unification (abstraction) of data models. Currently, there is a number of
approaches that struggle with insufficient unification of underlying logical
models. Hence the proposed schema modification language is complicated.
It is important to unify, for example, the different approaches to the oth-
erwise corresponding data structures (e.g., JSON object and a map), and
to work uniformly with different forms of identifiers (i.e., simple, complex,
multiple, and overlapping) and links between objects (e.g., embedding or
references).

E3: Propagation of SMOs to queries. The propagation of schema changes to the
data is only one of many efforts to adapt to changing user requirements.
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Naturally, as the schema (i.e., a data structure) changes, the queries must
be updated to remain syntactically and semantically correct [132].

E4: Integrity constraints evolution management. Currently, there are several
approaches to modify the data structure in particular. A schema, however,
also includes integrity constraints describing identifiers, references, and, e.g.,
complex business rules. As far as we know, only several approaches tar-
geting relational DBMSs introduce so-called integrity constraints modifica-
tion operations (ICMO) [114], which allow modification of complex business
rules. For non-relational DBMSs, only changes to identifiers or references
are supported to a limited extent [120, 116]. In addition, a new dimension
of difficulty not observed in relational systems is the implicit management
of integrity constraint changes in schema-free data, where integrity con-
straints must first be inferred and the historical sequence of changes in
these constraints must be tracked.

E5: Propagation of changes to the storage strategy. Not only a new data struc-
ture, but also new queries may reflect the change in user requirements. In
multi-model systems, we can respond to this change by adapting the logi-
cal representation of the data to maintain/improve the efficiency of query
evaluation. However, a minimal number of approaches currently exist that
deal with the change in logical data representation [130, 120].

E6: Extraction of changes. There is a number of possible methods for retrieving
information about changes in user requirements. Most often, these are user-
specified changes in the form of SMOs. This approach is particularly useful
when dealing with schema-full data. In NoSQL systems, approaches that
infer implicit versioned and chronologically ordered schema of data exists.
Finally, changes in user requirements and data can be inferred by observing
changes in queries. However, none of the solutions is trivial, especially in
the case of multi-model data.

E7: Integration of new data models and data formats. A significant part of exist-
ing evolution management approaches assumes that the logical representa-
tion of data is time-invariant. Hence, in practice, we encounter approaches
that support only a single data model or a limited set of disjunctive models.
If additional data formats are needed, then (1) we need to represent this
format by means of supported data formats and models, even if at the cost
of relaxing the requirements for efficient data processing, or (2) allow the
integration of new data models and formats.

E8: Benchmarking. In order to evaluate the effectiveness of the data migration
process and to query the successfully migrated data, we need to be able
to put a price on each operation and compare them with respect to each
other. Currently, there are first drafts of a benchmark for multi-model
querying [112, 113] and tools to determine the cost of data migration in
polystores and multi-model DBMSs [111].

E9: Intuitive naming of SMOs. The contradictory features of underlying logical
models in multi-model DBMSs can result in seemingly unexpected propa-
gation patterns into (redundant) data. For example, the ungroup operation
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changes the logical structure of data represented by aggregate-oriented ap-
proaches compared to the representation of aggregate-ignorant approaches
in exactly the opposite way, i.e., in the former case there may be an inlining
into the parent property within one kind and in the latter case there will be
merging of two kinds⋆ (see Example 5.5). Although the naming of the un-
group operation accurately reflects what happens in the aggregate-oriented
approach, in the case of the aggregate-ignorant approach the naming is
completely non-intuitive.

E10: Data migration overhead. Currently, there are several strategies to prop-
agate schema changes to the data. Eager migration propagates schema
changes to data immediately, regardless of the current DBMS workload.
The lazy strategy propagates changes only when the current schema ver-
sion is needed, introducing an overhead during (critical) data management
tasks, similarly to the hybrid strategies, which combine features of eager
and lazy strategies. However, the burden of data migration is still on the
datastore regardless of the chosen strategy. The question is whether we
must necessarily propagate all changes to the data at the physical level,
i.e., stress the database system, or whether changes can only be propagated
“virtually”.

E11: Involvement of artificial intelligence. When a change in user requirements
occurs, the user initiates the change in the data structure, e.g., by exe-
cuting an SMO or by inferring the schema from the new data. However,
the choice of the SMO may not always be optimal and reflect all user re-
quirements. We believe that by engaging artificial intelligence to be trained
based on user input (e.g., data writes, queries, typical system usage time
etc.), we can (1) optimise the choice of the logical representation and the
data schema with respect to the data management tasks to be performed,
and (2) appropriately plan and select a data migration strategy, e.g., based
on the DBMS workload at a specific time.

0.5.3 Contribution: Framework MM-evocat
So far, we have discussed the related work, the applicability of established ap-
proaches to evolution management towards multi-model data, and the resulting
open questions. We now move on to comment on our approach and explain the
connections with the rest of the thesis.

First, we analysed selected existing evolution management solutions introduc-
ing a platform-independent layer for dealing with multiple data models [19, 20,
110, 120, 116] and verified their applicability to multi-model data, identifying
drawbacks of the selected solutions and outlining open questions.

Being inspired by existing solutions, our schema evolution approach is based
on an appropriate abstraction of data models32 (challenge E1) allowing extension
towards the support of additional models (challenge E7), and we define a basic set
of SMOs on top of this model. In addition, we addressed the question of whether

32Let us recall that this refers to the categorical model (first introduced in⋆ Chapter 2 and
commented in Subsection 0.3.4) and its mapping to the underlying logical layer⋆ (see Subsec-
tion 3.3.1).
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it is more user-friendly (1) to take a minimalist approach, i.e., to define only basic
operations from which the user composes complex operations (e.g., see [19]), or
(2) to add complex but frequently called operations to the basic set of SMOs (e.g.,
see [116]). We have opted for a combination of approaches, whereas SMOs33 can
be classified into three tiers:

1. Basic operations. Arbitrary modification of the unifying conceptual model
can be achieved by any of the six basic operations, i.e., addObject, deleteOb-
ject, addMorphism, deleteMorphism, addId, dropId, or their combination.
Nevertheless, although these are expressive operations, they are not very
user friendly.

2. Complex operations. To enhance user experience, we introduce a set of
complex operations, i.e., addRelationship, addList, addSet, addMap, ad-
dHierarchy, addStructure, addProperty, addRef, renameProperty, deleteRe-
lationship, deleteList, deleteSet, deleteMap, deleteHierarchy, deleteStruc-
ture, deleteProperty, and dropRef. These operations internally combine
basic operations (and implement this composition efficiently) and allow for
modifications to the conceptual model in a user-friendly way.

3. Frequently called operations. Based on typical user requirements, we in-
troduce a group of frequently called operations, i.e., copy, move, group,
ungroup, union, split, and changeCardinality. These operations are inter-
nally composed of basic and/or complex operations.

We provide the most user-friendly SMOs in the Table 0.6. Note that our
approach is the only one that allows SMOs in the (logical) model-level (challenge
E5), i.e., we explicitly consider cross-model redundancy. Moreover, as a result of
the unification of the underlying model constructs, the SMOs we propose are not
platform dependent, i.e., there is no need to distinguish between, e.g., embedding
or referencing – that is a logical layer detail (challenge E2).

The proposed SMOs are declared in the platform-independent Multi-Model
Schema Evolution Language (MMSEL) ⋆(see Chapter 5). An obvious part of the
language is the ability to select a subset of records of a given kind over which
to execute SMOs (i.e., a selection). Analogous to existing solutions, MMSEL
expressions are translated into domain specific language (DSL) utilising so-called
wrappers. Note that we also exploit a mapping between the conceptual and
logical layers for translation into DSL. Compared to existing solutions for NoSQL
and multi-model systems, our approach also propagates SMO to identifiers and
references (challenge E4).

SMOs are propagated into the data using the following data transformation
algorithms:

• The Model-to-Category transformation ⋆(see Subsection 3.4.1) is applicable
for data translation between logical and categorical layers. The algorithm
first reads the input data from the logical model and inserts the records
into a unifying data structure that structurally corresponds to the schema
category (i.e., the unifying data structure).

33These operations are discussed in more detail in the journal article ”A Unified Evolution
Management of Multi-Model Data Using Category Theory”, which is currently unfinished, hence
unpublished. The expected completion is Q3 2022.
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• The Category-to-Model transformation⋆ (see Subsection 3.4.2) converts the
data from a categorical to a logical representation in three steps:

1. The DDL algorithm allows the translation of a unified schema into
a platform-specific schema (i.e., it creates, e.g., statements CREATE
KIND, ALTER KIND).

2. The DML algorithm creates a list of DML statements to store the data
in the logical layer (e.g., INSERT INTO KIND).

3. Finally, the IC algorithm ensures specification of identifiers and refer-
ences at the logical layer (e.g., ALTER KIND).

The main contribution of the algorithms is their universality for migration
or changing the logical representation of data. Moreover, the input and output
of data migration algorithms may be the data represented by a combination of
logical models. Hence, we have multi-model to multi-model data migration (for
more details⋆ see Chapter 3). SMOs are propagated into the data by the eager
strategy. Extending the support to other data migration strategies, e.g., lazy and
hybrid strategies [110], forms our current and future work. In addition, we add
the possibility of scheduling data migration with respect to the usual database
system workload, i.e., data will be migrated not only when needed (i.e., lazy
migration), but also proactively during lower workloads.

Furthermore, SMOs are classified into heavy and light operations. Heavy
operations are based on the traditional concept, i.e., they are propagated to the
data and to the mapping between the conceptual and logical layers, thereby
increasing the workload on the side of the database system. The examples of
heavy operations include delete, move, union, and split. On the contrary, light
operations propagate changes only to the mapping, i.e., no immediate propagation
to the logical representation of the data is required (challenge E10). Examples
of light operations includes add, rename, and group. Note that some heavy
operations can be light under certain conditions and vice versa⋆ (see Chapter 5).

Categorically speaking, schema modification operations (SMOs) correspond
to functors, i.e., structure preserving mappings between two (schema) categories
(inspired by the approach [20]). Regarding data migration, we propagate SMOs
that add new schema elements using pushouts (inspired by the approach [19])
and changes that only duplicate or add no new elements are propagated using a
pullback functor and its right and left adjuncts (inspired by the approach [20]).

Finally, the proposed approach was verified in the academic prototype MM-
evocat [5],34 which currently supports evolution management and backwards prop-
agation for data stored in PostgreSQL (a representative of a multi-model DBMS),
MongoDB (a representative of a document DBMS), and Neo4j (a representative
of a graph DBMS). The advanced evolution management tasks, e.g., propagating
schema changes to queries (challenge E3), extracting changes from schema-less
data and from queries (challenge E6), proposing an approach for cost estimation
of data migration operations (challenge E8), and involving artificial intelligence
in the schema and data evolution process (challenge E11), constitute our current
and near-future work.

34https://www.ksi.mff.cuni.cz/˜koupil/mm-evocat/index.html
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Abstract
In this vision paper, we introduce an idea of a framework that would enable
us to model, represent, and manage multi-model data in a unified and abstract
way. Its core idea exploits constructs provided by category theory, which is
sufficiently general but still simple enough to cover any of the logical data models
used in contemporary databases. Focusing on promising features and taking
into account mature and verified principles, we overview the key parts of the
framework and outline open questions and research directions that need to be
further investigated. The ultimate objective is to pursue the idea of a self-tuning
system that would permit us to collapse the traditionally understood conceptual
and logical layers into just a single model allowing for unified handling of schemas,
data instances, as well as queries.

Keywords
• Multi-model data • Category theory • Data modeling

1.1 Introduction
The variety feature of Big Data inciting the so-called multi-model data has opened
a challenging direction of data management. The (primarily) academia-driven
approach, represented mainly by polystores [8], is based on the idea of polyglot
persistence, i.e., the usage of a mediator managing a set of underlying database
management systems (DBMSs), each being the best suitable candidate for a par-
ticular data model. On the other hand, there are (industry-driven) multi-model
DBMSs [13] that offer the support of multiple models under the hood of a single
system, treating all the data models as first-class citizens [12]. Both the ap-
proaches have to face the same challenges brought by contradictory features of
different but interlinked models and their data management specifics. For exam-
ple, there are structured/semi-structured/unstructured formats, systems based
on strong/eventual consistency, schema-full/schema-less/schema-mixed systems,
declarative/functional query languages, etc.

In this vision paper, we describe the necessary steps that need to be carried
out in order to provide a full-fledged and universally applicable solution to the
problem of multi-model data management. We argue that a highly promising
approach could be based on category theory [133], a theory general enough to
cover all the currently popular data models (and probably even more) and having
a sound mathematical background important for the efficient and correct data
processing. Exploiting the constructs it offers, we provide a vision of a complex
framework that would allow us to merge the conceptual and logical layers into
just a single model through which schema descriptions, data instances, as well as
query expressions could be handled in an entirely uniform and abstract way.

Based on the inspirational related work and with the help of a set of illus-
trating examples, the main contributions of the paper are: (1) discussion of ways
how category theory can bring answers and solutions to the aspects of schema
modelling, data representation, querying as well as evolution, transformations or
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migration, (2) identification of the related open questions and research directions
that need to be further investigated so that the framework can be applied in poly-
store and multi-model scenarios, and (3) the actual description of the envisioned
category-based unified autonomous DBMS, including its main advantages with
respect to the contemporary systems.

Section 1.2 provides a brief introduction to category theory, Section 1.3 then
thoroughly introduces the key parts of the framework, so that in Section 1.4, we
summarise advantages of the category-based unified DBMS and conclude.

1.2 Categories

Formally, a category C = (O,M, ◦) consists of a set of objects O serving as
graph vertices, a set of morphismsM acting as directed edges, and a composition
operation ◦ for the morphisms.

Each morphism is modelled and depicted as an arrow f : A → B, where
A, B ∈ O, A being referenced to as a domain and B as a codomain, respectively.
Whenever f, g ∈ M are two morphisms f : A → B and g : B → C, it must
hold that g ◦ f ∈M, i.e., morphisms can be composed using the ◦ operation and
the composite g ◦ f must also be a morphism of the category (i.e., transitivity is
required). Moreover, ◦ must be associative, i.e., h ◦ (g ◦ f) = (h ◦ g) ◦ f for any
morphisms f, g, h ∈M, f : A→ B, g : B → C, and h : C → D. Finally, for every
object A, there must exist an identity morphism 1A such that f ◦1A = f = 1B ◦f
for any f : A→ B (obviously serving as a unit with respect to the composition).

As an example, let us mention at least the Set category, where objects are
arbitrary sets and morphisms functions between them. Note, however, that both
objects and morphisms can, in general, represent abstract entities of any kind.

Considering the related work, category theory is a promising solution for the
indicated issues. Existing bottom-up approaches start from a single logical model
(relational [134, 20], object-relational [19], or CSV/document/RDF [135]) and
define a respective schema category and operations using standard categorical
approaches (such as functors). A top-down approach from [18] defines a schema
category covering various conceptual modelling approaches, but only with respect
to the most common model of that time – the relational model. In this paper,
we also follow this direction, however, with respect to multiple interlinked data
models at a time. In other words, we will show that the categorical approach can
also be used for the multi-model world.

1.3 Framework

The objective of the following text is to describe features, requirements, and
principles of the core components of the envisioned database framework that
would allow us to formally grasp the existing scenarios of polystores and multi-
model databases, as well as could potentially contribute to the proposal of a truly
unified and conceptual database system.
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1.3.1 Multi-Model Scenario
In order to demonstrate the intended functionality, let us assume a sample multi-
model scenario we will use throughout the individual illustrative examples.
Example 1.1. Figure 1.1 provides an example of a multi-model scenario. The
relational model (violet) contains general information about customers, whereas
the graph model (blue) captures their mutual friendship. The document model
(green) maintains orders which are bound with particular customers using the
wide-column model (red).

CustomerId Firstname Lastname
1 Mary Smith
2 Anne Maxwell
3 John Newlin

table Customergraph Friends collection Ordercolumn family Orders

Credit
30
25
30

CustomerId
1
2
3 { ProductId : B1, Kind : Book, Name : Fairy Tales, Price : 20 }

{ ProductId : T1, Kind : Toy, Name : Toy Car, Price : 35 }

{ OrderId : 220, Items : [ { ProductId : B1, Name : Fairy Tales, Quantity : 1 } ] }
{ OrderId : 217, Items : [ { ProductId : T1, Name : Toy Car, Quantity : 2 } ] }

1

32

Mary

Anne John

Friend Friend

Friend

collection Product

table Credit

1

[10, 217, ...]

[94, 137, 214]

Orders

Orders

CustomerId
[220, 230, ...]

Orders

2
CustomerId

3
CustomerId

Figure 1.1: Sample multi-model scenario

The range of the available and widely used logical models is, of course, wider
than the particular models we incorporated into our sample scenario. While the
traditional relational model was and still is used as the primary option, a recently
emerged family of NoSQL systems enabled wider usage of key/value, wide column,
document, and graph models, too. As we have mentioned, their contradictory
features, unfortunately, increase the complexity of handling the multi-model data
in a truly universal way.

For the purpose of describing schemas of data at the conceptual layer (which
intentionally abstracts and conceals specific details of the underlying logical mod-
els), existing mature and frequently used modelling languages such as ER [31, 136]
and UML [32] (class diagrams in particular) can be exploited (see Figure 1.2 for
the sample scenario). Unfortunately, while ER is more expressive and suitable
for describing complex real-world relationships, it is not well-formalised and ex-
ists in various notations differing not just visually. On the other hand, UML is
standardised, but only too data-oriented (lacking, e.g., weak entity types or other
constructs).

Customer Orders

Friend

ItemsOrder Product

CustomerIdFirstname

Credit

Lastname
ProductId

Price

Name

QuantityOrderId
(0,*)

(1,1)

(0,*)

(0,*) (0,*)(0,*)

Kind

Figure 1.2: ER schema diagram for the sample data

Although this probably should not be the case, the main disadvantage of both
the existing conceptual approaches is that they are actually not entirely suitable
for grasping distinct data structures assumed by different logical models, simply
because they are actually very closely related and inspired by the traditional
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relational model. This means they are built on top of the notion of ordinary
sets of tuples in the first normal form, and so clearly not fully conforming to
the principles and nature of the other models that permit, e.g., repeated values,
union types, or hierarchically constructed properties.

There actually already exist papers dealing with ER modelling of multi-model
data (e.g. [137, 138]), primarily for polystores. Unfortunately, they lack crucial
details of mapping from the conceptual layer to the particular DBMSs, which
strongly influences inter-model references, model overlapping, query optimisation,
evolution management, etc.

1.3.2 Schema Modeling
As a consequence of the previous observations, a new strategy capable of unified
multi-model schema description and data representation needs to be found. We
believe that an approach based on category theory could be promising enough,
not just because of its universality and formal theoretical background, but also
because of the already outlined existing approaches, though they are suffering
from various drawbacks and are not yet ready for the multi-model scenarios.

The following idea of a schema category1 can form the basis for the categorical
conceptual modelling via which we will be able to describe the intended structure
of the data together with basic integrity constraints. Borrowing the terminology
from ER, objects of this category will represent individual entity types, attributes,
as well as relationship types (without necessarily needing to distinguish between
them later on, in the optimal case). In order not to disallow entity types with
several or composed identifiers, super-identifiers can be exploited to encompass all
of them, if needed. Morphisms will then interconnect the corresponding objects,
allowing us to model the traditional concept of relationship cardinalities and
attribute multiplicities through (min, max) constraints, where min ∈ {0, 1} and
max ∈ {1, ∗}. Obviously, min ∈ {0, 1} would restrain the lower bound of a
number of occurrences (optional vs. compulsory) and max ∈ {1, ∗} the upper
bound (at most one vs. at least one).

In order to make our category visualisations easier, we follow the convention
that identity and non-core morphisms belonging to the transitive closure over the
composition operation are entirely omitted, and that morphisms are labelled only
with cardinalities different from (1, 1), being treated as the default.
Example 1.2. In Figure 1.3, we can see the schema category corresponding to the
ER model from Figure 1.2. For instance, the object (node) Customer represents
the entity type Customer. Neighbouring objects connected via morphism (edges)
correspond to its attributes (Firstname, Lastname, etc.) as well as relationship
types (Orders and Friend) with respective cardinalities.

Even though schema categories could also be designed directly by database
users, this strategy might not be considered convenient enough, not just because
of technical aspects that need to be carefully followed and ensured. Thus the
outlined concept should primarily be understood as a means for internal database

1For the sake of simplicity, we omit technical details and more complex constructs. A
separate paper [2] is devoted to the proposal of the schema category and the transformation
process. In addition, the category itself can be designed variously, which is one of the open
problems of the idea.
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Figure 1.3: Schema category for the sample data

schema representation rather than a modelling language as such. This, in other
words, means that a corresponding user-friendly modelling language would need
to be proposed, too.

Moreover, in order to enable the option of deploying the envisioned framework
in the context of the existing systems, transformations of ER and UML schemas,
as well as at least semi-automatic inference methods capable of deriving schema
categories from sample input data, would need to be proposed, too. More broadly,
principles of generic schema management should be followed, similarly as in [139].

1.3.3 Database Decomposition
The very idea behind polystore and multi-model database scenarios is that dif-
ferent parts of the data are logically modelled, physically stored, and further
processed differently by means of the corresponding logical models and query
languages they are accompanied with. Having the schema category, the next
step is to decompose it into such parts, let us call them database components.
In practical terms, each of these components is expected to correspond to one
of the underlying systems involved in a polystore (each one of them is accessi-
ble and queryable, yet specifically), and logical models involved in a multi-model
database (with data directly and natively retrievable), respectively.

Each of these components would consist of a set of particular selected ob-
jects and morphisms, as if forming kind of a subgraph of the entire category that
permits to incorporate the individual morphisms even without their ending ob-
jects (domain and codomain). Moreover, these components might be and most
likely will often tend to intentionally be disconnected and/or more-or-less over-
lapping in real-world use cases. While the former aspect would require to take
into account also the derived morphisms during the decomposition process, i.e.,
non-core morphisms derived using the category composition operation, the latter
one finds its applicability in deliberate data redundancy across logical models,
and so potentially improving query evaluation efficiency for data that is expected
to be accessed together.
Example 1.3. Sample schema category decomposition into particular data models
(depicted using the colours from Figure 1.1) is visualised in Figure 1.4. For
instance, the document (green) component covers orders. The graph (blue) and
relational (violet) components partially overlap, since we maintain the respective
attributes (Firstname and CustomerId) in both the models.

Focusing on a particular component, its objects and morphisms will then need
to be internally mapped to particular logical constructs and structures provided
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Figure 1.4: Decomposition into database components

by a given model, e.g., tables (together with their columns, primary keys, foreign
keys, or other constraints) in case of the relational model, or collections of JSON
documents (and their objects, arrays, and values) in case of the document model
assumed by MongoDB.
Example 1.4. Let us consider the document (green) component in Figure 1.4.
There exist several ways how to map this part of the category to one or more
documents. Using a (semi-)automatic approach, the developer may choose, e.g.,
the following JSON schema (expressed symbolically):

{ OrderId, Items: [ { ProductId, Name, Quantity }* ] }
{ ProductId, Kind, Name, Price }

1.3.4 Data Representation
Data assigned to each of the outlined database components is stored and logically
represented differently, thus we have to find a way how such diversity could be
encompassed within just one kind of a unifying data structure that would be
capable of handling all the specifics of the individual models, but would still be
simple enough. It is also worth realising that this structure should serve not
just as a means of modelling the data actually present in the database (and so
conforming to its conceptual schema), but also a means to represent results of
the evaluated query expressions, including the intermediate ones.

While the existing multi-model DBMSs [13] more or less painfully create an
extension of the data structures used for the original single model, there exist
proposals of more general approaches, too. E.g., the NoSQL Abstract Model
(NoAM) [27] represents the data as named collections, each containing a set of
blocks consisting of a non-empty set of entries. Associative arrays [28] are then
defined as mappings from pairs of unique (column and row) keys to values. Or
the Tensor Data Model (TDM) [29], which introduces the idea of generalised
matrices. We believe, however, we can go significantly further.

It would only be beneficial if the desired data structure could be derived from
the outlined schema category. Such an objective could be achievable through an
instance category. The idea is that this category would have exactly the same
objects and morphisms when compared to the corresponding schema category,
they would only differ in what the objects and morphisms mean and contain,
i.e., what they are supposed to internally model. Perhaps tables, i.e., sets of
tuples, could be utilised as a basis, at least for now. Hence, the idea is that each
entity/relationship/attribute object could contain a set of values belonging to the
active domain, and morphisms mappings of pairs of such values.
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Example 1.5. Figure 1.5 provides a part of the instance category bearing the
particular information about each product, i.e. ProductId and Name.

ProductId
B1
T1

ProductId
B1
T1

Name
Fairy Tales

Toy Car

Name
Fairy Tales

Toy Car

Product

{{ProductId}} Name

Figure 1.5: Part of an instance category

Obviously, it may not have been a good direction to stick with the principles
of the relational model since complications at least with the ordering of values,
duplicates, or non-trivial cardinalities of sub-attributes will unavoidably appear.
Nonetheless, having the instance category proposed, a particular data format
and techniques for data transformations will then also be needed (analogously to
[134, 56]) so that a unified instance category can be obtained for input data in
a particular format/model as well as such a category serialised in the opposite
direction. Such low-level transformations will then find their essential position in
data migration, evolution, or database self-tuning processes.

1.3.5 Query Language
The core functionality of each database system lies in its capability to query the
data stored within it [140]. For obvious reasons, the expressive power of the
provided query language must be sufficient with respect to the intended purpose
and usage [141], though it may significantly differ across the models, systems, and
particular languages, too. Similarly, evaluation of query expressions as such must
be efficient enough. The major limiting disadvantage of the existing settings is
that users must be thoroughly aware of the logical schema of the data. It means
that the languages and so the query expressions are, not surprisingly, tightly
bound with the structure of the data to be queried. While this can be acceptable
in single-model systems, it no longer is in truly multi-model ones.

Therefore we advocate for finding ways of querying that would genuinely be
conceptual, though expressive enough from the practical point of view. In other
words, the goal is to find a unified conceptual query language that would permit
to query the data without any further knowledge of the database decomposi-
tion (possibly even changing through time) and regardless of the specifics of the
individual involved logical models. This means one query language, one query
constructs, one syntax. Moreover, it should also be closed with respect to the
data model, i.e., that both extensional data as well as intermediate and final
query results are modelled uniformly, via instance categories.

The envisioned querying could be based on sub-graph pattern matching widely
exploited in graph databases, simply because graph models are broadly under-
stood as the most complicated ones, as well as because categories in general are
tightly related to graphs. The idea is to describe one graph pattern we are looking
for in terms of a pattern category, consisting of only the selected objects and mor-
phisms available in the corresponding schema category. The individual objects
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could be associated with selection conditions acting as domain filters. These con-
ditions may be however complicated (with ranges, enumerations, conjunctions,
disjunctions, . . . ), but may only involve a given object. Similarly, even morphisms
could be equipped with conditions (comparisons, . . . ), either filtering or joining,
always referencing only the pair of involved objects.

Example 1.6. Figure 1.6 introduces a pattern category for a query that should
return names, kinds, and prices of all books or toys which can be bought by a
customer with name Mary. As we can see, the black parts correspond to the
schema category objects and morphisms, and so the database contents, whereas
the red part is a newly introduced morphism enabling to join the two fragments
using a joining condition. Grey-filled circles represent projection (objects that
should appear in the final result).

Customer CreditFirstname Product KindPrice

Name

Figure 1.6: Pattern category for a sample query

Morphisms that were taken over from the schema category basically act as
the corresponding inner joins, extensionally defined directly by the contents of
the database. If it happens there are two or more disconnected parts (only as-
suming the adopted morphisms), they are joined using the Cartesian product
(cross join), or a theta-join in case there are newly added morphisms with further
joining conditions. It is also important to realise that particular schema objects
and morphisms can be reused repeatedly in a query pattern. All in all, every-
thing described inside one pattern category is expected to be satisfied as if in
conjunction, i.e., based on the all-or-nothing principle.

The notion of a pattern category obviously cannot be used in order to describe
more complicated queries. Therefore the next natural step is to allow ourselves
to construct a query category through which we would be able to combine several
simple pattern categories by advanced query constructs and operations modelled
as special query objects. That would hopefully permit to incorporate not just the
following widely considered constructs: set operations over the patterns (union,
intersection, difference), existential and general quantifiers including their nega-
tions, or optional patterns. Though there will undoubtedly be a variety of not
just technical obstacles, we also need to be able to cover disjunctions of patterns
through which complicated disjunctive conditions involving several objects could
be expressed. Similarly, non-binary filtering or joining conditions, grouping and
aggregation, or derivation of new values not present in the database via arithmetic
expressions, function calls, etc.

Syntax of the actual query language as such will also need to be carefully
designed so that it permits to express all the ideas but still remains user-friendly
enough. While for the purpose of describing the individual pattern categories
the idea of ASCII-art-inspired syntax assumed by Cypher query language in
Neo4j could most likely be exploited, principles of the composition of more com-
plex queries is a more significant challenge, possibly benefiting from the ideas
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of sub-queries or chaining of clauses, or simply the existing proposals such as
SQL++ [142].

1.3.6 Query Evaluation
Based on the knowledge of the schema category, database decomposition, and
internal schema mappings, the query category now needs to be decomposed into
individual query parts, each to be evaluated separately so that it produces the
corresponding intermediate result modelled in terms of instance categories with
their schemas. Each query part consists of the selected objects and morphisms
from the query category, yet not all of them do necessarily need to be involved. In
fact, in the case of cross-model queries, evaluation of certain morphisms and/or
query objects will intentionally need to be postponed, simply because no database
component is capable of their evaluation on its own.

While in a polystore scenario each query part needs to be translated into the
corresponding query expression within the specific query language a given system
supports, and this expression internally evaluated so that the yielded result can
be transformed into our unified logical representation, the corresponding interme-
diate result can directly be obtained from the database data files (at the physical
layer) in case of a multi-model scenario.
Example 1.7. Our decomposed inter-model query is depicted in Figure 1.7. The
relational part (violet) extracts credits of customers named Mary:

SELECT T2.Credit
FROM Customer AS T1 NATURAL JOIN Credit AS T2
WHERE T1.Firstname = "Mary";

Analogously, using the MongoDB query language, the document part (green)
extracts all properties but ProductId of books or toys:

db.Product.find(
{ Kind: { $in: [ "Book", "Toy" ] } }, { ProductId: 0 }

);

Customer CreditFirstname Product KindPrice

Name

Figure 1.7: Query category decomposition

Note that multiple query parts belonging to the same database component
may be generated, because the expressive power of a given query language may
not be sufficiently high. For example, we can expect separate query parts and so
multiple find queries for each of the involved collections in the case of MongoDB.
Similar issues can appear in key/value or wide column databases, too.

Last but not least, while the query translation process takes a query category
part and rewrites it to a specific query expression, we also need to deal with the
opposite direction so that the existing query expressions in various at least widely
used languages can be taken and migrated to our categorical representation.

Having a given query part evaluated, the obtained intermediate result needs
to be represented as an instance category with a structure conforming to a newly
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defined schema category. For example, having an intermediate result in a form of
a table retrieved from a relational system or a collection of possibly projected doc-
uments from MongoDB, its corresponding schema category could be constructed
by contracting the given query category part (its objects and morphisms) into a
star with all the involved attribute objects (simple or with sub-attributes) col-
lected around the central object representing the super-identifier of the entire
obtained result. The central object is derived from the backbone objects and
morphisms of the query part, i.e., as a result of more-or-less complicated joining
process.

The schema contraction step is essential in order to support advanced query
constructs such as groupings, aggregations, or derivation of new values in general.
As a consequence, however, we may lose the interpretability of certain objects or
morphisms with respect to the original schema.

Once all the recognised query parts are evaluated and so the intermediate
results obtained, the evaluation of all the postponed and not yet considered mor-
phisms and/or query objects can be completed at the unified layer of the frame-
work. This means that we need to evaluate these morphisms/objects one by one,
partially contracting the corresponding parts of the current query category, step
by step, so that we eventually retrieve the result of the entire query in the very
end.

Example 1.8. As depicted in Figure 1.8, the intermediate results for the relational
(violet) and document (green) parts of the query were transformed into instance
categories with the respective contracted schemas. By evaluating the postponed
theta join, we retrieved the overall query result.

Credit
30

{ { Kind : Book,  
    Name : Fairy Tales,
    Price : 20 },
  { Kind : Toy,  
    Name : Toy Car,  
    Price : 35 } } 

R1 R2

Credit Price
Name

RKind

Kind
Book

Name
Fairy tales

Price
20

Price
Name

Kind

Figure 1.8: Intermediate and final query results

Evaluation and optimisation of queries are no doubt absolutely crucial as-
pects defining the actual practical usability of database systems. Thus multiple
heuristically designed query evaluation plans need to be considered so that the
one with the lowest cost can be selected and actually executed as the only one.
Apparently, the efficient evaluation also needs to be supported by indices, in this
case model-agnostics [12].

Example 1.9. An alternative (though probably less efficient) query plan depicted
in Figure 1.9 involves, in addition, also the graph model (blue), where names of
customers can also be extracted.
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Customer CreditFirstname Product KindPrice

Name

Figure 1.9: Alternative query evaluation plan

1.3.7 Evolution Management
Evolution management is a process of preserving the integrity of the whole sys-
tem when user requirements change. A change in the structure of the data may
require changes in related data instances, queries, integrity constraints, storage
strategies, etc. Thanks to the general representation of all the data models using
the schema category, we can define a unified cross-model set of schema modifi-
cation operations (SMOs). The abstract categorical layer also enables backward
compatibility of the queries even when the storage strategies and related map-
pings may change.
Example 1.10. An example of evolution might involve merging of attributes First-
name and Lastname into one attribute Fullname. In addition, the data about
customers can be migrated from the graph model to the relational model only.
In Figure 1.10, we can see the old and new versions of the affected parts of the
schema category. While the query accessing the modified part must be adapted
accordingly in the first case, the schema category and so the categorical queries
remain the same in the second case.

CreditCustomerId
Fullname

Friend

Customer
{{CustomerId}}(0,*)

(0,*)

Credit
Firstname

CustomerId
Lastname

Friend

(0,*)

(0,*)

Customer
{{CustomerId}}

Figure 1.10: Old and new versions of schema category

The existing multi-model evolution management approaches provide an in-
teresting inspiration, but they also have various significant limitations, such as,
they only focus on aggregate-oriented NoSQL systems [122] or they omit critical
inter-model links [117]. A sufficiently general set of SMOs can most likely be
borrowed from [143].

1.4 Summary and Conclusion
The outlined framework has many features that seem to be promising and are
undoubtedly worth further exploration. Either way, it can be deployed in both
the polystore and multi-model scenarios, i.e., it is applicable to state-of-the-art
systems. While we believe it can become a basis of newly designed database
management systems, it still relies on, integrates, or extends various existing
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verified approaches, as well as it further elaborates concepts already advocating
such objectives [12].

In other words, we propose to go beyond the ideas and boundaries of the con-
temporary systems toward entirely unified and conceptual databases that would
allow us to fully abandon the idea of various logical models together with their
distinct data structures, specific features, and often proprietary query languages,
as it is demonstrated in Figure 1.11. Though such systems could be based on cate-
gory theory, as we have outlined, other well-established formalisms could possibly
serve as well.

Conceptual
layer

Logical
layer

Physical
layer

Single-model
scenario

Polystore
scenario

Multi-model
scenario

Unified
scenario

Figure 1.11: Layered architecture of database systems

It is apparent that there are only too many existing systems, models, formats,
and languages. If it is difficult for the users to get sufficiently acquainted with such
approaches and make decisions whether and when to use them in single-model
situations, the more challenging the task it becomes when polyglot persistence
is followed, i.e, when multiple models and systems should be considered, un-
derstood, deployed, and maintained at the same time. Obviously, at least from
the long-term perspective, it is highly unlikely that such a variety together with
currently ongoing trends could remain sufficiently sustainable.

Besides the already mentioned key aspects of the envisioned self-tunable data-
base management system, we think the emphasis should be put on the formal
background, unification, conceptuality, and user-friendliness. In other words, it
is necessary to find a reasonable balance between the utilisation of high-level
formal theories such as the one assumed, and the practical applicability of the
whole approach on the other hand. The core differences, features, advantages,
and contributions represented by the framework we envisioned are summarised
as follows.

• Intended schema of the data is described only once and at the conceptual
platform-independent layer, only targeting real-world entities and relation-
ships they can enter into.

• Schema categories have higher expressive power than the traditional ER or
UML languages, seamlessly allowing to work with structured attributes or
other constructs.

• Attributes, entity types, and relationship types no longer need to be mu-
tually distinguished and handled differently, and so the entire modelling
process can be simplified.
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• Instance categories are general enough to serve as a universal data structure
for all the currently widely used models, permitting the integration of future
suitable models, too.

• The involved logical models play mutually equal roles, none of them is given
priority, as is often the case in the existing multi-model systems.

• The traditional conceptual and logical layers collapsed into just a single
unified representation, so they no longer need to be considered separately.

• Handling of the data variety aspect is pushed from the former logical layer
to the physical one, where various file organisations and indices can appro-
priately be utilised.

• Decomposition into different models became internal with no impact on
the users, and so they do not need to be aware of it, nor are they forced to
adjust the style of thinking with respect to the particular models involved.

• Individual components can intentionally overlap each other, as well as do
not necessarily need to contain all the data so that long-running migrations
can be supported.

• Though the users can supervise the decomposition process, it can be fully
autonomous and capable of reorganising the data based on the changing
workload or other aspects.

• Query language and its constructs are conceptual, and so independent on
the internal representation of the data, not requiring the users to have its
deeper knowledge.

• Querying itself is based on graph pattern matching, a mature enough prin-
ciple from graph databases allowing for the evaluation of complex queries.

• The query model is closed with respect to the input data and intermedi-
ate/overall results, all consistently modelled in terms of instance categories.

• Schemas, data, as well as queries are all modelled via homogeneously de-
signed categories, all following the same structure and principles.

• Inter-model references or links of other kinds and cross-model queries are
supported natively, which is not the case of many an existing system.

• Category theory provides a strong formal background, which brings the
potential for advanced query optimisation techniques that would otherwise
be difficult to achieve.

Although we covered the key components concerning schema modelling, data
representation, and querying, there are also other important aspects of multi-
model data management we did not cover. We also did not want to provide a
complex solution but to outline promising research directions and encourage both
researchers and practitioners to pursue the envisioned ideas.
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Abstract
Following the Gartner predictions, most of the DBMSs, both relational and
NoSQL, have become multi-model. However, this functionality brought plenty
of related issues. The core problem is how to design a multi-model application.
The step from the conceptual layer to a set of distinct interlinked logical models
is not straightforward.

In this paper, we propose an approach based on category theory, which pro-
vides a unified view of the data and a strong mathematical basis for their manage-
ment. We propose a schema and instance categories covering popular models and
we show how an ER model can be transformed to such a categorical layer. We
also introduce the whole framework based on the categorical model and discuss
open research issues.

Keywords
• Multi-model data • Category theory • Conceptual modelling

2.1 Introduction
Despite the one size does not fit all argument [144], most of the popular database
management systems (DBMSs), being relational, NoSQL, or other, have followed
the Gartner predictions [145] of support of multiple data models.
Example 2.1. Consider an example of a multi-model scenario in Fig. 2.1. Social
network of customers is captured using a graph. Additional information, such as
their credit limit, is recorded in a relational table. Orders submitted by customers
are stored as JSON documents. A wide-column table maintains the history of
all orders, and a key/value mapping maintains current shopping carts. A cross-
model query might return friends of customers who ordered any item with a price
higher than 180.

1

32

CustomerId FirstName Address Credit
1 Mary ... 3000
2 Anne ... 2000
3 John ... 5000

CustomerId Orders
1 [ 220, 230, 270, ... ]
2 [ 10, 217 ]
3 [ 94, 137, 214, 370 ]

{ OrderId : 220,
  Paid: true,
  Items: [
  { ProductId: T1,
    Name: toy,
    Price: 200,
    ItemQuantity: 2},
  { ProductId: B4,
    Name: book,
    Price: 150,
    ItemQuantity: 1 } ] }

2

3

CustomerId Cart
Product: T1,
Quantity: 2
Product: B4,
Quantity: 1

Product: H1,
Quantity: 1

Product: B3,
Quantity: 2

relational table

Mary

Anne John

Friend Friend

graph document collection wide-column table key / value pairs

Friend

1

Figure 2.1: A multi-model scenario (partially borrowed from [11])

Though simple and natural in the idea – adding another data model – its real-
isation is quite complex, as the combined models (and respective systems) often
have contradictory features. There are structured, semi-structured, and unstruc-
tured formats; systems based on strong or eventual consistency; declarative and
functional query languages; etc. Currently, there exist more than 20 representa-
tives of multi-model databases [146], involving well-known traditional relational
and also novel NoSQL tools. Regarding the multiple models, they differ in the
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following three core aspects: (1) the original model (relational, graph, document,
etc.), (2) the strategy for its extension (new storage structures, new interfaces,
etc.), and (3) the set of supported models.

Such a situation is difficult for users who want to develop a multi-model
database application. According to the traditional recommendations, they would
first create a conceptual schema (e.g., using ER or UML). Then, there exist veri-
fied recommendations on how to transform such a schema into, e.g., the relational
model, whereas the existing relational DBMSs support this model more-or-less
according to its well-defined standard. However, (not only) with regards to the
above-described variations, the step from an ER/UML conceptual model to vir-
tually any possible (not standardised) combination of multiple models is not that
straightforward.

For this purpose, we need a representation that would allow us to (1) capture
all the existing models, preferably in the same and definitely in a standard way;
(2) query across multiple interconnected models; (3) perform correct and complete
evolution management, i.e., propagation of changes; (4) enable data migration
without complex reorganisations; and (5) permit integration of new data models.
Although both ER and UML are strong enough to cover some of these points,
their main purpose is different and not so wide. Hence, we argue that a new layer
between the abstract conceptual model and particular logical models needs to be
established to pursue the multi-model data management.

In this paper, we propose a solution based on category theory [133], a theory
sufficiently general for the multi-model situation and providing a strong mathe-
matical background for further management of the data, such as transformations
between the models, cross-model querying, multi-model evolution management,
etc. The main contributions of the paper can be summed up as follows:

• We define schema and instance categories covering all known data models.

• We provide the ER-to-category transformation algorithm.

• We introduce the whole framework based on the categorical model.

• We discuss a range of challenges opening an interesting research area.

Paper outline: In Section 2.2, we overview the related work and in Section 2.3
basics of category theory. We describe the ER-to-category transformation in
Section 2.4 and the whole framework in Section 2.5. In Section 2.6, we discuss
its general benefits as well as issues and open challenges. Finally, we conclude in
Section 2.7.

2.2 Related Work
While the multi-model DBMSs [13] (more-or-less painfully) provide an extension
of the original data structures used for a single core model, there also exist pro-
posals of more general approaches. E.g., the NoSQL Abstract Model (NoAM) [27]
represents the data as named collections, each containing a set of blocks consist-
ing of a non-empty set of entries. Associative arrays [28] are defined as mappings
from pairs of unique (column and row) keys to values. Finally, Tensor Data Model
(TDM) [29] introduces the idea of generalised matrices.
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For the higher levels of abstraction, there also exist a few proposals. Ty-
phonML [137] enables us to specify conceptual entities, their attributes, relations,
and datatypes, and map them to different single-model DBMSs of a polystore.
Similarly in paper [138], an ER schema is partitioned and then mapped to differ-
ent data models. However, none of these approaches provides a detailed specifi-
cation of how the respective inter-model references should be managed, whether
overlapping is supported, how cross-model querying will be handled, etc.

The idea of exploiting category theory to represent data models is not new.
Most of the approaches, denoted as bottom-up, start from a single logical model
(namely relational [134, 20], or object-relational, i.e., hierarchies of classes [19])
and define a respective schema category and operations using standard categorical
approaches (such as functors). Paper [135] proposes a categorical approach for the
relational (CSV), document, and graph (RDF) models, but only with intra-model
data migrations and querying.

A top-down approach from [18] defines a schema category covering various
conceptual modelling approaches, but unfortunately only with respect to the
most common model of that time – relational. In this paper, we also follow this
direction, however, with respect to multiple interlinked popular data models.

2.3 Preliminary Concepts
We first provide essential definitions related to category theory we need in this
paper. Assuming a general knowledge of the ER model, we also describe our
basic assumptions on ER conceptual modelling.

2.3.1 Category Theory
Formally, a category C = (O,M, ◦) consists of a set of objects O serving as
graph vertices, a set of morphismsM acting as directed edges, and a composition
operation ◦ for the morphisms.

Each morphism is modelled and depicted as an arrow f : A → B, where
A, B ∈ O, A being referenced to as a domain and B as a codomain, respectively.
Whenever f, g ∈ M are two morphisms f : A → B and g : B → C, it must
hold that g ◦ f ∈M, i.e., morphisms can be composed using the ◦ operation and
the composite g ◦ f must also be a morphism of the category (i.e., transitivity is
required). Moreover, ◦ must be associative, i.e., h ◦ (g ◦ f) = (h ◦ g) ◦ f for any
morphisms f, g, h ∈M, f : A→ B, g : B → C, and h : C → D. Finally, for every
object A, there must exist an identity morphism 1A such that f ◦1A = f = 1B ◦f
for any f : A→ B (obviously serving as a unit with respect to the composition).

Example 2.2. Rel is a category where objects represent sets and morphisms are
binary relations over these sets. As for the composition g ◦ f for morphisms
f : A → B and g : B → C, it holds that (a, c) ∈ g ◦ f whenever there exists at
least one value b ∈ B such that (a, b) ∈ f and (b, c) ∈ g.

Even though objects in real-world categories usually tend to be sets of certain
items and morphisms functions between them, both objects and morphisms may
actually represent abstract entities of any kind.
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2.3.2 Conceptual Modeling
Although ER is well-known, there exists a variety of its particular forms and nota-
tions. Therefore we summarise the particular ER version [136] we assume in this
paper. We suppose that each entity type must have at least one attribute, as well
as it must always have at least one identifier, regardless it is strong or weak. As
for multiplicities of attributes and cardinalities of relationship types, (min, max)
ranges are assumed, permitting 0 or 1 in the lower boundary (expressing whether
at least one occurrence is required or no) and 1 or ∗ in the upper (whether just
at most one or even more occurrences are allowed). We also consider structured
attributes, yet only flat, i.e., with one level of sub-attributes, and these must be
bound to the base one by the default multiplicity (1, 1). As for relationship types,
they must not have their own identifiers. Finally, we also take into account ISA
hierarchies and weak entity types.

2.4 Schema Representation
Our primary objective is a proposal of a conceptual schema representation based
on categories that would allow us to provide a unified view of multi-model data.
Although users might create such representations directly when modelling the
data, the resulting categories will most likely be too complicated. Thus we pri-
marily understand our solution as a means for schema and data representation.

Following a top-down approach, we describe how to translate a given ER
schema into an equivalent categorical representation. In particular, two categories
will be derived. The aim of a schema category S is to grasp the intended structure
of the data, including basic integrity constraints. An instance category I then
represents a particular database state, i.e., a database instance filled with data
conforming to a schema defined by S. Both S and I are identical as for their
structure, they differ in the internal contents of their objects and morphisms.

2.4.1 Schema Category
Schema category is defined as S = (OS,MS, ◦S). Objects in OS represent indi-
vidual entity types, attributes, and relationship types we have in the input ER
schema. One for each one of them. We will distinguish entity, attribute, and re-
lationship objects, but solely for the purpose of an easier explanation. Similarly,
we will distinguish attribute, identifier, relationship, and hierarchy morphisms.

Assuming that A is a set of names of attributes in the input ER schema (or
simply the active domain for these names), E the domain of entity type names,
and R the domain of relationship type names, we will now have a look at the
internal structures behind the category objects and morphisms.

In particular, each object o ∈ OS will internally be modeled as a pair (superid,
ids): superid ⊆ A will be a super-identifier of a given object, i.e., a set of at-
tributes using which instances of a given attribute, entity or relationship type can
be uniquely identified; ids ⊆ P(superid) will be a set of individual particular iden-
tifiers a given object is associated with. It must hold that superid ⊇ ⋃︁

id∈ids id,
i.e., that superid consists of at least all the attributes involved in the individual
identifiers. In case of entity objects and attribute objects, equality will actually
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hold, and so superid will form the minimal super-identifier. In case of relationship
objects, there can be additional attributes.
Example 2.3. Having an entity type Person with one simple identifier PersonId,
one composed identifier consisting of two attributes FirstName and LastName,
and additional attributes Age and Address, the corresponding entity object Per-
sonS will be modelled as a pair (superid, ids), where superid = {PersonId,
FirstName, LastName} and ids = {{PersonId}, {FirstName, LastName}}.

Next, each morphism m ∈MS will internally be a pair (min, max), allowing
us to model the traditional concept of relationship cardinalities and attribute
multiplicities through (min, max) constraints: min ∈ {0, 1} restrains the lower
bound of a number of occurrences (0 for an optional occurrence, 1 for a compul-
sory one), max ∈ {1, ∗} the upper bound (1 for at most one occurrence, ∗ for at
least one), respectively.

For each object o ∈ OS, its identity morphism is denoted and defined as
1o = (1, 1). As for the composition operation ◦S, having two morphisms m1 =
(min1, max1) and m2 = (min2, max2) such that m1, m2 ∈MS, their mutual com-
posite is evaluated as m2 ◦S m1 = (min(min1, min2), max(max1, max2)), simply
choosing the lowest of limits for the lower bound and the highest for the upper
one. For example, having m1 = (0, 1) and m2 = (1, ∗), the composite will be
m2 ◦S m1 = (0, ∗).

2.4.2 Instance Categories
Having introduced the schema category, let us now focus on the structure of
instance categories I = (OI,MI, ◦I), each representing a particular data instance
constructed for a schema S = (OS,MS, ◦S). As already outlined, objects as well
as morphisms of I will be identical to objects and morphism of S as for their mere
existence, they will differ in structures they internally represent, though.

Let us have an instance object oI ∈ OI associated with the schema object
oS = (superid, ids) ∈ OS as its corresponding counterpart. The purpose of oI is
then to represent particular data instances conforming to oS. Assuming that V
is the domain of all possible values of attributes, object oI = {t1, t2, . . . , tn} for
some n ∈ N0 will technically be modeled as a set of tuples, each of which will
be represented as a function ti : superid → V for any i ∈ N, 0 < i ≤ n. This
means that tuples themselves are mutually unordered, duplicate tuples are not
permitted, and all attributes in a tuple must always be specified.
Example 2.4. Having an entity schema object PersonS = (superid, ids) intro-
duced in the previous Example 2.3, its instance object could, e.g., contain the
following tuples:

PersonI = {{(PersonId, 1), (FirstName, Mary), (LastName, . . .)},
{(PersonId, 2), (FirstName, Anne), (LastName, . . .)},
{(PersonId, 3), (FirstName, John), (LastName, . . .)}}.

Moreover, we require these tuples to satisfy the identification ability of all the
involved identifiers. In other words, the data must conform to the uniqueness
requirement imposed by these identifiers. For this purpose, let us first introduce
a standard projection operation π. If o = {t1, t2, . . . , tn} is a set of tuples over
a set of attributes A, πA′(o) for some A′ ⊆ A, A′ ̸= ∅ is defined as a restriction
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of o to the attributes contained in A′ only. I.e., πA′(o) = {t′ | t′ = πA′(t), t ∈ o},
where πA′(t) = {(a, v) | (a, v) ∈ t, a ∈ A′}. Now, we can say that ∀ id ∈ ids for
our object oI conforming to oS = (superid, ids) it must hold that |oI| = |πid(oI)|.

As for the morphisms, they act as binary relations (i.e., they abide by the
principles of the Rel category). In other words, having a morphism mI ∈ MI,
mI : o1 → o2 for some o1, o2 ∈ OI, it must then hold that mI ⊆ o1×o2. Moreover,
provided mS = (min, max) ∈ MS is the corresponding schema morphism, the
actual cardinality condition must be satisfied. It means that ∀ t1 ∈ o1 it must
hold that |{t2 | t2 ∈ o2, (t1, t2) ∈ mI)}| = c must be within the cardinality limits,
i.e., c ≥ 1 in case of min = 1 and, at the same time, c ≤ 1 in case of max = 1.
Note that the other situations min = 0 or max = ∗ do not need to be treated as
they are satisfied implicitly.

Identity morphism 1o for each object o ∈ OI is defined as a function (just a
special case of a more generic relation) 1o = {(t, t) | t ∈ o}. Finally, the composi-
tion operation ◦I corresponds to, unsurprisingly, the composition in Rel.

2.4.3 Schema Translation
In ER schemas, it is usually assumed that names of entity types and relationship
types are distinct. Attribute names are expected to be unique within the context
of an entity type or relationship type they belong to (including the impact of
the inheritance in the case of ISA hierarchies). In order to make our formal
descriptions less complicated, we assume that, without loss of generality, all the
names are unique globally. I.e., that A, E, and R are mutually distinct. As a
result, names of all category objects we are about to create will directly correspond
to the original entity types, relationship types, or attributes, respectively.

As for the visualisation of our categories, the following conventions will be
applied to simplify their diagrams. We will label all objects with their names and
entity objects with their identifiers. As for morphisms, we will not include loops
for identity morphisms. Similarly, we will only include morphisms we explicitly
need to construct, silently assuming that morphisms belonging to the transitive
closure over the composition operation, though not visualised, in fact, are in-
cluded, too. Names of morphisms will be entirely omitted; cardinalities will only
be included in case they are different from (1, 1). Furthermore, since names will
often need to be calculated dynamically, we suppose that a will stand for the
actual value of a variable a, as well as that names cannot contain the · symbol
because we want to use it as an auxiliary separator. For example, if a = Customer
and i = 1, expression a·i shall be interpreted as Customer·1.

Starting with an empty schema category S = (OS,MS, ◦S), we will now
describe how the individual constructs appearing in ER schemas are transformed
into the individual objects and morphisms of the category.

It is important to realise that there may exist dependencies between the indi-
vidual entity types occurring in the input ER schema because of ISA hierarchies
or weak identifiers. They must be transformed in an order that does not violate
such dependencies. Hence, they need to be acyclic, i.e., such an order must exist.
So, hierarchies are transformed by starting at their root nodes and proceeding to-
ward their leaves, always processing a parent node before its children. Similarly,
weak entity identifiers can be transformed only when all the entity types they
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depend on are already resolved. Finally, once all the entity types are processed,
relationship types can be processed as well.

Entity Types.

Let e ∈ E be an entity type and a1, . . . , am its attributes for some m ∈ N0.
Let each of these attributes ai ∈ A be associated with a particular multiplicity
(mini, maxi), equalling to the default (1, 1) whenever not provided explicitly.
In case a given attribute ai is a structured attribute, let then a1

i , . . . , aki
i be its

individual sub-attributes for some ki ∈ N. Finally, let id1, . . . , idn be all the
(strong) identifiers of e for some n ∈ N0, each modelled as a set of at least one
attribute it consists of. It must hold that idj ⊆ {a1, . . . , am} and |idj| ≥ 1 for
any j ∈ {1, . . . , n}, as well as that only attributes with the trivial multiplicity
can be involved in the identifiers, i.e., that ∀ ai ∈

⋃︁n
j=1 idj the multiplicity of

ai must only be (1, 1). Note that there may not be even a single identifier in
case e is a descendant in a hierarchy and/or contains at least one weak identifier.
Transformation of both these constructs will be discussed later, and so for now,
the described entity type e and its attributes and identifiers will contribute to
the resulting schema category as follows.

First, an entity object e is created for e such that e = (superid, ids). Assuming
that u(ai) = {ai} for any unstructured attribute ai and u(ai) = {a1

i , . . . , aki
i }

otherwise, we can write ids = {id′
1, . . . , id′

n} with id′
j = ⋃︁

ai∈idj
u(ai) for each

j ∈ {1, . . . , n}, and superid = ⋃︁
id′∈ids id′. In other words, identifiers are preserved

as they were provided, we just need to unfold the involved structured attributes
to the corresponding sub-attributes they consist of.

Next, each attribute ai with i ∈ {1, . . . , m} is processed, one by one. In case ai

is an ordinary (unstructured) attribute, an attribute object ai = ({ai}, {{ai}}) is
created. Otherwise, i.e., when ai is a structured attribute, the resulting attribute
object equals to ai = ({a1

i , . . . , aki
i }, {{a1

i , . . . , aki
i }}). For each of these sub-

attributes aj
i , j ∈ {1, . . . , ki}, another attribute object aj

i = ({aj
i}, {{a

j
i}}) is

produced, together with an attribute morphism ai ·aj
i = (1, 1) : ai → aj

i binding
it with its base attribute ai. Finally and under all circumstances, an attribute
morphism e·ai = (mini, maxi) : e → ai is yielded, binding the whole attribute
ai with the entity type e as such.
Example 2.5. Entity type Person depicted in Fig. 2.2 is transformed to an entity
object Person having superid = {PersonId, FirstName, LastName} and ids =
{{PersonId}, {Firstname, LastName}}. Its attributes are transformed to the
respective attribute objects Email, FirstName, etc., together with the given car-
dinalities. In case of the structured attribute Address, there is an attribute
object Address, as well as attribute objects Street, City, and PostalCode for
its individual sub-attributes.

ISA Hierarchies.

Let us have a descendant entity type c and its parent entity type p. Note that
there can only be one parent for c, since multiple inheritance is not permitted. Let
c = (superidc, idsc) be the corresponding already partially resolved entity object
for c (based on the so far described rules, i.e., only concerning its locally defined
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Figure 2.2: Translation of entity types and attributes

attributes and identifiers, if any), and p = (superidp, idsp) the fully resolved
entity object for p (including the impact of inheritance and/or not yet described
weak identifiers). We now describe how c will be altered to incorporate the effect
of the hierarchy inheritance from p.

This means we need to take all the individual identifiers of p and add them
to the existing identifiers of c (if any). In particular, idsc = idsc ∪ idsp, and
superidc = superidc ∪ (⋃︁

id∈idsp
id). Note that only identifiers are inherited, not

ordinary attributes. They remain associated only with entity objects they are
locally a part of. Finally, we also need to mutually bind both the entity types with
hierarchy morphisms. For technical reasons, in both directions. I.e., morphisms
c·p·up = (1, 1) : c→ p and c·p·down = (1, 1) : p→ c are constructed.
Example 2.6. The translation of an ISA hierarchy in Fig. 2.3 produces entity
objects Person, Customer, and Employee, each with respective attribute ob-
jects and morphisms. Note the inherited identifier {PersonId} in objects for
the descendant entity types. The hierarchy morphisms correspond to the ISA
relationships.

Person

Customer

PersonId FirstName

EmployeeId

Salary

Credit

Employee

FirstNamePersonId
Person

{{PersonId}}

Customer
{{PersonId}}

Employee
{{PersonId},

{EmployeeId}}

Salary

EmployeeIdCredit

Figure 2.3: Translation of ISA hierarchies

Weak Identifiers.

Let us have an entity type e with at least one weak identifier such that all the
individual entity types involved in the relationship types forming these weak iden-
tifiers are already entirely resolved (i.e., including the impact of both inheritance
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and weak identifiers). In case there are more weak identifiers, let us process them
one by one, each causing that the already partially resolved entity object e will
be modified according to the following steps.

In this sense, let e = (superid, ids) be the current entity object for our weak
entity type e ∈ E and v be a particular weak identifier we are about to transform.
Let a1, . . . , an for some n ∈ N0 be attributes of e (if any) involved in this weak
identifier, and r1, . . . , rm for some m ∈ N, m ≥ 1 be all the relationship types
incidental to e such that Rv ⊆ {1, . . . , m}, Rv ̸= ∅ are indices of relationship
types actually involved in this weak identifier, each necessarily with cardinality
(1, 1) toward e. For each such relationship type ri, i ∈ Rv we finally assume that
e1

i , . . . , eki
i for some ki ∈ N, ki ≥ 2 are all the individual entity types participating

in ri (once for each occurrence, including e itself) and for each one of them, i.e.,
∀ j ∈ {1, . . . , ki}, it then holds that (minj

i , maxj
i ) is the cardinality of ej

i in ri and
ej

i = (superidj
i , idsj

i ) is the already fully resolved entity object for ej
i (except for

e as such).
Within the context of a particular relationship type ri, i ∈ Rv, it may happen

that some of the involved entity types may have identifiers composed of attributes
with the same names (as a consequence of the inheritance of identifiers in hier-
archies or in case of recursive relationship types). Similarly, such conflicts can
also appear across different participating relationship types. Therefore, we will
use marked attribute names instead of the original ones. For this purpose, let us
introduce m(idsj

i ) = {{a·i·j | a ∈ id} | id ∈ idsj
i} as an auxiliary set of marked

identifiers for entity type ej
i within ri for each suitable i and j, i.e., for i ∈ Rv

and j ∈ {1, . . . , ki} (except for e).
For each participating relationship type ri, i ∈ Rv, let us now find all sets

of attributes by which ri may contribute to the weak identifier we are resolving.
In case there exists at least one involved entity type ej

i (except for e) with car-
dinality 1 in the upper boundary maxj

i , we define idsi = {id | id ∈ m(idsj
i ) ∧

j ∈ {1, . . . , ki} ∧ ej
i ̸= e ∧maxj

i = 1}. Otherwise, i.e., when ∀ j ∈ {1, . . . , ki} it
holds that maxj

i = ∗ (except for e), we put idsi = {⋃︁ki
j=1 idj | idj ∈ m(idsj

i ) ∧
ej

i ̸= e}. Just for the purpose of the translation of the relationship type ri itself,
which we will cover in the next section, let us also denote all the additional (here
omitted) attributes that will later on form instances of a given relationship type
as a(ri) = {a·i·j | a ∈ id ∧ id ∈ m(idsj

i ) ∧ j ∈ {1, . . . , ki} ∧ ej
i ̸= e ∧maxj

i = ∗}
in the former case, and a(ri) = ∅ in the latter.

Now, we are finally ready to add all the resolved identifiers resulting from
the weak identifier v between the existing ones (if any). In particular, assuming
that ids′ = {(⋃︁n

x=1 u(ax)) ∪ (⋃︁
i∈Rv

idi) | idi ∈ idsi}, we can put ids = ids ∪ ids′

and superid = superid ∪ (⋃︁
id∈ids′ id). In other words, each newly resolved iden-

tifier consists of all the local involved unfolded attributes together with marked
attributes contributing from each participating relationship type.

Example 2.7. Fig. 2.4 depicts the translation of a weak entity type Product,
resulting into an entity object Product with respective attribute objects and
morphisms. Note how the identifier {ProductNo, ManufacturerNo} was gener-
ated.
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Figure 2.4: Translation of weak entity types

Relationship Types.

Let r ∈ R be a relationship type and e1, . . . , em be the participating entity types
(one for each individual occurrence in case of recursive relationship types) for
some m ∈ N, m ≥ 2. Let each of these entity types ei ∈ E be associated with
a cardinality (mini, maxi), and ei = (superidi, idsi) be the corresponding fully
resolved entity object for ei. Finally, let a1, . . . , an be attributes associated with
r (if any) for some n ∈ N0, each ai ∈ A. For analogous reasons as in the previous
section, let n(idsi) = {{a·i | a ∈ id} | id ∈ idsi} for any i. Relationship object
r = (superid, ids) for r is constructed as follows.

If r participates in a weak identifier for some ei (necessarily only at most one
such ei), we put ids = idsi and superid = superidi ∪ a(r), as defined in the
previous section.

Else, if there exists at least one entity type ei such that maxi = 1, we define
ids = {id | id ∈ n(idsi) ∧ i ∈ {1, . . . , m} ∧ maxi = 1}. Otherwise, i.e., when
∀ i ∈ {1, . . . , m} it holds that maxi = ∗, we put ids = {⋃︁m

i=1 idi | idi ∈ n(idsi)},
i.e., identifiers of all the involved relationship types need to be incorporated.
Under all circumstances, superid = ⋃︁m

i=1
⋃︁

idi∈n(idsi) idi so that instances of r in
the instance category can be correctly represented and fully materialised.

Next, we need to interlink the created relationship object r with every entity
object ei. I.e., for ∀ i ∈ {1, . . . , m}, two relationship morphisms are created,
one for each direction. In particular, r ·ei ·in = (mini, maxi) : ei → r, and
r·ei ·out = (1, 1) : r→ ei. Finally, attributes a1, . . . , an (if any) associated with
the relationship type r as such will be transformed exactly the same way as in
case of attributes associated with entity types.

Example 2.8. Relationship type Order between two entity types Person and en-
tity type Product depicted in Fig. 2.5 is transformed to a relationship object
Order and a set of relationship morphisms, together with respective cardinali-
ties, connecting the relationship object Order with the respective entity objects
Person and Product.

Overall Example

In Fig. 2.6, we depict the whole translated schema category for the ER schema
of the multi-model scenario from Fig. 2.1.
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Figure 2.5: Translation of relationship types
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Figure 2.6: Translation of the whole ER schema

2.5 Categorical Framework
Having described the key building blocks, we can introduce the concept of the
whole multi-model categorical framework. Since the idea is complex and we
are at the beginning of this research task, we provide an overall picture of the
architecture and a general description of the idea. Formal definitions, algorithms,
and implementation form our near-future work.

As depicted in Fig. 2.7, the whole framework involves three related parts.
On the left, there is the input ER schema of the reality as understood by the
user. It can then be automatically translated (see Section 2.4.3) to the schema
category (see Section 2.4.1), and, having the particular data instances, also the
instance category (see Section 2.4.2). The schema category is the core part of the
framework, being an abstraction for the unified representation of the (combination
of) logical model(s). The instance category is an auxiliary data structure, not
just for the purpose of, e.g., representation of (intermediate) results of queries.

As also depicted in the figure by the colours, the user is expected to denote
(either in the original ER schema or in the schema category graph) the (possibly
overlapping) parts corresponding to particular data models. The category is then
mapped to a particular logical multi-model schema. Implementation details of
such a transformation strongly depend on the selection of the particular multi-
model DBMSs, and, thus, are beyond the scope of this paper. Intuitively, e.g.,
for the relational model, we can create a table for each entity and a relationship
object consisting of the related single-value attribute objects, separate tables for
multi-valued attributes, and then merge the tables where the cardinalities allow.
Or, the document model can be transformed using a BFS traversal starting with
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Figure 2.7: Architecture of the categorical framework

a selected object. An inspiration can be found, e.g., for the relational model
in [134] or for object-relational model in [19].

2.6 Proposal Evaluation
The main added value of the described categorical approach is that we enable the
user to connect the conceptual schema with the logical layer of a particular multi-
model DBMSs. As a consequence, we also gain the following main outcomes:

• Since the categorical conceptual layer is defined universally for any data
model, it can then be applied to any multi-model DBMSs. In addition, the
idea enables us to cover even data models that are not currently known;
the only requirement is that they can be described using the same idea.

• As described before, the user specifies which part of the categorical schema
is mapped to a particular logical model. However, such a specification of
models does not have to be disjunctive. They can overlap arbitrarily, hence
the data may be stored redundantly, but the principles remain unchanged.

• At the categorical conceptual layer, we can define not only data structures,
but also a conceptual query language accessing/manipulating the data inde-
pendently of a chosen DBMS (its query language, specific syntax, etc.). The
language can work with the categorical graph, e.g., exploiting well-known
means of graph query languages. Using a similar strategy, the conceptual
queries can be translated to expressions required by a particular DBMS.

• The transformation of one model (or its part) to another model can be
defined precisely using the category theory. Therefore, we have a mathe-
matical background for various aspects of evolution management, such as
data modification, data migration between the models, or even self-tuning
of the DBMS reflecting changes in the user interaction.
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The proposed approach first requires a non-trivial effort in both theoretical
and development directions. The remaining open questions and challenges that
need to be resolved in order to create a full-fledged solution comparable, e.g., to
the approaches used for the traditional relational DBMSs, are as follows:

• Conceptual modelling: The described categorical model might need to be
further extended, e.g., with data types for attribute values. A more complex
point to discuss is whether entity types, attributes, and relationship types
actually need to be distinguished at all.

• Conceptual querying: The conceptual query language needs to be defined
so that it can be mapped to any multi-model query language. On the
other hand, it should not be too different from the existing popular query
languages. Since the categorical model is backed by a graph, the query lan-
guage might be inspired by graph query languages like Cypher or SPARQL.

• Inter-model transformations: The inter-model transformations need to be
defined in order to cover all the possible cases and support correct and com-
plete evolution management. Similarly to the case of querying, a language
that would enable to express the required changes needs to be defined, too.

• Compact representation: In the proposed approach, we assumed that the
user starts to design the application using an existing verified tool, such as
ER or UML. However, the categorical model can also be designed directly.
For this purpose, we would, however, need a compact version that enables
more user-friendly expressions and structures.

• Reverse engineering: An important related issue to be dealt with is reverse
engineering. We can encounter a situation when new data needs to be
integrated into an existing multi-model scenario with the whole categorical
framework already built. Hence, we need to infer the structure (schema) of
the input data and map it to the existing categorical schema, respectively.

• Robustness: In general, the core idea might need to be further extended in
order to provide a sufficient level of robustness to ensure the above-described
benefits (redundancy, data migration, query update, etc.) to a full extent.

2.7 Conclusion
Category theory brings a strong formalism that enables to model various data
structures. In this paper, we introduced its exploitation for the purpose of uni-
fied conceptual modelling and representation, and, as a consequence, correct and
efficient management of multi-model data. As the task is, in general, quite com-
plex, we do not provide a fully functional solution but rather a research direction,
which we hope will further be extended and tackled by the database community.
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Abstract
The support for multi-model data has become a standard for most of the existing
DBMSs. However, the step from a conceptual (e.g., ER or UML) schema to a
logical multi-model schema of a particular DBMS is not straightforward.

In this paper, we extend our previous proposal of multi-model data repre-
sentation using category theory for transformations between models. We intro-
duce a mapping between multi-model data and the categorical representation
and algorithms for mutual transformations between them. We also show how the
algorithms can be implemented using the idea of wrappers with the interface pub-
lished but specific internal details concealed. Finally, we discuss the applicability
of the approach to various data management tasks, such as conceptual querying.

Keywords
• Multi-model data • Category theory • Model transformations

3.1 Introduction
The variety feature of Big Data inciting the so-called multi-model data has opened
a challenging direction of data management.
Example 3.1. An example of a multi-model scenario is provided in Figure 3.1. The
relational model (violet) contains general information about customers, whereas
the graph model (blue) captures their mutual friendship. The document model
(green) maintains orders bounded with particular customers using the wide-
column model (red). The key/value model (yellow) bears information about
customers’ shopping carts. A cross-model query over such data might, e.g., be
“For each customer who lives in Prague, find a friend who ordered the most
expensive product among all customer’s friends.” [140]

In general, there are two approaches to ensure the storage and processing
of multi-model data in their most native and thus most efficient environment.
The (primarily) academia-driven approaches, currently represented mainly by
polystores [8], are based on the idea of polyglot persistence, i.e., the usage of a
mediator to manage a set of underlying database management systems (DBMSs),
each being the best suitable candidate for a particular data model. On the other
hand, there are (industry-driven) multi-model DBMSs [13] that offer the support
of multiple models under the hood of a single system, treating all the data models
as first-class citizens [12]. Currently, more than 20 representatives of multi-model
DBMSs exist, involving well-known traditional, relational and novel NoSQL sys-
tems. In contrast, more vendors decide to follow the Gartner predictions [145] of
supporting multiple data models.

On the other hand, such a situation is difficult for users who want to develop
a multi-model database application. The standard recommendations would be to
first create a conceptual schema (e.g., using ER or UML modelling languages).
Example 3.2. In Figure 3.2, we depict an ER schema of the multi-model scenario
from Figure 3.1.
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    cellphone : +420123456789,
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    price: 200, quantity: 2},
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    price: 200, quantity: 1 } ] }
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Figure 3.1: A sample multi-model scenario
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Figure 3.2: ER schema of the sample multi-model scenario in Figure 3.1
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Figure 3.3: Schema category extracted from the sample ER schema in Figure 3.2

There are verified means of transforming such a schema into, e.g., the re-
lational model schema. (More-or-less) according to its well-defined standard,
the existing relational DBMSs support this model. However, the step from
an ER/UML conceptual model to virtually any possible (yet not standardised)
combination of multiple logical models is not straightforward, mainly because
the combined models (or respective systems) often have contradictory features.
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For example, there are structured, semi-structured, and unstructured formats;
there are systems based on strong or eventual consistency; there are schema-less,
schema-full, and schema-mixed storage strategies, etc.

For this purpose, we need a unifying representation that would allow us to:

1. capture all the existing models, preferably in the same and definitely in a
standard way;

2. query across multiple interconnected models efficiently;

3. perform correct and complete evolution management, i.e., propagation of
changes;

4. enable data migration without complex reorganisations; and

5. permit integration of new data models.

Although both ER and UML (class diagrams in particular) are strong enough
to cover some of these points, their primary purpose is different and not that
wide. As stated in [147], we need “a theory that is the basis upon which a de-
signer can build a consistent schema that can be understood by other designers
and consistently rebuilt during redesign or schema development”. Hence, in pa-
per [2], we have proposed a solution based on category theory [133], “the most
general and abstract branch of pure mathematics” [148] which has successfully
been applied in computer science and namely data management, too. It is a
theory sufficiently general for the multi-model situation. It provides a strong
mathematical background for further data management, such as transformations
between the models, cross-model querying, multi-model evolution management,
etc. We have proposed a schema category and an instance category for the rep-
resentation of multi-model data structures and their particular instances, as well
as an algorithm for the transformation of an ER schema to a schema category.

In this paper, we further extend the idea and show how the currently popular
data models (and their combinations) can be represented using category theory.
The main contributions of the paper can be summed up as follows:

• We provide a more general definition of both schema and instance cat-
egories, which enable a unified and sufficiently general representation of
schemas and instances of multi-model data.

• We introduce mapping between the input data and the categorical repre-
sentation using the notion of an access path that bears information about
the categorical representation of any object.

• We introduce transformation algorithms that transform the input data to
the categorical representation and vice versa. The algorithms are sufficiently
generic to cover all currently popular models and their combinations.

• We show how the proposed algorithms can be comfortably implemented
using wrappers that hide the specifics of particular DBMSs.

• We discuss the applicability of the proposed approach in further data man-
agement tasks, such as querying or data migration/evolution.
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The rest of the paper is structured as follows: In Section 3.2, we provide a
unified view of multi-model data which enables the further general description
of the proposed ideas. We also recall the basic terms from the category theory
used in the rest of the text and we describe our proposal of the schema and
instance categories, including their novel extensions. Section 3.3 introduces the
mapping of constructs of particular models to their categorical representation
using access paths, i.e., a novel concept that enables the capture of the necessary
information for all considered models and their specifics universally. Next, in
Section 3.4, we focus on the algorithms for the transformation of multi-model
data to the categorical representation and vice versa. We provide pseudocodes
of the algorithms and an explanatory description with examples. In Section 3.5,
we describe the specifics of the implementation of the proposed algorithms –
a framework called MM-cat. We describe its architecture and implementation
decisions and the performance of the implemented algorithms, including some
technical tricks. In Section 3.6 we discuss the general benefits of the application
of category theory for multi-model data representation and we provide an example
in the case of multi-model querying. In Section 3.7 we overview the related work
and its drawbacks reflected in our approach. We conclude and outline future
work in Section 3.8.

3.2 Unified View of Multi-Model Data
First of all, we need to be able to “grasp” the specifics of various data models in
a unified way. In this section, we first unify the terminology. Next, we introduce
the basic concepts of category theory used in the rest of the proposal. We also
introduce the idea of an extended categorical representation of multi-model data.

In the rest of our work, we consider the following popular data models: re-
lational, key/value, document, wide column, and graph, i.e., we support all cur-
rently popular structured and semi-structured data to cover all combinations of
models used in the existing popular multi-model systems.1 Unstructured data can
be treated in the same way as key/value data, where the value part is considered
as a black box.

Since the terminology within the considered models differs, first we provide
a unification used throughout the text in Table 3.1. (As we can see, we also
incorporated the array and RDF models since the proposed approach applies to
them, too.)

The terminology is apparent in most cases, but some specific situations need
commentary:

• Probably the most protuberant is the graph model, whose features are the
most specific. We assume that a kind is represented by a unique label that
determines a set of related nodes or edges. A record is either a node or an
edge.

• The document and column model can involve a hierarchical structure. Hen-
ce, the properties (fields) can appear at various levels. In the case of the
document model, it can be on any level. In the case of the column model,

1https://db-engines.com/en/ranking
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Table 3.1: Unification of terms in popular models

Unifying
term

Relational Array Graph RDF Key/Value Document Column

Kind Table Matrix Label Set of
triples

Bucket Collection Column
family

Record Tuple Cell Node /
edge

Triple Pair (key,
value)

Document Row

Property Attribute Attribute Property Predicate Value Field Column

Array – – Array – Array Array Array

Structure – – – – Set / ZSet /
Hash

Nested
document

Super
column

Domain Data type Data type Data
type

IRI /
literal /
blank
node

– Data type Data
type

Value Value Value Value Object Value Value Value

Identifier Key Coordinates Identifier Subject Key Identifier Row key

Reference Foreign key – – – – Reference –

there can be a second level grouping the selected columns to a super col-
umn.2 In the other models, the structures are always single-level.

• We distinguish between homogeneous and heterogeneous arrays. In the
former case, an array should contain fields of the same type. In the latter
case, which is allowed only in the document model, an array can contain
fields of multiple types. Only in the case of the document model, the type
of an array item can be complex (i.e., represent nested documents); in all
other cases, only arrays of simple (scalar) types are allowed.

Despite this unification, we still have to bear in mind important differences
between the models. One of the core classifications assumes the following cases:

• Aggregate-oriented models (key/value, document, column): These models
primarily support the data structure of an aggregate, i.e., a collection of
closely related (semi-)structured objects we want to treat as a unit. In the
traditional relational world, we would speak about de-normalisation.

• Aggregate-ignorant models (graph, relational, RDF, array): These models
are not primarily oriented to the support of aggregates. The relational
world strongly emphasises the normalisation of structured data, whereas
the graph model is in principle a set of flat objects mutually linked by any
number of edges.

We will show later on that these different perspectives will have an impact on
the way how the algorithms we introduce will operate.

2Note that in some systems, e.g., Cassandra, even multiple levels of nesting are allowed.
However, we can consider this case as a multi-model extension.
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3.2.1 Basic Concepts of Category Theory
Category theory is a branch of mathematics that attempts to formalise various
(not only) mathematical structures and their mutual relationships. Formally, a
category C = (O,M, ◦) consists of a set of objects O, also alternatively denoted
as Obj(C), a set of morphisms M, alternatively Hom(C),3 and a composition
operation ◦ over the morphisms.4 A category as a whole can be visualised in
the form of a multigraph, where category objects act as vertices and category
morphisms as directed edges.

Each morphism is modelled and depicted as an arrow f : A → B, where
A, B ∈ Obj(C), and A is referenced to as a domain and B as a codomain, both
denoted as f.dom and f.cod, respectively. Whenever f, g ∈ Hom(C) are two
morphisms f : A → B and g : B → C, it must hold that g ◦ f ∈ Hom(C), i.e.,
morphisms can be composed using the ◦ operation and the composite g ◦ f must
also be a morphism of the category. Besides this transitivity property, ◦ must also
be associative, i.e., h ◦ (g ◦ f) = (h ◦ g) ◦ f for any suitable morphisms f, g, h ∈
Hom(C) such that f : A → B, g : B → C, and h : C → D. Finally, for every
object A, there must exist an identity morphism 1A such that f ◦1A = f = 1B ◦f
for any f : A→ B, and so acts as a unit element with respect to the composition
operation.
Example 3.3. In Figure 3.4, we can see a graphical representation of a simple
category having three objects a, b, c, two morphisms f, g, their composition g ◦ f ,
and identity morphisms ida, idb, idc.

Figure 3.4: An example of a category

Example 3.4. Set (as widely denoted) is a category where objects are arbitrary
sets (not necessarily finite), and morphisms are functions between them (not
necessarily injective nor surjective), together with the traditionally understood
composition of functions and identities.

Similarly, Rel is a category where objects represent sets, and morphisms are
binary relations over these sets. As for the composition g ◦ f for morphisms
f : A → B and g : B → C, it holds that (a, c) ∈ g ◦ f for any a ∈ A and
c ∈ C whenever there exists at least one value b ∈ B such that (a, b) ∈ f and
(b, c) ∈ g.

Even though objects and morphisms in real-world categories tend to be sets
of certain items and functions between them, both objects and morphisms may
represent abstract entities of any kind and internal content. Not just in the

3The common notation Hom results from the fact that morphisms are often called homo-
morphisms.

4A category, where Obj(C) and Hom(C) are sets, is denoted as small. There are also large
categories, but we will not need them in our approach.
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context of our approach, it is worth focusing on categories derived from graphs,
as well as categories built on top of other categories.
Example 3.5. Having a graph G = (V, E), where V is a set of vertices and E ⊆
V × V is a set of directed edges, we could define another category where objects
are the original vertices and morphisms simply the original edges. Composition ◦
produces a kind of collapsed shortcut for concatenated directed paths consisting
of individual edges, identity morphisms work as loops.

However, such a structure may not always define a category, since it may
happen that for any two edges (morphisms) f = (a, b) and g = (b, c) ∈ E the
composite g ◦ f = (a, c) /∈ E, i.e., the composed edge may not be in the graph.
As a consequence, not every graph necessarily forms a category.

Categories themselves can also be mutually mapped via structure-preserving
mappings called functors. A functor F is a mapping between categories C1 =
(O1, M1, ◦1) and C2 = (O2,M2, ◦2) associating each object A ∈ Obj(C1) with
an object F (A) ∈ Obj(C2), and each morphism f : A → B ∈ Hom(C1) with a
morphism F (f) : F (A)→ F (B) ∈ Hom(C2). We must also ensure that identity
morphisms and compositions are both preserved. In particular, F (1A) = 1F (A)
for each A ∈ Obj(C1), and F (g ◦1 f) = F (g) ◦2 F (f) for any f, g ∈ Hom(C1),
f : A→ B and g : B → C, respectively.

3.2.2 Categorical Representation of Multi-Model Data
The idea to define a unified structure for the representation of multi-model data
based on category theory was already introduced in paper [2]. In particular,
notions of a schema category describing the conceptual structure (schema) of the
data and an instance category encompassing a particular data instance conforming
to a given schema category were described. We also introduced an algorithm for
transforming an ER schema to a corresponding schema category so that users can
easily understand the categorical approach in terms of a well-known conceptual
modelling strategy. Nevertheless, schema categories can also be designed directly
from scratch without creating ER schemas first.

This section provides an extended version of the definitions of both the schema
and instance categories. The core idea remains the same, but several changes were
introduced to increase their expressive power.

Schema Category

Schema category S is defined as a tuple (OS,MS, ◦S). Borrowing the ER ter-
minology, objects in OS correspond to individual entity types, attributes, and
relationship types. Hence, if S is derived from an ER schema (but it does not
have to be), we can distinguish entity, attribute, and relationship objects, and,
analogously, attribute, relationship, and hierarchy morphisms. This distinction is
introduced solely to increase comprehensibility since objects and morphisms of all
kinds are always treated and processed the same way. Morphisms inMS connect
appropriate pairs of objects. The explicitly defined morphisms are denoted as
base, those obtained via the composition ◦ as composite.

Each object o ∈ OS is internally modelled as a tuple (key, label, superid,
ids), where key ∈ O is an automatically assigned internal identity (O ⊆ N
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being their domain5), label is an optional user-defined name (e.g., name of the
corresponding entity type) or ⊥ when missing, superid ̸= ∅ is a set of attributes
(each corresponding to a signature of a base or composite morphism as they are
introduced later on)6 forming the actual data contents a given object is expected
to have, and ids ⊆ P(superid), ids ̸= ∅ is a set of particular identifiers (each
modelled as a set of attributes) allowing us to uniquely distinguish such individual
data instances. It holds that superid ⊇ ⋃︁

id∈ids id. In the case of entity or attribute
objects, equality holds.

Each morphism m ∈ MS is a tuple (signature, dom, cod, min, max).
signature ∈M∗ allows us to mutually distinguish all morphisms except the iden-
tity ones. M∗ is a set of all the possible strings over the alphabet M, i.e., all
possible sequences of symbols from M connected using the · operation (e.g., 15,
3.7.5, or ε being a metasymbol representing an empty string). signature ∈ M
is used for the base morphisms. signature ∈ M∗ \ (M ∪ {ε}) is used for the
composite morphisms allowing their decomposition to base morphisms, which is
directly related to the definition of the ◦ operation itself. signature = ε is used
for identity. dom and cod represent the domain and codomain of the morphism,
whereas the triple (signature, dom, cod) enables one to distinguish also the iden-
tity morphisms. Finally, min ∈ {0, 1} and max ∈ {1, ∗} allow us to express
constraints on minimal/maximal numbers of occurrences, analogously as we can
do in the traditional ER modeling.7

Identity morphism for an object o ∈ OS is defined as 1o = (ε, o, o, 1, 1).
Whenever m1 = (signature1, dom1, cod1, min1, max1) and m2 = (signature2,
dom2, cod2, min2, max2) are two morphisms m1, m2 ∈ MS, their compos-
ite is evaluated as m2 ◦S m1 = (signature, dom1, cod2, min, max), where
signature = signature2 ·signature1 except the case when a non-identity mor-
phism is composed with an identity one (in any order). As for the cardinalities,
min = min(min1, min2) and max = max(max1, max2), i.e., the lowest of limits
for the lower bound and the highest for the upper one are chosen.

Finally, for technical reasons, whenever m : X → Y is a non-identity mor-
phism between two particular objects, there must also exist its dual morphism
m−1 : Y → X. Its purpose is to restrain the opposite direction of the same
relationship between a given pair of objects since morphisms are always directed.
Therefore, both directions need to be treated separately.

The algorithm that transforms an input ER schema to schema category [2]
creates an object for each entity type, relationship type, and attribute (one for an
attribute as a whole, additional objects for its subattributes in the case of struc-
tured attributes). Labels, identifiers, and cardinalities are taken over from the
respective ER constructs. ISA hierarchies and weak entity types are processed in
the correct order, i.e., starting from the root / strong entity types and following
the rules for inheriting identifiers. As we have mentioned, the schema category
can be created directly, and thus there may exist morphisms between any kind of

5We assume that these keys are assigned automatically, e.g., by a tool supporting the process
of creation of schema categories or their transformation from ER schemas. Though we have
chosen natural numbers, this particular decision has no impact on the definitions.

6Not necessarily corresponding to attributes from ER, though in some cases they may coa-
lesce and mutually correspond to each other.

7For the sake of easier explanation, we only use these basic types of cardinalities. The
proposed algorithms can be extended to other commonly used ones too.

101



objects, depending on the respective data model it represents. If a schema cate-
gory S is derived from an ER schema, the morphisms correspond to its structure.
Hence, there are morphisms, e.g., between entity and attribute objects, but not
between two attribute objects.
Example 3.6. The schema category of ER model in Figure 3.2 is depicted in
Figure 3.3. Each object is represented as a node labelled with key and label.
Morphisms are represented as directed edges labelled with signature at its be-
ginning. To simplify the figure, we do not depict the identity and composite
morphisms and the cardinalities of the morphisms (which correspond to those in
the ER schema). We also do not depict superid and ids of objects. And, for
the sake of clarity of further examples, the keys of objects are ≥ 100, whereas
signatures of base morphisms are < 100.8

Let us look closely at the structure of the selected objects. For example, object
Product has a simple identifier id. Thus its full categorical representation is:
{121, “Product”, {47}, {{47}}}
Considering object Order with a mixed weak identifier, its categorical repre-

sentation is:
{111, “Order”, {25, 1.21.24}, {{25, 1.21.24}}}
Object Customer having simple identifier id, and two composed and even

overlapping identifiers (name, tag) and (surname, tag). Therefore, its categorical
representation is:
{100, “Customer”, {1, 3, 5, 7}, {{1}, {3, 5}, {7, 5}}}
Relationship object Publishes has the following categorical representation:
{129, “Publishes”, {47.58.62, 65.53}, {{65.53}}}
Signature 47.58.62 leads to object Id identifying object Book (see the ISA hi-

erarchy in the ER model), while signature 65.53 points to object Name identifying
object Publisher. Due to cardinalities in relationship Book-Publishes-Publisher,
the minimal identifier required to identify the relationship Publishes is {65.53},
meaning that a single publisher may publish many books. However, a particular
book is published only by a single publisher.

Instance Category

While the purpose of the schema category S is to describe the structure of the
data at the conceptual layer, instance category I is a data structure capable of
holding the actual data stored within a (set of) DBMS(s). Each instance category
I = (OI,MI, ◦I) represents a particular data instance conforming to a particular
schema category S. It permits us to encompass all data valid against S stored
in the database at a selected moment. When the data is modified (within the
restrictions given by S), a new instance category is obtained.

Objects OI as well as morphisms MI directly correspond to the objects OS
and morphisms MS in schema category S, respectively. Hence, both categories
intentionally have the same structure, they only differ in what their objects and
morphisms represent. Assuming that V is the domain of all possible values of
attributes, object oI = {t1, t2, . . . , tn} ∈ OI for some n ∈ N is modelled as a set of

8In general, the identifiers can be assigned randomly. To speed up the access, we assigned
each two mutually dual morphisms with respective positive and negative integers in the imple-
mentation.
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tuples, each represented as a function ti : superid→ V for any i ∈ N, 0 < i ≤ n.
The tuples are unordered, unique, and with all attributes specified. The particular
set of tuples that are used for object oI ∈ OI is called active domain of oI.

Since ids is a set of identifiers defined in the corresponding schema category
object oS, it must hold that each identifier id ∈ ids has its identification ability,
i.e., the cardinality of oI must not change when unique tuples projected only to
the attributes of a given identifier would be retrieved.
Example 3.7. An instance object Customer I for CustomerS from Figure 3.3 can,
for example, be:
Customer I = {
{(1, 1), (3, Mary), (5, 13), (7, Smith)},
{(1, 2), (3, Anne), (5, 17), (7, Maxwell)},
{(1, 3), (3, John), (5, 19), (7, Newlin)}}
The tuples form the active domain of Customer I.
Morphisms act as binary relations, i.e., they abide by the principles of the

Rel category (see Example 3.4). In particular, having a morphism mI ∈ MI,
mI : o1 → o2 for some objects o1, o2 ∈ OI, it must then hold that mI ⊆ o1 × o2.
Moreover, the cardinality restrictions min and max imposed by the correspond-
ing schema category morphism mS must also be satisfied. It means that ∀ t1 ∈ o1
it must hold that |{t2 | t2 ∈ o2, (t1, t2) ∈ mI)}| = c must be within the cardi-
nality boundaries. Identity morphism 1o for each object o ∈ OI is defined as a
function (i.e., a special case of a more generic relation) 1o = {(t, t) | t ∈ o}. The
composition operation ◦I corresponds to the composition in Rel.
Example 3.8. Consider object Customer I from Example 3.7 and object SurnameI
with the following active domain:
SurnameI = {
{(ϵ, Smith)},
{(ϵ, Maxwell)},
{(ϵ, Newlin)}}
Note that since Customer I is attribute object, its superid = {ϵ}, i.e., ϵ repre-

sents the identity morphism.
Morphism 7I : Customer I → SurnameI has the following set of relations:9

7I = {
({(1, 1), (3, Mary), (5, 13), (7, Smith)}, {(ϵ, Smith)}),
({(1, 2), (3, Anne), (5, 17), (7, Maxwell)}, {(ϵ, Maxwell)}),
({(1, 3), (3, John), (5, 19), (7, Newlin)}, {(ϵ, Newlin)})}
Having a schema category S and a particular instance category I, we can

introduce a pair of functors SchmI : I → S and InstI : S → I using which we
will be able to retrieve the corresponding counterparties.

3.3 Category-to-Data Mapping
Having defined a schema category, in this section we specify its mapping to the
underlying (set of) DBMS(s), i.e., we describe how the actual data permitted by

9Note that the morphisms are internally implemented as pairs of pointers to the respective
objects representing data. So, there is no data duplication as might be indicated by the example.
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a given schema category are supposed to be stored within the data structures
provided by the underlying database(s). Although this mapping can also be
described directly, we assume that the whole decomposition process is aided by a
tool that enables us to visualise and process schema categories, e.g., using a tool
called MM-cat which we introduce in Section 3.5.

This section aims to describe how the mappings are intended to be created and
formalised. After an informal outline of the basic principles, we provide a formal
definition of these mappings (Section 3.3.1), and we introduce an alternative way
that these mappings can be visualised or even directly created by users using a
textual representation (Section 3.3.2).

The decomposition (which can be both partial and overlapping) is defined
via a set of mappings, each describing where and how data instances of one
schema category object or base morphism – possibly together with other data from
neighbouring or even more remote objects or morphisms – are stored as individual
records within a given kind (recall Table 3.1) in a particular underlying DBMS
(i.e., as rows within a table in the traditional relational model, JSON documents
within a collection in the document model, etc.).

During the decomposition process, the user is expected to create individual
mappings (i.e., create individual kinds and define the internal structure of their
records) iteratively, one by one. This means a particular DBMS needs to be
selected first, so that a new kind can be introduced and all its characteristics
specified. Besides the name of a given kind, one object or base morphism from
the schema category is selected and appointed as the root object/morphism for
a given kind, representing its initial context. Next, the user specifies the internal
structure of the records, starting with the top-level properties and, optionally,
continuing with their recursively nested properties.

The specification of a property (at any level) consists of its name and structure,
which must follow the rules and limitations imposed by the particular model. For
example, in the case of the relational model, the level of nesting cannot be greater
than 1, properties cannot be multi-valued, as well as the names of the properties
(columns) must be unique. Finally, at least one root object identifier must be
covered by the involved properties. Similarly, suppose a given kind also has a root
morphism. In that case, it must involve at least one identifier of both its domain
and its codomain, i.e., both objects participating in the relationship given by the
morphism.

When specifying a child property, there can occur three situations where the
property can occur:

• A child property is a direct neighbour in the graph of the schema category,
i.e., it is accessible via a base morphism.

• A child property is inlined from a more distant position, i.e., it is accessible
via a composite morphism. Since more than one path may exist between
two objects, the particular path, i.e., the composition of morphisms, must
be denoted.

• A child property is defined as auxiliary, e.g., for grouping related properties.
Hence, the respective object does not exist in the schema category.

When choosing a name of a property, there can also occur several situations:
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• Inherited: The name of a schema category object is reused.

• User-defined: A completely new name is explicitly specified by the user.

• Anonymous: The name is entirely omitted in case no name is needed or
permitted (e.g., for elements of an array in JSON).

• Dynamically derived: The name is derived from a particular instance of a
schema category object.

Example 3.9. Consider the document collection Order in Figure 3.1. For example,
properties customer or price have user-defined names (different from the ones used
in the ER schema and schema category in Figures 3.2 and 3.3). Child property
of property items has an anonymous name.

A dynamically derived name of a property can be seen in the case of child
properties of property contact. Name and value of the contact are specified in
respective attributes Name of entity type Type and Value of relationship type
Contact. In schema category this can be done via a composite morphism which
corresponds to the composition of respective morphisms on the path from node
Contact to nodes Name and Value.

Finally, the value of a property can be of the following two possible types:

• Simple, i.e., a single atomic value.

• Complex which encompasses a list or a set of child properties, i.e., an array
or a structure.

Example 3.10. A sample decomposition is presented in Figure 3.2 and Figure 3.3
using the colours from Figure 3.1.

3.3.1 Formal Definitions
More formally, the intended database decomposition is a set M of mappings in a
form of a tuple (D, nameκ, rootκ, morphκ, pkeyκ, refκ, Pκ), each introducing one
particular kind κ and describing the expected internal structure and contents of
its records as follows:

• D denotes a particular DBMS, e.g., using a connection string.

• nameκ is a name of kind κ.

• rootκ ∈ OS is a root object associated with κ.

• morphκ ∈MS ∪ {null} is an optional root morphism associated with κ. It
cannot be an identity morphism. If morphκ ̸= null, then morphκ.dom =
rootκ.

• pkeyκ is an (eventually ordered10) collection of signatures of morphisms
whose codomains correspond to properties forming the primary identifier
of kind κ.

10If required by the respective model.
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• refκ is a set of references from κ, i.e., a set of pairs (nameκ′ , Rκ′), where
nameκ′ is the name of the referenced kind κ′ and Rκ′ is a set of referenced
properties of kind κ′. It must hold that access path Pκ contains mapping
of properties in Rκ′ to enable reconstruction of the relationship between
referring and referenced properties of both κ and κ′.

• Pκ is an access path, i.e., a description of the internal structure of κ.

In the case of references, there can occur three cases:

1. null: The model does not support references at all (but we can still keep
them in the categorical framework and check externally).

2. ∅ : The model supports references, but none of them is used.

3. The set has at least one input, because there is at least one reference in the
model.

Example 3.11. In the case of the relational model, e.g., in PostgreSQL, examples
of pkeyκ can be {1}, (1), or {3, 5}. In the case of Cassandra pkeyκ can be
((3.21, 5.21), 25.23) since the system allows the grouping of parts of the key.

Access path Pκ is represented as a tree, where each node corresponds to one
property of kind κ and the edges represent the mutual nesting of properties if
supported by the respective model. Furthermore, the sibling properties may be
ordered in some models. The root of the tree is an auxiliary node, its child nodes
correspond to top-level properties of κ. Each node is simultaneously a root of an
access subpath, describing the structure of the respective nested property.

Each node (property) ϕ of the tree is represented as a tuple (nameϕ, contextϕ,
valueϕ). In the case of the auxiliary root node nameϕ = ϵ, contextϕ = null,
and valueϕ represents the structure consisting of top-level properties of κ. If
property ϕ′ is the parent of property ϕ, there exists a (base/composite) morphism
mchild : oϕ′ → oϕ ∈MS, where oϕ, oϕ′ ∈ OS are objects representing properties ϕ,
ϕ′.

nameϕ represents the name of property ϕ and can be of the following types:

• A static name corresponding to a fixed value, either inherited from schema
category or user-defined.

• An anonymous (empty) name.

• A dynamically derived name corresponding to signature of (base/composite)
morphism mname : oϕ → oname, where oname is the object representing dy-
namically derived names. (Cardinality of the respective base morphism(s)
must be (1, 1).)

In addition, there are specific features of the properties of particular data
models that need to be reflected too: First, since the XML document model
allows two kinds of properties, i.e., an XML element and an XML attribute, we
distinguish between them using the prefix @ used for attributes. Second, edges in
the graph model are mapped using properties with pre-defined (reserved) names
src for the source and tgt for the target of the edge, respectively.
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Optional contextϕ represents the context of property ϕ within parent property
ϕ′, i.e., it denotes the root object oϕ, if any, associated with ϕ. We distinguish
the following cases:

• If contextϕ is a signature of base morphism mchild, it represents the case
when oϕ is a direct neighbour of oϕ′ in the graph of S.

• If contextϕ is a signature of composite morphism mchild, it represents in-
lining of property ϕ to ϕ′ from a more distant position in the graph of
S.

• If contextϕ is undefined, there exists no oϕ ∈ OS, but its content (valueϕ)
does exist. It corresponds to the case when the property ϕ is a simple
property (i.e., a leaf of the access path) or when the user adds an auxiliary
property ϕ, e.g., to group a set of selected related properties.

Finally, valueϕ represents the particular (simple or complex) value of property
ϕ. We distinguish three cases:

• A simple value is a signature of morphism mvalue : oϕ → ovalue, where ovalue

is the object representing the simple values.

• An array is an ordered list of recursively defined nested properties ϕ1, ..., ϕl,
for some l ∈ N+.

• A nested structure is an unordered set of recursively defined nested prop-
erties ϕ1, ..., ϕk, for some k ∈ N+.

The latter two are denoted as a complex value of a property.

3.3.2 JSON-like Representation
For the sake of easier processing and understanding, we introduce a textual JSON-
like representation of an access path. It is defined by the grammar depicted in
Figure 3.5. STRUCTURE is the start nonterminal. Terminal static-name repre-
sents an inherited or user-defined name of a property. Terminal (underscore)
represents the anonymous name of a property. Terminal epsilon represents an
empty value. Terminal m id represents the signature of a base morphism and ter-
minal . (dot) represents their concatenation. Terminals { and } (curly brackets),
[ and ] (square brackets), , (comma), and : (colon) serve as delimiters.

As we can see, there are three positions, where the signatures of morphisms
(SIGNATURE) occur – in the case of dynamically derived names, specification of

STRUCTURE -> { (NAME : CONTEXT VALUE (, NAME : CONTEXT VALUE)*)? }
NAME -> ( static-name | _ | SIGNATURE )
CONTEXT -> ( SIGNATURE )?
VALUE -> ( SIGNATURE | ARRAY | STRUCTURE | epsilon )
ARRAY -> [ ((NAME :)? CONTEXT VALUE (, (NAME :)? CONTEXT VALUE)*)? ]
SIGNATURE -> m_id(.m_id)*

Figure 3.5: Grammar of the JSON-like representation of access paths
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the context of a property, and specification of simple value of a property. Adding
another level of nesting of properties (STRUCTURE) can occur at two positions –
as a complex value of a property or as an element of an array. (Also note that
for simplicity we do not consider data types. This information could however be
added between CONTEXT and VALUE as a system-specific TYPE.)
Example 3.12. Figure 3.6 illustrates the access path of collection Order from
Figure 3.1. We remind the collection itself on the left and the respective part of
schema category S on the right. In the middle we can see the respective access
path. The colors denote the corresponding parts in all three data representations.

As we can see in the figure, the description starts from the value part of the
auxiliary root node, i.e., its empty name and context are omitted. It consists of
top-level properties id, contact, and items.

The first one corresponds to a nested document having an auxiliary user-
defined name id that is not present in schema category S and two nested (leaf)
properties customer and number.

The second one is a map contact having the context specified by a morphism
with signature = 27 and containing a set of pairs (name : value) distinguish-
able using dynamically derived names and corresponding values. Note, that the
corresponding object from schema category S has superid = {31.29, 33}, making
them related.

The third one is a homogeneous array items of an anonymous complex type.
Note that the cardinality of morphism determines the fact that it is an array
with signature = 35. The anonymous nested complex property (document)
corresponds to a set of four properties. Properties id, name, and price are related
to object Product. Property quantity is related to object Items. In other words,
the mapping allows collocating properties that are not directly mutually related
in the schema category.

{ 
  _id : { 
    customer : 1, 
    number : 2 
  }, 
  contact : { 
    cellphone : +420123456789, 
    email : mary@smith.cz 
  }, 
  items : [ 
    { 
      id : B1, 
      name : Pyramids, 
      price : 200, 
      quantity: 2 
    }, { 
      id : A7, 
      name : Sourcery, 
      price : 200, 
      quantity : 1 
    } 
  ] 
}

collection Order

{
  _id : {
    customer : 1.21.24,
    number : 25
  },
  contact : 27 {
    31.29 : 33
  },
  items : 35 {
    id : 47.39,
    name : 49.39,
    price : 51.39,
    quantity : 37 
  }
}

kind name: Order

Orders 
110

Type 
114

Id 
101

Customer
100

Items 
117

Order 
111

Contact 
113

Quantity 
118

_id

items

contact

Price 
124

Id 
122 Name 

123

Product 
121

Number 
112

Value 
116

Name 
115

23
24

26

25

21

22

1

2

27
28

29
30

31

32

33

34

35

36
38

40

39
37

47

48

49

50

51

52

(0,*)

(1,*)(0,*)

(0,*)(1,*)

(1,1)

(0,*)

(0,*)

(0,*)(0,*)
(0,*)(0,*)

(1,1)(1,1)

(1,1)(1,1)

(0,*)(1,1)

(0,*) (0,*)

(1,*) (1,1)

(0,*) (1,*) (0,*) (1,*) (1,1) (1,1)

Figure 3.6: Collection Order, an access path for kind Order, and the correspond-
ing part of schema category S

Note that there is a difference between aggregate-ignorant and aggregate-
oriented models. For aggregate-ignorant ones, there is no need to consider ARRAY
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customer : 1.21.24

number : 25

items : 35

2

1

31.29 : 33 email
mary@smith.cz

cellphone
+420123456789

contact : 27

id : 47.39

name : 49.39

price : 51.39

quantity : 37

B1

Pyramids

200

2

A7

Sourcery

200

1

Figure 3.7: Forest containing a single
record corresponding to a document

+420123456789

mary@smith.cz

1

2

1

1, 1, 2
1, 2

1, 2, A7

1, 2, B1

1, 2, cellphone,
+420123456789

1, 2, email,
mary@smith.cz

A7

B1

Sourcery

Pyramids

200

cellphone

email

cellphone

email

A7

B1

1

2

((1, 2, cellphone, +420123456789), cellphone) 
((1, 2, email, mary@smith.cz), email) 
 

1, 2, cellphone,
+420123456789

1, 2, email,
mary@smith.cz

cellphone

email

(cellphone, (1, 2, cellphone, +420123456789)) 
(email, (1, 2, email, mary@smith.cz)) 

Figure 3.8: Part of instance category I
after the insertion of single Order

or STRUCTURE in VALUE. Moreover, specifying of CONTEXT is mandatory. In the
relational model, only morphisms having cardinality (0, 1) or (1, 1) are allowed
to connect a property (i.e., attribute) with a kind (i.e., relational table). In
addition, the graph model allows a homogeneous array of a simple type, i.e.,
other cardinalities are allowed.

Aggregate-oriented models allow more complex structures. Among others, the
following commonly used data structures that the grammar can describe are thus
supported:

• Heterogeneous array: In the most general situation, a heterogeneous array
can have a morphism specifying its context with cardinality (0, N), or it
has no morphism. Items of the array also can have the morphism specify-
ing their context within the array with cardinality (0, N). In general, any
cardinalities which allow an array of at least two items with distinct types
are allowed.

• Tuple: A tuple is a special kind of a heterogeneous array. The morphism
specifying the context of a tuple has an arbitrary cardinality, or it has no
specifying morphism. Items of the tuple have the morphism specifying their
context within the tuple with cardinality (1, 1) (or even (0, 1) in case, e.g.,
Cassandra).

• Nested document: In the case of nested documents, the same rules are
applied as to the top-level document.

• Map: A map is a special kind of nested document, having dynamically
derived names of properties.
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3.4 Transformations
Having defined the schema category S, instance category I, and mapping M
between the categorical representation and particular models, in this section, we
can introduce the algorithms for mutual transformation between categorical and
logical data representations. We aim to provide a generic approach applicable
to all data models (and their combinations). After we define the transformation
process for both directions, we discuss how it can be used, e.g., for data migration.

3.4.1 Model-to-Category Transformation
First of all, we describe the process of data transformation from a particular
logical model to the categorical representation. It consists of two steps: (1) we
fetch data from an input logical model and (2) we insert selected records, one-
by-one, to instance category I.

Forest of Records

To be able to uniformly manipulate records from different data models (recall
Table 3.1), both aggregate-oriented and aggregate-ignorant, we first propose their
tree-based representation. Each record r is represented as a directed (eventually
ordered11) tree r = (V, E). V contains a node vi for each (eventually nested)
property ϕi, i = 1, . . . , n, in record r (only if property ϕi appears in access
path as a mapping of a categorical object) and an auxiliary root node v0 ∈ V
representing the whole record denoted as ϕ0. Each node v ∈ V contains an array
of name/value pairs (namev, valuev), where namev represents the name of the
property and valuev represents its value. Nodes vj, vk ∈ V are connected using a
directed edge e = (vj, vk), e ∈ E if the corresponding properties ϕj, ϕk in record
r are in a parent/child relationship, i.e., property ϕk is nested in property ϕj.
Hence, a property with a simple type or a property representing an array of a
simple type is represented as a leaf node, while other types of properties are
represented as an inner node.

Records of the same kind κ are grouped to form a forest of records Fκ =
(Tκ, Mκ), where Tκ is a set of trees representing the records of κ and Mκ is a
mapping that maps a categorical identifier of each property ϕ occurring in kind
κ to the list of the respective nodes in trees in Tκ. The categorical identifiers
correspond to a pair nameϕ : contextϕ for inner nodes and nameϕ : valueϕ for
leaf nodes. The mapping allows a quick access to all properties corresponding to
the same instance category object at the same level of trees in Tκ. Hence, there
is no need to traverse the whole tree to access a particular property. (Note that
we do not materialise the whole forest for all input trees. Only the currently
processed data fragments are constructed for further processing.)
Example 3.13. Figure 3.7 illustrates the representation of document Order corre-
sponding to the access path depicted in Figure 3.6 as a tree (in a forest of size 1).
On the left we can see the categorical identifiers, on the right the particular tree,
whereas the levels represent the mapping. (Note that to simplify the figure, we
do not depict valuev of node v if namev is user-defined and thus it is a part of the

11Depending on the particular model.
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categorical identifier.) The root of the tree corresponds to the document itself.
All leaves correspond to properties with a simple type or an array of a simple
type. Other nodes represent more complex structures. For example, node items
corresponds to a complex-type array. Anonymous node corresponds to a nested
document. Node contact corresponds to the map of contacts having dynamically
derived names of properties. (Note that node id does not appear in the forest
of records, since the corresponding object is not in the schema category.)
Example 3.14. As illustrated in Figure 3.9, the representation of records in re-
lational table Customer is significantly simpler, since there are no hierarchical
structures. In the figure, we can see the mapping of each categorical identifier
(on the left) to all respective properties in all trees depicted at the same level (on
the right).

id : 1

name : 3

surname : 7

Mary

1

Smith

Anne

2

Maxwell

John

3

Newlin

Figure 3.9: Forest containing three records corresponding to a row of a relational
table

Transformation Algorithm

The input of the algorithm is formed of schema category S, (possibly non-empty)
instance category I corresponding to S, the forest of input records Fκ = (Tκ, Mκ)
of kind κ, access path Pκ of kind κ, root object rootκ and root morphism morphκ

associated with κ. A model-specific command creates the forest of records (ex-
pressed in pseudocode, e.g., like SELECT * FROM KIND κ), followed by model-
specific transformation of its result to the forest structure Fκ. In Section 3.5 we
show the respective implementation for particular models using wrappers.

The algorithm processes one-by-one every input record (tree) r ∈ Tκ. Based
on the DFS traversal, it traverses the access path Pκ which describes the required
mapping and fills instance category I with appropriate data fragments. The
pseudocode of the transformation algorithm is provided in Algorithm 3.1.

As we can see, processing one record r consists of two phases – preparation
and processing of the rest of the tree.

Preparation Phase In the preparation phase, we distinguish two situations –
if kind κ is associated with a root object or a root morphism. In the former case
(line 8), we first gain object qI corresponding to rootκ using functor InstI : S→ I.
Next, using function fetchSids() we acquire a set S which consists of sets of pairs
(name, value), where name corresponds to a particular superid attribute of rootκ

and value corresponds to the respective value in r, if it exists. (In the case of
rootκ, every record r is identified using a single (super)identifier, i.e., |S| = 1.)
Note that we work with the keys of schema category objects used both in the
access path Pκ and in the mapping Fκ used in the input forest of records.
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Example 3.15. Consider again Figure 3.7 and 3.6. Object oκ corresponding to
Order is identified by a superid = {1.21.24, 25} corresponding to objects Id (with
key = 101) and Number (with key = 112). Function fetchSids() exploits mapping
Mκ to quickly navigate to specific values of properties customer and number,
matches them to corresponding keys of objects representing these properties in S
and returns set S that contains a single set {(1.21.24, 1), (25, 2)}.

Then, the algorithm iterates through the set S. Each sid ∈ S internally
modifies object qI and participates in further traversing of access path Pκ. Internal
modification of qI is done in function modifyActiveDomain() (line 12), where four
cases may occur:

• If sid ∈ qI, nothing has to be done.

• If sid is a part of an already existing sidI ∈ qI, sid is replaced by sidI.

• If sid corresponds to an already existing SI ⊆ qI, sid replaces SI.

• If sid /∈ qI, it is added.

Further traversing is ensured by function children() (line 13) which determines
the new context and value to be processed in the same way. (We describe its body
in detail in paragraph Function children() on page 115.) The result of the function
associated with a particular sid is then pushed to the top of auxiliary stack M as
a triple (sid, context, value). The reason for also involving sid is that we need to
know the associated parent in the next steps to appropriately fill the morphisms
context between corresponding parent and child objects in I.

In the second option, i.e., if κ is associated with a root morphism (line 15),
we gain both the domain and codomain of the root morphism morphκ. Next,
for both of them, we also fetch the sets of corresponding superidentifiers using
function fetchSids() and we apply function modifyActiveDomain() respectively.
In lines 22 and 23 we fill relations corresponding to the root morphism and its dual
morphism. Using function getSubpathBySignature() we get an access subpath t′

of access path t provided in the first parameter corresponding to the signature of
morphism m provided in the second parameter. In particular, it is a subpath t′

such that every leaf l of t′ has l.context = m or l.value = m or any ancestor a
of l has a.context = m. If there are more such subpaths, the one closest to t is
returned. If m is null, then l such that l.value = ϵ is returned.

Finally, we acquire all new pairs (context, value) to be processed regarding
the root morphism’s domain and codomain to ensure further traversing. These
pairs, except for the one representing the already processed root morphism, are
then pushed to the auxiliary stack M together with respective sids.

Processing of the Tree After having completed the initial phase, the algo-
rithm one-by-one releases and processes the top of the stack M until it is empty.
The released triple (pid, mS, t) forms the new context of the algorithm, i.e., con-
text morphism mS and access (sub)path t associated with parent superidentifier
pid. Morphism mI : pI → oI and object qI are then computed using functor InstI
(line 32 and 34).

Once again, we fetch S as a set of superidentifiers corresponding to oS (being
codomain of mS) from record r associated with currently processed pid (i.e.,
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Algorithm 3.1: Model-to-Category Transformation
Input: S – schema category

1 I – instance category
2 Fκ = (Tκ, Mκ) – forest of input records
3 Pκ – access path associated with κ
4 rootκ – root object associated with κ
5 morphκ – root morphism associated with κ
6 M ← an empty stack
7 foreach record r in Tκ do

// preparation phase:
8 if morphκ is null then

// κ with root object:
9 qI := InstI(rootκ)

10 S := fetchSids(rootκ.superid, r, null)
11 foreach sid in S do
12 sid := modifyActiveDomain(qI, sid)
13 foreach (context, value) in children(Pκ) do
14 M .push((sid, context, value))

15 else
// κ with root morphism:

16 Sdom := fetchSids(rootκ.superid, r, null)
17 siddom := modifyActiveDomain(InstI(rootκ), Sdom.get(0))
18 qcod := morphκ.cod
19 Scod := fetchSids(qcod.superid, r, null)
20 sidcod := modifyActiveDomain(InstI(qcod), Scod.get(0))
21 mI := InstI(morphκ)
22 addRelation(mI, siddom, sidcod, r)
23 addRelation(m−1

I , sidcod, siddom, r)
24 tdom := getSubpathBySignature(Pκ, null)
25 tcod := getSubpathBySignature(Pκ, morphκ)
26 foreach (context, value) in (children(Pκ) \{(tdom, tcod)}) do
27 M .push((siddom, context, value))
28 foreach (context, value) in children(tcod) do
29 M .push((sidcod, context, value))

// processing of the tree:
30 while M is not empty do
31 (pid, mS, t) := M .pop()
32 mI := InstI(mS)
33 oS := mS.cod
34 qI := InstI(oS)
35 S := fetchSids(oS.superid, r, pid)
36 foreach sid in S do
37 sid := modifyActiveDomain(qI, sid)
38 addRelation(mI,pid, sid, r)
39 addRelation(m−1

I ,sid, pid, r)
40 foreach (context, value) in children(t) do
41 M .push((sid, context, value))
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there is an edge (pid, sid) ∈ r). This time size of S is not limited by 1 since the
cardinalities of the properties allow multiplicity. S being fetched, the algorithm
iterates through sid ∈ S and processes each of them in order:

1. to internally modify the active domain of object qI (line 37),

2. to add relations for mI (lines 38, 39), and

3. to participate in the further traversing of access path t (lines 40, 41).

Note that function fetchSids() returns only superid sets that are constructed from
properties having as an ancestor value pid in the currently processed record r. In
the preparation phase, the same function returns superid values related to null,
e.g., having no ancestor.

Also note that the function fetchSids() returns an empty set if the data cor-
responding to the fragment of the access path does not occur in the record. As
a consequence of an empty set of sids, the (possible) traversing of corresponding
access subpath stops, since there is no data in the record to be traversed (applies
for both simple and complex properties).

As for adding of relations, we distinguish two situations. If mI is a base
morphism, we only add pair (pid, sid) to morphism mI and mapping (sid, pid) to
dual morphism m−1

I . If mI is a composite morphism, we add relations to all base
morphisms forming the composite morphism mI. Thus we need to extend also the
active domains of the affected objects, respectively. To do so, the algorithm either
determines the superidentifier of such objects from r, or computes a technical
identifier (i.e., autoincrement).

The algorithm ends when the stack M is empty meaning that all the data
are transformed into instance category I, i.e., internal structures of objects and
morphisms in I are appropriately extended.
Example 3.16. Suppose that we have an access path depicted in Figure 3.6 and a
corresponding forest of records depicted in Figure 3.7. The intended transforma-
tion should convert the data represented in the document model to the categorical
representation corresponding to the schema category S depicted in Figure 3.3 and
non-empty instance category I.

The algorithm processes each record r as follows: First, properties customer
and number corresponding to the superidentifier of object Order are fetched from
record r, and as a set of tuples, i.e., {(1.21.24, 1), (25, 2)}, added to set S as the
document identifier, i.e., a part of the superidentifier of object Order from schema
category S. Next, instance category I is extended using sid, i.e., the active domain
of corresponding object qI is extended with the value of sid. And access path
Pκ (depicted in Figure 3.6) is traversed, creating triples for stack M for property
Customer, Number, Items, and Contact related to sid, as depicted in Figure 3.10.
In the figure on the right we can also see the current content of instance category
I, i.e., a particular order was added.

Next, the top of the stack is released, i.e., the triple describing the access
subpath leading to property items, i.e.:

{ id : 47.39,
name : 49.39,
price : 51.39,
quantity : 37 }
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associated with pid (customer : 2, number : 1) and morphism 35I : OrderI →
ItemsI of instance category I. Within this context, the active domain of object
ItemsI is filled with the following tuple:
{(1.21.24.36, 1), (25.36, 2), (47.39, “A7”)}

Relation:
({(1.21.24.36, 1), (25.36, 2), (47.39, “A7”)},
{(1.21.24, 1), (25, 2)})

is added to morphism mI and dual morphism m−1
I is extended with relation:

({(1.21.24, 1), (25, 2)},
{(1.21.24.36, 1), (25.36, 2), (47.39, “A7”)})

Finally, the access path leading to property items is further traversed to the
access paths corresponding to leaves, i.e., 47.39, 49.39, 51.39, and 37.

The same applies to the other sid, i.e.,
(1.21.24.36, 1), (25.36, 2), (47.39, “B1”)

as can be seen in Figure 3.11. The algorithm continues in the same way until
stack M is empty. The resulting part of the instance category I corresponding to
kind Order is depicted in Figure 3.8.

1, 2
351, 2

1.21.24

27
25

1, 2

1, 2

1, 2

{ id : 47.39,
  name : 49.39,
  price : 51.39,
  quantity : 37 }

{ 31.29 : 33 }

Figure 3.10: Stack M and instance category I when the preparation phase for
data from Figure 3.7 is completed
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1, 2
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1, 2, A7
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51.391, 2, B1

371, 2, A7

371, 2, B1

{ 31.29 : 33 }

Figure 3.11: Stack M and instance category I when the first iteration of tree
processing completed

Function children() Having the whole algorithm built on the DFS principle,
the main purpose of function children() is to determine the access subpaths to
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be traversed from the input access path t. The function (see Algorithm 3.2)
returns a set C of pairs (context, value), each consisting of possibly non-empty
access sub-path value and morphism context, both corresponding to currently
traversed access path t.

Algorithm 3.2: Function children()
1 function children(t):

Input: t – access (sub)path
2 C := ∅
3 foreach top-level property p in t do
4 C.addAll(traverseAccessPath(p.name, ∅, ∅))
5 C.addAll(traverseAccessPath(∅, p.context, p.value))
6 return C

Algorithm 3.3: Function traverseAccessPath()
1 function traverseAccessPath(name, context, value):

Input: name – the name of a particular property (static, anonymous,
dynamic)

2 context – optional context of a property (allowing, e.g., grouping)
3 value – simple or complex value of a property

// static name:
4 if name is static name or name is then
5 return ∅

// dynamic name:
6 else if name is SIGNATURE then
7 return {(name, ∅)}

// simple value possibly with a context:
8 else if value is SIGNATURE or value is ϵ then
9 return {( context++value, ∅)}

// complex value having context:
10 else if context is SIGNATURE then
11 return {(context, value)}

// complex value without context:
12 else
13 return children(value)

For each top-level property of access path t modeled as a triple (name, context,
value) we traverse its name separately. Its context and value are traversed to-
gether to determine the body of the property. Both cases are ensured by call-
ing function traverseAccessPath() – see Algorithm 3.3. While the context may
contain a base/composite morphism, the value may contain a base/composite
morphism or a complex structure. As we can see in the algorithm, multiple cases
may occur:

• If a name is static or anonymous, nothing has to be done. There is nothing
to traverse, so an empty set is returned.
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• If a name is a signature of a base/composite morphism, its dynamic name
must be computed and further traversed. Thus, the name and an empty
access sub path are added (corresponding to the fact that it represents a
leaf).

• If the value is a signature or empty, i.e., a simple value, the concatenation
of context and value is returned together with an empty set to be further
traversed.

• If the context is a signature and the value is complex, the pair (context, va-
lue) is returned.

• Else, i.e., if there is no specified context, we must further traverse value to
determine context. Hence, the function children() is recursively called.

3.4.2 Category-to-Model Transformation
Having an instance category I and mapping M, the opposite direction of trans-
formation allows extraction of data from I and storing it into a particular logical
model. The whole algorithm consists of three parts:

1. DDL Algorithm: Definition of the schema of the data including names of
properties that are dynamically derived (see Section DDL Algorithm).

2. DML Algorithm: Transformation of data instances from instance category
I to a particular logical model (see Section DML Algorithm).

3. IC Algorithm: Finalisation of schema definition with integrity constraints,
i.e., adding of identifiers and references to other kinds (see Section IC Al-
gorithm).

DDL Algorithm

Having a schema category S, instance category I, access path Pκ, kind name
nameκ, and particular database wrapper WD working over database D, the first
algorithm creates a DDL statement to define a schema of kind κ in database D,
i.e., a statement of type CREATE KIND. The algorithm proceeds “lazily”. First,
it provides all the information about the structure of the currently processed
kind κ to wrapper WD. Second, it calls the method for constructing the output
database-specific command. The command can be sent to D for execution or just
visualised to the user, e.g., for checking.

The processing is again based on the DFS approach. The traversal of Pκ is
implemented using stack M that contains the context of the traversing (Np, t),
i.e., set of names Np that correspond to the property represented by access sub-
path t. There can be more than one name in Np if the property’s name is
dynamically derived. In addition, since the structure of κ can be hierarchical,
for easier construction of the resulting command, the names in the context are
constructed using their concatenation expressing the path from the root of the
hierarchy (e.g., /Order/Items/ /Name) – we denote them as hierarchical names.

As we can see in Algorithm 3.4, we begin the processing with the setting of
kind name nameκ to wrapper WD and we check whether the schema is applicable,
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Algorithm 3.4: DDL Algorithm
Input: S – schema category

1 I – instance category
2 nameκ – name of kind κ
3 Pκ – access path associated with κ
4 WD – DDL wrapper for a database D
5 N0 ← {ϵ}
6 M ← an empty stack
7 WD.setKindName(nameκ)
8 if WD.isSchemaLess() is False then
9 M .push((N0, Pκ))

10 while M is not empty do
11 (Np, t) := M .pop()
12 Nt := determinePropertyName(I, t.name)
13 N := concat(Np ×Nt)
14 if t.value is SIGNATURE or t.value is ϵ then

// processing of a simple property:
15 opt := isOptional(min(S, t.context++t.value))
16 array := isArray(max(S, t.context++t.value))
17 if array is True then
18 WD.addSimpleArrayProperty(N , opt)
19 else
20 WD.addSimpleProperty(N , opt)

21 else
// processing of a complex property:

22 opt := isOptional(min(S, t.context))
23 array := isArray(max(S, t.context))
24 if array is True then
25 WD.addComplexArrayProperty(N , opt)
26 else
27 WD.addComplexProperty(N , opt)
28 foreach triple c in t do
29 M .push((N , c))

30 return WD.createDDLStatement()

i.e., whether database D is not schema-less. If D is schema-less, only a trivial
DDL statement is returned, i.e., kind κ is created without specification of its
structure.12 Otherwise, traversing of the access path Pκ is carried out using stack
M . It is initialised by pushing the initial context, i.e., set N0 containing only
trivial name ϵ (since the whole kind κ does not have a parent name) and the
whole access path Pκ associated with kind κ.

We iterate through the body of while cycle until the stack M is empty. First,
we release from the top of the stack M the currently processed context (Np, t),
i.e. a set of hierarchical property names Np corresponding to parent property
p of the property represented by access sub-path t. Next, using function deter-

12For example, in MongoDB this would be command db.createCollection("orders").

118



minePropertyName() we construct the set of names Nt of the current property.
And we construct the set of new hierarchical names N as a concatenation of pairs
resulting from Cartesian product Np ×Nt.

Depending on whether t describes a simple property (i.e., t.value corresponds
to a SIGNATURE or it is empty) or a complex property we add new properties to
wrapper WD. If t describes a simple property (line 14), we create a new property
for each name n ∈ N within kind κ.13 Exploiting the cardinalities in schema
category S, we further specify whether the new property is an array or optional.
If t describes a complex property (line 21), the processing is similar, but the
wrapper is informed about a complex property or an array of complex properties.
In addition, we push all child properties to stack M (line 28) to be processed as
well.

Finally, using the wrapper WD the algorithm constructs and returns the par-
ticular DDL statement. If D already contains a kind of the same name, the
statement can be of type ALTER KIND, otherwise statement of type CREATE KIND
is created.

Function determinePropertyName() This function returns the resulting
name (or a set of names) depending on the way it was specified by the user. If
the name is statically determined (user-defined, anonymous, or inherited from
schema category S), it directly forms the output of the function. If the name is
dynamically derived, the function acquires all values stored in the active domain
of the object specified using a signature of its input morphism. The set of values
forms the output of the function.

DML Algorithm

Having the schema category S, instance category I, kind name nameκ, access
path Pκ, root object rootκ and root morphism morphκ, both associated with
kind κ, and particular database wrapper WD working over database D, the second
algorithm creates a list of DML statements which store data into the schema of
kind κ in database D, i.e., statements of type INSERT INTO KIND. If the resulting
commands are sent for execution to database D, they can fill in the kind created
using Algorithm 3.4 with data from instance category I.

As we can see in Algorithm 3.5, we first initialise an empty name n0 = ϵ, empty
list dml, and empty stack M . The rest of the processing depends on whether κ
has a root object or a root morphism. In the former case, we first acquire object
qI ∈ I corresponding to rootκ using functor InstI. In the next step, we get the
active domain S of qI. We push each sid ∈ S together with empty name n0 and
Pκ to auxiliary stack M and we call function buidStatement() (see below) which
creates the respective INSERT command that is then added to list dml.

In the latter case, i.e., κ with the root morphism, we first acquire the respec-
tive morphism mI using the functor InstI. Next, using function fetchRelations()
we get a set of all pairs (o1, o2), where o1, o2 ∈ OI such that mI(o1) = o2. Then

13If there are multiple names in N , their processing can in some systems differ. For example,
while the wrapper for PostgreSQL would create separate properties, the wrapper for Cassandra
would create a map of properties.
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Algorithm 3.5: DML Algorithm
Input: S – schema category

1 I – instance category
2 nameκ – name of kind κ
3 Pκ – access path associated with κ
4 rootκ – root object associated with κ
5 morphκ – root morphism associated with κ
6 WD – DML wrapper for database D
7 n0 ← ϵ
8 dml ← an empty list
9 M ← an empty stack

10 if morphκ is null then
// κ with root object:

11 qI := InstI(rootκ)
12 S := fetchSids(qI)
13 foreach sid in S do
14 M .push((sid, n0, Pκ))
15 stmt := buildStatement(WD, I, M , nameκ)
16 dml.add(stmt)

17 else
// κ with root morphism:

18 mI := InstI(morphκ)
19 S := fetchRelations(mI)
20 tcod := getSubpathBySignature(Pκ, morphκ)
21 foreach (o1, o2) in S do
22 M .push(o1, n0, Pκ.minusSubtree(tcod))
23 M .push(o2, n0, tcod))
24 stmt := buildStatement(WD, I, M , nameκ)
25 dml.add(stmt)

26 return dml

we get access subpath tcod of codomain morphκ.cod using function getSubpath-
BySignature(). For each s ∈ S we initialise stack M with two values – one for
the domain (line 22) and one for the codomain (line 23). In the former case,
we use the original access path Pκ without subpath tcod corresponding to the
codomain. In the latter case we use the so-far unprocessed subpath tcod. Then
we call function buildStatement() and add its result to the list dml.

Function buildStatement() As stated in Algorithm 3.6, function buildState-
ment() iteratively processes the initialised stack M until it is empty. First, the
top of M is released as a triple consisting of an identifier of parent property pid,
hierarchical property name np, and respective access (sub)path t. Using function
collectNameValuePairs() we acquire a set of pairs (name, value)14 of data from

14Note that if we acquire multiple values by traversing a morphism having the upper bound
cardinality set to many (i.e., ∗), the name part is distinguished by an index in a form name[i],
i ∈ N. Also note that if the value for a particular name is missing (in the categorical approach
we represent missing values (null) as a missing relation in a morphism), the resulting pair
contains value set to ϵ.
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I relative to pid as specified by t. Each pair (name, value) is then processed as
follows: If t describes a simple property (line 11), the algorithm calls the wrapper
to extend the current INSERT statement by adding value to kind κ as an attribute
named np++name. It is up to the wrapper to determine how the empty data
(null) will be inserted. It is a model-dependent feature if the missing data leads
to a missing property or a null metavalue. If t describes a complex property
(line 15), the algorithm iterates through the set of nested properties within the
complex property and for every such property it pushes to stack M the respec-
tive new triple, i.e., it moves the processing to the next level. After processing
of whole stack M , the wrapper is invoked to create and return the final INSERT
statement.

Algorithm 3.6: Function buildStatement()
1 function buildStatement(WD, I, M , nameκ):

Input: WD – DML wrapper for a database D
2 I – instance category
3 M – context stack
4 nameκ – name of kind κ
5 WD.clear()
6 WD.setKindName(nameκ)
7 while M is not empty do
8 (pid, np, t) := M .pop()
9 P := collectNameValuePairs(I, t, pid)

10 foreach (name, value) in P do
11 if t.value is SIGNATURE or t.value is ϵ then

// processing of simple property:
12 WD.append(np++name, value)
13 else if value is ϵ then

// processing of empty complex property:
14 WD.append(np++name, value)
15 else

// processing of non-empty complex property:
16 foreach top-level subtree t′ in t do
17 M .push((value, np++name, t′))

18 return WD.createDMLStatement()

IC Algorithm

This algorithm aims to modify the created kinds to add integrity constraints
ensuring the respective identifiers and references. These parts of schema definition
are the most system-specific ones; however, the proposed approach is general
enough to cover all known cases. The intra-model references are propagated to
the respective DBMS by the system-specific wrapper. In the case of inter-model
references, the propagation differs depending on the underlying combination of
systems. A traditional polystore, as well as a multi-model DBMS is considered
a separate system having its single wrapper, so the system itself handles the
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inter-model reference. In the case of a polystore-like combination of systems,
where each has its wrapper, the DBMSs (naturally) cannot handle the references,
because they are not aware of each other. However, the proposed categorical
framework keeps this information and, thus, the integrity constraints can be
checked externally. And, in general, this external checking of integrity constrains
can also be used for a single-model DBMS lacking a support for references.

The whole process is described in Algorithm 3.7 which extracts all primary
identifiers and references related to a particular mapping m and ensures their
application at the logical level of D using a command of type ALTER KIND. Its
input is formed of mapping m ∈M, and respective wrapper WD. First, we process
the identifier of κ. Using function collectNames() we get ordered collection N
which contains attributes of the identifier of κ. The result is added to the wrapper
WD for system-specific processing. Note that we use names from m.Pκ which are,
contrary to user-defined names, unique.

Next, we process the set of references by iterating through set m.refκ. First,
using function collectSigNamePairs() we get set O of pairs (signature, name),
i.e., signature and name of referencing attributes. We get the mapping of the
referenced kind r.nameκ′ and similarly set R of pairs of signatures and names of
referenced attributes. Function makeReferencingPairs() processes sets O and R
and creates set S of pairs (referencing-name, referenced-name) which is added
to wrapper WD. Finally, using function createICStatement() the respective com-
mand of type ALTER KIND is created.

Algorithm 3.7: IC Algorithm
Input: m ∈M – particular mapping

1 WD – IC wrapper for a database D
// processing of identifier:

2 N := collectNames(m.Pκ, m.pkeyκ)
3 WD.appendIdentifier(m.nameκ, N)

// processing of references:
4 foreach r in m.refκ do
5 O := collectSigNamePairs(m.Pκ, r.Rκ′)
6 n := M.get(r.nameκ′)
7 R := collectSigNamePairs(n.Pκ, r.Rκ′)
8 S := makeReferencingPairs(O, R)
9 WD.appendReference(m.nameκ, n.nameκ, S)

10 return WD.createICStatement()

3.4.3 Multi-model-to-Multi-model Migration
Having both directions of transformation, i.e., to and from the categorical repre-
sentation, we can now easily perform the migration between any combination of
models. Instead of mutually mapping n models, i.e., to create O(n2) mappings,
we only need to map each model to the categorical representation, i.e., to create
O(n) mappings. This idea is not new; however, the categorical representation
is sufficiently general that it covers all currently popular models (and probably
many, if not all, coming in the future) and in particular their mutual combina-
tions, i.e., inter-model references. Hence, we do not consider only model-to-model
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migration but more general multi-model-to-multi-model migrations. The level of
abstraction enables us to “hide” many system-specific features, such as, e.g., dif-
ferent types of complex structures (e.g., arrays, maps, or lists), different types
of links (e.g., foreign keys, references, or pointers), etc. At the same time, the
abstract representation bears information that is not supported by particular un-
derlying systems (e.g., the schema of schema-less systems or integrity constraints
for inter-model links).

In the middle of Figure 3.12, we can see a part of the schema category of the
sample data. The colours represent mappings between the categorical representa-
tion and particular kinds (green for kind Order in the document model, blue for
kind Customer in the graph model, yellow for kind Orders in the graph model,
violet for kind Order in the graph model, and red for kind Items in the column
model). For each model, we can see both the access path and the respectively
highlighted part of the schema category.

For example, we may want to perform migration from the document model
to a combination of the other four models. In the figure on the left, we can see
the sample source (green) JSON document stored in the document model. On
the bottom right we can see the target (red) column family; on the right up we
can see (blue, yellow, and violet) graph data.

The migration process works as follows: Having defined all access paths, we
first run the model-to-categorical transformation (see Section 3.4.1) whose result
is provided in Figure 3.8, i.e., we get an instance category filled with data from the
underlying document DBMS (MongoDB). Next we run the categorical-to-model
transformation (see Section 3.4.2). First, it creates the respective schemas (see
Section DDL Algorithm). In the case of the schema-less graph model of neo4j,
it does not define the structure, in the case of the column model of Cassandra
it defines the schema of the table. Next, it stores the data instances in the
DBMSs (see Section DML Algorithm) and in the last step it adds the respective
integrity constraints (see Section IC Algorithm), namely command ALTER TABLE
for Cassandra and no commands for neo4j.

All these steps were performed automatically, only with the mapping between
the categorical representation and the particular DBMSs based on the idea of
access paths. This is the only manual work required from the user. In addition,
in the following section we introduce a user-friendly tool that enables us to specify
them comfortably.

3.5 Framework MM-cat
As we have already mentioned, while the categorical representation and the re-
spective mapping can be expressed manually, we do not assume that the user
would do so. In this section, we show how the process can be made user-friendly
using an appropriate tool.

To demonstrate the applicability of the proposed approach, we have imple-
mented an extensible framework called MM-cat [64]. Its primary purpose is
user-friendly modelling of a multi-model schema and its mapping to a respec-
tive polystore, multi-model database, or a set of databases. Using the proposed
transformation algorithms the user can then transform the data to/from the cat-
egorical representation. At the same time MM-cat serves as a basis for further
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{ 
  _id : { 
    customer : 1, 
    number : 2 
  }, 
  contact : { 
    cellphone : +420123456789, 
    email : mary@smith.cz 
  }, 
  items : [ 
    { 
      id : B1, 
      name : Pyramids, 
      price : 200, 
      quantity: 2 
    }, { 
      id : A7, 
      name : Sourcery, 
      price : 200, 
      quantity : 1 
    } 
  ] 
}

collection Order

{
  _id : {
    customer : 1.21.24,
    number : 25
  },
  contact : 27 {
    31.29 : 33
  },
  items : 35 {
    id : 47.39,
    name : 49.39,
    price : 51.39,
    quantity : 37 
  }
}

kind name: Order
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{ 
  number : 25 
}

{ 
  customer : 1, 
  31.29.27.23.22 : 33.27.23.22 
}

{ 
  _src : 1.21, 
  _tgt : 25.23 
}

kind name: Customer

kind name: Orders

kind name: Order

{ 
  customer : 1.21.24.36, 
  number : 25.36, 
  item : 47.39, 
  quantity : 37 
  detail : [ 
    49.39, 
    51.39 
  ] 
}

kind name: Items
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Figure 3.12: Example of transformation from document model to graph and
column models

possible extensions and application of the core idea in advanced data processing
tasks forming our current and near-future work as discussed in Section 3.8.

The basic work with MM-cat assumes that the user creates a new schema
from scratch. The following steps are expected to be carried out:

1. An ER schema of the target problem domain is created using usual ap-
proaches and recommendations.

2. The input ER schema is automatically transformed to schema category S
using the algorithm proposed in [2].15

3. S is manually mapped to a selected combination of models. In particular,
for each kind κ the following steps are performed:

(a) A particular DBMS and if needed16 a particular model is specified.
Either it is already know to MM-cat or the user specifies the respective
parameters (i.e., a connect string).

(b) A root object of kind κ in S is selected and its name is specified.
(c) The structure of κ is defined, i.e., its levels and respective proper-

ties are specified. In particular, for each property its context, name,
and value is specified. The continuously evolving commands of type
CREATE KIND and ALTER KIND are visualised to the user to check the
correctness of the mapping.

4. The scripts with resulting commands of type CREATE KIND and ALTER KIND
are generated. They can be also sent to the respective DBMS(s) to be
executed. Then, the database structures (i.e., tables, collections etc.) in
particular DBMS(s) as well as instance category I in MM-cat are empty.

5. The user stores data to the created database structures (using an external
tool).

15An advanced user can create S directly, without the need to create the ER schema. We
add this auxiliary step for easier understanding through a well-known approach.

16The combined models can be a part of separate DBMSs or a single multi-model DBMS.
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Figure 3.13: Sample screen shot of MM-cat

6. The content of the instance category I is created, e.g., imported from a
CSV file or a particular DBMS filled with respective data.

As depicted in Figure 3.13, MM-cat enables us to visualise and modify the
current status of the multi-model modelling process. We can interactively work
with the graphical representation of the ER model as well as the respective schema
category. We can choose the level of detail we want to see, i.e., the amount of
information provided. We can also see the JSON-like expression of the access
paths and the resulting commands of type CREATE KIND.

For a demonstration of the key contributions of the proposed categorical ap-
proach, MM-cat supports two DBMSs selected to cover most of the distinct fea-
tures related to multi-model data modelling – MongoDB17 and PostgreSQL18.
The versatility of the approach can be demonstrated from different viewpoints:

1. Schema-less (MongoDB)19 vs. schema-full / schema-mixed (PostgreSQL):
MM-cat supports different approaches to the propagation of information
about the specified structures to the particular DBMS. In both cases the
user specifies the required structures using MM-cat; however, only in the
case of schema-full (or schema-mixed) DBMS is the information propagated
to DDL commands. In addition, dynamically derived names of properties
are also not allowed, e.g., in a schema-full relational DBMS. Besides, MM-
cat supports two cases of a schema-mixed approach:

(a) With a modelled schema: The user specifies the schema, even if it is
not fully propagated to the DBMS. This happens when the features
of a particular DBMS do not support schema-on-write approach for

17https://www.mongodb.com/
18https://www.postgresql.org/
19For the demonstration we consider MongoDB as schema-less, i.e., we do not exploit its

ability to define a JSON schema.
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some models (in PostgreSQL, it is represented by schema-less data
type JSONB for JSON documents which can be used in a schema-full
relational table). But the whole schema remains defined in the cat-
egorical representation. It can be used, e.g., for external checking of
data validity of the schema-less parts, conceptual cross-model query-
ing, etc. (This approach can also be used for a schema-less DBMS,
where we want to specify the schema externally.)

(b) Without a modelled schema: During the modelling phase, the user de-
cides to leave a part of the schema unspecified, i.e., only a general data
type (e.g., a BLOB) is assigned to a (part of a) kind. When the data
stored in the DBMS is transformed to an instance category, the missing
part of the schema can be inferred from the data instances. In other
words, the schema-on-read approach is used for further processing of
the data now with a known structure.

2. Aggregate-oriented (MongoDB) vs. aggregate-ignorant (PostgreSQL): MM-
cat supports differences in the mapping process regarding the complexity
of structures allowed by the particular type of a system. Both complex
hierarchical structures allowing nesting and repetitions (arrays) and flat
relations with only simple data types (or their combination in the case of
multi-model PostgreSQL) can be created.

3. Polystore vs. multi-model DBMS: MM-cat can handle modelling of a schema
in the case of a polystore-like approach, i.e., combining models from several
DBMSs, and in the case of a single multi-model DBMS which is capable of
storing multiple models in a single system.

3.5.1 Architecture and Implementation
MM-cat was implemented using Java SE 16, graphical library JavaFX,20 and
Apache Maven.21 For communication with MongoDB and PostgreSQL we use
the respective Java (JDBC) drivers.2223

The architecture of the framework is depicted in Figure 3.14. At the bottom
we can see n (green) DBMSs which represent all possible combinations of usage
of multiple models, i.e.:

1. a multi-model DBMS,

2. a set of single-model DBMSs, or

3. a combination of the previous two cases.

For a unified access, each of the DBMSs is wrapped using a unified interface pro-
viding functions for defining a schema and integrity constraints, defining mapping
to categorical representations, and storing/extracting data. Each system-specific

20https://openjfx.io/
21https://maven.apache.org/
22https://mongodb.github.io/mongo-java-driver/
23https://jdbc.postgresql.org
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Figure 3.14: Architecture of MM-cat

(green) wrapper implements an interface of the respective abstract (grey) wrap-
per. The yellow boxes represent the core categorical data structures defined in
Sections 3.2.2 and 3.3, i.e. the schema category, the instance category, and the
access paths representing the core of the mapping. The transformation between
the categorical structures and the wrappers representing the DBMSs (described
in Section 3.4) is ensured by the two blue transformation modules.

Finally, we also depict the red modules which represent the advanced function-
ality that we are currently implementing on top of the categorical data structures
and transformation modules, i.e.

1. conceptual querying over the categorical representation,

2. inference of a categorical schema from data instances,

3. migration of data between different DBMSs (having the same or distinct
model), and

4. evolution management, i.e., propagation of user-specified changes in the
categorical schema to affected parts (i.e., primarily data instances and op-
erations).

The unified representation of the data enables us to work with any combi-
nation of the underlying models regardless of implementation-specific details of
particular systems.

Wrappers

A wrapper represents a bridge between a particular DBMS and the unified cate-
gorical layer. Each wrapper implements a selected interface of an abstract wrap-
per, namely:
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1. AbstractPullWrapper for extracting data from a DBMS (i.e., calling que-
ries of type SELECT * FROM KIND ...),

2. AbstractPushWrapper for storing data into a DBMS (i.e., calling com-
mands of type INSERT VALUES (...) INTO KIND ...),

3. AbstractICWrapper for adding integrity constraints (i.e., calling commands
of type ALTER KIND ... ADD CONSTRAINT ...),

4. AbstractDDLWrapper for the definition of a schema (i.e., calling DDL com-
mands of type CREATE KIND ... without integrity constraints), and

5. AbstractPathWrapper for the definition of mapping to categorical struc-
tures which differ in the particular DBMSs (models), e.g., in the (dis)allowed
nesting of properties.

On top of the wrappers, we primarily implement the proposed transformation
algorithms (but other functionalities can be implemented on top of them too) in
a unified way, i.e., regardless the specifics of the underlying DBMS. Moreover,
adding new DBMS does not require changes in the higher-level modules, only the
new wrappers need to be implemented. The underlying system does not need to
be a particular existing DBMS, but it can be, e.g., a file manager ensuring the
functionality of the unified interface.

AbstractPathWrapper From the point of view of the proposed categorical rep-
resentation, the most interesting wrapper is AbstractPathWrapper. As we can
see in Table 3.2, it returns information about the allowed complexity of the map-
ping in the particular DBMS.

Table 3.2: Allowed complexity of mapping in MongoDB and PostgreSQL

MongoDB PostgreSQL

isRootObjectAllowed() True True

isRootMorphismAllowed() True True

isPropertyToOneAllowed() True True

isPropertyToManyAllowed() True False

isInliningToOneAllowed() True True

isInliningToManyAllowed() True False

isGrouppingAllowed() True False

isDynamicNamingAllowed() True False

isAnonymousNamingAllowed() True False

isReferenceAllowed() True True

For example, in the case of MongoDB its MongoDBPathWrapper24 enables to
inline properties without any restrictions. When a morphism with the upper
bound of a cardinality > 1 occurs on the path to the inlined property, an array
of the inlined properties is created. The wrapper also enables the grouping of
selected properties into an auxiliary property not defined in schema category S.

24Which implements AbstractPathWrapper
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For PostgreSQL, its PostgreSQLPathWrapper24 enables inlining only when the
upper bounds of morphisms have cardinality = 1 (since arrays are not allowed). It
also does not allow grouping or complex nested structures (since relational tables
are flat). Dynamically derived names and anonymous names are not allowed too,
due to the features of the relational model.

The abstract wrapper also predefines the following methods:

• Method addProperty(String hierarchy) adds a new property to the cur-
rently constructed access path. Parameter hierarchy contains its hierar-
chical name (e.g., /Order/Items/ /Name).

• Method check() enables to check whether the currently constructed access
path follows requirements of the particular DBMS. For example, in the case
of MongoDB it checks whether compulsory property id being the identifier
is present.

AbstractDDLWrapper The methods that are used in Algorithm 3.4 (DDL Al-
gorithm) are predefined by the AbstractDDLWrapper. In particular they involve
the following ones:

• Method setKindName(String name) denotes the name of a kind (i.e., ta-
ble, collection, etc.) for which the schema is created.

• Method isSchemaLess() determines whether the creation of a schema is
(not) required, i.e., the database implements a schema-less or a schema-full
approach.

• Method addSimpleProperty(Set<String> names, boolean optional)
throws UnsupportedOperationException enables the creation of a prop-
erty with a simple data type. Usually a separate property is created for
each value in parameter names. But, for example, in the case of Cassandra
the wrapper-specific behaviour ensures that a multi-value property is trans-
formed to a map which influences the parent property as well. Parameter
optional denotes whether value null is allowed.

• Method addSimpleArrayProperty(Set<String> names, boolean opti-
onal) throws UnsupportedOperationException creates an array of sim-
ple data types.25

• Method addComplexProperty(Set<String> names, boolean optional)
throws UnsupportedOperationException creates a property with a com-
plex type (structure).

• Method addComplexArrayProperty(Set<String> names, boolean op-
tional) throws NotAllowedException creates a property with an array
of complex types. (Note that we distinguish an array of simple types and
an array of complex types, because in some systems, e.g., neo4j, only the
former one is allowed.)

25Parameters names and optional have the same behaviour as in the previous case.
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• Method createDDLStatement() creates and returns the resulting DDL
command for a particular DBMS.

For instance, MongoDBDDLWrapper26 implements only method setKindName(),
whereas the remaining ones are empty (because MongoDB is schema-less) and
do not throw any exception (because MongoDB is aggregate-oriented). Method
createDDLStatement() then returns only command createCollection with the
respective name of the collection.

PostgreSQLDDLWrapper implemented purely for the relational model in Post-
greSQL implements methods setKindName(), addSimpleProperty() (adding a
simple property with kardinality (1,1)), and addSimpleArrayProperty() (Post-
greSQL supports arrays of simple types). However, in case of the other methods
the wrapper throws an exception UnsupportedOperationException, since it is
aggregate-ignorant. (Note that the wrapper, e.g., for neo4j would have similar
behaviour.) Method createDDLStatement() returns the respective command
CREATE TABLE without integrity constraints.

AbstractPushWrapper Methods used in Algorithm 3.5 (DML Algorithm) are
predefined by the AbstractPushWrapper. In particular they involve the following
ones:

• Method setKindName(String name) denotes the name of the kind (i.e.,
table, collection, etc.) where the instances are stored.

• Method append(String name, Object value) appends value associated
with the name to the currently created DML command.

• Method createDMLStatement() returns the resulting DML command.

• Method clear() removes all the data previously added to create a DML
command, i.e., the name of the kind and (name, value) pairs from the
currently created DML command.

Wrappers for all types of underlying database systems implement methods
setKindName(), append(), and clear() in the same way. Naturally the key dif-
ference is in method createDMLStatement() which is strongly system-dependent.
For example, PostgreSQL wrapper transforms pairs (name1, value1), ..., (namen,
valuen) of kind κ to SQL command INSERT INTO KIND κ (name1, ..., namen)
VALUES (value1, ..., valuen). On the other hand, MongoDB wrapper cre-
ates command db.collections.insert(...), where namei, i = 1, ...n denote
names of fields in the hierarchy and valuei denote their respective values.

AbstractICWrapper Methods used in Algorithm 3.7 (IC Algorithm) are prede-
fined by the AbstractICWrapper. In particular they involve the following ones:

• Method appendIdentifier(String name, IdentifierStructure idst)
enables the addition of an integrity constraint representing an identifier
to kind specified using parameter name. The structure of the identifier

26Which implements AbstractDDLWrapper
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is provided in parameter idst. The structure defines not only the set of
properties forming the identifier, but also their order and nesting, depending
on the requirements of the particular DBMS.

• Method appendReference(String nameRef, String nameTo, Set<Pair
<String, String>> atts) enables adding of a reference from referencing
kind specified using parameter nameRef to referenced kind specified using
parameter nameTo. Parameter atts contains a set of pairs (name of refer-
encing property, name of referenced property).

• Method createICStatement() creates a set of commands of type ALTER
KIND for adding specified integrity constraints.

• Method createICRemoveStatement() creates a set of commands of type
ALTER KIND for (temporary) removal of specified integrity constraints.

The system-dependent processing of integrity constraints strongly differs. For
example in MongoDB there is a compulsory property id which is checked by
MongoDBPathWrapper in function check(). In PostgreSQL the selected properties
forming the primary key or the foreign key are denoted in the command ALTER
TABLE. In schema-less MongoDB the references do not modify the schema at all.

AbstractPullWrapper Last but not least, AbstractPullWrapper predefines
the methods used in Algorithm 3.1 (Model-to-Category Transformation) for the
construction of the forest of records. In particular:

• Method pullForest(String selectAll, AccessPath path) first extra-
cts all records using a database-specific command selectAll. Then, using
the information from the access path path, it transforms each of the records
to a respective tree and adds it to the resulting forest.

• Method pullForest(String selectAll, AccessPath path, int li-
mit, int offset) has the same behavior. In addition, it enables the abil-
ity to set limit and offset for pagination in case the particular system
supports this feature.

Performance

The algorithm’s complexity depends on whether we need to index the identifiers
of the records of particular kinds. If not, it is linear regarding the number of
records in the input data set, i.e., all kinds. If so, the respective records need
to be indexed for each kind. In other words, for each kind κ with Nκ records
we get O(Nκ.log(Nκ)) instead of O(Nκ) without an index. None of the steps
require complex modifications of the existing instance category in both cases. In
addition, the algorithms are designed to be simply transformed into a parallel
version and thus scalable.

• Model-to-category transformation (Algorithm 3.1) can be parallelised to
process very large collections of data or very large data files.
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– A large collection of input records to be transformed can be split into
subsets processed by multiple threads, each applying the algorithm
on a particular subset individually. The only requirement is to avoid
conflicts in method modifyActiveDomain(), where, e.g., Java Atomic
Classes27 and a lock-free approach can be used.

– A single large document can also be split to be processed in parallel
by multiple threads exploiting the stack M and a parallelised DFS
algorithm as every subtree of the access path is independent of its
sibling subtrees.

• DDL algorithm 3.4 only defines and creates a schema of the data (i.e., its
structure), therefore a scalable implementation is not considered due to the
nature of the schema, i.e., a small set of possibly nested simple or complex
properties comparable in size to a single record.

• DML algorithm 3.5 is parallelisable depending on whether morphκ is null
or not. If it is null, then line 13 can be parallelised, i.e., the active domain of
qI can be distributed across multiple threads to be processed by the foreach
cycle. Otherwise, similarly, relations from line 19 can be distributed across
multiple threads to be processed in parallel at line 21.

• IC algorithm 3.7 only generates statements of type ALTER KIND, therefore
it is not considered being parallelised.

The still gradually improved implementation of the approach, MM-cat, con-
tains various technical tricks enabling further optimisation. For example, in the
case of entries in the active domain of objects, we assume an optimistic approach
and, therefore, a lock-free approach (i.e., no synchronisation, no locks), imple-
mented using Java Atomic Classes. The probability that we will work with the
same memory space simultaneously is minimal, so there is no need to synchronise
larger sections of code (i.e., to lock them). This can only happen in the case of
method modifyActiveDomain(), where we can merge existing mappings (rows of
active domains).

Or, we assume that only the active domains of some objects need to be in-
dexed – e.g., identifiers of complex structures or attributes influencing querying
efficiency.

Or, composite morphisms do not have to be explicitly materialised into a map-
ping. We use a lazy strategy, where only a repeatedly used composite morphism
is materialised.

3.6 Benefits of Category Theory
To conclude the description of the proposed approach, we discuss the main ben-
efits of the utilisation of category theory. At first sight, it may seem that the
existing models are rich enough to be used as a mediator for the representation
of multi-model data. Unfortunately and naturally, none of the popular models

27https://docs.oracle.com/en/java/javase/17/docs/api/
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covers all specifics of the others and such a transformation would lead to com-
plex or unnatural and thus inefficient constructs. For example, we can consider
the well-known issue of representing graph data in the relational model or the
large difference between aggregate-oriented and aggregate-ignorant models and
the respective (de)normalisation of data. More abstract data representations also
exist, however, their expressive power is still limited as we discuss in [26].

The next important aspect is the further exploitation of the categorical repre-
sentation. Our aim is not only to find a “tool” for representing multiple intercon-
nected models. As we have discussed in [1], this unified representation enables one
to perform further data management tasks, such as cross-model querying or evolu-
tion management, uniformly, correctly, and efficiently. Although these extensions
form our (near) future fork, in the following section we provide an example that
demonstrates the indicated advantages, namely, in the case of querying.

3.6.1 Application - Querying
To demonstrate how the categorical querying over the proposed categorical frame-
work could work, let us consider the following sample multi-model query [140]:
“For each customer who lives in Prague, find a friend who ordered the most
expensive product among all customer’s friends.” As for the result and its rep-
resentation, Figure 3.15 depicts a possible schema of the projected properties
including its mapping to the output graph model representation (hence depicted
in the blue colour). In addition, the figure illustrates the multiple logical models
incorporated in the query:

• The relational model represents the data about customers and their ad-
dresses, i.e., kinds Customer and Address. (Note that the exploitation of a
composite morphism enables us to directly “access” object City.)

• The graph model represents the data about customers and their friends,
i.e., kinds Customer and Friend.

• The column model represents the relationships between customers and their
orders, i.e., kinds Customer and Order.

• The document model represents the order that (possibly) consists of mul-
tiple ordered products, i.e., kinds Order and Product.

Note that for clarity and simplicity, the objects of the projection schema are
labelled with the same signatures as the corresponding objects of the schema
category. The apostrophe “’” is added to distinguish unique labels in the case
of duplicity caused by morphism friend with the same source and target object
Customer. The same applies to morphisms.

Finally, during the evaluation of the query, one may exploit the fact that the
identifier of kind Customer is a part of the identifier of kind Order, therefore the
query evaluation does not have to consider data from the column model. In other
words, there is an opportunity to exploit overlapping data for different evaluation
strategies.
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Figure 3.15: Projection of the result corresponding to the graph pattern Customer
− knows → Friend − ordered → Product and its mapping to the graph model

Query Execution

The execution of the sample query would consist of multiple stages:

I. Query Pattern and its Mapping First, a pattern describing the query is
created. As proposed in our previous work [1], a query pattern could be repre-
sented in the form of a query category structurally corresponding to a part of the
schema category. In other words, there is a functor between the query category
and schema category.

In general, the query pattern could be similar to the projection schema from
Figure 3.15, but additionally enriched by query operators (e.g., union, aggrega-
tion, or filtering condition), all represented in the form of additional categorical
objects or morphisms.

The idea of a categorical query language is not new [54]. In comparison to,
e.g., Cypher [149] the advantage of categorical representation is the possibility
to exploit composite morphisms which simplify the structure of a query. Hence,
a complex graph traversal can be represented by a single composed morphism
– e.g., 39.35.23.22 : Customer → Product can be used to express the traversal
from Customer to Product, corresponding to the composition of morphisms 22,
23, 35, and 39. (Note that we use two morphisms in the example, namely,
23.22 : Customer → Order and 39.35 : Order → Product to represent the same
path.)

II. Query Decomposition The decomposition of a query into so-called query
parts [1] exploits the functor between the query pattern and the schema category
and the mapping of the schema category to particular databases (or their specific
models) to determine which query parts will be executed under which logical data
model. As denoted in Figure 3.16, a possible decomposition of the sample query
could be done as follows:

• Customers living in Prague will be evaluated in the relational model, i.e.,
the query part will be translated into an SQL statement.
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• Friends of the customers will be evaluated in the graph model, i.e., the
query part will be translated, e.g., into Cypher statement.

• The most expensive product ordered by a customer will be evaluated in the
document model, i.e., an aggregation query will be translated into, e.g., the
MongoDB query language [150].

Note that the column database in our sample scenario can be exploited in an
alternative query plan to simplify the query evaluation in the document database
to match a particular customer with all his/her orders. Moreover, note that the
projection of attributes in each query part forms a subset of objects of the query
pattern category.

SELECT customerId

FROM Customer

WHERE city = "Prague";


MATCH
    (c:CUSTOMER)
        -[:KNOWS]->
            (f:CUSTOMER)
RETURN
    c.id, c.name, c.surname,
    f.name, f.surname, f.id;


db.orders.aggregate( [
    { $unwind : "$items" },
    { $sort : { "items.price" : -1 } },
    { $group : {
	 _id : "$_id.customerId",
	 items : { $push : { name : "$items.name", price : "$items.price" }}
	 } },
    { $project: {
	 _id : 1,
	 name : { $arrayElemAt : [ "$items.name", 0 ] },
	 price : { $arrayElemAt : [ "$items.price", 0 ] } } 
    } ] );
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Figure 3.16: The decomposition of projection pattern and examples of transla-
tions of corresponding query parts into particular statements

III. Evaluation of Query Parts If independent of each other, the evaluation
of query parts can be executed in parallel and the partial results are then joined
and merged. During the execution of each query part (translated into a particular
query language or at least constructs specific for the corresponding logical data
model), we can utilise existing approaches and exploit all benefits of its logical
representation, including single-model query execution plans and management.

IV. Unification and Joining of Intermediate Results Each query part
produces a result translated to appropriate objects and morphisms in the query
pattern using the model-to-category transformation. The main benefit of unifying
categorical representation is the simple joining of partial results. Considering
other models, having all partial results represented in the relational model, its
joining could be expensive, e.g., without having respective indices. Similarly, the
joining of aggregates can also be expensive due to possibly denormalised and
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redundant data. Or, joining in the graph model may require a special edge that
connects two objects that are otherwise not connected.

On the contrary, the unifying categorical approach allows us to join the cor-
responding parts of the intermediate results of cross-model queries easily using
so-called pullbacks [20, 146], i.e., a generalisation of the Cartesian square and in-
tersection. As illustrated in Figure 3.17 using the respective colours, there will be
two pullbacks to join partial results between the relational and graph model (i.e.,
P1 = resultREL ▷◁100 resultGRAP H) and between the result of the first pullback
and document model (i.e., P2 = P1 ▷◁100′ resultDOC).
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Figure 3.17: Joining of intermediate results by pullbacks

In general, the joining of the intermediate results may be processed in an ar-
bitrary order. However, the selected strategies and joining execution plan should
be considered to reduce the time complexity. Nevertheless, multi-model joins add
a new level of complexity to querying [113] and form a largely open research area.

V. Transformation to the Desired Representation Finally, we transform
the categorical representation to the requested logical model representation. In
the sample query, the result is transformed into a graph representation as illus-
trated in Figure 3.18.
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Figure 3.18: The result of the query represented in a graph model
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Alternative Multi-Model Query Plan Alternatively, since we have over-
lapping data in the document and column model, we could use a different query
evaluation strategy. It would simplify the aggregate query in the document model,
but at the cost of one more join of results from different data models, i.e., an ad-
ditional pullback and possibly a large amount of data to be joined at the level of
the unifying model.

In general, the strong point of categorical querying over the categorical rep-
resentation is that the user does not explicitly have to know the logical represen-
tation of the data. E.g., having a query over multi-model PostgreSQL, the user
still has to be aware of the data logical representation, thus (s)he must decom-
pose the query into the relational, JSON, and XML parts and use model-specific
query constructs for them. Categorical representation allows one to use unified
query constructs across all models, then internally translated to model-specific
constructs.

The graph representation of the categories is natural and enables one to cover
all popular data models. In addition to the graph model, the categorical repre-
sentation involves several extensions, such as complex or overlapping identifiers,
required in other models. And what is most important, the theory behind enables
us to process the data easily, e.g., using composite morphisms.

3.7 Related Work
Each of the existing multi-model DBMSs [13] naturally and more or less painfully
provides an extension of the original data structures used for a single core model.
There also exist proposals of more general approaches. E.g., the NoSQL Abstract
Model [27] represents the data as named collections, each containing a set of blocks
consisting of a non-empty set of entries. Associative arrays [28] are defined as
mappings from pairs of unique (column and row) keys to values. Or, the Tensor
Data Model [29] introduces the idea of generalised matrices. However, we need to
target a more abstract level for a truly universal approach covering the specifics
of various common data models and especially their combinations.

In the context of polystores, TyphonML [137] enables us to specify conceptual
entities, their attributes, relations, and datatypes, and map them to different
single-model DBMSs of a polystore. Similarly, in paper [138], an ER schema is
partitioned and then mapped to different data models. However, none of these
approaches provides a detailed specification of how the respective inter-model ref-
erences should be managed, whether overlapping is supported, how cross-model
querying will be handled, etc. There also exist older proposals which, however,
consider only earlier database systems and respective models [151, 152, 153].
Recently, paper [30] introduced the notion of U-Schema, involving entity type,
simple and multivalued attributes, key attribute, and three kinds of relationships
between entity types: aggregation, reference, and inheritance. In addition, there
are relationship types and structural variations of entity and relationship types.
The authors show the mapping between U-Schemas and common data models in
both directions. However, in this case, the consideration of inter-model links and
related aspects is limited. In addition, despite the authors trying to ensure unifi-
cation of the models, they involve special constructs that cover specific features
of particular models. On the contrary, we provide a general abstract representa-
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tion of popular models based on the natural notion of a graph that covers all the
indicated issues.

The idea of exploiting category theory to represent data models is not new.
Most of the approaches, denoted as bottom-up, start from a single logical model
(namely, relational [134, 20], or object-relational, i.e., hierarchies of classes [19])
and define a respective schema category and operations using standard categor-
ical approaches (such as functors). Paper [135] proposes a categorical approach
for relational (CSV), document, and graph (RDF) models, but only with intra-
model data migrations and querying. A top-down approach from [18] defines a
schema category covering various conceptual modelling approaches, but unfortu-
nately only concerning the most common model of that time – relational. The
exploitation of category theory for multi-model data is so far quite limited. On
the contrary, in our proposal we cover all the currently popular models together
with respective inter-model links, i.e. a truly multi-model solution.

3.8 Conclusion
In this paper, we continue to build a general framework for unified modelling
and management of multi-model data. We believe that category theory is the
right “tool” for representing various data models using a rigorously defined and
sufficiently general theory. This text shows that it enables us to grasp and process
the varying non-standardised multi-model world uniformly and precisely.

The proposed approach, implemented in MM-cat, has several important ad-
vantages for multi-model data modelling:

1. It enables us to model the multi-model schema using a data structure which:

(a) can be automatically extracted from a well-known conceptual model
(e.g., ER),

(b) is enough general to cover all known models, and
(c) is based on a well-known notion of a graph.

2. It enables us to map the conceptual model of the data to any (combination
of) DBMSs and respective models, whereas the user does not need to deal
with implementation specifics.

3. Besides the schema category which describes the schema of the data, the
instance category serves as a mediator which enables the unified represen-
tation of an instance of the data. It is expected to be materialised only to
the necessary extent, e.g., to represent intermediate results of queries.

The core categorical approach also provides a range of applications simplifying
and optimising various aspects of multi-model data management:

• Conceptual Query Language: The level of abstraction of the proposed cat-
egorical approach enables one to define a conceptual query language that
can be mapped to any multi-model query language. In addition, since a
graph backs the categorical model, the query language might be inspired
by graph query languages like, e.g., Cypher [149] or SPARQL [154] and thus
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naturally adopted by the users. The conceptual queries can be translated
to expressions required by a particular DBMS using a similar strategy.

• Data Migration: Migration of data between various DBMSs (with the same
or distinct data models) can be done much easier with the unified categorical
representation of any (combination of) data models. The user only specifies
another mapping between the schema category and the target model.

• Evolution Management: Having the unified categorical representation, both
intra and inter model modifications of the schema are reduced to the same
task – modification of a graph representing the schema category and a re-
spective propagation of changes to all affected parts. Again, the key issues
are related to the mapping between the categorical and logical representa-
tion which needs to be extended by the user when needed.

• Extensibility: Since the categorical model is defined universally for any data
model, it can then be applied to any multi-model DBMSs. We do not define
special constructs for particular models (such as, e.g., the relationship type
in [30]). In addition, the idea enables one to cover even data models that
are not currently known; the only requirement is that they can be described
using the same categorical structures.

Finally, note that the approach is also applicable for single-model systems.
Thanks to the unification of the models, it can be applied to both NoSQL
databases and traditional relational databases. A single-model system can be
managed separately; however, a more probable approach can reflect the idea of
polyglot persistence, where multi-model data is stored in several single-model
systems, each suitable for a particular part of the data.

3.8.1 Future Work
As indicated before, in the (current and) future work, we will primarily aim
at correct and efficient evolution management and data migration. Our second
target is a conceptual query language that would enable us to query across the
distinct data models without knowing their specifics. In both cases, we can
directly exploit the features of the proposed framework.

On the other hand, even the core idea can be further extended. Some of the
extensions may involve:

• Simple types: In the current proposal, we consider a basic set of simple
types, i.e., string and numeric. However, the existing DBMSs support var-
ious simple types, even with distinct features.

• Cardinalities: The set of supported cardinalities can be extended with other
types, such as, e.g., numeric specification of the bounds, a set of bounds,
etc. The respective composition of morphisms then needs to be extended
and special cases for particular models must be reflected in the wrappers.

• Aliasing: The dynamically derived names could have also cardinality (1, N)
and thus enable a kind of aliases, i.e., naming the same data differently for
different purposes, e.g. simpler expression of queries.
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• Evaluation of values: The access paths could be extended with both con-
stant values and basic functions for the evaluation of new values (e.g., var-
ious aggregations).
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Abstract
The variety feature of Big Data, represented by multi-model data, has brought
a new dimension of complexity to all aspects of data management. The need to
process a set of distinct but interlinked data models is a challenging task.

In this paper, we focus on the problem of inference of a schema, i.e., the
description of the structure of data. While several verified approaches exist in the
single-model world, their application for multi-model data is not straightforward.
We introduce an approach that ensures inference of a common schema of multi-
model data capturing their specifics. It can infer local integrity constraints as well
as intra- and inter-model references. Following the standard features of Big Data,
it can cope with overlapping models, i.e., data redundancy, and it is designed to
process efficiently significant amounts of data.

To the best of our knowledge, ours is the first approach addressing schema
inference in the world of multi-model databases.

Keywords
• Multi-model data • Schema inference • Cross-model references • Data re-
dundancy

4.1 Introduction
The knowledge of a schema, i.e., the structure of the data, is critical for its
efficient processing. We can distinguish schema-full, schema-less, and schema-
mixed database management systems (DBMSs), where the schema definition is
required, ignored, or can be only partial. However, despite the specification of
a schema when storing the data (i.e., the so-called schema-on-write approach) is
not required in some systems, the knowledge of the structure of the data is needed
when the data is to be processed, i.e., the so-called schema-on-read approach is
still essential. Hence, when the user does not define the schema, it needs to be
extracted from the data.

The problem of inference of a schema for a given data has been studied for
several years, mainly for XML [71] and JSON [155], i.e., the document model,
which has the richest structure among the current common models. For XML
documents, where the order of elements is significant, the respective schemas in-
volve regular expressions that describe the structure of the data. According to
the Gold’s theorem [87] regular languages are not identifiable only from positive
examples (i.e., sample XML documents), so either heuristics [78, 156] or a re-
striction to an identifiable subclass of regular languages [84] is applied. Newer
approaches for currently popular JSON format, where the order is not captured
in the schemas and, thus, the inference process is in this manner less complex,
focus mainly on schema inference for Big Data [65, 92]. However, the volume
of Big Data is not its only challenge. The variety feature represented by the
multi-model data adds a new dimension of complexity – the need to process a set
of distinct but interlinked data models.
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Example 4.1. Figure 4.1 provides an example of a scenario inspired by the multi-
model benchmark UniBench.1 It depicts an ER model where we omit attributes,
identifiers, and cardinalities for the sake of simplicity.2 The colours denote the
particular logical models in which the respective part of the ER model is rep-
resented – blue graph, violet relational, yellow key/value, and two document
models, green JSON and grey XML. The example represents an e-shop where
customers, members of a social network capturing mutual acquaintance, order
products from various vendors.

Customer

Tag

HasInterest

HasTag

Post

HasCreated Ordered Order

Vendor

Items

Product HasManual

Knows

Contact Type

Manufactured

Graph

Relational

XML

JSON

Key/Value

Columnar ContactType

ManualInvoice

IssuedTo

IssuedBy

Reflects

Person

Figure 4.1: Extended UniBench multi-model scenario

At the logical level, the transition between two models can be expressed either
via (1) inter-model references or by (2) embedding one model into another (such
as, e.g., columns of type JSONB in relational tables of PostgreSQL3). Another
possible combination of models is via (3) cross-model redundancy, i.e., storing the
same data fragment in multiple models.

In the case of multi-model data, the problem of schema inference is further
complicated by contradictory features of the combined models (such as structured
vs semi-structured, aggregate-oriented vs aggregate-ignorant, order-preserving vs
order ignoring etc.), inter-model references and cross-model integrity constraints
(ICs) in general, the existence of a (partial) schema in schema-full/schema-mixed
systems preserving the data, or cross-modal redundancy. Besides, there are veri-
fied single-model approaches that, however, naturally target only specifics of the
particular data model. And, last but not least, the question is how to represent
the resulting multi-model schema, i.e., whether to choose one of the models (and
which one) or whether a more abstract representation, such as UML [32], is a
better choice.

To address the key indicated problems, we extend our previous research results
both in the area of inference of an XML schema [78, 156] and unified management
of multi-model data [64, 2]. We propose a novel approach capable of inference
of a schema for a given set of multi-model data. The main contributions are as
follows:

1http://udbms.cs.helsinki.fi/?projects/ubench
2The full model will be provided in the following examples.
3https://www.postgresql.org/

143

http://udbms.cs.helsinki.fi/?projects/ubench
https://www.postgresql.org/


• In the proposed approach, we support all popular data models (relational,
array, key/value, document, column, graph, and RDF) and all three types
of their combination (embedding, references, and redundancy).

• We can cover schema-less, schema-mixed, and schema-full systems, i.e., if
needed, we can re-use an existing schema both user-defined or inferred using
a verified single-model approach.

• We support both local integrity constraints (e.g., unique or primary key)
and global integrity constraints, i.e., intra-model and inter-model references.

• We introduce two versions of the approach – record-based and property-
based – and experimentally verify their appropriateness for structurally
different data.

• Following the current trends, the approach is designed to be parallelisable
and, thus, scalable for Big Data.

• The proposed approach was implemented as a tool called MM-infer [109],4
i.e., the proof of the proposed concept.

Outline The rest of the paper is structured as follows: In Section 4.2 we
overview related work and motivate the proposed approach. In Section 4.3 we
discuss the currently popular data models, their specifics, and the respective in-
fluence on schema inference. In Section 4.4 we describe in detail the proposed
approach. Section 4.5 describes the architecture and implementation details of
MM-infer and Section 4.6 introduces results of experiments. In Section 4.7 we
conclude and outline future work.

4.2 Related Work
Several papers currently deal with the inference of a schema for a given set of
sample data. We can divide them into approaches inferring (1) structural and (2)
semantic schema. The approaches focus mainly on the document model expressed
using XML or JSON in the former case. The critical difference is whether the
order of child properties is significant or not. And in addition, since the JSON
documents are closely related to NoSQL databases and Big Data, the approaches
often support scalable processing, i.e., they can be parallelised. In the latter case
of inference of a semantic schema, the aim is different. The approaches focus
on the inference of a schema describing the semantics of the information stored
in the data, usually expressed in RDF [66], but not its logical structure within
a selected data model. Since this is not our current main target, we refer an
interested reader to a recent extensive survey in [157].

XML Schema Inference An extensive comparison of XML schema inference
approaches can be found in [72]. The approaches are older, reflecting the de-
creasing popularity of XML with the arrival of Big Data and JSON. They can

4https://www.ksi.mff.cuni.cz/˜koupil/mm-infer/
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be classified according to various criteria such as, e.g., the type of the result (i.e.,
the language used), the way it is constructed, the inputs used, etc.

Heuristic approaches [74, 75, 76, 77, 78, 79] are based on experience with
manual construction of schemas. Their results do not belong to any specific
class of XML grammars, and they are based on the generalisation of a trivial
schema using a set of predefined heuristic rules, such as, e.g., “if there are more
than three occurrences of an element, it is probable that it can occur arbitrary
times”. These techniques can be further divided into methods that generalise the
trivial schema until a satisfactory solution is reached [75, 76, 78] and methods
that generate a considerable number of candidates and then choose the best
one [77]. While in the first case, the methods are threatened by a wrong step
which can cause the generation of a suboptimal schema. In the latter case,
they have to cope with space overhead and specify a proper function for the
evaluation quality of the candidates. A special type of heuristic methods are so-
called merging state algorithms [76, 78]. They are based on the idea of searching
a space of all possible generalisations, i.e., XML schemas, of the given XML
documents represented using a prefix tree automaton. By merging its states and
thus generalising the automaton, they construct the sub-optimal solution. Since
the space is theoretically infinite, only a proper subspace of possible solutions is
searched using various heuristics.

On the other hand, methods based on inferring of a grammar [80, 81, 82, 83,
84, 85, 86] exploit the theory of languages and grammars and thus ensure a certain
degree of quality of the result. We can view an XML schema as grammar and an
XML document valid against the schema as a word generated by the grammar.
Although grammars accepting XML documents are, in general, context-free [158],
the problem can be reduced to inferring a set of regular expressions, each for a
single element (and its subelements). But, since, according to Gold’s theorem [87]
regular languages are not identifiable only from positive examples (i.e., sample
XML documents which should conform to the resulting schema), the existing
methods exploit various other information such as, e.g., the predefined maximum
number of nodes of the target automaton, restriction to an identifiable subclass
of regular languages, etc.

JSON Schema Inference The current popular JSON schema inference ap-
proaches are described and compared in [16]. Paper [90] statically compares
several schema extraction algorithms over multiple NoSQL stores.

Paper [92] presents an approach for inferring versioned schemas from docu-
ment NoSQL databases based on the Model-Driven Engineering (MDE) along
with sample applications created from such inferred schemas. This research is
furthered by dissertation thesis [90] and by paper [93] who tackle the issues of
visualisation of schemas of aggregate-oriented NoSQL databases and propose de-
sired features that should be supported in visualisation tools. Most recently,
Fernandez et al. expand upon the meta-model from paper [92] by introducing a
unified meta-model capable of modelling both NoSQL and relational data [30].

Authors of [94] propose an approach to extract a schema from JSON data
stores, measuring the degree of heterogeneity in the data and detecting structural
outliers. They also introduce an approach for reconstructing schema evolution
history of data lakes [95]. Additionally, jHound [96], a JSON data profiling tool
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is presented, which can be used to report key characteristics of a dataset, find
structural outliers, or detect documents violating best practices of data modelling.
Finally, Josch [97] is a tool that enables NoSQL database maintainers to extract a
schema from JSON data more efficiently, refactor it, and then validate it against
the original dataset.

Authors of [65] propose a distributed approach for parameterized schema in-
ference of massive JSON datasets and introduce a simple but expressive JSON
type language to represent the schema.

Paper [98] provides an MDE-based approach for discovering schema of multi-
ple JSON web-based services. Later its authors put it into practice as a web-based
application along with a visualisation tool [99].

Last but not least, Frozza et al. introduce a graph-based approach for schema
extraction of JSON and BSON5 document collections [89] and another inference
process for columnar NoSQL databases [103], specifically HBase.6

Summary As we can see, the amount of related work is significant, and there
exist approaches focusing on many specifics of schema inference. However, to the
best of our knowledge, currently, there exists no approach that deals with the
inference of a multi-model schema. At first sight, the single-model approaches
can be reused. However, this idea is not that straightforward. As we will show
in the following sections, the particular models have distinct, even contradictory
features, so first, a way to unify them must be found. Another complication is
the mutual references and redundancy that need to be considered.

4.3 Data Models and Their Unification
In the rest of our work, we consider the following currently popular data models:
relational, array, key/value, document, column, graph, and RDF, i.e., we support
all currently popular structured and semi-structured data to cover all combina-
tions of models used in the existing popular multi-model systems.7 First, we
provide a brief overview of their features. Next, we discuss their unification to
simplify and clarify the further explanation of the proposal.

4.3.1 Overview of Models
From the structural point of view, which is our main target, the core classification
is based on the complexity of the supported data structures. Aggregate-oriented
models (key/value, document, and column) primarily support the data structure
of an aggregate, i.e., a collection of closely related (semi-)structured objects we
want to treat as a unit. In the traditional relational world, we would speak about
data de-normalisation. On the contrary, aggregate-ignorant models (relational,
array, graph, and RDF) are not primarily oriented to the support of aggregates.
The relational world strongly emphasises the normalisation of structured data,
whereas the graph model is, in principle, a set of flat objects mutually linked by
any number of edges.

5https://bsonspec.org
6http://hbase.apache.org
7https://db-engines.com/en/ranking
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Relational Model Relational model is based on the mathematical term rela-
tion, i.e. a subset of Cartesian product. The data are logically represented as
tuples forming relations. Each tuple in a relation is uniquely identified by a key.
A part of the Structured Query Language (SQL) [159], called Data Definition
Language (DDL), is denoted for the definition of a relational schema, i.e., the
names of relation, names of attributes, their domains (simple data types), and
integrity constraints (i.e., keys, foreign keys etc.).
Example 4.2. In Figure 4.2 we can see an example of data from the relational
model, namely the one implemented in PostgreSQL as reflected by the particular
data types. On the left we can the respective part of ER model from Figure 4.1
and its transformation to three respective tables (relations) Vendor, Product, and
Manufactured with the respective columns.

Vendor ProductManufactured

country (Varchar(56))
name (Text)

cdf (Char(16))

id (Long)
asin (Char(16))
title (Text)
price (Decimal)
brand (Text)

productId (Long)

imgUrl (Varchar(256))

id name country cdf

10001 Books Inc. Czechia ...

10002 Toys Inc. Slovakia ...

productId asin title price brand imgUrl

103 ... Pyramids 300 Book ...

104 ... Pyramids 450 Audiobook null

105 ... Death 300 Book ...

106 ... Baby Doll 2500 Toy ...

107 ... RacingCar 1500 Toy ...

10001 104

10001 105

10002 106

10002 107

10001 103

id productId

Figure 4.2: An example of relational data

Array Model The array model works with the notion of multi-dimensional ar-
ray being represented as a mapping from a set of dimensions to a set of attributes.
In this sense, the relational model represents the case of one dimension, i.e., the
identifier (index) of a particular tuple of a relation, or two dimensions correspond-
ing to an identifier of a tuple and a particular attribute. Also, in this case, the
DDL specifies the structure of the arrays, i.e., their names, the domains, ranges,
and steps of dimensions, the names and domains of attributes, and respective
integrity constraints.
Example 4.3. In Figure 4.3 we can see how the the same part of ER schema used
in Figure 4.2 would be transformed to the array model. While one-dimensional
arrays Vendor and Product have the same structure, two-dimensional array Man-
ufactures occupies much more space.

Key/Value Model The key/value model is the simplest aggregate-oriented
data model. It corresponds to associative arrays, dictionaries, or hashes. Each
record in the key/value model consists of an arbitrary schema-less value and its
unique key, enabling storing, retrieving, or modifying the value.
Example 4.4. In Figure 4.4 we can see an example of key/value data. Both the ER
model on the left and visualisation of the data on the right depict the simplicity
of the model – the identifier ProductID and respective unstructured (binary) data
content denoted as Content.
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Vendor ProductManufactured

country (String)
name (String)
id (Integer)

asin (String)
title (Text)
price (Double)
brand (String)

productId (Integer)

productId

103

asin title price brand

... Pyramids 300 Book

104

105

106

107

... Pyramids 450 Audiobook

... Death 300 Book

... Baby Doll 2500 Doll(tm)

... RacingCar 1500 Car

id

10001

10002

name country

Books Inc. Czechia

Toys Inc. Slovakia

id10001 10002

103 True

productId

104

105

106

107

True

True

True

True

Figure 4.3: An example of array data

Product Manual

ProductId (String)

HasManual

ProductId Content

"pdf"

"mp4"

106

107
Content (Binary)

Figure 4.4: An example of key/value data

Column Model The (wide) column model can be interpreted as a two-dimensi-
onal key/value model. It consists of the notions of a column family (table), a row,
and a column. However, unlike the relational model, each row of a column family
(table) can have different columns (having different names and/or data types).
In other words, each row is a set of key/value pairs independent of other rows of
the same column family. In some wide column systems, such as Cassandra,8 it
is possible to specify (a part of) a schema of column families. Usually, a set of
optional/compulsory columns is common for rows of the column family, whereas
others can be arbitrary. If only a part of the schema can be specified, we speak
about schema-mixed systems.
Example 4.5. In Figure 4.5, we can see sample column data, namely the approach
used in Cassandra, corresponding to the respective part of ER model on the left.
Each row in the column family on the right is identified using column id and
further contains three columns name, country, and cdf of type String. Next, it
contains column Industry of complex type Set<String> (i.e., a set of strings) and
column Contact of type Map which is supported by Cassandra. Since the column
Industry is not compulsory, the respective value is missing in some rows.

cdf
...

id
10001

name
Books Inc.

country
Czechia

Industry
Printhouse
Audiomedia

cdf
...

id
10002

name
Toys Ins.

country
Slovakia

Contact
address ...
phone ...

Contact
address ...
phone ...

website ...

Column family Vendor

id (Long)
name (String)
country (String)
cdf (String)
industry (Set<String>)

VendorContactType

value (String)key (String)

Figure 4.5: An example of column data

8https://cassandra.apache.org/_/index.html
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Document Model The document (semi-structured) model is based on the
idea of representing the data without an explicit and separate definition of its
schema. Instead, the particular pieces of information are interleaved with struc-
tural/semantic tags that define their structure, nesting etc.

The XML is a human-readable and machine-readable markup language. The
data are expressed using elements delimited by tags containing simple text,
subelements, or their combination. Additional information can be stored in the
attributes of an element. Standard languages like Document Type Definition
(DTD) [71] or XML Schema [104, 105] enable to specify the structure of XML
documents using regular expressions.
Example 4.6. Figure 4.6 represents an example of document data expressed in
XML. As we can see, the structure of invoices can differ depending on whether
the invoice is for a customer or for a vendor. The XML document with root
element invoice identified by attribute invoiceNo contains identification of the
respective customer (element customerId) or vendor (element vendorId), date of
creation (element creationDate), due date (optional element dueDate present if
the invoice is not paid yet), list of ordered items (subelements product of element
items), total price of the order (element totalPrice), and an indication whether it
was already paid (optional element paid). So, there can exist several structurally
different version of an invoice in the document collection depending on their
status.

title (String)
productid (String)

Customer Order Items Product

Invoice

IssuedTo

IssuedBy

Reflects

Vendor

quantity (String)

currency (String)
totalPrice (Double)
paid (Boolean)
invoiceNo (String)
dueDate (DateTime)
creationDate (DateTime)

customerId (Long)

vendorId (Long)

price (String)

<invoice invoiceNo="2022001">

  <customerId>1</customerId>

  <creationDate>2022-02-22</creationDate>

  <items>

    <product productid="107" title="RacingCar" price="1500" quantity="2" />

    <product productid="105" title="Death" price="300" quantity="1" />

  </items>

  <totalPrice currency="CZK">1800</totalPrice>

  <paid/>

</invoice>

<invoice invoiceNo="L810822">

  <vendorId>10001</vendorId >

  <creationDate>2022-02-27</creationDate>

  <dueDate>2022-03-29</dueDate >

  <items>

    <product productid="105" title="Death" price="240" quantity="8" />

    <product productid="103" title="Pyramids" price="240" quantity="5" />

    <product productid="104" title="Pyramids" price="360" quantity="2" />

  </items>

  <totalPrice currency="CZK">3840</totalPrice>

</invoice>

Figure 4.6: An example of document data expressed in the XML format

The JSON is a human-readable open-standard format. It is based on the idea
of an arbitrary combination of three basic data types used in most programming
languages – key/value pairs, arrays, and objects. Contrary to XML, the specific
order of items in a JSON document is not essential. JSON Schema [106] language
enables to specify the structure of JSON documents.
Example 4.7. In Figure 4.7 we can see an example of document data expressed in
JSON. Again, we can see two structurally different documents belonging to the
same collection, this time describing orders. The order is identified using a simple
property id and further contains embedded documents customer, contact, and
Items. Note that some information about customers and products may be stored
redundantly in each order where the customer or product appears. In addition,
since the property contact represents a map which is not supported in JSON, it
corresponds to a set of optional properties.
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{
  _id : 2022001

  customer: {

    customerId: 1,

    firstName: Mary,

    lastName: Smith,

    street: Letenská,

    city: Prague,

    postalCode: 11000,

    country: Czechia

  },
  contact : {

    cellphone: +420123456789,

    email: mary@smith.cz

  },
  items: [ {

      productid: 107,

      title: RacingCar,

      brand: Toy,

      price: 1500,

      quantity: 3

    }, {

      productid: 105,

      title: Death,

      brand: Book,

      price: 300,

      quantity: 1

    } ] }

{
  _id : 2022078

  customer: {

    customerId: 3,

    firstName: John,

    lastName: Newlin,

    street: Technická,

    city: Prague,

    postalCode: 16200

  },
  contact : {

    phone: +420222333444,

    email: john@cuni.cz

  },
  items: [ {

      productid: 104,

      title: Pyramids,

      brand: Audiobook,

      price: 450,

      quantity: 1

    }, {

      productid: 107,

      title: RacingCar,

      brand: Toy,

      price: 1500,

      quantity: 2

    } ] }

_id (Number)

Customer Ordered Order

Items

ContactType

Product

customerId (Number)

value (String)key (String)

title (String)

price (Number)

productid (Number)

brand (String)

firstName (String)
lastName (String)

city (String)

country (String)
postalCode (String)

street (String)
quantity (Number)

Figure 4.7: An example of document data expressed in the JSON format

Graph Model The graph data model is based on the mathematical definition
of a graph, i.e., a set of vertices (nodes) V and edges E corresponding to pairs
of vertices from V . Nodes and edges are assigned with attributes, each having a
name and domain (simple type). In addition, both nodes and edges have their
type, enabling to group nodes/edges that represent the same piece of reality.
However, the schema of nodes/edges does not (or even is not expected to) be
defined.
Example 4.8. Figure 4.8 provides an example of graph data. As we can see, from
the structural aspect, the model contains only nodes, edges, and attributes with
simple types. In this example, the nodes correspond to ER entities (i.e., Post,
Tag, Person, and Customer) and edges to respective ER relationships.

_tgt (REF)
_src (REF)

PersonPost HasCreated Knows

length (Long)
content (String)
language (String)
browserUsed (String)
locationIP (String)
creationDate (String)
imageFile (String)
id (Long)

_tgt (REF)
_src (REF)

Tag HasInterestHasTag

_tgt (REF)
_src (REF) id (Long)

value (String) _tgt (REF)
_src (REF)

Customer

country (String)
postalCode (String)
city (String)
street (String)
birthday (DateTime)
gender (String)
lastName (String)
firstName (String)
id (Long)

value: review

firstName: Mary

lastName: Smith

gender: Female

birthday: 1989-09-21

street: Letenská

city: Prague

postalCode: 11000
country: Czechia

HasTag
HasCreated

Knows

1
Person Customer

3

imageFile: ...
creationDate: 2022

locationIP: 192.168.0.11

browserUsed: Safari

language: Czech

content: ...

length: 154

Post

4
Tag

HasInterest

2

firstName: Anne

lastName: Maxwell

gender: Female

birthday: 1996-04-17

street: Ke Karlovu

city: Prague

postalCode: 11000

Person

Figure 4.8: An example of graph data

RDF Model The RDF model corresponds to a directed graph composed of
triple statements. The statement is represented by a node for the subject, a node
for the object, and an edge that goes from the subject to the object represent-
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ing their mutual relationship. Each of the three parts of the statement can be
identified by a URI.

The RDF Schema (RDFS) [160] or the Web Ontology Language (OWL) [161]
enable to define a schema of RDF data. However, it does not express the structure
of the data, but the semantics, i.e., classes to which the represented entities of
the real word belong, their features and mutual relationships etc.

Multi-Model Data Multi-model data are in general data which are logically
represented in more than one data model. The currently existing multi-model
DBMSs [13] differ in the strategy used to extend the original model to other
models or to combine multiple models. The new models can be supported by
adopting an entirely new storage strategy, an extension of the original storage
strategy, a new interface, or even no change in the original storage strategy (used
for trivial cases). From the logical level, the transition between two models can
be expressed either via:

1. inter-model references,

2. embedding one model into another (e.g., columns of type JSON in tables of
the relational model of PostgreSQL9), or

3. multi-model redundancy, i.e., storing the same data fragment in two or more
distinct models, usually for efficient query evaluation.

Example 4.9. For the sake of clarity, the complete set of sample multi-model data
corresponding to the ER model in Figure 4.1 is provided in Figure 4.9. The figure
illustrates the need for a multi-model schema inference approach. As we can see,
even this simple example depicts how hard it is to manage multi-model data and
discover the overall structure, references, redundancy etc., within distinct models
and their specifics.

<invoice invoiceNo="2022001">

  <customerId>1</customerId>

  <creationDate>2022-02-22</creationDate>

  <items>

    <product productid="107" title="RacingCar" price="1500" quantity="2" />

    <product productid="105" title="Death" price="300" quantity="1" />

  </items>

  <totalPrice currency="CZK">1800</totalPrice>

  <paid/>

</invoice>value: review

firstName: Mary

lastName: Smith

gender: Female

birthday: 1989-09-21

street: Letenská

city: Prague

postalCode: 11000
country: Czechia

HasTag
HasCreated

Knows

1
Person Customer

3

imageFile: ...
creationDate: 2022

locationIP: 192.168.0.11

browserUsed: Safari

language: Czech

content: ...

length: 154

Post

4
Tag

HasInterest

2

firstName: Anne

lastName: Maxwell

gender: Female

birthday: 1996-04-17

street: Ke Karlovu

city: Prague

postalCode: 11000

Person
{
  _id : 2022001

  customer: {

    customerId: 1,

    firstName: Mary,

    lastName: Smith,

    street: Letenská,

    city: Prague,

    postalCode: 11000,

    country: Czechia

  },
  contact : {

    cellphone: +420123456789,

    email: mary@smith.cz

  },
  items: [
    {

      productid: 107,

      title: RacingCar,

      brand: Toy,

      price: 1500,

      quantity: 3

    }, {

      productid: 105,

      title: Death,

      brand: Book,

      price: 300,

      quantity: 1

    }

  ]
}

10001 104

10001 105

10002 106

10002 107

10001 103

id productIdproductId asin title price brand imgUrl

103 ... Pyramids 300 Book ...

104 ... Pyramids 450 Audiobook null

105 ... Death 300 Book ...

106 ... Baby Doll 2500 Toy ...

107 ... RacingCar 1500 Toy ...

ProductId Content

"pdf"

"mp4"

106

107

cdf
...

id
10001

name
Books Inc.

country
Czechia

Industry
Printhouse
Audiomedia

cdf
...

id
10002

name
Toys Ins.

country
Slovakia

Contact
address ...
phone ...

Contact
address ...
phone ...

website ...

Figure 4.9: An example of multi-model data

9https://www.postgresql.org/
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Regarding the definition of a schema, currently there exists no standard
language for expressing the structure of multi-model data. More abstract ap-
proaches, such as the Entity-Relationship (ER) model [31, 147] or the Unified
Modeling Language (UML) [32], or our proposal [2] based on category theory [133]
can be used.

4.3.2 Unification of Models
Since the terminology within the considered models differs, we provide a unifica-
tion used throughout the text in Table 4.1.

Table 4.1: Unification of terms in popular models

Unifying
term

Relational Array Graph RDF Key/Value Document Column

Kind Table Matrix Label Set of
triples

Bucket Collection Column
family

Record Tuple Cell Node /
edge

Triple Pair (key,
value)

Document Row

Property Attribute Attribute Property Predicate Value JSON Field
/ XML
element or
attribute

Column

Domain Data type Data type Data
type

IRI /
literal /
blank
node

– Data type Data
type

Value Value Value Value Object Value Value Value

Identifier Key Coordinates
/
dimensions

Identifier Subject Key JSON
identifier /
XML ID or
key

Row key

Reference Foreign key – – – – JSON
reference /
XML
keyref

–

Array – – Array – Array JSON array
/ repeating
XML
elements

Array

Structure – – – – Set / ZSet /
Hash

Nested
document

Super
column

As we can see, the terminology is apparent in most cases, but some comments
might be needed in specific cases. A kind represents a single logical class of items
represented in each of the models. For instance, in the relational model, a kind
corresponds to the notion of a table, whereas in the graph model, a kind corre-
sponds to a class of nodes/labels specified by a label. A record then represents
one particular item of a kind, e.g., a row of a table or a graph node/edge with a
particular label.

A record consists of properties which can be either simple, i.e., having a simple
scalar value, or complex, i.e., containing other properties. The complex properties
enable hierarchically nested structure in the case of the document model and also
the column model in some cases (e.g., in Cassandra, where super-columns, i.e.,
a two-level hierarchy of the columns, are supported). With this view, the whole
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kind can be treated as a single complex top-level property, whose name is the
name of the kind and its child properties correspond to the properties of the
kind. For example, in the case of the document model, there is only one such
child property – the root element of the XML document or an anonymous root of
the JSON document. Or, in the case of the relational model, the child properties
of the top-level property correspond to the particular columns. We will use this
view to simplify the inference algorithms.

Domains and values correspond to data types and selected values in all the
models. Identifiers correspond to the notion unambiguously identifying particular
records. References from one kind to another are allowed only in the relational
and document model.

Last but not least, considering more complex data types, some models support
arrays or structures. We distinguish between homogeneous and heterogeneous
arrays. In the former case, an array should contain fields of the same type. In the
latter case, which is allowed only in the document model, an array can contain
fields of multiple types. Only in the case of the document model the type of an
array item can be complex (i.e., represent nested documents); in all other cases,
only arrays of simple (scalar) types are allowed.

4.4 Multi-Model Schema Inference
We have to assume that the input data may be stored either in one multi-model
DBMS or in a polystore, i.e., a set of single-model or multi-model systems. To
infer a multi-model schema, we first need to process all types of input data. In
addition, for some systems, a (partial) user-defined schema may exist. Or, for
some models, a verified single-model inference approach may exist. These results
can be integrated into the multi-model result.

First, in Section 4.4.1 we introduce two basic building blocks of the proposed
approach:

1. a type hierarchy used for inference of data types and

2. a unifying representation of a single record or a possibly existing schema
called Record Schema Description.

Next, we provide an overview of the general workflow of the algorithm in Sec-
tion 4.4.2. Then, we introduce in detail the inference approach, namely its record-
based (Section 4.4.3) and property-based (Section 4.4.4) version. Finally, we
discuss the process of inference of integrity constraints (Section 4.4.5).

4.4.1 Basic Building Blocks
To be able to process all the considered data models using a single unified
approach, we propose two auxiliary structures – the type hierarchy (see Sec-
tion 4.4.1) and the record schema description (see Section 4.4.1). The type hier-
archy enables us to cope with the problem of distinct sets of simple types used
in the models (or their system-specific implementations). The record schema de-
scription enables one to describe a schema of one kind (including the case of a
schema of a single record) regardless of its model(s).
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Type Hierarchy

The type hierarchy is a simple tree-based representation of basic data types that
can occur in the input models and their mutual relationships. It enables us to
quickly find a common supertype that covers a set of data types even though not
all of them are supported in each model.

The data types supported across the data models, forming the set T′, are rep-
resented as vertices vi and the natural hierarchy between the types is represented
as edges e : vj → vi, when values of vj involve also values of vi. For example,
the fact that String is a generalisation of Integer is represented as String →
Integer. Additionally, we assign a unique prime pi or number 1 to each vertex
vi. The numbers are assigned using the BFS algorithm, starting from 1 assigned
to the root of the hierarchy and ensuring that pi < pj if e : vi → vj. The integer
representation of node vi is then computed as Ti = ∏︁i

j=0 pj, where p0, . . . , pi are
prime numbers (or 1 assigned to the root) assigned to vertices v0, . . . , vi on the
path from root node v0 to vi. The concept of union type UT , is recursively defined
as a union (denoted using operator ⊕) of types Ti, i = 0, ..., n, i.e., UT := ⊕n

i=0Ti,
where Ti is a simple type or a union type. We will denote the set of all types,
i.e., both basic and union types as T.

Next, we can introduce an associative and distributive operator bestGeneral-
Type, defined as Ti ⊔ Tj := gcd(Ti, Tj), where gcd is the greatest common divisor
of prime products Ti and Tj representing the best general type of Ti and Tj.

In addition, we introduce additional associative and distributive operator type-
Merge, denoted as ⋄, defined as:

• Ti ⋄ Tj := Ti ⊕ Tj if Ti ̸= Tj

• UT ⋄ T := UT ⊕ T if T ⊈ UT

• UT ⋄ T := UT if T ⊆ UT

• UT1 ⋄ UT2 := UT1 ⊕ UT2 if UT1 ⊈ UT2

• UT1 ⋄ UT2 := UT1 if UT2 ⊆ UT1

Example 4.10. Let us illustrate an example of the type hierarchy of data types
used in Figure 4.1. The hierarchy illustrated in Figure 4.10 is represented as a
tree having an artificial root AnyType10 and then the natural type hierarchy. As
we can see, we do not consider the hierarchy typical for programming languages,
i.e., an object being a supertype. Instead, we consider representation hierarchy,
i.e., natural conversions between data types. For example, since anything can be
represented as a String, it is the root of the tree. Additionally, String is assigned
with 1, i.e., String is a supertype of all types.

As we can also see, each node is assigned with prime (in the BFS order),
whereas the data type itself is represented as a product (corresponding to the path
from String to the data type). For example, String := 1, Tuple := 1×2×19×43,
and Double := 1× 11× 31.

Additionally, in the example we also represent any ComplexType as an even
number, because Collection := 1 × 2 is a supertype of all complex types. This

10In usual implementations, we consider String as a supertype of all data types, therefore the
numbering of nodes starts from String instead of AnyType (i.e., AnyType is ignored).
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allows us to quickly distinguish simple and complex types using binary operations
(lowest bit value test).

String

Collection

Array Map Set

Tuple

Boolean Number TextBinary REF

Double Long Char

Decimal Varchar

DateTime

ComplexType SimpleType

AnyType

1

2 3 5 7 11 13 17

19 23 29 31 37 41

43 47 53

Figure 4.10: An example of Type Hierarchy

Example 4.11. Having the data type hierarchy from Figure 4.10, we can represent
a union type as a union of data types represented as products. For example:

• A union type UTs := Double⊕ Long of two simple types is computed as a
simple union of products, i.e., UTs := (1× 11× 31)⊕ (1× 11× 37).11

• A union of two complex types UTc := Tuple⊕Map is represented as UTc :=
2× 19× 43⊕ 2× 23.

• Finally, a union of two union types UTu := UTs ⊕ UTc is represented as a
union UTu := 11× 31⊕ 11× 37⊕ 2× 19× 43⊕ 2× 23.

Example 4.12. Computing the best general type can be done as follows:

• Having a union type of simple types UTs := 11×31⊕11×37, the best best
general type is computed as gcd(11× 31, 11× 37) = 11 ∼= Number.

• Having UTc := 2× 19× 43⊕ 2× 23, the best general type is computed as
gcd(2× 19× 43, 2× 23) = 2 ∼= Collection.

• Finally, the best general type of UTu := 11×31⊕11×37⊕2×19×43⊕2×23
is gcd(11× 31, 11× 37, 2× 19× 43, 2× 23) = 1 ∼= String.

Note that the implementation of finding the best general type may follow the
hierarchical structure of the tree. Therefore it is not needed to compute gcd() in
an explicit way (with the exponential complexity of the algorithm). Instead, we
traverse the tree from its root, and we try to divide all the type representations
by a prime assigned to the node. If it returns an integer, we traverse deeper.
Otherwise, we try the sibling nodes. Having all the siblings processed and no
subtree to traverse, the gcd is found.

11Note that parentheses can be omitted with regards to the order of operations × and ⊕.
Also String := 1 can be omitted in the product.
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Record Schema Description

The Record Schema Description (RSD) enables us to describe a schema of one
kind regardless of its model(s). It naturally covers also the case of a trivial schema
of a single record. So, in the proposed multi-model inference process it serves for
representation of:

1. All types of input schemas, i.e.,

(a) an existing user-defined schema,
(b) a single-model schema inferred using a single-model approach, and
(c) a basic schema inferred using the local schema inferrer in the remaining

cases, i.e., for kinds without a schema,

2. Intermediate schemas created during the inference process by the global
schema inferrer, and

3. The resulting multi-model schema that is transformed to a required output
form.

The RSD has a tree structure, and it describes the structure of a property, a
record, or a kind (i.e., a set of records) because all the three cases can be treated
in the same way, as we have discussed above. The root of an RSD corresponds
to a root property of the respective data model (e.g., the root XML element or
the anonymous root of a JSON hierarchy), or it is an artificial root property
with trivial settings encapsulating the properties (e.g., in the relational or graph
model). An RSD describing a property (or a record or a kind) p is recursively
defined as a tuple rsd = (name, unique, share, id, types, models, children,
regexp, ref), where:

• name is the name of property p extracted from the data (e.g., id, person)
or it can be anonymous (e.g., in case of items of JSON arrays or an artificial
root property).

• unique is the IC specifying uniqueness of values of p. Its values can be
T (true), F (false), or U (unknown) for intermediate steps of the inference
process.

• share = (sharep, sharex) is a tuple, where sharep is the number of all
occurrences of property p and sharex is the number of parent properties
containing p at least once. Note that sharep > sharex reflects so-called
repeating property, i.e., property forming an element of an array. Also note
that if we combine p.sharex with pp.sharep (of any type), where pp is the
parent property of p, we get the optionality of p, i.e., p.sharex = pp.sharep

reflects a required property, while p.sharex < pp.sharep reflects an optional
property.

• id is the IC specifying that the property is an identifier. Its values can also
be T, F, or U with the same meaning.12

12For the sake of simplicity we currently do not support composite identifiers or respective
composite references.
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• types is a set of data types that cover the property. For a simple property
it involves simple data types (i.e., String, Integer, ...). For a complex
property it involves the following values:

– Array, i.e., ordered (un)named (not) unique child properties (e.g.,
child elements in XML or items of arrays in JSON),

– Set, i.e., unordered unnamed unique child properties (e.g., items of
Set in column store Cassandra), and

– Map, i.e., unordered named unique child properties (e.g., attributes of
a relational table).

As we will see later, in the final phase of the inference process, the set is
reduced to a single resulting datatype.

• models is a (possibly empty) set of models (JSON = JSON document, XML
= XML document, REL = relational, GRAPH = graph, COL = column, KV
= key/value) that involve the property. If the set contains more than one
item, it represents cross-model redundancy. If the value of models within a
child property changes, it corresponds to embedding one model to another.

• children is a (possibly empty) set of recursively defined child properties.

• (Optional) regexp specifies a regular expression over the set children, or
its subset (e.g., in case of schema-mixed systems or case of XML elements
and attributes, forming together child properties).

• (Optional) ref specifies that the property references another property (of
another kind). Since we do not specify any restriction on the referencing
and referenced property models, we also cover self-references and the third
possible combination of multiple models, i.e., inter-model references.

Example 4.13. Figure 4.11 provides sample RSDs of kinds from Figure 4.1 (having
the respective colours) in their textual form. Each node is described as a tuple
of values of its above-listed components (in the given order) in curly brackets. If
the set children is not empty, in curly brackets, there occur the child properties
described in the same way.

Having the unifying representation of all possible types of input data having
any of the supported models, we can propose a much more straightforward multi-
model inference approach. It is based on an essential feature of RSDs – the fact
that two RSDs can be merged to describe a common schema of the respective
kinds. The merging strategy is a part of the proposed approach (see Section 7).

4.4.2 Schema Inference Workflow
The proposed inference process takes into account the following features and
specifics of the multi-model environment:

• various aspects of the combined data models and their specifics known for
popular multi-model DBMSs [13] (such as sets / maps / arrays / tuples,
(un)ordered properties, various treatments of missing values etc.),
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relational table Vendor

( _, U, (2,2), U, Map, REL, {
  ( cdf, F, (2,2), F, Char(16), REL, ε, ε, ε ),
  ( country, F, (2,2), F, Varchar(64), REL, ε, ε, ε ),
  ( id, T, (2,2), T, Long, REL, ε, ε, ε ),
  ( name, F, (2,2), F, Text, REL, ε, ε, ε )
  }, ε, ε )

( _, U, (5,5), U, Map, REL, {
  ( asin, F, (5,5), F, Char(16), REL, ε, ε, ε ),
  ( brand, F, (5,5), F, Text, REL, ε, ε, ε ),
  ( imgUrl, F, (4,4), F, Varchar(256), REL, ε, ε, ε ),
  ( price, F, (5,5), F, Decimal, REL, ε, ε, ε ),

  ( productId, T, (5,5), T, Long, REL, ε, ε, ε ),

  ( title, F, (5,5), F, Text, REL, ε, ε, ε )

  }, ε, ε )

relational table Product

column family Vendor

( _, U, (2,2), U, Map, COL, {
  ( cdf, F, (2,2), F, String, COL, ε, ε, ε ),
  ( contact, F, (2,2), F, Map, COL, {

    ( address, F, (2,2), F, String, COL, ε, ε, ε ),
    ( phone, F, (2,2), F, String, COL, ε, ε, ε ),

    ( website, F, (1,1), F, String, COL, ε, ε, ε )

    }, ε, ε ),

  ( country, F, (2,2), F, String, COL, ε, ε, ε ),
  ( id, T, (2,2), T, Long, COL, ε, ε, ε ),
  ( industry, F, (1,1), F, Set, COL, {

    ( _, F, (2,1), F, String, COL, ε, ε, ε )

    }, (_+), ε ),

  ( name, F, (2,2), F, String, COL, ε, ε, ε )
  }, ε, ε )

JSON document Order

( _, U, (2,2), U, Map, JSON, {
  ( _id, T, (2,2), T, Number, JSON, ε, ε, ε ),
  ( contact, F, (2,2), F, Map, JSON, {
    ( cellphone, F, (1,1), F, String, JSON, ε, ε, ε ),
    ( email, F, (2,2), F, String, JSON, ε, ε, ε ),
    ( phone, F, (1,1), F, String, JSON, ε, ε, ε )

    }, ε, ε ),

  ( customer, F, (2,2), F, Map, JSON, {
    ( city, F, (2,2), F, String, JSON, ε, ε, ε ),

    ( country, F, (2,2), F, String, JSON, ε, ε, ε ),

    ( customerId, F, (2,2), F, Number, JSON, ε, ε, ε ),

    ( firstName, F, (2,2), F, String, JSON, ε, ε, ε ),

    ( lastName, F, (2,2), F, String, JSON, ε, ε, ε ),

    ( postalCode, F, (2,2), F, String, JSON, ε, ε, ε ),

    ( Street, F, (2,2), F, String, JSON, ε, ε, ε ),

  }, ε, ε ),
  ( items, F, (2,2), F, Array, JSON, {
    ( _, F, (4,2), F, Map, JSON, {
      ( brand, F, (4,4), F, String, JSON, ε, ε, ε ),
      ( price, F, (4,4), F, Number, JSON, ε, ε, ε ),

      ( productId, F, (4,4), F, Number, JSON, ε, ε, ε ),

      ( quantity, F, (4,4), F, Number, JSON, ε, ε, ε ),
      ( title, F, (4,4), F, String, JSON, ε, ε, ε )

      }, ε, ε ),
    }, (_+), ε ),

  }, ε, ε )

XML document Invoice

( invoice, U, (2,2), U, Map+Array, XML, {
  ( creationDate, F, (2,2), F, DateTime, XML, ε, ε, ε ),
  ( customerId, F, (1,1), F, Long, XML, ε, ε, ε ),
  ( dueDate, F, (1,1), F, DateTime, XML, ε, ε, ε ),

  ( @invoiceNo, T, (2,2), T, String, XML, ε, ε, ε ),
  ( items, U, (2,2), F, Array, XML, {
    ( product, F, (5,2), F, Map, XML, {
      ( @price, F, (5,5), F, String, XML, ε, ε, ε ),

      ( @productId, F, (5,5), F, String, XML, ε, ε, ε ),

      ( @quantity, F, (5,5), F, String, XML, ε, ε, ε ),

      ( @title, F, (5,5), F, String, XML, ε, ε, ε )

    }, ε, ε ),

  }, (product+), ε ),
  ( paid, F, (1,1), F, Boolean, XML, ε, ε, ε ),
  ( totalPrice, F, (2,2), F, Map+Array, XML, {
    ( __TEXT__, F, (2,2), F, Double, XML, ε, ε, ε )

    ( @currency, F, (2,2), F, String, XML, ε, ε, ε )
    }, (__TEXT__), ε ),
  ( vendorId, F, (1,1), F, Long, XML, ε, ε, ε ),
  }, ((customerId|vendorId)+, creationDate,
dueDate?, items, totalPrice, paid?), ε )


graph label Knows

( _, U, (1,1), U, Map, GRAPH, {
  ( _src, F, (1,1), F, REF, GRAPH, ε, ε, Person(id) ),

  ( _tgt, F, (1,1), F, REF, GRAPH, ε, ε, Person(id) )
  }, ε, ε )

key/value pair Feedback

( _, U, (2,2), U, Map, KV, {
  ( content, F, (2,2), T, Binary, KV, ε, ε, ε ),

  ( productId, T, (2,2), T, String, KV, ε, ε, ε )
  }, ε, ε )

graph labels Person, Customer

( _, U, (2,2), U, Map, GRAPH, {
  ( birthday, F, (2,2), F, DateTime, GRAPH, ε, ε, ε ),
  ( city, F, (2,2), F, String, GRAPH, ε, ε, ε ),

  ( country, F, (1,1), F, String, GRAPH, ε, ε, ε ),

  ( firstName, F, (2,2), F, String, GRAPH, ε, ε, ε ),
  ( gender, F, (2,2), F, String, GRAPH, ε, ε, ε ),

  ( id, T, (2,2), T, Long, GRAPH, ε, ε, ε ),
  ( lastName, F, (2,2), F, String, GRAPH, ε, ε, ε ),
  ( postalCode, F, (2,2), F, String, GRAPH, ε, ε, ε ),

  ( street, F, (2,2), F, String, GRAPH, ε, ε, ε )
  }, ε, ε )

Figure 4.11: An example of RSDs

• local ICs, various types of redundancy (both intra-model and inter-model),
and intra/inter-model references,

• (partial) schemas required/allowed in selected models or inferred single-
model schemas,

• possible, but not compulsory user interaction involving modification of sug-
gested candidates (for ICs, redundancy etc.) and specification of non-
detected cases, and

• processing of Big Data, i.e., maximum possible reduction of unnecessary
information and parallel processing.

The input of the inference process is formed of the following:

1. A non-empty set of single/multi-model DBMSs D1,D2, ... which together
contain a set of kinds κ1, ..., κN . Each kind is associated with its model(s).
For each model supported in a particular DBMS Di we also know whether
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it is schema-less/full/mixed and whether the order of sibling properties of
a kind must be preserved.

2. A (possibly empty) set of predefined schemas σ′
1, σ′

2, ..., σ′
n, n ≤ N , (par-

tially) describing selected kinds.

3. A (possibly empty) set of user-specified input information which can be of
the following types:

(a) A redundancy set of kinds RK = {κ1, κ2, ..., κr}, r ≤ N which describe
the same part of reality, i.e., they will have a common schema σ. (Note
that there is no restriction on the models the kinds in R can have. On
the other hand, we do not know the schema of all kinds at this stage,
so the redundancy cannot be specified at a higher level of granularity.)

(b) A simple data type assigned to a selected property.
(c) A local IC assigned to a selected property. The possible constraints

involve identifier, unique, or (not) null.
(d) A reference represented by an ordered pair of properties where the first

one is the referencing property and the second one is the referenced
property.

In other words, the user specifies the data on which the inference process
should be applied. Depending on the type of the database system where it is
stored, i.e., its specific features, the inference process can re-use an existing user-
defined schema, it knows whether the order of siblings should be preserved, etc.
Eventually, at the beginning or during the inference process (see Section 4.5), the
user can provide a partial inferred schema, user-specified simple data types, ICs,
and references for selected properties, as well as redundantly stored kinds.13

The general workflow of the inference process has two main phases – local and
global. In the local phase, the process assumes as the input a large set of data,
and the task is to reduce the information in parallel efficiently, i.e., we infer basic
local schemas for each kind. The aim of the global phase is to merge the local
schemas and enrich them with additional information gathered from the input
data (i.e., ICs and references). Since we can assume that the number of all kinds
in the whole multi-model schema is several orders smaller than the amount of
input data, this phase does not need to be parallelised.

The workflow consists of the following stages:

1. Local Schema Inferrer : For each kind κ we generate its local RSD as follows:

(a) If κ has a predefined schema σ′
κ, we transform it into RSD representa-

tion.
(b) Otherwise, we generate for κ a basic RSD using a parallel approach as

follows:
(i) We generate a trivial RSD for each record (or property, depending
on the selected type of the algorithm – see Sections 4.4.3 and 4.4.4) of
κ.
(ii) We merge (see Section 7 and 11) trivial RSDs of κ and eventually
all kinds in its respective redundancy set RKκ to a basic RSD.

13Note that for the sake of simplicity we currently consider redundancy only for whole kinds.
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2. Gathering of Footprints: Parallel to the local schema inference, for each kind
κ we gather its auxiliary statistics, called footprints (see Section 4.4.5), as
follows:

(a) Phase Map: We gather footprints for each value of each property pκ
i

of κ.
(b) Phase Reduce: We merge all footprints of values of each property pκ

i ,
resulting in an aggregated footprint of property pκ

i .
(c) Candidate Set: We apply a set of rules on the merged footprints of

each property to produce a set of candidates for redundancy, local
ICs, and references. Note that when the structure of kinds is inferred,
the redundancy can be specified at the level of (complex) properties.
A redundancy set of properties RP = {π1, π2, ..., πs}, s ∈ N, where
each property is a part of some kind regardless its model, describes
the same part of reality.

(d) The user can confirm/refute the candidates at this stage or add new
ones.

3. Global Schema Inferrer : Having a unified RSD representation and foot-
prints for each input kind κ, we generate the final multi-model schema as
follows:

(a) (Optionally), we perform the full check of candidates. It is not done if
the user confirms the candidates.

(b) We merge all redundancy sets of properties, i.e., for each property πi ∈
RPj, i, j ∈ N we extend its schema by joining RSDs of all properties
in RPj.

(c) We extend the RSDs with discovered references.
(d) We create the final multi-model schema formed by all inferred RSDs.

4. We transform the resulting set of RSDs and respective ICs to the user-
required output.

Next we introduce two versions of the local inference algorithm – record-based
and property-based. The former follows the usual strategy in the existing works,
i.e., “horizontal” processing; the latter introduces a “vertical” optimisation for
complex data.

4.4.3 Record-Based Local Inference Algorithm
The more intuitive approach, so-called Record-Based Algorithm (RBA), considers
a record, i.e., the root property including all its child properties, as a working
unit. The input of Algorithm 4.1 consists of the particular database wrapper
wD (implementing specific behaviour and features of the system D) and set ND

of names of kinds whose schemas are to be inferred. Having initiated an empty
schema S (i.e., a forest of RSDs), the algorithm infers the schema of each kind κ
during three logically different steps:
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• Preparation phase: The data is first loaded using a particular database
wrapper wD, and then each record is in parallel mapped into an RSD de-
scribing its trivial schema. The result of the preparation phase is a collection
R (possibly containing duplicities) of RSDs describing schemas of individual
records within kind κ.

• Reduce phase: Next, the collection R is merged using function merge() (see
Section 7) in parallel into single rκ describing the basic RSD of kind κ.

• Collection phase: The inferred schema rκ is added to set S.

Having all the kinds processed, the resulting schema S is returned.

Algorithm 4.1: Record-Based Local Inference Algorithm
Input: wD – a wrapper for database system (or model) D

1 ND – a set of names of kinds whose schema is to be inferred
Output: S – a minimal set of structurally different RSDs

2 Schema S := ∅
3 foreach nameκ in ND do

// preparation phase:
4 R := wD.mapRecordsToRSDs(nameκ)

// reduce phase:
5 rκ := R.merge()

// schema collection phase:
6 S.add(rκ)
7 return S

Merging of RSDs – Function merge()

During the merging process we merge the information, and we modify respectively
the regular expression describing the data. In particular, having two RSDs rsd1
= (name1, unique1, share1, id1, types1, models1, children1, regexp1, ref1) and
rsd2 = (name2, unique2, share2, id2, types2, models2, children2, regexp2, ref2),
the merging process creates the resulting RSD rsd = (name, unique, share, id,
types, models, children, regexp, ref) as follows:

• Within local stage, names name1, name2 are always equal, i.e., only prop-
erties having the same name are merged, therefore name := name1.

• unique is set to minimum value of unique1, unique2, where F < U < T.
In other words, the fact that a property is not unique (i.e., either unique1
or unique2 is set to F) cannot be changed. If neither unique1 nor unique2
is set to F but at least one is set to U, we have to wait to finish parallel
checking of the data. Otherwise, having unique1 and unique2 set to T, the
resulting unique is set to T.

• share is sum of particular shares, i.e., share := (sharep, sharex), where
sharep := sharep1 + sharep2 and sharex := sharex1 + sharex2 .

• Similarly to unique, the same principle applies for id.
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• types := types1 ⋄ types2 (see Section 4.4.1).

• models := models1 ∪models2.

• children := children1 ∪ children2, whereas the child properties with the
same name are recursively merged too.

• regexp is the result of merging of regular expressions regexp1 and regexp2
using existing verified schema inference approaches [78, 156].14 If regexp1 =
ϵ, then regexp := regexp2. Else regexp := regexp1.

• If ref1 = ref2, then ref := ref1. Otherwise, it has to be resolved by the
user/default settings.

Algorithm 4.2: Function merge()
Input: r1 , r2 – RSDs to be merged
Output: r – the merged RSD
// the names are always equal

1 r.name := r1.name
// select minimum, i.e., F < U < T

2 r.unique := min(r1.unique, r2.unique)
// sum shares

3 r.share := sum(r1.share, r2.share)
// select minimum, i.e., F < U < T

4 r.id := min(r1.id,r2.id)
// type merge operator

5 r.types := r1.types ⋄ r2.types
// union of models

6 r.models := r1.models ∪ r2.models
// recursively merge children

7 r.children := mergeChildren(r1.children,r2.children)
// regular expression merge

8 r.regexp := mergeRegexp(r1.regexp, r2.regexp)
// references are the same or missing, therefore arbitrary ref is

selected
9 r.ref := r1.ref

10 return r

4.4.4 Property-Based Local Inference Algorithm
Alternatively, instead of a whole record, the working unit of the local inference
process can be a single property, whose eventual child properties are processed
separately too. This strategy is not common in the existing approaches; how-
ever, it may lead to a performance boost (as we show in Section 4.6) when, e.g.,
the record is highly structured and contains a large number of nested proper-
ties. Moreover, this version of the algorithm can be merged with the mining of
footprints (see Section 4.4.5) into a single algorithm.

14Due to rich related work (see Section 4.2) we omit technical details.
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To work with individual properties instead of records, we need to be able to
distinguish their RSDs. Therefore, we introduce the notion of a hierarchical name
that uniquely identifies each property p by concatenating the names of properties
on the path from the root property to property p, where each step is separated
by a delimiter ’/’ (slash). As the 0th and 1st steps, we use the name of the
system and the kind where the property occurs. Additionally, if the property is
an anonymously named element of an array, the name of the property consists of
‘ ’ (underscore) and its data type.
Example 4.14. For example, property productId from the JSON document in
Figure 4.9 has hierarchical name: /mongoDB/Order/items/ Object/productId

The input of the Property-Based Algorithm (PBA) (see Algorithm 4.3) also
consists of the particular database wrapper wD and set ND of names of kinds
whose schemas are to be inferred. Having initiated an empty schema S, the
algorithm processes each kind κ as follows:

• Preparation phase: For each property p of each record, the hierarchical
name of the property and the trivial RSD of the property is extracted from
the data in parallel, forming a collection NP of pairs (namep, rsdp). Next,
the grouping according to namep is performed, resulting in the set GP of
pairs (namep, P ), where P is a set of RSDs of properties with the same
namep.

• Reduce phase: Next, each collection P is in parallel aggregated using func-
tion aggregateByHierarchicalName() (see Section 9) into rsdp describing the
basic RSD of property p with hierarchical name namep. The resulting set
of pairs (namep, rsdp) is denoted as AP .

• Collection phase: Set AP is iterated and each rsdp is added into schema
S, continuously enriching and building the schema of kind κ using function
addToForest() (see Section 11).

Finally, the resulting schema S is returned as the result.

Aggregating of RSDs – Function aggregateByHierarchicalName()

Generation of a basic (local) RSD consists of generating an RSD for each property
and their aggregation into a common property schema. During the process, we
aggregate the information, and we modify respectively the regular expression
describing the order of the nested properties.

As we can see in Algorithm 4.4, having a collection of RSDs rsdi = (namei,
uniquei, sharei, idi, typesi, modelsi, childreni, regexpi, refi), i = 1, ..., n, the
aggregation process creates the resulting RSD rsdp = (name, unique, share, id,
types, models, children, regexp, ref) corresponding to a schema of property p
as follows:

• the names namei are always equal, i.e., only the properties having equal
hierarchical name are aggregated, therefore name := name1.

• unique is set to minimum value of uniquei, i = 1, ..., n, where F < U < T.
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Algorithm 4.3: Property-Based Local Inference Algorithm
Input: wD – wrapper for database system (or model) D

1 ND – set of names of kinds whose schema is to be inferred
Output: S – a set of RSDs describing the resulting schemas of kinds in ND

2 Schema S := ∅
3 foreach nameκ in ND do

// preparation phase:
4 NP := WD.flatMapRecordsToPairs(nameκ)

// group properties with the same namep together
5 GP := NP .groupByKey()

// reduce phase:
6 AP := GP .aggregateByHierarchicalName()

// schema collection phase:
7 foreach (namep, rsdp) in AP do
8 addToForest(rsdp, S)

9 return S

• share is set to the sum of shares, i.e., share := (∑︁n
i=1 sharepi

, ∑︁n
i=1 sharexi

)

• Similarly to unique, the same principle applies for id.

• types := types1∪...∪typesn, whereas if there appear two types ti, tj ∈ types,
s.t. ti ⊂ tj, then ti is removed from types.

• models := ⋃︁n
i=1 modelsi.

• regexp is the result of merging regular expressions regexp1, . . . , regexpn

using an existing verified approach.

• Within the aggregate function, children is always an empty set as indi-
vidual children have their own hierarchical name and thus are processed
separately. Its content is resolved in later stage of the algorithm within
function addToForest() (see Section 11).

• For all ref1, . . . , refn either refi = ϵ or all the values of refi are equal,
therefore ref := ref1 is selected. If ref = ϵ, the references are resolved
after applying the candidates stage (see Section 4.4.6).

Forest Appender – function addToForest()

The purpose of this function (see Algorithm 4.5) is to join RSDs describing the
schema of particular properties to form an RSD corresponding to a schema of
the whole kind. Moreover, the RSDs describing a schema of a single kind are
grouped into a forest. Having pairs (namep, rsdp) which are alphabetically or-
dered according to namep (in ascending order), the parent property is always
included in the schema S before its children (note that locally the schema is a
tree). If the properties are not ordered, then if any parent property is missing,
we can insert an empty placeholder of the not-yet-processed parent allowing it
to include its children. As soon as the parent is being processed, it replaces the
placeholder.

164



Algorithm 4.4: Function aggregateByHierarchicalName()
Input: P – Non-empty list of Property RSDs to be aggregated
Output: rsdp – resulting aggregated rsd

1 rsdp := (null, T, (0,0), T, ∅, ∅, ∅, null, null)
// the names are always equal

2 rsdp.name := P .first().name
3 foreach property p in P do

// select minimum, i.e., F < U < T
4 rsdp.unique := min(rsdp.unique, p.unique)

// sum shares
5 rsdp.share := sum(rsdp.share, p.share)

// select minimum, i.e., F < U < T
6 rsdp.id := min(rsdp.id,p.id)

// type merge operator
7 rsdp.types := rsdp.types ⋄ p.types

// union of models
8 rsdp.models := rsdp.models ∪ p.models

// regular expression merge
9 rsdp.regexp := regexpMerge(rsdp.regexp, p.regexp)

// children are resolved later (using forest appender), the
processed property contains children = ∅

// references are the same or missing, therefore arbitrary ref is
selected

10 rsdp.ref := P .first().ref
11 return rsdp

Algorithm 4.5: Function addToForest()
Input: namep – hierarchical name of a property p

1 op – object that holds an information, e.g., an RSD corresponding to
property p

2 O – resulting set of possibly interlinked hierarchical objects, e.g., a
forest of RSDs

3 nameκ := namep.kind()
4 node := O.getOrCreateRoot(nameκ)

// the first step of the hierarchical name
5 name := namep.head()
6 repeat
7 if node.hasChildren(name) then
8 node := node.getChildren(name);
9 else

10 node := node.getOrCreateChildren(name)
11 if name is namep.tail() then

// if node represents an inner node, its content is merged
// otherwise (leaf) its placed as is

12 node.placeContent(op)
// the next step of the hierarchical name

13 name := name.next()
14 until name is namep.tail()
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4.4.5 Gathering Candidates for ICs and Redundancy
To detect integrity constraints and redundancy efficiently, we utilise a two-stage
approach:

1. We efficiently detect a set of candidates.

2. The user can confirm/refute them or request a full check.

For this purpose, we introduce a set of lightweight and easy to compute footprints
and we apply them to compute candidates for ICs (i.e., primary keys, intra- and
inter-model references, and interval-based value constraints) and redundancy in
data. A naive approach would compare active domains of all pairs of properties.
Instead, when walking through all the data during the schema inference process,
the same access can be exploited to mine statistical (and other) information about
the active domains, i.e., the footprints. They can be then used to compare active
domains and determine the desired integrity constraints more efficiently.

Property Domain Footprint (PDF)

For each property p, we define an active domain descriptor utilising basic statistics
and the Bloom filter [108], so-called Property Domain Footprint (PDF). It is rep-
resented as a tuple PDF = (count, first, unique, required, repeated, sequential,
min, minHash, max, maxHash, totalHash, averageHash, bloomFilter).

• count is the number of items of the active domain.

• first is the number of parent properties in which p occurs.

• unique ∈ {T, F} represents the uniqueness of values within a particular
active domain. It is computed by counting the occurrence of each item of
the active domain.

• required ∈ {T, F} represents the nullability of the value of a particular
property. It is computed by comparing p.first of property p with pp.count
of its parent property pp, i.e., required := (p.first = pp.count).

• repeated ∈ {T, F} represents whether the property is a direct element of an
array (T) or a single value (F). It is computed using auxiliary features count
and first, i.e., repeated := (count÷ first > 1).

• sequential ∈ {T, F, U} represents the possibility of an active domain of a
simple property to represent a sequence of integers. The default value is
U (if the property is not of data type Integer). The sequential feature is
computed using auxiliary features min, max, and count, i.e., sequential :=
(max−min = count− 1).

• min is the minimum value of the active domain.

• minHash is the minimum hashed value of the active domain. It allows to
compare values of distinct data types efficiently and prevents the compari-
son of possibly extensive data, e.g., BLOBs.
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• max is the maximum value of the active domain.

• maxHash is the maximum hashed value of the active domain.

• totalHash is the sum of hashed values of the active domain.

• averageHash := (totalHash ÷ count) represents the average of hash of
unique values within the active domain.

• bloomFilter is an array of “small” size σ describing a much larger active
domain K of property p at the cost of false positives (i.e., equal hashes of two
different values). Using multiple hash functions H1(), . . . , Hn() returning
values from {1, . . . , σ}, each distinct value k ∈ K is hashed and each value
of bloomFilter[Hi(k)] is incremented.

PDF Miner Algorithm

The purpose of the footprint miner (see Algorithm 4.6) is to create a PDF for each
property. First, the data are loaded from the database store in the form of records
using a particular database wrapper. For each property p of each individual record
a footprint f is created describing a single value of active domain of a certain
property. The hierarchical name namep is attached to each footprint instance.
Next, the instances are merged to create distinct unique sets of each active domain
using function mergeValueDuplicates(). Then, the distinct values are first grouped
by function groupByKey(), resulting in set GP of pairs (namepi

, Fi), where Fi =
{fi0 , . . . , fin} is the set of footprints. Second, they are grouped to determine
the footprint fp describing the whole active domain. To do so, merge function
aggregateByHierarchicalName() (see Algorithm 4.7) is applied.

Algorithm 4.6: PDF Miner Algorithm
Input: WD – wrapper for database system (or model or data source in

general) D
1 ND – set of names of kinds whose schema is to be inferred

Output: S – a set of hierarchically ordered footprints
2 SchemaForest S = ∅
3 foreach nameκ in ND do

// preparation phase:
4 NP := WD.flatMapRecordToNameFootprintPairs(nameκ)

// aggregate footprints to create one footprint for each
property:

5 DP := NP .mergeValueDuplicates()
6 GP := DP .groupByKey()
7 AP := GP .aggregateByHierarchicalName()

// footprint finalisation and collection phase:
8 foreach (namep, pdfp) in AP do
9 addToForestAndFinalize(pdfp, S)

10 return S

Finally, the aggregated property features are appended to the tree structure
representing the data and the missing features (i.e., repeated, sequential, and
averageHash) are resolved.
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Algorithm 4.7: Function aggregateByHierarchicalName()
Input: F – Non-empty list of footprints to be aggregated

1 r := (0, 0, T, T, F, F,∞,∞, 0, 0, 0, 0, [0, . . . , 0])
2 foreach footprint f in F do
3 r.count := sum(r.count, f.count)
4 r.first := sum(r.first, f.first)
5 r.unique := r.unique AND f.unique
6 r.required := r.required AND f.required

// repeated and sequential are resolved in later stages
7 r.min := min(r.min, f.min)
8 r.minHash := min(r.minHash, f.minHash)
9 r.max := max(r.max, f.max)

10 r.maxHash := max(r.maxHash, f.maxHash)
11 r.totalHash := sum(r.totalHash, f.totalHash)

// averageHash is resolved in later stages
12 r.bloomFilter := merge(r.bloomFilter, f.bloomFilter)
13 return r

Candidate Builder Algorithm

Having computed footprint fp for each property p, we can determine candidates
for identifiers, references, and data redundancy. We propose Algorithm 4.8 that
consists of three phases:

1. Identifier Candidate: The candidates for identifiers Cident are inferred from
the footprints in set F . An identifier must be unique within the active
domain of the respective property p and required. Also, the property can
not be a direct element of an array. Therefore, the algorithm tests whether
fp.unique = fp.required = T and fp.repeated = F.

2. Reference Candidate: Candidates for references Cref are inferred on the
basis of several observations. A reference is a property that refers to the
identifier of another kind. Therefore, we search the Cartesian square F ×
Cident excluding pairs (c, c), c ∈ Cident in order to find pairs (f, c), s.t. f
is the footprint of the referencing property pf and c is the footprint of
the referenced property pc. Additionally, the active domain of referencing
property pf must form a subset of active domain of the referenced property
pc. Therefore, we compare active domains of both the properties using
function formsSubset() (see Algorithm 4.9), i.e., we analyse footprints f
and c using the following rules:

• The referencing property does not have to be strictly unique, as the
one-to-many (as well as many-to-one or many-to-many) relationship
may occur.

• The referencing property does not have to be required as the lower
bound of relationship may be zero-to-one/many.

• It must hold that f.minHash ≥ c.minHash, i.e., the referencing prop-
erty pf does not contain a smaller value than the referenced property
pc.
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Algorithm 4.8: Candidate Builder Algorithm
Input: F – list of (pre)computed footprints

1 k – minimum number of siblings/descendants to form a redundancy
2 Cident := ∅; Cref := ∅; Cred := ∅;

// Identifier candidate phase:
3 foreach footprint f in F do
4 if f.unique AND f.required AND not f.repeated then
5 Cident.add(f)

// Reference candidate phase:
6 foreach identCandidate c in Cident do
7 foreach footprint f in F \ c do
8 r := formsSubset(f , c)
9 if r is not ”EMPTY” then

10 if isAutoincrement(f , c) then
11 Cref .add((f ,c,”WEAK”,r))
12 else
13 Cref .add((f ,c,”STRONG”,r))

// Redundancy candidate phase:
14 foreach refCandidate (f, c, t, r) in Cref do
15 Df := descendantOrSibling(f);
16 Dc := descendantOrSibling(c);
17 R := ∅
18 red := ”FULL”
19 foreach d1 in Df do
20 foreach d2 in Dc do
21 type := formsSubset(d1, d2)
22 if type is not ”EMPTY” then
23 R.add(d1,d2)
24 red := min(red, type)

25 if R.size() ≥ k then
26 R.add((f ,c))
27 Cred.add((R,min(red, r)))
28 t := ”WEAK”

29 return (Cident, Cref , Cred)

• Similarly, it must hold that f.maxHash ≤ c.maxHash.
• Finally, only if all the above conditions are satisfied, Bloom filters

are compared. To denote that property f is a reference to property
c for each pair of elements f.bloomFilter[i], c.bloomFilter[i] it must
hold that f.bloomFilter[i] ≤ c.bloomFilter[i]. In other words, active
domain of pf must be a subset of active domain of pc.

Additionally, we distinguish between strong and weak reference candidates.
Having sequential, unique, and required set to T for both the referencing
and referenced properties may imply that there is no relationship between
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the properties (i.e., both properties form a technical (auto-incremented)
identifier of their kind). Therefore, such a combination may lead to a weak
candidate for a reference.15

3. Redundancy Candidate: Finally, reference candidates may be extended into
data redundancy candidates Cred. Naturally, each pair of referencing and
referenced properties having footprints f and c store redundant information.
However, we assume that redundantly stored data should cover a more
significant part. Hence, we check their descendants and siblings to find
more pairs of properties whose active domains form a mutual subset. If
there is at least k pairs of neighbouring properties forming such subsets,
the reference candidate (f, c) is marked as a weak reference candidate and,
together with its neighbourhood, extended into a redundancy candidate.
If for all the pairs of properties in the redundancy candidate the active
domains are equal, we speak about full redundancy. Otherwise, i.e., when
one kind contains only a subset of records of another kind, it is a partial
redundancy. Also, note that only redundant properties are considered as a
part of redundancy, even though both kinds may contain properties having
the same name. If multiple properties can form a redundancy pair with the
same property, it is up to the user to decide.

Algorithm 4.9: Function formsSubset()
Input: f1, f2 – compared footprints
// f1.minHash = f2.minHash→ "FULL"
// f1.minHash > f2.minHash→ "PARTIAL"
// f1.minHash < f2.minHash→ "EMPTY"

1 minType := determine(f1.minHash, f2.minHash)
// f1.maxHash = f2.maxHash→ "FULL"
// f1.maxHash < f2.maxHash→ "PARTIAL"
// f1.maxHash > f2.maxHash→ "EMPTY"

2 maxType := determine(f1.maxHash, f2.maxHash)
// f1.averageHash = f2.averageHash→ "FULL"
// f1.averageHash <> f2.averageHash→ "EMPTY"

3 avgType := determine(f1.averageHash, f2.averageHash)
// ∀i : f1.bloomFilter[i] = f2.bloomFilter[i]→ "FULL"
// ∀i : f1.bloomFilter[i] <= f2.bloomFilter[i]→ "PARTIAL"
// ∃i : f1.bloomFilter[i] > f2.bloomFilter[i]→ "EMPTY"

4 bfType := determine(f1.bloomFilter, f2.bloomFilter)
5

6 if min(minType,maxType,avgType,bfType) is ”FULL” then
7 return ”FULL”
8 else if min(minType,maxType,bfType) is ”EMPTY” then
9 return ”EMPTY”

10 else
11 return ”PARTIAL”

15Note that such a candidate is not discarded, yet it is not marked as recommended when
the inference process applies candidates for RSDs inferred within the local stage.
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Example 4.15. Figure 4.12 introduces an example of footprints of selected prop-
erties of the multi-model data from Figure 4.9 and their application for detection
of candidates. The upper part of the figure contains the data, i.e., a subset of
properties from relational table Product (violet), nested documents from JSON
collection Order (green) and nested elements Product from XML collection In-
voice (grey). The bottom three parts correspond to the three phases, where we
can see the values of respective necessary features of footprints.

In order to determine all the footprint features, the duplicate values are re-
moved, the unique values are hashed (using, e.g., rolling hash rh(v) := vrh for
each v ∈ V) and then minHash, maxHash, averageHash, and bloomfilter are com-
puted as was described. averageHash is rounded to floor(averageHash) and to
compute the Bloom filter (of size = 2), hash functions h1(vrh) := vrh mod 2 and
h2(vrh) := floor(sqrt(vrh)) mod 2 are used.

Regarding the detection of candidates, first all footprints are iterated and their
unique, required, and repeated features are checked. In this particular case, only
the footprint of property id satisfies that unique and required are both set to T
and repeated is set to F, therefore only a single identifier candidate is created and
propagated to the next phase of the algorithm. Also note that id is probably a
technical identifier based on auto-increment (i.e., sequential is also set to T).

Next, all relevant distinct pairs of footprints are compared to find candidates
for references. If any footprint feature does not satisfy the requirements for a
reference, it is denoted by the red colour. As we can see, only properties productId
(JSON) and productId (XML) satisfy the requirements and therefore form the set
of reference candidates Cref .

Finally, reference candidates are checked to form redundancy candidates,
whereas k = 2. In this case, we compare siblings (as there are no further nested
properties) of pairs (id, productId) (JSON) and (id, productId) (XML). In the
former case, there is a redundancy between properties title (REL, JSON), brand
(REL, JSON), and price (REL, JSON). In the latter case, there is a redundancy
only between properties title (REL, XML). In the former case, the number of
pairs 3 ≥ k, therefore, the reference candidate is extended into the redundancy
candidate, and the former reference candidate is marked as weak. In the latter
case, the reference candidate remains unchanged as 1 < k, and it does not form
the candidate for redundancy.

Also note that (id, title, price, brand) (REL), (productId, title, price, brand)
(JSON) form a partial redundancy, since multiple requirements are violated, e.g.,
features average are not equal (see the bold font).

4.4.6 Global Phase

The local phase consists of inference of local (single-system, single-kind) schemas
described as tree-based RSDs and building a set of candidates for identifiers,
references, and redundancy. The global phase applies the knowledge gained in
the previous steps and joins RSDs using candidates for references and redundancy
into the resulting global multi-model schema. It can also begin with an optional
full check of candidates, i.e., removing false positives.
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IDENTIFIER CANDIDATE PHASE:

{ productId: 107, title: RacingCar, brand: Toy,
  price: 1500, quantity: 3 }
{ productId: 105, title: Death, brand: Book,
  price: 300, quantity: 1 }
{ productId: 104, title: Pyramids, brand: Audiobook, 
  price: 450, quantity: 1 }
{ productId: 107, title: RacingCar, brand: Toy,
  price: 1500, quantity: 2 }

(Nested) JSON document _ (Product)Relational table Product

id title price brand <product productId="107" title="RacingCar"

  price="¨1500" quantity="2" />

<product productId="105" title="Death"

  price="300" quantity="1" />

<product productId="105" title="Death"

  price="240" quantity="8" />

<product productId="103" title="Pyramids"

  price="240" quantity="5" />

<product productId="104" title="Pyramids"

  price="360" quantity="2" />


(Nested) XML element product

105

106

107

Death 300 Book

Baby Doll 2500 Toy

RacingCar 1500 Toy

104 Pyramids 450 Audiobook

103 Pyramids 300 Book

brandpricetitleidproperty
FFFTunique

productId title price quantity
F F F F

brand
F

product title price
F F F

quantity
F

property title price brand productId title brand quantityprice productId title price quantityid
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F
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F
T
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Figure 4.12: An example of selected footprints and building of candidates

asin (Char(16))

imgUrl (Varchar(256))

title (String+Text+String)

price (String)

productid (String+Long+Number)

brand (Text+String)

Product

quantity (String)
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(a) k=1

title (String)

productid (String)
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price (Decimal+Number)

productid (Long+Number)
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quantity (String)

(b) k=2 or k=3

Figure 4.13: Example of redundancy, k=1, k=2, k=3

Checking of Candidates

Depending on the implementation, either the user may confirm/refute the sug-
gested candidates (or denote user-specified candidates) using an interactive in-
terface (see Section 4.5). Or, (s)he may decide which subset of candidates for
references and redundancy16 will be thoroughly checked. The checking itself is
implemented as a distributed MapReduce job:

• Checking of references involves mapping of each value of a referencing prop-
erty ref into tuple (value, REF) while each value of referenced property id
is mapped to tuple (value, ID) as well. Reduction and further mapping by
key takes place as follows:

– If the list assigned to value contains both REF and ID, the result is
16Candidates for identifiers do not have to be checked once approved by the user as long as

the identifier requires only features unique and requires being set to T.
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mapped to 0.
– If the list assigned to value contains only ID, the result is mapped to

1.
– Otherwise, the result is mapped to −1.

Finally, the minimum value is selected. If the result is −1, the candidate
for reference is not valid and removed. If the result is 0, it is a full reference
(i.e., the active domains of ref and id are equal). The result of 1 denotes
that property ref refers to a subset of the active domain of property id.

• Checking of redundancy is similar; in addition we have to check values
of all neighbouring redundant properties of the referencing and referenced
properties ref and id. First, for each record its redundant properties are
mapped to tuple (value, {red subrecord, source}), where value is the value
of referencing/referenced property, red subrecord are values of ordered re-
dundant properties in the record, and source ∈ {REF, ID}. Next, the tuples
are reduced by key and then mapped as follows:

– If the list assigned to value contains two equal sub-records from dis-
tinct sources, the result is mapped to 0. If the sub-records are not
equal, the result is mapped to −1.

– If the list assigned to value contains only sub-record from the source
REF, the result is mapped to −1.

– Otherwise, the result is mapped to 1.

Finally, the minimum value is selected. If the result is −1, the candidate
for redundancy is not valid, i.e., either there is a sub-record in the kind
containing the referencing property ref that is not a part of the kind con-
taining referenced property id, or the sub-records with the same value do
not share the same values in all redundant neighbouring properties. If the
result is 0, the redundancy is full. Otherwise, the redundancy is partial.

Joining of RSDs

Joining of RSDs may be implemented variously, depending on the selected output
of the inference process. Either the RSDs, together with the confirmed/soundly
checked candidates for identifiers, references, and redundancy, are transformed
to an output format, such as XML Schema [104, 105], JSON Schema [106] etc.
Or, a more abstract representation using ER [31] or UML [32] can be used. How
the information is captured depends on the selected format. For example, for
representation of redundancy, the globally defined XML elements and respective
XML references can be used. In the implementation of the inference approach
(see Section 4.5), we also use a simple visualisation of the forest of RSDs, where
the identifiers, as well as redundant parts of the trees, are respectively graphically
denoted, and the trees are interlinked with a new type of edges representing the
references.
Example 4.16. Depending on the selected parameters of the algorithm, we can
get as a result, e.g., the ER model depicted in Figure 4.1. If we look closely,
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e.g., at entity Product, in Figure 4.13 we can see an example of its alternative
result depending on parameter k = 1 or k ∈ {2, 3}. The colours represent the
respective “overlapping” models and properties (relational, JSON document, or
XML document). If k = 1, we would get one common schema for kind Product
represented in all the three models. If k ∈ {2, 3}, we would get a common schema
for the relational and JSON document model and a different schema for the XML
document model.

Note that property productId is an identifier only in the relational table Prod-
uct (illustrated by the purple colour). Also, note that non-redundant property
price has probably a different meaning in distinct models. In the case of the
XML document model, it could be a purchase price, whereas, in the relational
and JSON document model, it could be a selling price.

4.5 Architecture and Implementation
The proposed approach was implemented as a modular framework called MM-
infer.17 Its graphical interface and general functionality have been introduced in
demo paper [109], but without technical details, algorithms, and experiments pro-
vided in this paper. It currently supports the following models and DBMSs: Post-
greSQL (relational and document, i.e., multi-model), Neo4j18 (graph), and Mon-
goDB19 (document) which represents both schema-full and schema-less DBMS.

The frontend of MM-infer was implemented in Dart using framework Flut-
ter.20 Sample screenshots are provided in Figure 4.14. The expected work with
the tool is as follows: The user selects particular DBMSs (1) and kinds (2) to
be involved in the inference process. (S)he can also confirm/refute initial redun-
dancy (3) based on kind names. Then the local schema inferrer infers the local
RSDs and generates the candidates. In the next screen, the user selects particular
types of candidates (4) and confirms/refutes the suggestions (5). After the global
schema inferrer performs the full check of candidates (if required) and merges
the RSDs into the global schema to be visualised to the user or transformed to a
requested form (6).

The backend of MM-infer was implemented in Java and using Apache Spark.21

The architecture of MM-infer, depicted in Figure 4.15, reflects the steps of the
above described inference process:

• At the bottom we can see data sources (green box) – a multi-model DBMS
or a set of single/multi-model DBMS (i.e., a polystore-like storage).

• The local schema inferrer (yellow box) uses three types of wrappers that
transform the input data/schemas into RSDs:

– In the case of schema-full database, a pre-defined schema already ex-
ists. Therefore, we only fetch the schema and translate it to the uni-
fying representation (i.e., only a unifying wrapper translator must be

17https://www.ksi.mff.cuni.cz/˜koupil/mm-infer/index.html
18https://neo4j.com/
19https://www.mongodb.com/
20https://flutter.dev/
21https://spark.apache.org/
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(a)

(b)

(c)

Figure 4.14: Screenshots of MM-infer
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implemented to translate the local schema into a unified representa-
tion).

– Having a schema-free (or mixed) database approach, a robust schema
inference approach may already exist for a particular model (e.g., the
XML or JSON document model). If so, we infer the schema by ex-
ploiting such an approach, and then we translate the resulting inferred
schema using a unifying translator layer.

– Finally, having schema-free or schema-mixed DBMS and no existing
schema inference approach, the basic schema is inferred for each kind.

Local schema inferrer then merges the RSDs locally (i.e., within one DBMS)
using Apache Spark. In parallel, it gathers and merges the data statistics
and produces the respective candidates to be eventually modified by the
user.

• The global schema inferrer (red box) checks candidates for references and
redundancy and merges the RSDs globally (i.e., in the context of all inputs).

• The resulting multi-model schema is provided to the user in the chosen
representation (violet box).

AbstractSchemaRepresentation RSD XML Schema JSON
Schema

Schema Representation

RSD Merger Redundancy Checker Integrity Constraints
Checker

Stats Transformation:

Stats Reducer

Transformation:

Stats to Candidates

Candidates Resolver

RSDTransformation:

RSD Merger

RSD Reducer

Local Schema Inferrer

Predefined

Schema
Wrapper

Inferred

Schema
Wrapper

Trivial

Schema
Wrapper

Stats

Builder

Wrapper

Transformation: Data to RSD Map: Data to Statistics

Global Schema Inferrer

Multi-Model DBMS / Polystore

 PostgreSQL

Figure 4.15: Architecture of MM-infer
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4.5.1 Database Wrappers
MM-infer is based on custom-tailored wrappers, each of which reads individual
records from a particular DBMS and returns its RSD. Note that not only the
whole data set may be represented in different data formats and data models,
but a collection of data models may represent even a single record. The wrapper
also includes user settings that determine the level of detail of the described
schema. For example, the user may request the inference of data structures
which implicitly may not be supported by the data model (e.g., Set and Map in
the case of JSON documents) but can be specified in RSDs.

Naturally, we assume the implementation of a wrapper for each DBMS. How-
ever, separate wrappers may exist for distinct settings of a particular DBMS –
e.g., schema-less vs schema-mixed – or a wrapper that involves a particular single-
model schema inference approach. A separate wrapper module is also devoted to
reading data statistics and their transformation into PDFs.

The following examples show the core of sample implementation of wrappers
for particular considered models of selected popular DBMSs.
Example 4.17. Table 4.2 illustrates the mapping of PostgreSQL record schema
(representing relational tuple) or property (i.e., an attribute of a tuple or an
identifier of a tuple) to an RSD. Note that PostgreSQL record (tuple) has an
anonymous name and its type corresponds to Map as the properties are named
values stored in an arbitrary order. In this case, we distinguish between Simple
(representing any simple type) and Array type attribute, both possibly nullable
(i.e., share can be either 0 or 1), and array being only homogeneous (i.e., de-
scribed by a set of children {. . . } and a trivial automaton representing an arbi-
trary number of anonymously named elements of an array (i.e., +). Also, note
that a structured property is not allowed as the purely relational model is natu-
rally aggregate-ignorant.22 Finally, we may consider an identifier and a reference
as a particular attribute type. The identifier must be unique, and share cannot
be 0 as the identifier cannot be nullable. In the case of references, the ref field
is set to the referenced kind κ and respective referenced property p.

Table 4.2: An example of PostgreSQL (relational model) schema mapping

construct name unique share id types models children regexp ref

tuple U 1,1 F Map REL {...} ϵ ϵ

attribute
(simple)

name T/F/U 0/1,0/1 T/F/U Simple REL ϵ ϵ ϵ/κ.p

attribute
(array)

name T/F/U 0/1,0/1 F Array REL {...} trivial ϵ

element
of an
array

T/F/U 1,0/1 F Simple REL ϵ ϵ ϵ

identifier
(simple)

name T 1,1 T Simple REL ϵ ϵ ϵ/κ.p

reference name T/F/U 0/1,1 T/F/U Simple REL ϵ ϵ κ.p

22PostgreSQL also supports the document model (i.e., JSON and XML). In this case, the
mapping of respective embedded properties is the same way as in the document model (see
Example 4.22 and 4.21).
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Example 4.18. Table 4.3 illustrates mapping of SciDB23 array schema to the uni-
fied RSD representation. A multi-dimensional array consists of anonymously
named cells which contain a Map of named simple attributes. Note that SciDB
does not allow complex attributes, therefore neither Array type nor Structure
type is allowed in the mapping. Finally, each cell is uniquely identified by dimen-
sion coordination (i.e., an identifier), whereas references between tables are not
supported.

Table 4.3: An example of SciDB (array model) schema mapping

construct name unique share id types models children regexp ref

cell U 1,1 F Map ARRAY {...} ϵ ϵ

attribute
(simple)

name T/F/U 0/1,0/1 T/F/U Simple ARRAY ϵ ϵ ϵ

identifier
(simple)

name T 1,1 T Simple ARRAY ϵ ϵ ϵ

Example 4.19. Table 4.4 illustrates mapping of Neo4j node/edge schema to RSD.
Both a node and an edge have an anonymous name and its type corresponds to
Map (i.e., both contain an unordered map of uniquely named properties). Similarly
to PostgreSQL (its relational model), only simple attributes and homogeneous
arrays of simple types are allowed. Also, only simple identifiers are allowed, and
only two special kinds of references are allowed, i.e., special properties from and
to representing the source and the target of an edge. Also, note that share = 0
is not allowed since null meta values are represented as a missing property in
Neo4j. Therefore no property can be mapped to an RSD having share = 0.

Table 4.4: An example of Neo4j (graph model) schema mapping

construct name unique share id types models children regexp ref

node/
edge

U 1,1 F Map GRAPH {...} ϵ ϵ

property
(simple)

name T/F/U 1,1 T/F/U Simple GRAPH ϵ ϵ ϵ/κ.p

property
(array)

name T/F/U 1,1 F Array GRAPH {...} trivial ϵ

element
of an
array

T/F/U 1,0/1 F Simple GRAPH ϵ ϵ ϵ

identifier
(simple)

name T 1,1 T Simple GRAPH ϵ ϵ ϵ

reference from/
to

T/F/U 1,1 F REF GRAPH ϵ ϵ κ.p

Example 4.20. Table 4.5 illustrates mapping of Redis24 (key/value model) key/va-
lue pair schema to RSD. A pair is an anonymously named Tuple of ordered
anonymous properties, i.e., a key and a value. A key is a simple identifier while
the value can be Simple, Array, Set or structured in general. However, we

23https://www.paradigm4.com/
24https://redis.io/
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do not support mapping of structural values – otherwise it would be document
model. Redis also does not support references, therefore no mapping exists for
them.25

Table 4.5: An example of Redis (key/value model) schema mapping

construct name unique share id types models children regexp ref

pair U 1,1 F Tuple KV {...} ϵ ϵ

value
(simple)

T/F/U 1,1 F Simple KV ϵ ϵ ϵ

value
(array)

T/F/U 1,1 F Array KV {...} auto-
maton

ϵ

value
(set)

T/F/U 1,1 F Set KV {...} ϵ ϵ

element
of an
array/
set

T/F/U 1,0/1 F Any-
Type

KV {...}/ϵ ϵ ϵ

key
(simple)

T 1,1 T Simple KV ϵ ϵ ϵ

Example 4.21. Table 4.6 illustrates the mapping of an XML schema to a unifying
RSD. The root of an XML document is a named root element possibly hav-
ing attributes (reflected as type Map) and nested subelements (reflected as type
Array), or both (Array+Map). Any element can be Simple (i.e., without nested
elements) or Array-type (i.e., having at least 1 nested element), with or without
attributes. In addition, XML allows text content of an element (being arbitrary
nested between other subelements within an array). As for the attributes, only
simple types are allowed, and the name of an attribute is prefixed by @. Finally, a
simple/composite attribute may identify an XML element. A reference may refer
to this identifier. Both are mapped as an identifier or a reference as a special
kind of attribute. Note that in an XML document, an element of an array is an
ordinary named (sub)element. Therefore Table 4.6 does not contain a special row
for an element of an array.
Example 4.22. Table 4.7 illustrates the mapping of a JSON schema into a unifying
RSD. The root of a JSON document is an anonymously named map (reflected
as type Map) of name/value pairs (fields). A field can be simple (i.e., allowing
only simple types of values), array (i.e., a homogeneous array allowing elements
of the same type or a heterogeneous array allowing elements of any type), or
structural (i.e., a nested document of type Map). An element of an array may be
of any type, e.g., simple, array, or structural. Finally, each document is identified
by an identifier (simple or composite), and references to other documents are
supported.
Example 4.23. Finally, Table 4.8 illustrates mapping of Cassandra26 column fam-
ily schema to a unifying RSD. A row of column family is an unordered set of
uniquely named name/value pairs, i.e., reflected as type Map. In addition, Cas-
sandra explicitly allows many variations of columns – e.g., a simple column,

25Yet it is not a rule in general, e.g., key/value store RiakKV (https://riak.com/products/
riak-kv/index.html) supports links between so-called buckets allowing link walking

26https://cassandra.apache.org/
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Table 4.6: An example of MarkLogic (XML document model) schema mapping

construct name unique share id types models children regexp ref

root name U 1,1 F Array/
Map/
Array
+ Map

XML {...} automaton ϵ

attribute @name T/F/U 1,1 T/F/U ϵ/
Simple

XML ϵ ϵ ϵ/κ.p

element
(simple
w/o atts)

name T/F/U 1,0/1 F Simple XML ϵ ϵ ϵ

element
(simple
+ atts)

name T/F/U 1,0/1 F Array
+ Map

XML {...} ( TEXT ?) ϵ

element
(array
w/o atts)

name T/F/U 1,0/1 F Array XML {...} automaton ϵ

element
(array +
atts)

name T/F/U 1,0/1 F Array
+ Map

XML {...} automaton ϵ

text node TEXT T/F/U 1,0/1 F ϵ/
Simple

XML ϵ ϵ ϵ

identifier
(simple)

name T 1,1 T Simple XML ϵ ϵ ϵ

reference name T/F/U 0/1,1 T/F/U Simple XML ϵ ϵ κ.p

Table 4.7: An example of MongoDB (JSON document) schema mapping

construct name unique share id types models children regexp ref

document F 1,1 F Map DOC {...} ϵ ϵ

field
(simple)

name T/F/U 0/1,1 T/F/U ϵ/
Simple

DOC ϵ ϵ ϵ/κ.p

field
(hom.
array)

name T/F/U 0/1,0/1 T/F/U ϵ/
Array

DOC {...} trivial ϵ

field (het.
array)

name T/F/U 0/1,0/1 T/F/U ϵ/
Array

DOC {...} auto-
maton

ϵ

field
(struc-
ture)

name T/F/U 0/1,0/1 T/F/U ϵ/Map DOC {...} ϵ ϵ/κ.p

element
of an
array

T/F/U 1,0/1 T/F/U Any-
Type

DOC ϵ/{...} ϵ/
trivial/
auto-
maton

ϵ

identifier
(simple)

name T 1,1 T Simple
/Map

DOC ϵ/{...} ϵ ϵ/κ.p

reference name T/F/U 0/1,0/1 T/F/U Simple
/Map

DOC ϵ/{...} ϵ κ.p

complex columns (e.g., array, set, map), or simple and complex identifiers. On
the other hand, Cassandra does not allow references. Therefore no mapping for
references is proposed (allowed).
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Table 4.8: An example of Cassandra (columnar model) schema mapping

construct name unique share id types models children regexp ref

row F 1,1 F Map COL {...} ϵ ϵ

column
(simple)

name T/F/U 0/1,0/1 T/F/U Simple COL ϵ ϵ ϵ

column
(array)

name T/F/U 1,1 F/U Array COL {...} auto-
maton

ϵ

tuple name T/F/U 1,1 F/U Tuple COL {...} auto-
maton

ϵ

column
family

name T/F/U 1,1 F/U Map COL {...} trivial ϵ

column
(map)

name T/F/U 1,1 F/U Map COL {...} ϵ ϵ

column
(set)

name T/F/U 1,1 F/U Set COL {...} ϵ ϵ

element
of an
array

T/F/U 1,0/1 F/U Any-
Type

COL ϵ ϵ/
trivial
/auto-
maton

ϵ

element
of a tuple

T/F/U 1,1 F/U Any-
Type

COL ϵ/{...} ϵ/
trivial
/auto-
maton

ϵ

element
of a set

T/F/U 1,1 F/U Any-
Type

COL ϵ/{...} ϵ/
trivial
/auto-
maton

ϵ

identifier
(simple)

name T 1,1 T Simple COL ϵ ϵ ϵ

4.6 Experiments
MM-infer was implemented not only as a user-friendly tool for interaction with
the user during the inference process but also as a tool that enables verification
of the correctness and efficiency of the proposed algorithms. In particular, we
evaluate RBA against PBA schema inference in terms of execution performance
concerning the number of input documents and their structure. The experiments
were run over subsets of 6 real-world datasets:

• An 8.192 million record sample of IMDB title.basics tab-separated-values
(TSV) collection27 imported into Neo4j graph database.

• A 512 thousand record sample of Wikidata Lexeme namespace JSON col-
lection28 imported into MongoDB document database.

• A subset of 512 thousand records of Wikidata entities in a single JSON
collection dump29 imported into MongoDB.

• A three collections of Yelp Academic Dataset30 of JSON documents im-
ported into MongoDB, namely 4.096 million record sample of Review col-

27https://www.imdb.com/interfaces/
28https://www.wikidata.org/wiki/Wikidata:Database_download
29https://www.wikidata.org/wiki/Wikidata:Database_download
30https://www.kaggle.com/datasets/yelp-dataset/yelp-dataset
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Table 4.9: Statistics of the used data sets

Collection Size
(MB)

Average
proper-
ties

Average
nested
docu-
ments

Average
arrays

Maximal
document
depth

Average
document
depth

imdb16k 1,19 11,00 1,00 0,00 2 2,00

imdb32k 2,37 11,00 1,00 0,00 2 2,00

imdb64k 4,80 11,00 1,00 0,00 2 2,00

imdb128k 9,63 11,00 1,00 0,00 2 2,00

imdb256k 19,19 11,00 1,00 0,00 2 2,00

imdb512k 39,09 11,00 1,00 0,00 2 2,00

imdb1024k 81,32 11,00 1,00 0,00 2 2,00

imdb2048k 164,17 11,00 1,00 0,00 2 2,00

imdb4096k 331,08 11,00 1,00 0,00 2 2,00

imdb8192k 668,97 11,00 1,00 0,00 2 2,00

lexemes1k 2,09 128,53 39,26 14,73 26 10,92

lexemes2k 3,80 118,33 36,05 13,60 26 10,62

lexemes4k 7,43 115,32 35,06 13,16 26 10,60

lexemes8k 23,99 193,84 56,38 26,29 26 10,10

lexemes16k 109,96 399,25 119,88 50,52 26 13,42

lexemes32k 244,33 439,74 131,86 53,07 26 13,58

lexemes64k 429,01 408,93 120,60 50,95 26 11,93

lexemes128k 863,78 405,33 119,90 48,78 26 12,03

lexemes256k 1560,63 367,57 108,94 45,79 26 11,71

lexemes512k 3202,35 375,31 111,44 46,64 26 11,86

wikidata1k 54,57 3 041,47 825,10 302,71 22 11,96

wikidata2k 99,13 2 753,54 746,45 274,60 22 12,32

wikidata4k 158,38 2 218,33 603,29 221,99 22 12,36

wikidata8k 280,31 1 965,14 533,50 198,65 22 12,55

wikidata16k 492,38 1 738,91 470,97 174,48 22 12,89

wikidata32k 914,44 1 597,41 433,88 158,36 22 12,86

wikidata64k 1611,56 1 398,28 381,05 136,18 22 12,89

wikidata128k 2702,60 1 175,67 321,31 114,15 22 12,91

wikidata256k 4276,11 925,00 255,06 86,86 22 12,73

wikidata512k 6755,81 725,59 201,30 66,62 22 12,60

yelpreview2k 1,41 11,00 1,00 0,00 2 2,00

yelpreview4k 2,77 11,00 1,00 0,00 2 2,00

yelpreview8k 5,57 11,00 1,00 0,00 2 2,00

yelpreview16k 11,12 11,00 1,00 0,00 2 2,00

yelpreview32k 22,27 11,00 1,00 0,00 2 2,00

yelpreview64k 44,58 11,00 1,00 0,00 2 2,00

yelpreview128k 89,48 11,00 1,00 0,00 2 2,00

yelpreview256k 179,15 11,00 1,00 0,00 2 2,00

yelpreview512k 361,99 11,00 1,00 0,00 2 2,00

yelpreview1024k 729,29 11,00 1,00 0,00 2 2,00

yelpreview2048k 1 461,10 11,00 1,00 0,00 2 2,00

yelpreview4096k 2 932,20 11,00 1,00 0,00 2 2,00
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Continuation of Table 4.9

Collection Size
(MB)

Average
proper-
ties

Average
nested
docu-
ments

Average
arrays

Maximal
document
depth

Average
document
depth

yelptip1k 0,18 7,00 1,00 0,00 2 2,00

yelptip2k 0,37 7,00 1,00 0,00 2 2,00

yelptip4k 0,74 7,00 1,00 0,00 2 2,00

yelptip8k 1,48 7,00 1,00 0,00 2 2,00

yelptip16k 2,95 7,00 1,00 0,00 2 2,00

yelptip32k 5,90 7,00 1,00 0,00 2 2,00

yelptip64k 11,82 7,00 1,00 0,00 2 2,00

yelptip128k 23,68 7,00 1,00 0,00 2 2,00

yelptip256k 47,60 7,00 1,00 0,00 2 2,00

yelptip512k 95,73 7,00 1,00 0,00 2 2,00

yelpuser1k 11,59 24,00 1,00 0,00 2 2,00

yelpuser2k 20,07 24,00 1,00 0,00 2 2,00

yelpuser4k 35,83 24,00 1,00 0,00 2 2,00

yelpuser8k 59,72 24,00 1,00 0,00 2 2,00

yelpuser16k 92,84 24,00 1,00 0,00 2 2,00

yelpuser32k 130,97 24,00 1,00 0,00 2 2,00

yelpuser64k 240,10 24,00 1,00 0,00 2 2,00

yelpuser128k 359,46 24,00 1,00 0,00 2 2,00

yelpuser256k 648,87 24,00 1,00 0,00 2 2,00

yelpuser512k 1 055,76 24,00 1,00 0,00 2 2,00

yelpuser1024k 1 814,98 24,00 1,00 0,00 2 2,00

lection, 512 thousand records of Tip collection, and 1.024 million records of
User collection.

The characteristics of the selected datasets are listed in Table 4.9 to indicate
the growing complexity. Experiments with different data sizes were executed to
measure the performance depending on the number and complexity of the input
documents.

The experiments were performed on a bare-metal virtual machine running on
the VMware31 infrastructure. The allocated hardware resources were CPU In-
tel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz (8 core), 64 GB of memory, and a
solid-state drive with a capacity of 1.1 TB. Apache Spark was executed locally
with 32 GB RAM set to JVM via -Xmx32768M. A possible bias caused by tem-
porary decreases in system resources was mitigated by 20 runs of each algorithm
on each extracted subset of input data. The extremes (minimum and maximum)
were removed from the measurements, and the remaining measurements were
averaged.

Figure 4.16 confirms our hypothesis that the RBA, which utilised the tradi-
tional strategy to work with whole records, is slower when run on more complex
data (i.e., lexeme or wikidata dump) because it has to work with whole records

31https://www.vmware.com/
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Figure 4.16: Results of experiments
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instead of separate properties. Instead, PBA first merges separate properties
and, in the end, it merges them into the resulting schema of the whole kind. In
the case of simple data, this difference is not that significant, but larger, more
complex documents depict the difference. In addition, PBA is also scalable more
easily because it works with the approximately same data portions regardless
of the size of the input. Hence, RBA is more suitable for smaller, less com-
plex data. In general, RBA is more appropriate for aggregate-ignorant models
with a smaller amount of properties in kinds, whereas PBA is a better choice for
aggregate-oriented models.

4.7 Conclusion and Future Work
This paper introduces a novel proposal of an approach dealing with schema in-
ference for multi-model data. Contrary to existing works, it covers all currently
popular data models and possible combinations, including cross-model references
and data redundancy. In addition, it can cope with large amounts of data – a
standard feature in NoSQL databases but not commonly considered in existing
schema inference strategies.

The core idea of the proposal is completed, implemented as a tool MM-infer,
and experimentally verified. Nevertheless, there are still possible directions for
extension and exploitation. In our future work, we will focus on the inference
of more complex cross-model integrity constraints which can be expressed, e.g.,
using the Object Constraint Language (OCL) [48]. To infer a more precise target
schema, we can also incorporate the eventual knowledge of multi-model queries or
semantics of the data. In the former case, we can infer an equivalent schema that
reflects the expected data access. In the latter case, we can reveal information
that cannot be found in the data itself. Last but not least, the inference approach,
together with statistical analysis of the source data, can reveal and enable the
backwards correction of errors (i.e., occasionally occurring exceptional cases) in
the data.
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Abstract
The arrival of so-called multi-model data has brought many challenging problems.
The contradictory features of the combined models and lack of standardisation
of their combination make the solution of the data management specifics highly
complex.

In this paper, we focus on the problem of evolution management of multi-
model data. With the changing user requirements, the schema and the data need
to be adapted to preserve the expected functionality of a multi-model application.
We introduce a tool MM-evocat based on utilising the category theory. We will
show that the core of the tool, i.e., the categorical representation of multi-model
data, enables us to grasp all the specifics of the individual models and their
possible combinations. Its simple but powerful formal basis enables unique and
robust support for evolution management.

Keywords
• Multi-Model Data • Evolution Management • Category Theory

5.1 Introduction
Currently, there exist 388 database management systems (DBMSs).1 If we con-
sider the 50 most popular representatives, involving the key players, such as, e.g.,
Oracle DB, PostgreSQL, MongoDB, Microsoft SQL Database, Informix, etc., we
get 60% systems that can be denoted as multi-model.
Example 5.1. Let us consider an example of a multi-model scenario as shown
in Figure 5.1. The relational data (purple) represents customers and their ad-
dresses, whereas the document data (green) is redundant to the relational data.
Relationships between customers are captured in the graph (blue).

1

32

Mary

Smith

Anne
Maxwell

John
Newlin

friend friend

friend

 { _id : 1, name : Mary, surname : Smith,
   address : {
     street : Letenská, city : Prague, postCode : 11000 } }

 { _id : 2, name : Anne, surname : Maxwell,
   address : {
    street : Ke Karlovu, city : Prague, postCode : 11000 } }

 { _id : 3, name : John, surname : Newlin, 
   address : {
    street : Technická, city : Prague, postCode : 16200 } }

address
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11000
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city
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Prague
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id

1

2

3

Figure 5.1: An example of multi-model data

According to our extensive survey [13], the features of existing multi-model
databases vary significantly. This status is given by the fact that (1) they are
based on the distinct original core single model as well as distinct target ap-
plication domains, (2) there is no acknowledged standard on how to support a

1https://db-engines.com/en/ranking
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combination of models, cross-model querying, multi-model indices, etc., and (3)
the combined models have distinct, often contradictory features.

The described variety of multi-model DBMSs lacking standards and the gen-
eral complexity of multi-model applications bring many new challenges to data
management. One of them, our aim in this paper, is evolution management of
multi-model data. As user requirements or the environment change, the data
structures evolve, and the whole system must be adapted to ensure the same
functionality and efficiency. We can rely on a skilled database administrator in
simpler applications, but in complex cases, where multi-model data undoubtedly
belong, it is a complicated and error-prone task.
Example 5.2. Consider again Figure 5.1. We may want to merge customers with
their address in a relational model. Or we may want to group the properties
street, city, postalCode into a single property address.

To address the indicated problems, we extend our previous research results in
evolution management [119, 120] and categorical representation of multi-model
data [3]. We introduce a tool called MM-evocat,2 which enables to perform
user-specified changes over an abstract multi-model schema and propagates them
across all affected sub-models to the logical schemas as well as data instances.
The main contributions can be summarised as follows:

• The unifying categorical representation enables us to represent all popular
data models (relational, key/value, document, column, and graph) and all
types of their combination (embedding, references, and redundancy).

• The representation enables a full decomposition of the data structures to a
categorical graph. Hence, it does not impose any initial aggregation of more
complex structures, making evolution management robust and efficient.

• Apart from the common and core schema modification operations (SMOs),
we introduce operations with integrity constraints (ICs), cardinalities, and
groups of properties.

• Besides the most natural propagation from the conceptual to the logical
level (so-called heavy operations), we also introduce light operations which
change only the conceptual level and its mapping to the logical level.

• We present a proof-of-concept implementation MM-evocat. Using real-world
data we demonstrate the described features and show how much manual and
error-prone work the approach saves.

Note that apart from the data management, the categorical representation has
been successfully used in various related areas, such as programming language
theory [22, 23], data migration [20], or artificial intelligence (AI) [24, 25].

Paper Outline In Section 2, we review related work. Section 3 introduces
the categorical representation of multi-model data, and Section 4 describes the
proposed evolution management approach and its implementation MM-evocat. In
Section 5, we outline its demonstration.

2https://www.ksi.mff.cuni.cz/˜koupil/mm-evocat/
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5.2 Related Work
The problem of evolution management is challenging even in the single-model
world. In the case of multi-model approaches, the amount of related work is
small and with various limitations.

The evolution management framework DaemonX [117] introduces a top-down
approach starting from the design of a platform-independent model (PIM) and
then mapping its selected parts to the respective single-model platform-specific
models (PSMs) followed by schema, operational, and extensional levels. The
supported PSM models involve XML, relational, business-process, and REST.
The authors focus on the correct and complete propagation of changes. The idea
of the framework is general and extensible, so any model mapped to the common
general PIM schema can be added to the framework. However, the authors do
not consider proper multi-model data because neither cross-model references nor
mutual embedding of models is supported.

Another academic prototype system Darwin [125, 162] supports several aggre-
gate-oriented NoSQL data stores (i.e., MongoDB, Couchbase, Cassandra, and
ArangoDB). Beyond extracting a schema summary from a NoSQL data instance,
users can derive the historical series of schema versions and semi-automatically
declare the changes between two consecutive schemas. MigCast [122, 126] extends
Darwin with an adviser for evaluating different data migration strategies w.r.t.
their costs (such as monetary costs for operating in the cloud or the expected
overhead in access times).

The approach called MM-evolver [120] supports evolution management of
both aggregate-oriented and aggregate-ignorant models. In addition, it also sup-
ports references, though only in a limited way. However, the level of abstraction
of the multi-model data is insufficient, and its further extensions are complicated.

The ORION language [163] was designed for evolution management of U-
Schemas [30], a proposal of representation of multi-model data. Although the
authors try to ensure unification, they involve special constructs that cover spe-
cific features of particular models. Also, the consideration of inter-model links
is limited – the models are handled rather separately, not as one unit. Conse-
quently, the schema modification language is complex, as it must consider all the
constructs and their specifics. As in the previous case, further approach exten-
sions will not be straightforward.

The idea to exploit category theory for representation and modification of
multi-model data is not new. However, the approaches are still limited. Pa-
per [19] utilises category theory to represent (object-)relational data and consid-
ers only basic operation (adding and deletion). The authors of paper [57] utilise
category theory to represent multi-model data (in particular relational, JSON
document, and graph) and to express the data migration process between the
models formally.

5.3 Categorical Conceptual Model
Let us first remind the basic notions of the category theory. A category C =
(O,M, ◦) consists of a set of objects O, set of morphismsM, and a composition
operation ◦ over the morphisms. Each morphism is modelled as an arrow f :
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A → B, where A, B ∈ O. We must also ensure transitivity (g ◦ f ∈ M for any
f, g ∈M, f : A→ B, g : B → C), associativity (requiring h ◦ (g ◦ f) = (h ◦ g) ◦ f
for any suitable f, g, h ∈ M), as well as introduce an identity morphism 1A for
each object A such that f ◦ 1A = f = 1B ◦ f for any f : A → B. Category as a
whole can be visualised in a form of a multigraph, where objects act as vertices
and morphisms as directed edges.

Schema Category The core of conceptual modelling of multi-model data in
MM-evocat forms so-called schema category.3 To simplify the understanding, we
will explain it using the terms known from the ER model,4 though we do not
need to distinguish them, as they are all treated in the same way.

Schema category S is defined as a tuple (OS,MS, ◦S). Objects in OS corre-
spond to individual entity types, attributes, and relationship types. Attribute,
relationship and hierarchy morphisms in MS connect appropriate pairs of ob-
jects. The explicitly defined morphisms are denoted as base, those obtained via
the composition ◦ as composite.

Each object o ∈ OS is internally modelled as a tuple (key, label, superid,
ids), where key ∈ O ⊆ N is an automatically assigned internal identity, label is
an optional user-defined name (e.g., name of the corresponding entity type) or ⊥
when missing, superid ̸= ∅ is a set of attributes forming the actual data contents
of a given object, and ids ⊆ P(superid), ids ̸= ∅ is a set of particular identifiers
(each modelled as a set of attributes) allowing us to uniquely distinguish indi-
vidual data instances. It holds that ⋃︁

id∈ids id ⊆ superid (equality for entity or
attribute objects).

Each morphism m ∈ MS is a tuple (signature, dom, cod, min, max).
signature ∈M∗ enables to mutually distinguish all morphisms except the identity
ones. M∗ is the set of all possible sequences of symbols from M connected using
“·”, signature ∈M is used for the base morphisms, signature ∈M∗ \ (M ∪ {ε})
is used for the composite morphisms allowing their decomposition to base mor-
phisms, signature = ε is used for identity. dom and cod represent the domain and
codomain of the morphism. Cardialities min ∈ {0, 1} and max ∈ {1, ∗} allow
us to express constraints on minimal/maximal numbers of occurrences. Identity
morphism for an object o ∈ OS is defined as 1o = (ε, o, o, 1, 1).

For non-identity morphisms m1 = (signature1, dom1, cod1, min1, max1),
m2 = (signature2, dom2, cod2, min2, max2) ∈MS, their composition m2◦Sm1 =
(signature2 ·signature1, dom1, cod2, min(min1, min2), max(max1, max2)).
Example 5.3. Figure 5.2 depicts the ER (a) and categorical (b) conceptual model
of sample data from Figure 5.1.

Mapping To “glue” the categorical conceptual schema with the respective
logical schemas in the underlying DBMSs, the schema category is decomposed
and mapped to particular model-specific data structures. Since the terminology
within the particular popular models differs, in Table 5.1 we provide an overview
of the popular models we support, their classification, and the unification of re-
spective model-specific terms.

3We also introduced an instance category [3] for the unified representation of data instances,
but we omit its definition due to space limitations.

4We show in [26] that an ER model can be transformed into a schema category.
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Figure 5.2: ER (a) and categorical (b) schema of sample data

Table 5.1: Unification of terms in popular models

Unifying term Relational Graph Key/value Document Column

Kind Table Label / type Bucket Collection Column family

Record Tuple Node / edge (key, value) Document Row

Property Attribute Property – Field Column

Domain Data type Data type – Data type Data type

Value Value Value Value Value Value

Identifier Key Identifier Key Identifier Row key

Reference Foreign key – – Reference –

Array – Array Array Array Array

Structure – – Set / Zset /
Hash / ...

Nested doc. /
object

Super column

At the logical level, a transition between two distinct models can be expressed
either via (1) inter-model references or by (2) embedding one model into another
(e.g., columns of type JSON in tables of the relational model of PostgreSQL5).
Another possible combination of models is via (3) multi-model redundancy, i.e.,
storing the same data fragment in two or more distinct models.

The decomposition of a schema category S (depicted in Figure 5.2 (b) using
colours), eventually partial or overlapping, is defined via a set of mappings, as also
formally defined in [3] (and omitted for paper length). Each mapping describes
where and how data instances of a subgraph of S (following particular conditions)
are stored in a kind of a particular DBMS. For each kind, the mapping specifies
the respective DBMS, its name, its root object in S, and an access path which
recursively (i.e., in the same way) describes the structure of a kind, i.e., its (sim-
ple or complex) properties, relatively to the root object. The description is rich
enough to cover various specifics of the underlying models and their combina-
tions, such as properties with user-defined, anonymous, or dynamically-derived
names; properties inlined from more distant parts of the categorical graph (via
composite morphisms); auxiliary properties used, e.g., for logical grouping of a
set of properties; order-preserving/order-ignoring sets of subproperties etc. For
easier understanding, we also introduce a JSON-like representation of an access
path.

5https://www.postgresql.org/
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Example 5.4. In the following examples, we will depict the mapping only graph-
ically. E.g., in Figure 5.3 the mapping is depicted for kinds (tables) Address and
Customer using the dashed arrows.
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Figure 5.3: Relational-to-conceptual mapping

5.4 Evolution Manager MM-evocat
MM-evocat is an extensible modular framework whose core forms the introduced
categorical conceptual model. It enables the creation of a categorical model, its
decomposition and mapping to any combination of the supported models, and
application of user-specified modifications. The architecture of MM-evocat is de-
picted in Figure 5.4. At the lowest, platform-specific (green) level there are the
particular DBMSs, each with respective wrappers ensuring the unified commu-
nication with the DBMS and unifying representation of the multi-model data.
Currently it supports the following models and DBMSs: PostgreSQL (relational
and document, i.e., multi-model), Neo4j6 (graph), and MongoDB7 (JSON doc-
ument). The blue logical-to-conceptual mapping represents the “glue” between
the logical schemas and conceptual schema at the (red) platform-independent
level. Over the conceptual schema, the user can specify evolution/migration op-
erations or conceptual queries. We also proposed an approach for inference of the
categorical conceptual schema [109] from the sample data.

In Figure 5.5 we provide a screenshot of MM-evocat with the same categorical
model as in Figure 5.2.

5.4.1 Schema Modification Operations
For specification of user-required changes, we have defined the Multi-Model Sche-
ma Evolution Language (MMSEL), i.e., a set of Schema Modification Operations
(SMOs) that enable to create and delete any allowed schema. Figure 5.6 shows
its EBNF grammar.

As we can see, we naturally involve core operations to add, delete, or rename
a property. We also support in related work common operations to copy or move

6https://neo4j.com/
7https://www.mongodb.com/
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Figure 5.4: Architecture of MM-evocat

Figure 5.5: A screenshot of MM-evocat

a property to another property. We also support the creation of a new property
from a set of properties, either by creating a complex parent property (group), or
by creating a simple property containing their values separated using a specified
separator (union), including their inverse operations (ungroup/split). In addition,
we enable to work with integrity constraints, namely identifiers (addId/dropId)
and references (addRef /dropRef ). Finally (and also uniquely), we enable the
modification of cardinalities in both directions (covering also the change between
a simple type and an array), i.e., from more to less restricted and vice versa
(changeCardinality).8

8Both directions change the structure of the schema category, similar to the situation of an
additional table in case of an M:N relationship.
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MMSEL := ADD | DELETE | RENAME | COPY | MOVE | GROUP | UNGROUP | UNION |
SPLIT | ADD_ID | DROP_ID | ADD_REF | DROP_REF | CHANGE_CARDINALITY

ADD := "add" PROP ["=" {val}] ["to" PROP] [SELECTION]
DELETE := "delete" PROP [SELECTION]
RENAME := "rename" PROP "to" {name} [SELECTION]
COPY := "copy" PROP "to" PROP [SELECTION]
MOVE := "move" PROP "to" PROP [SELECTION]
GROUP := "group" PROP[","PROP]* "to" PROP [SELECTION]
UNGROUP := "ungroup" PROP [SELECTION]
UNION := "union" PROP[","PROP]* "to" PROP "separator" {sep} [SELECTION]
SPLIT := "split" PROP TO PROP[","PROP]* "separator" {sep} [SELECTION]
ADD_ID := "addId" PROP[","PROP]* "to" PROP
DROP_ID := "dropId" PROP[","PROP]* "from" PROP
ADD_REF := "addRef" PROP[","PROP]* "from" PROP "to" PROP
DROP_REF := "dropRef" PROP[","PROP]* "from" PROP "to" PROP
CHANGE_CARDINALITY := "changeCardinality" (PROP1->PROP2 "to" PROP1<-PROP3->PROP2)

| (PROP1<-PROP3->PROP2 "to" PROP1->PROP2) ["separator" {sep}] [SELECTION]

SELECTION := "where" COND ["and" | "or" COND]*
COND := PROP "=" {value}
PROP, PROP1, PROP2, PROP3 := [{schemaId}]"."{label} | [{schemaId}]"."{key}
<-, -> := [{schemaId}]"."{signature}

Figure 5.6: EBNF syntax of MMSEL

Regarding the propagation, the operations can be further divided into heavy
and light, depending on user requirements. A heavy operation is an SMO that is
propagated from the conceptual level to the mapping, logical level, and data in-
stances. Conversely, a light operation only triggers a propagation to the mapping.
Each SMO can be heavy. Operations add, rename, group, addId, and addRef can
be also light. (Note that this behaviour is different from the eager and lazy mi-
gration considered in [122, 126]. These classes reflect whether the operation is
propagated immediately or the propagation can be delayed until the change is
needed.)

Example 5.5. An example of a heavy operation is provided in Figure 5.7. We apply
operation ungroup Address to extract subproperties Street, City, and PostCode
from kind Address and to store them directly to kind Customer. As we can see,
this part of the schema is stored redundantly in both relational (purple) and
document (green) models. In the relational model we can see that the respective
kinds (tables Address and Customer) are merged into one kind (table) Customer.
Conversely, we only remove one level from the hierarchical JSON data in the
document model.

Example 5.6. An example of a light operation is provided in Figure 5.8. We apply
operation group Name, Surname to Personal to create a new complex property
consisting of two existing properties. The change in the categorical schema is
propagated to the mapping, however, the logical level remains unchanged. We
also provide a simple example of a conceptual query over the schema category
which reflects the change at the conceptual level. Conversely, the graph query
over the graph (logical) model remains unchanged.
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Figure 5.7: Heavy operation ungroup Address
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5.5 Demonstration Outline
Our demonstration will be based on three kinds of the Yelp Academic Dataset9 of
JSON documents, namely the Review collection, the Tip collection, and the User

9https://www.kaggle.com/datasets/yelp-dataset/yelp-dataset
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collection, transformed into the three supported data models, i.e., graph, JSON
document, and relational. Using the data, we will gradually modify the datasets
to demonstrate:

1. the advantages of the categorical representation, i.e., its full decomposi-
tion, unifying representation of all the models and all types of cross-model
transitions etc.,

2. the rich set of SMOs, i.e., the new operations as well as the difference and
applicability of light and heavy operations,

3. the number of affected kinds/properties and consequently the amount of
saved manual and error-prone work, and

4. the efficient extensibility for the near future work, i.e., the efficient propa-
gation to queries or the utilisation of AI for self-adaptability of the system.
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Conclusion
This thesis introduces a general framework for modelling and management of
multi-model data. Unlike the existing solutions, the framework is based on a
mature formal background of a theory general enough to grasp the variety of all
popular data models and to support different data management tasks, such as,
e.g., data modelling, schema inference, data migration, and evolution manage-
ment, in a unified way.

The main contributions are summarised as follows:

• Unification of data models. First, an extensive analysis of popular database
systems and underlying data models was performed. Based on the results,
we proposed a unification of related constructs occurring in various data
models and brought them to the same (abstract) level. Hence, contrary to
the existing solutions, we do not introduce any constructs tied only to a
particular model.

• Multi-model data modelling. The proposed data modelling approach is gen-
eral enough to allow a unified representation of popular data models and
their combination at the conceptual level. To verify the completeness of
the proposal, an algorithm for translating the ER schema into the proposed
categorical representation was proposed. Finally, we provided a unified data
representation that serves as a mediator for various data management tasks.

• The bridge between the conceptual and logical layer. We have proposed an
approach that allows for mapping of the unified categorical schema to any
(combination of) popular models supported in existing DBMSs, while the
specific features of the logical layer are hidden from the user. Along with
the mapping, we introduced data transformation algorithms that, among
others, allow to realise data migration between different (combinations of)
logical representations. The core idea was implemented in the academic
prototype MM-cat.

• Inference of the multi-model schema. To the best of our knowledge, we
have proposed the first approach dealing with the inference of a multi-model
schema. In addition, the approach allows to infer a number of integrity con-
straints, e.g., (simple) identifiers, references (both intra- and inter-model),
and to reveal partial and complete redundancy in the data (once again,
both intra- and inter-model). Last but not least, exploiting the statisti-
cal analysis of the source data, the approach enables the detection and
backward correction of errors in the data. The main idea of the proposal
was implemented as the academic prototype MM-infer and experimentally
verified.

• Evolution management and correct propagation of changes. Having the
unified conceptual layer, schema modifications within and across multiple
logical models are reduced to modifications of the unified representation
and its mapping to the logical layer. For this purpose, we proposed a
several sets of SMOs, together with the respective propagation of changes
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via transformation algorithms between the logical and unified layers. The
main idea was implemented in the academic prototype MM-evocat.

Finally, let us note that the unification of models allows the framework to
be applicable to multi-model data represented both polystores and multi-model
systems, as well as to single-model systems. Even in the latter case of single-model
data the proposed approaches also bring innovations and extensions thanks to the
unified and general view of the respective data management tasks.

Current and Future Research
Besides extensions to existing components of the framework (see⋆ Subsection 3.8.1
and⋆ Section 4.7) we are currently working on additional features:

• Conceptual query language. The level of abstraction of the categorical ap-
proach allows us to define a conceptual query language. Utilising the ideas
of decomposition and mapping, any conceptual expression can be decom-
posed and further translated into particular query expressions at the logical
level. Moreover, since a category can be seen as a special type of a multi-
graph, the categorical query language can be inspired by graph pattern
matching, as known from existing graph languages such as, e.g., Cypher,
and SPARQL.

• Conceptual query evaluation plan. The knowledge of a unifying schema
and its decomposition allows the construction of multiple query evaluation
strategies. Similar to single-model systems, there is an opportunity for
creating multiple query execution plans and selecting the optimal query
evaluation strategy. Moreover, we can exploit the natural properties of
multi-model data, e.g., cross-model redundancy in the data, which allows
for higher variability in query evaluation strategies.

• Self-Adapting Evolution Management. The combination of the variety of
data formats and the continuous changes in the data bring a huge challenge
for administrators of (not only multi-model) database systems. Our future
goal is first to extend the existing evolution management proposal with
the propagation of changes to queries and then to focus on the area of
autonomous management of rapidly changing multi-model Big Data, as
envisioned in our paper [164].
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Holubová. Categorical Modeling of Multi-Model Data: One Model to Rule Them
All. 10th International Conference on Model and Data Engineering, MEDI 2021.
Tallinn, Estonia, June 2021. doi: 10.1007/978-3-030-78428-7 15 (CORE C)

Contribution: The share of the author’s contributions in this paper is equal.
All authors read and approved the final manuscript.

Conference Paper IV: Irena Holubová, Pavel Čontoš (Koupil), and Mar-
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MM-cat: A Tool for Modeling and Transformation of Multi-Model Data using
Category Theory. 24th International Conference on Model Driven Engineering
Languages and Systems, MODELS 2021. Fukuoka, Japan, October 2021. doi:
10.1109/MODELS-C53483.2021.00098 (CORE A)

Contribution: The share of the author’s contributions in this paper is equal.
All authors read and approved the final manuscript.

Conference Paper VII: Pavel Koupil, and Irena Holubová. Unifying Cat-
egorical Representation of Multi-Model Data. 37th ACM/SIGAPP Symposium
On Applied Computing, SAC 2022. Brno, Czech Republic, April 2022. doi:
10.1145/3477314.3507690 (CORE B)

Contribution: The share of the author’s contributions in this paper is equal.
All authors read and approved the final manuscript.

Conference Paper VIII: Ivan Veinhardt Latták, and Pavel Koupil. A Com-
parative Analysis of JSON Schema Inference Algorithms. 17th International
Conference on Evaluation of Novel Approaches to Software Engineering, ENASE
2022. Virtual Event, April 2022. doi: 10.5220/0011046000003176 (CORE B)

Contribution: The paper is based on Ivan Veinhardt Latták’s Master the-
sis [107] (supervised by Pavel Koupil).

Conference Paper IX: Pavel Koupil, Sebastián Hricko, and Irena Holubová.
MM-infer: A Tool for Inference of Multi-Model Schemas. 29th International
Conference on Extending Database Technology, EDBT 2022. Edinburgh, UK,
March 2022. doi: 10.48786/edbt.2022.52 (CORE A)

Contribution: The share of the author’s contributions in this paper is equal.
All authors read and approved the final manuscript.
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A. Category Theory
Category theory [17] is a branch of mathematics that provides a way to gener-
alise mathematical structures and the relationships between them. Hence, it is a
unifying theory that is useful for finding connections between different areas, not
only in mathematics and theoretical computer science. We assume that by ap-
plying category theory we will achieve a reasonable level of abstraction of various
data models and their combinations that will allow us to perform data migration,
querying, and evolution management of multi-model data in a unified way.

In this section, we provide the basic definitions underlying our approach of
multi-model schema and data representation ⋆(see Chapter 2), data migration

⋆(see Chapter 3), and schema and data evolution ⋆(see Chapter 5), as well as the
approaches we have been inspired by [18, 19, 20, 21]. Note that our aim
is to propose an intuitive and user-friendly approach. Therefore, we
explicitly use only the most basic constructs of category theory, i.e.,
primarily categories (see Definition 1) and functors (see Definition 6). As
for the other constructs, i.e., natural transformations (see Definition 10) and
universal constructions (see Definitions 13, 14, 16, and 17), these are considered
only implicitly, i.e., we do not require the user to have active knowledge of these
definitions. On the contrary, these complex constructs are explicitly utilised in
the approaches we are inspired by.

In addition, we also provide illustrative examples that are closely related to
real-world applications in data modelling approaches at the conceptual and logical
level. Finally, for the convenience of the reader, at the end of each subsection
we outline in which approaches and for which purpose the above definitions are
applied, i.e., we provide additional examples.

For more details we refer an interested reader to [165, 124, 123, 133, 17],
which are ordered by difficulty, while for computer science we recommend partic-
ularly [165].

A.1 Basic Definitions
In this subsection, we introduce the basic definitions and concepts which form
the foundation of category theory. Specifically, we introduce the notion of a
category as a collection of objects and morphisms (sometimes called arrows), and
we introduce different classes of morphisms based on their properties, as well as a
way to create a category from an arbitrary graph. We conclude with illustrative
examples of categories.

Definition 1. The category C is a quadruple (OC,MC, ◦, 1) such that:

• OC is a collection of objects.

• MC is a collection of morphisms where each f ∈ MC is represented as
an arrow f : A→ B (also denoted A

f−→ B), where A, B ∈ OC, such that A
is the domain of f , denoted by dom(f) = A, and B is the codomain of f ,
denoted by cod(f) = B.
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• Given f, g ∈MC and cod(f) = dom(g), there exists g ◦ f ∈MC, which we
refer to as the composition of f and g. Moreover, the composition must
be associative, i.e., for any f, g, h ∈ MC such that cod(f) = dom(g) and
cod(g) = dom(h), the equality h ◦ (g ◦ f) = (h ◦ g) ◦ f holds.

• For each object A ∈ OC, there is exactly one identity morphism 1A : A→
A such that f ◦ 1A = f = 1B ◦ f holds for any f : A→ B, f ∈MC.

Definition 2. Let C be a category and A, B ∈ OC. Then we define the hom-
class homC(A, B) ⊂MC as the collection of all morphisms f : A→ B.

Definition 3. We call the category C a small category if both OC and MC
are sets. Otherwise, we call the category C a large category. We say that
C is locally small category if for any two objects A, B ∈ OC it holds that
homC(A, B) forms a set.

Definition 4. Let C be a category, A, B, X ∈ OC and f, g, g′, g′′ ∈MC.
A morphism f : A → B is an isomorphism if and only if there exists a

morphism g : B → A such that the composition of f and g yields identities, i.e.,
g ◦ f = 1A and f ◦ g = 1B. Moreover, the morphism g is uniquely determined.
That is, if there exist g′, g′′ : B → A such that g′ ◦ f = 1A and f ◦ g′′ = 1B, then
it must hold that g′ = g′ ◦ 1B = g′ ◦ f ◦ g′′ = 1A ◦ g′′ = g′′. We will denote the
morphism g by f−1 and call it the inverse morphism of f .

If there is a pair of isomorphisms f : A → B, g : B → A, then also A is
isomorphic to B, which we denote by A ∼= B. Note also that identity morphisms
are trivial isomorphisms.

A morphism f : A → B is a mono(morphism),1 if for any object X and
arbitrary two morphisms g, g′ : X → A the following implication holds: f ◦ g =
f ◦ g′ =⇒ g = g′.

A morphism f : B → A is an epi(morphism),2 if for any object X and
arbitrary pair of morphisms g, g′ : A→ X the following implication holds: g◦f =
g′ ◦ f =⇒ g = g′.

1A special case of a monomorphism is an injective morphism, but not every morphism is an
injective morphism. Monomorphism is a more general notion than injection.

2A special case of epimorphism is a surjective morphism, but not every epimorphism is a
surjective morphism. An epimorphism is a more general notion than surjection.
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Definition 5. Let G = (V, E, src, tgt) be a graph such that V is the set of vertices,
E is the set of edges, and src : E → V , tgt : E → V are functions assigning the
source vertex and the target vertex to an edge.

The category Free(G) = {OFree(G),MFree(G), ◦, 1}, referred to as the free
category on G, is the category with OFree(G) equal to V , homFree(G)(A, B), equal
to all paths from va to vb in G, such that A, B ∈ OFree(G) and va, vb ∈ V ,
composition is determined by the concatenation of paths, and identity morphisms
1A : A→ A, 1A ∈MFree(G) on an object is the trivial path at va ∈ V .
Example A.1. The category Set is a category in which objects are sets and mor-
phisms are functions between the sets. The composition of morphisms is given by
the composition of functions, and the identity morphism is the identity function.
Note also that the category Set has both initial and terminal objects.
Example A.2. Figure A.1 illustrates a category G = (OG,MG, ◦G, 1G), where
E, V ∈ OG and 1E, 1V , src, tgt ∈ MG. The category G is indeed a category
as the identity morphisms over all vertices are defined, i.e., 1E and 1V , and the
associativity law for morphism composition holds.

Also note that the category G corresponds to the schema of an arbitrary
directed graph G = (VG, EG, srcG, tgtG), i.e., the objects V and E correspond to
the elements of the graph VG and EG and the morphisms src and tgt represent
the functions srcG and tgtG. We will show a particular graph in Example A.5
after we define the notion of a functor between categories.

Figure A.1: An example of a category

Example A.3. Although a category is a special type of directed multi-graph, not
every directed (multi-)graph is a category. Let the graph G = (V, E, src, tgt)
consist of vertices A, B, C ∈ V and edges f, g ∈ E (see Figure A.2 (a)). In this
instance, it is not a category, e.g., because the graph does not contain a reflexive
edge at any vertex that would correspond to an identity morphism.

Figure A.2 (b) illustrates the graph G′, where E ′ = E ∪ {1A, 1B, 1C}. Again,
this is not a category, as the path formed by the composition of the paths of the
graph G′, e.g., g ◦ f , is not included in the graph.

Finally, Figure A.2 (c) illustrates the graph G′′, where E ′′ = E ′∪{h}, h = g◦f ,
which corresponds to the category. In other words, the graph G freely generates
the category Free(G) (see Definition 5).

Finally, Table A.1 summarises the application of categories in approaches
representing data at the conceptual or logical level.
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(a) (b) (c)

Figure A.2: An example of (not) a category

Table A.1: Application of basic definitions

Lippe and
Ter
Hofstede [18]

CGOOD [19] Spivak et
al. [20]

APG [21] MM-
(evo)cat [3, 5]

Category
(Definition 1)

Conceptual
schema

Abstraction of
schema

Schema Abstraction of
property
labelled graph

Schema and
instance
category
(early
approach)

Small category
(Definition 3)

- - Schema - Schema and
instance
category

Monomorphism
(Definition 4)

Uniqueness - - - Uniqueness,
inheritance

Epimorphism
(Definition 4)

Simple and
structured
attributes

- - - Simple and
structured
attributes

Free category
(Definition 5)

- - Schema - Schema
category

A.2 Functors
So far we have defined the elementary constructs of category theory. In this sub-
section, we add functors, i.e., structure-preserving mappings between categories
that (not coincidentally) resemble morphisms between objects. Once again, we
conclude with illustrative examples.

Definition 6. Let C = {OC,MC, ◦, 1} and D = {OD,MD, ◦, 1} be categories.
A functor F : C→ D, also denoted C F−→ D, is a structure-preserving mapping
between categories that assigns objects OC to objects in OD and morphisms in
MC to morphisms in MD. For the functor F , the following holds:

• dom(F (f)) = F (dom(f)) and cod(F (f)) = F (cod(f)) for each morphism
f ∈MC.

• Preserving of composition F (g ◦ f) = F (g) ◦ F (f) for every pair of mor-
phisms f, g ∈MC such that dom(g) = cod(f).

• Preserving of identity F (1A) = 1F (A) for each object A ∈ OC.

Definition 7. Let C and D be categories and F : C → D and G : D → E be
functors. The composition of the functors F and G is a functor G ◦ F :
C→ E such that:
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• For every object A ∈ OC it holds that G ◦ F (A) = G(F (A)).

• For every morphism f : A→ B, f ∈MC it holds that G◦F (f) = G(F (f)).

Definition 8. Let C and J be categories. The diagram of the form J in the
category C is a functor D : J → C. We refer to J as the index category of the
diagram D.

Definition 9. We say that a diagram commutes if every two paths p =
fm ◦ ...◦f1 and q = gn ◦ ...◦g1, where m, n ∈ N, f1, . . . , fm, g1, . . . , gm, p, q ∈MC,
dom(p) = dom(q), and cod(p) = cod(q), determine the same morphism via com-
position, i.e., p = q.

Example A.4. Figure A.3 illustrates examples of functors F : C→ D (depicted in
blue). Figure A.3 (a) corresponds to usual expectation of how functor F : C→ D
should map objects between two categories. Figure A.3 (b) illustrates functor F
mapping objects A, B to B′ and the morphism f to the identity morphism 1B′ .
Figure A.3 (c) maps object A to A′ and B to C ′ with morphism f being mapped
to the composition of morphisms g′ ◦ f ′. In contrast, Figure A.3 (d) does not
represent a functor because (1) object A is mapped to more than one object and
(2) object B is not mapped at all. Figure A.3 (e) does not illustrate the functor
either, since the structure of the category C is not preserved, i.e., the morphism
f cannot be mapped.

(a) (b) (c)

(d) (e)

Figure A.3: An example of a functor
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Example A.5. An example of a functor is the set-valued functor Inst : G→ Set,
where G is the category from Example A.2 and Set is the category of all sets from
Example A.1. It maps each object of category G to an object of category Set,
i.e., it assigns the object E to the set (of edges) Inst(E) = ESet and the object V
to the set (of vertices) Inst(V ) = VSet (see Figure A.4 (a)). The corresponding
graph, represented by the (one of many) functor Inst : G → Set, is depicted in
Figure A.4 (b). (Note that for clarity only, we do not depict identity morphisms
in the figure.)

 

 

A, B, C, D, Ea, b, c, d

(a)

a
A B

C D E

b c d

(b)

Figure A.4: An example of a set-valued functor (a) and a corresponding graph (b)

Example A.6. The commutativity of the diagram depicted in Figure A.5 (a) im-
plies that g ◦ f = h, i.e., dom(g ◦ f) = dom(h) and cod(g ◦ f) = cod(h) and
both g ◦ f and h lead to the same result. Note that this commutative diagram is
referred to as a commutative triangle.

Similarly, the commutativity of the diagram depicted in Figure A.5 (b) implies
that g ◦ f = f ′ ◦ g′, where dom(g ◦ f) = dom(f ′ ◦ g′) and cod(g ◦ f) = cod(f ′ ◦ g′).
The commutative diagram is referred to as a commutative square.

(a) (b)

Figure A.5: An example of commutative triangle (a) and square (b)

To conclude, Table A.2 summarises the application of functors in approaches
representing data at the conceptual or logical level and in approaches performing
data migration.
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Table A.2: Application of functors

Lippe and
Ter
Hofstede [18]

CGOOD [19] Spivak et
al. [20]

APG [21] MM-
(evo)cat [3, 5]

Functor
(Definition 6)

- Particular
schema, data,
and data
instance

Particular
data instance;
SMOs; data
migration

Particular
property
labelled graph

Particular
data instance
(evolution
approach);
SMOs; data
migration

A.3 Natural Transformations
In this subsection, we define natural transformations that allow us to have mul-
tiple views of the same concept using different levels of abstraction. In addition,
we define vertical composition of natural transformations, natural isomorphism,
and functor category, where the objects of this category are functors and the
morphisms are natural transformations. We conclude with illustrative examples
of universal transformations and a functor category.

Definition 10. Let C and D be categories and let F : C → D and G : C → D
be functors.

The natural transformation α from F to G, denoted α : F → G, is a
collection of components (i.e., morphisms) αA, A ∈ OC, that satisfy the commu-
tative square law, as follows:

• For each object A ∈ OC there is a morphism αA : F (A)→ G(A), αA ∈MD,
called the A-component of the natural transformation α.

• For each morphism f : A→ B, f ∈MC, A, B ∈ OC, the following square,
called naturality square, commutes, i.e., αB ◦ F (f) = G(f) ◦ αA.

Definition 11. Let C and D be categories, let F, G, H : C→ D be functors, and
let α : F → G and β : G→ H be natural transformations.
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Vertical composition of natural transformations β ◦ α is a composition in
which for each object c ∈ OC there exists a morphism (β ◦ α)c ∈ MD for which
(β ◦ α)c = βc ◦ αc (i.e., it commutes).

Definition 12. Let C and D be categories and let F : C → D and G : C → D
be functors. A natural transformation α : F → G is said to be a natural
isomorphism if every component of αA : F (A)→ G(A) is an isomorphism. In
that case, the functors F and G are called naturally isomorphic.

Lemma 1. Let C and D be categories, F, G, H : C → D functors, α : F → G
and α′ : G→ H natural transformations, and 1F : F → F a natural isomorphism.

There exists a functor category3, denoted DC, such that:

• ODC is a collection of functors F : C→ D.

• MDC is a collection of natural transformations α : F → G.

• The composition α′ ◦α is a vertical composition of natural transformations.

• The identity 1F on the object F is a natural isomorphism.

Proof. See [123].
Example A.7. Let G be the category from Example A.2, Set be the category
from Example A.1 and let Inst, Inst′ : G→ Set be functors from Example A.5.

The natural transformation α : Inst → Inst′ involves two components, αE :
Inst(E) → Inst′(E) and αV : Inst(V ) → Inst′(V ) and two naturality squares,
αV ◦ Inst(src) = Inst′(src) ◦ αE (see Figure A.6 (a)) and αV ◦ Inst(tgt) =
Inst′(tgt) ◦ αE (see Figure A.6 (b)).

(a) (b)

Figure A.6: Naturality squares for src (a) and tgt (b)

In other words, the natural transformation α : Inst → Inst′ (see Figure A.7
(a)) is the same as the graph homomorphism [124] (see Figure A.7 (b)).

Example A.8. Let G be the category from Example A.2, Set be the category
of all sets from Example A.1, let Inst, Inst′, Inst′′ : G → Set be functors from

3Note that there exists also horizontal composition of natural transformations and a category,
where the objects are categories and the morphisms are horizontal natural transformations of
functors [123].
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a', b', c', d', e',

f', g', h'
A', B', C', D',

E', F'

A, B, C, D, Ea, b, c, d

(a)

a

e'

g'

h'C' D'

A' B'

E'

a'

b' c' d'

F'
f'

A B

C D E

b c d

(b)

Figure A.7: An example of a natural transformation (a) and the corresponding
graph homomorphism (b)

Example A.5 (i.e., particular graphs) and let α : Inst→ Inst′ a β : Inst′ → Inst′′

be natural transformations from Example A.7 (i.e., graph homomorphisms).
The category of all graphs is the functor category SetG such that the objects

of this category are all graphs and the morphisms are graph homomorphisms.
Finally, Table A.3 summarises the application of natural transformation in

approaches representing data at the conceptual or logical level and in approaches
performing data migration.

Table A.3: Application of natural transformation

Lippe and
Ter
Hofstede [18]

CGOOD [19] Spivak et
al. [20]

APG [21] MM-
(evo)cat [3, 5]

Natural
transformation
(Definition 10)

- Allowed
operations
between
schemas

Allowed
operations
between data
instances
conforming to
the same
schema

Allowed
operations
between
property
labelled
graphs

Allowed
operations
between data
instances
conforming to
the same
schema
(evolution
approach)

Functor
category
(Lemma 1)

- Category of
all schemas

Category of
all instances
conforming to
the same
schema

Category of
all property
labelled
graphs

Category of
all instances
conforming to
the same
schema
(evolution
approach)

A.4 Universal Constructions
In this subsection, we define so-called universal constructions that may resem-
ble notions from set theory, such as, e.g., Cartesian product, disjunctive union,
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intersection, and union. We then conclude with examples to show that this sim-
ilarity is not coincidental, but the categorical constructions are abstractions of
(not only) these concepts.

Definition 13. Let C be a category and A, B ∈ OC be objects. The product
of two objects A and B consists of an object P and morphisms π1 : P → A,
π2 : P → B such that for any object W ∈ OC with morphisms f : W → A,
g : W → B, f, g ∈ MC. Moreover, there exists a unique morphism u : W → P ,
u ∈ MC such that the diagram commutes, that is, such that f = π1 ◦ u and
g = π2 ◦ u.

The object P is usually denoted by A × B and the morphisms π1 and π2 are
referred to as projections.

Definition 14. Let C be a category and A, B ∈ OC be objects. The coproduct of
two objects A a B consists of an object Q and morphisms i1 : A→ Q, i2 : B → Q
such that for any object Z ∈ OC with morphisms f : A → Z, g : A → Z,
f, g ∈MC. Moreover, there exists a unique morphism u : Q→ Z, u ∈MC such
that the diagram commutes, that is, such that f = u ◦ i1 and g = u ◦ i2.

The object Q is usually denoted by A + B and the morphisms i1 and i2 are
referred to as injections, even though they do not need to be injective.

Remark: In the literature, coproduct is also referred to as a sum [124].

Definition 15. A morphism f : A→ Z is complementable if and only if there
exists a morphism g : B → Z such that Z ∼= A + B, where f and g are injection
morphisms. We refer to the morphism g as the complement of f and the object
B is often denoted as Z − A.

Definition 16. Let C be a category, let A, B, C ∈ OC be objects, and let f : A→
C and g : B → C, f, g ∈MC be morphisms.

The pullback of A
f−→ C

g←− B is A
π1←− P

π2−→ B such that f ◦π1 = g ◦π2, i.e.,
such that the square commutes.
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Moreover, it must hold that for any object Z ∈ OC and two morphisms z1 :
Z → A and z2 : Z → B, z1, z2 ∈ MC such that f ◦ z1 = g ◦ z2, there exists a
unique morphism u : Z → P such that z1 = π1 ◦ u and z2 = π2 ◦ u.

The object P is usually denoted by A×C B.

Definition 17. Let C be a category, let A, B, C ∈ OC be objects, and let f : C →
A, g : C → B, f, g ∈MC be morphisms.

The pushout of A
f←− C

g−→ B is A
i1−→ Q

i2←− B such that i1 ◦ f = i2 ◦ g, that
is, such that the square commutes.

Moreover, it must hold that for any object Z ∈ OC and two morphisms z1 :
A → Z and z2 : A → Z, z1, z2 ∈ MC such that z1 ◦ f = z2 ◦ g, there exists a
unique morphism u : Q→ Z such that z1 = u ◦ i1 and z2 = u ◦ i2.

The object Q is usually denoted by A +C B.
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Note that universal constructs are characterised by the existence of a unique
morphism u. This feature is referred to as the universal property UP or the
universal mapping property UMP. Finally, as universal constructs are given by a
universal property, they are unique up to the unique isomorphism [123].

Example A.9. Let C = {a, b, c} and R = {1, 2} be sets. Figure A.8 illustrates
an example of the product of sets C and R, i.e., the Cartesian product C ×
R = {(c, r)|c ∈ C, r ∈ R} together with the projections π1 : C × R → C (red
morphism) a π2 : C × R → R (green morphism). Moreover, if there is another
candidate product (not necessarily a Cartesian product), e.g., W = {k} with
projections f : W → R (yellow morphism) and g : W → C (blue morphism),
then there exists a universal mapping h : W → R × C (purple morphism) such
that the diagram commutes.

At first sight, the universal property of products may not be intuitive. As an
example, let us give a real-world meaning to the sets C, R and W . Imagine that
we have a set of game pieces W that we want to place on a board with assigned
coordinates Column = C and Row = R, i.e., each field can be identified as a
pair (c, r) ∈ Column× Row, where π1 : Column× Row → Column returns the
column coordinate and π2 : Column× Row → Row returns the row coordinate.
Placing the game pieces at the coordinates c ∈ Column and 1 ∈ Row, i.e., an
application of the functions f : W → Column and g : W → Row corresponds to
applying function h : W → Column×Row, i.e., selecting the board field (c1).

a2 b2 c2

a1 b1 c1

a b c

2

1

(board) (row)

(game pieces)(column)

Figure A.8: An example of a product corresponding to Cartesian product of sets

Another example of a product of sets C and R is the Cartesian product
R × C = {(r, c)|r ∈ R, c ∈ C}. It is easy to prove that due to the universal
product property, both products are isomorphic, i.e., R× C ∼= C ×R.

Finally, there also exists products of more than just two sets (i.e., objects).
For example, let A, B, and C be sets. Then, e.g., A × B × C = {(a, b, c)|a ∈
A, b ∈ B, c ∈ C} is the product of these sets.

Example A.10. Let B = {1, 2, 3, 4} and W = {1, 2} be sets. Figure A.9 illustrates
an example of the coproduct of sets B and W , i.e., disjunctive union B + W =
(B × {■} ∪ (W × {□}), where {■,□} denotes the origin of the element (i.e.,
■ is assigned to each b ∈ B and □ is assigned to each w ∈ W ), together with
the inclusions i1 : B + W → B (red arrows) a i2 : B + W → W (green arrows).
Moreover, if there is another candidate coproduct (not necessarily a disjunctive
union), e.g., Z = {r, n, b, k, q} with inclusions f : B → Z (yellow arrows) and
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g : W → Z (blue arrows), then it holds that there exits a universal mapping
h : B + W → Z (purple arrows) such that the diagram commutes.

Let us again illustrate the coproduct using a real example. Suppose the set
B represents the (sub)set of black chess pieces and the set W represents the
(sub)set of white chess pieces. The set of all pieces is their disjunctive union
B + W , i.e., the (sub)set of chess pieces. A candidate coproduct may be the set
Z = {rock, knight, bishop, king, queen}, together with morphisms f : A → Z
and g : B → Z, which determine the type of the pieces, i.e., r is a rock, n is a
knight, b is a bishop, k is a king, and q is a queen. Then there exists a unique
morphism h : B+W → Z which states that the type of a piece can be determined
for all chess pieces, i.e., the diagram commutes.

Moreover, similar to Example A.9, there can be multiple coproducts that are
isomorphic to each other. It is also possible to construct a coproduct for more
than two sets (i.e., objects).

bishoprock knight king queen

(type)

(1, ■)(2, ■)(4, ■) (3, ■) (1, □) (2, □)

(all pieces)

1 2 43 12

(black pieces) (white pieces)

Figure A.9: An example of a coproduct corresponding to disjoint union of sets

Example A.11. Let A = {1, 2, 3, 4} and B = {3, 4, 5, 6} be sets and let C =
{1, 2, 3, 4, 5, 6} be their union, i.e., there exist inclusive mappings f : A→ C and
g : B → C.

The pullback of A
f←− C

g−→ B is, e.g., A
π1−→ P

π2←− B, where P consists of
elements p such that f(a) = g(b) = p, i.e., P = {3, 4} = A ∩ B, and π1, π2 are
the projections (see Figure A.10 (a)). It is easy to verify that the diagram A.10
(b) commutes.

Moreover, if there exists another pullback candidate, e.g., A
z1−→ Z

z2←− B,
where, e.g., Z = {3} such that f(3) = g(3), then there exists a universal (injec-
tive) mapping h : Z → A ∩B such that the diagram commutes.
Example A.12. Let A = {1, 2, 3, 4} and B = {3, 4, 5, 6} be sets and let C =
{1, 2, 3, 4, 5, 6} be their intersection, i.e., there exist projections f : C → A and
g : C → B.

The pushout of A
f−→ C

g←− B is, e.g., A
i1←− Q

i2−→ B, where Q consists of
elements q such that q ∈ A + B, A + B being a disjoint union of A and B and
a ∈ A are identical to b ∈ B if there exists c ∈ C such that f(c) = a and g(c) = b,
hence we obtain a union A∪B (see Figure A.11 (a)). It is easy to verify that the
diagram in Figure A.11 (b) commutes.

Finally, Table A.4 summarises the application of natural transformation in
approaches representing data at the conceptual or logical level and in approaches
performing data migration.

241



1
2

3
4

5
6

3
4

1
2

3
4

5
6

3
4

3

(a) (b)

Figure A.10: An example of a pullback corresponding to an intersection of sets
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Figure A.11: An example of a pushout corresponding to union of sets

Table A.4: Application of universal constructions

Lippe and
Ter
Hofstede [18]

CGOOD [19] Spivak et
al. [20]

APG [21] MM-
(evo)cat [3, 5]

Product
(Definition 13)

Complex
identifier; Set

- Querying (not
discussed)

Querying (not
discussed)

Complex
identifier

Coproduct
(Definition 14)

- - Querying (not
discussed)

Querying (not
discussed)

Multiple
identifiers

Complemetable
morphism
(Definition 15)

Inheritance - - - -

Pullback
(Definition 16)

- - Querying (not
discussed)

Querying (not
discussed)

Joining of
data

Pushout
(Definition 17)

Generalisation Addition of
data

Querying (not
discussed)

Querying (not
discussed)

Addition of
data
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