
Univerzita Karlova v Praze

Matematicko-fyzikální fakulta

DIPLOMOVÁ PRÁCE

Jakub Stárka

Similarity of XML Data

Katedra softwarového inºenýrství

Vedoucí diplomové práce: RNDr. Irena Mlýnková, Ph.D.

Studijní program: Informatika, softwarové systémy

2010

Na tomto míst¥ bych rád pod¥koval vedoucí mé práce RNDr. Iren¥ Mlýnkové,
Ph.D. za hodnotné rady a p°edev²ím její nekone£nou trp¥livost, kterou
se mnou m¥la p°i dokon£ování této práce. Dále bych cht¥l pod¥kovat své
rodin¥ a blízkým, kte°í mi umoºnili v klidu tuto práci dokon£it.

Prohla²uji, ºe jsem svou diplomovou práci napsal samostatn¥ a výhradn¥
s pouºitím citovaných pramen·. Souhlasím se zap·j£ováním práce a jejím
zve°ej¬ováním.

V Praze dne 6.8.2010 Jakub Stárka

2

Contents

1 Introduction 6

1.1 XML . 6
1.2 Motivation . 7
1.3 Content Overview . 8

2 XML Technologies 9

2.1 XML . 9
2.1.1 Structure . 9

2.2 DTD . 11
2.3 XML Schema . 12

3 Conceptual Modeling 16

3.1 Related Conceptual Models 16
3.1.1 ER Model . 16
3.1.2 UML . 17

3.2 XSEM . 17
3.2.1 Platform Independent Model 17
3.2.2 Platform Speci�c Model 18

4 Related Work 20

4.1 Reverse Engineering . 20
4.2 XCase . 21
4.3 Schema Matching . 22

4.3.1 COMA . 23
4.3.2 Similarity Flooding 24
4.3.3 Decision Trees . 24
4.3.4 Usage Driven Similarity 26
4.3.5 Domain � Schema Similarity 27

4.4 Similarity Matchers . 28

3

4.4.1 Element Level . 28
4.4.2 Structure Level Techniques 30

5 Algorithm 31

5.1 Overview . 31
5.2 PIM Analysis . 33

5.2.1 Data Preparation . 34
5.2.2 Element-Based Analysis 35
5.2.3 Structure-Based Analysis 36

5.3 Decision Tree . 38
5.3.1 Matchers . 40

5.4 PSM Creation . 45
5.5 Similarity Computation . 46
5.6 Mapping Selection . 48
5.7 Path Computation . 48
5.8 Path Selection . 49

6 Results 51

6.1 Testing Implementation . 51
6.2 Data sets . 52
6.3 Metrics . 54
6.4 Results . 55

7 Conclusion 59

7.1 Future Work . 60

References 61

A DVD Content 65

B Used XML Schemas 66

B.1 Figure 3.2 . 66
B.2 Figure 3.2.2 . 67
B.3 Figure 11 . 68

4

Název práce: Similarity of XML Data
Autor: Jakub Stárka
Katedra (ústav): Katedra softwarového inºenýrství
Vedoucí bakalá°ské práce: RNDr. Irena Mlýnková, Ph.D.
e-mail vedoucího: irena.mlynkova@m�.cuni.cz

Abstrakt: V p°edloºené práci studujeme moºnosti v oblasti reverzního in-
ºenýrství XML schémat. Práce obsahuje základní p°ehled jazyka XML a
b¥ºn¥ pouºívaných jazyk· pro zápis XML schémat, p°ehled existujících tech-
nik pro konceptuální modelováni, reverzní inºenýrství a metody pro hledání
mapováni mezi XML schématy. Dále práce obsahuje návrh nové metody,
zaloºené na analýze konceptuálního modelu XSEM a následném vytvo°ení
rozhodovacího stromu, která umoºnuje efektivn¥ najít mapováni z XML
schémat na modely XSEM. V práci také ukazujeme novou techniku pro
nalezení cesty mezi t°ídami. V neposlední °ad¥ obsahuje práce n¥kolik ex-
periment·, které ukazují výhody a nevýhody navrhovaného °e²ení.

Klí£ová slova: XML, podobnost, rozhodovací stromy, reverzní inºenýrství

Title: Similarity of XML Data
Author: Jakub Stárka
Department: Department of Software Engineering
Supervisor: RNDr. Irena Mlýnková, Ph.D.
Supervisor's e-mail address: irena.mlynkova@m�.cuni.cz

Abstract: In the present work we study the possibilities of reverse engineer-
ing of XML schemas. The work contains a survey of XML and commonly
used languages for describing XML schemas, an overview of existing tech-
niques for conceptual modeling, reverse engineering and methods for the
mapping evaluation between XML schemas. A new method, based on analy-
sis of the conceptual model XSEM and the subsequent creation of a decision
tree, is introduced. The method allows e�ectively �nd a mapping from XML
schemas to models XSEM. The work also describes a new technique for se-
lection of the path between the mapped classes. Finally, the work contains a
number of experiments that show the advantages and disadvantages of the
proposed solutions.

Keywords: XML, mapping, decision tree, reverse engineering

5

Chapter 1

Introduction

1.1 XML

The extensible Markup Language (XML) [28] is with no doubt one of the
basic instruments for data exchange. Due to its versatility and ease of use
it is expanding rapidly in many areas. It becomes one of the basic formats
for business-to-business applications, it �nds application in Web Services, or
only as a universal data format.

This causes increased interest in research of new methods for simplifying
manipulation with XML data and more e�ective integration into the complex
systems. Due to the very universal structure of XML there is a huge spread
of possible de�nitions used. This is not caused only by the amount of existing
options for de�nition of structure. One of the most widely used is the XML
Schema [29]. This language o�ers versatile mechanisms for de�nition and
allows creating dozens of speci�cations for same documents.

In the current complex system the related data are separated and their
processing is inconsistent. Consistency in this issue brings the idea of Model
Driven Architecture (MDA) [13]. The entire functionality of the system is
described by the so-called Platform Independent Model (PIM). The PIM
is then translated into one or more Platform Speci�c Models (PSMs). PIM
describes the domain, i.e. one schema which contains description of whole
situation and all involved subjects. On the other hand, there can be many
PSMs each speci�c for its user group but linked to PIM. This connection
between PSM and PIM allows to easy modify and manage the domain.

In real world the usage of MDA is more complicated. Companies have
dozens of di�erent sources from which they want to derive schemas and

6

they have to integrate these sources, respectively schemas, into their speci�c
system, which is often a di�cult and expensive activity. The result is many
di�erent schemas and many di�erent systems to translate from one schema
to another.

1.2 Motivation

We will model the whole situation, we focus on using an example with small
supplier who is selling cars. The contractor will retain information on in-
dividual vehicles. We have a de�ned schema including manufacturer, type
of car, price, performance, speed and volume of the luggage space. This
supplier delivers cars to a partner shop, which has its own schema, which
is indeed similar, but contains slight di�erences. Moreover, there are addi-
tional schemas for orders and customer records. This brings us to a relatively
di�cult situation where we have in a hand many di�erent patterns, but no
model of the overall situation.

We based this work on use of conceptual diagrams as described in [18].
The language, which is used here for the PSM is XML Schema. The main
problem comes from the fact that it expects the creation of a diagram, and
subsequently derivation of the most speci�c situations. If we look closer at
the situation with the car trade we can see that there are more data sources
available.

In ideal case the PIM is created at �rst and then a PSM is derived for a
particular case. In real case, we come to a state where we have XML Schema
de�nition (XSD), we can independently create a PIM, but we completely lack
any association between them. Simple variant is to create completely new
PSM, and along with it create the links. This possibility is, unfortunately, in
most cases quite unrealistic. That leaves manual browsing of the XSDs, their
transfer to the PSM and subsequent search mapping. The second option is
the aim of this work.

The aim of this work is to create an adaptive system which allows semi-
automatic searching for a set of mappings between XSD (but not necessarily
from the same source) or its PSM representation and pre-generated PIM.
This process is overseen by the domain expert who has to con�rm o�ered
mappings and resolve unexpected inputs. This work is largely based on the
work of Jakub Klimek [10] and Martin Necasky [19]. They proposed basic
approach for reverse engineering with �xed set of mapping methods. We
improve this process by introducing more �exible strategy with usage of

7

decision trees. The other improvement is usage of clique search to recognize
paths in a large PIM.

1.3 Content Overview

In the second chapter we describe basic information on XML and its re-
lated languages, which are needed for further understanding of the text.
The conceptual modeling, basic used conceptual modeling approaches and
in particular model XSEM is mentioned in the third chapter. In the fourth
chapter we present representative examples of works that deal with �nding
similarities between XML schemas, or generally between structured data and
also describe some basic methods for calculating string similarity. There are
also mentioned the approaches for reverse engineering. The �fth chapter fo-
cus on describing the proposed algorithm, the individual steps, including
user intervention and decision tree creation and usage. The sixth chapter
provides several experimental measurements. The seventh and �nal chapter
makes conclusions and suggestions for further work.

8

Chapter 2

XML Technologies

2.1 XML

XML [28] is a widely used a markup language. It is generally used for data
exchange and data serialization. XML has spread rapidly over the past few
years. It is also supported by more applications and programming languages
which leads to greater interest in the issue of storing and processing such
data.

From the beginning XML was designed with multilingual support. This
is achieved by usage of Unicode [25].

2.1.1 Structure

XML uses tags for describing its content. A tag is markup construct that
begins with '<' and ends with '>'. Tags form elements. An element consist
of either a start and an end tag or only of an empty tag.

Elements can contain attributes. All attribute values have to be in quotes
(single or double).

An important part of each document is declaration. It contains informa-
tion about used encoding and version.

In Figure 2.1 we can see an example of XML document with 3 di�erent
items. At Line 1 we can see XML declaration with used encoding utf-8.
At Line 2 there is a root element with de�ned namespace against which
should be the document valid. Element orderperson at Line 3 contains text
content and the element at Line 4 has element content. Lines 7 to 11 describe
properties of an item with nested elements. The element at Line 12 contains

9

attribute id and one nested element quantity and an empty tag car only
with attributes.

1: <?xml version="1.0" encoding="utf-8"?>

2: <ship xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="ship.xsd">

3: <orderperson>John Smith</orderperson>

4: <shipto>

5: <name>Ola Nordmann</name>

6: </shipto>

7: <item id="1">

8: <title>Empire Burlesque</title>

9: <quantity>1</quantity>

10: <price>10.90</price>

11: </item>

12: <gift price="123">

13: <quantity>2</quantity>

14: <car price="500" quantity="1" color="blue" />

15: </gift>

16: </ship>

Figure 2.1: XML example

There are de�ned some basic terms like 'valid' and 'well-formed' docu-
ment.

De�nition 1. A textual object is a well-formed XML document if it has
one root element which contains all the other elements. Non-empty element
has to begin and end with the same tag. All attribute values are correctly
quoted. Elements can be nested but they can not overlap. The element tags
are case-sensitive and match exactly.

De�nition 2. An XML document is valid if it has an associated document
type declaration and if the document complies with the constraints expressed
in it.

10

2.2 DTD

Document type declaration (DTD) [28] was created side by side with XML
to allow simple description of XML. It can provide a protocol which appli-
cations will use for mutual communication.

DTD has several constructs which allow to de�ne elements and their op-
tionality and multiplicity. Nested elements are used to describe tree structure
of document. The de�nition of element contains its name and its content.

<!ELEMENT element-name (element-content)>

The content can be EMPTY for elements without any de�ned subele-
ments or text, ANY for combination of any parsable data, PCDATA for
text content or the de�nition of subelements.

It is possible to de�ne attributes in the same way as elements with the
name of parent element, name of attribute, type and default value.

<!ATTLIST element-name attribute-name

attribute-type default-value>

Data types in DTD are limited to CDATA and PCDATA which means
character data and parsed character data. Although DTD does not allow the
type de�nition, there are some attributes with speci�c features. It is possible
to de�ne attribute − type as a choice from enumerated list as (a|b|c). An
attribute with de�ned attribute − type ID has unique value, the IDREF
is reference to ID of another element. NMTOKEN is a valid XML name
declared in XML document.

It is possible to de�ne ENTITIES. ENTITY is a variable which can
be used to de�ne special character or shortcut.

<!ENTITY js "Jakub Starka">

DTD can be inlined in an XML document or in a separate �le.
In Figure 2.2 we can see the previously used XML example (see Fig-

ure 2.1) declared by DTD.

11

1: <!ELEMENT ship (ordeperson, shipto, item+, gift?, car*)>

2: <!ELEMENT orderperson (#PCDATA)>

3: <!ELEMENT shipto (name?)>

4: <!ELEMENT item (title?, quantity?, price?)

5: <!ELEMENT name (#PCDATA)>

6: <!ELEMENT title (#PCDATA)>

7: <!ELEMENT quantity (#PCDATA)>

8: <!ELEMENT gift (quantity, (car|item))>

9: <!ELEMENT car EMPTY>

10: <!ATTLIST gift price CDATA #REQUIRED>

11: <!ATTLIST item id ID #REQUIRED>

12: <!ATTLIST car price CDATA #REQUIRED>

13: <!ATTLIST car quantity CDATA #REQUIRED>

14: <!ATTLIST car color CDATA #IMPLIED>

Figure 2.2: DTD example

At Line 1 is de�ned root element ship. For this element is the sequence
of nested elements declared in parentheses. It has to contain elements or-
derperson, shipto exactly once. The plus sign after element item tells that
this element has to be present at least once. The question mark says that
element gift is optional and the asterisk means that there can any number
of element car. At Line 2 there is an element with parsed character data.
Element item at Line 4 contains three optional elements title and quantity
and price. Lines 5 to 7 de�ne elements with text content. At Line 8 a choice
is used. The element has to contain exactly one of car and item elements
and one quantity element. The element car is de�ned as an empty element.

At Lines 10 to 14 there are de�ned attributes. Four attributes contain
character data and the attribute id contains unique identi�er. The �rst one
is de�ned for element gift. The name of the attribute is price and it is
required. The rest of attributes is de�ned for element car. There are two
required attributes quantity and price and one optional attribute color.

2.3 XML Schema

XML Schema [29] is a language which enables one to describe the structure
of an XML document. It has many features from previously used schema lan-

12

guages like DTD [28] and, in addition, it brings some new features like data
types, namespaces or a possibility to de�ne only a fragment of a document.

XML Schema de�nition (XSD) utilizes XML format which allows its
e�cient processing using existing tools for XML. This feature has also its
disadvantages because the resulting �les are not very human-readable. Unlike
DTD, XSD allows to de�ne data types.

XSD allows the use of various constraints such as cardinality of ele-
ments or necessity of attribute. Each element can be assigned with attribute
minOccurs or maxOccurs. Those attributes indicate how often the element
can occur.

Other possibility which XSD o�ers is to use elements choice, sequence or
all. The choice speci�es that either one child element or another can occur.
In the sequence all elements have to appear in the speci�c order. When
element all is used all child nodes can be used in any order.

Unlike DTD, XSD supports data types. It comprises string data types
like string or normalizedString, numeric data types (integer or decimal)
or dates. XSD also has broad possibilities of restrictions. It is possible to set
minimum or maximum value for integers or pattern and length for strings.

In the example in Figure 2.3 we can see that there is a great di�erence in
complexity between de�ned structure in DTD and in XSD. There are de�ned
4 root elements ship, shipto, item and car at Lines 3, 25, 32 and 42. Each of
them is de�ned as a complex type. the content of the ship element is de�ned
as a sequence which means it has to contain all elements orderperson, item,
gift and car in the de�ned order. There is also de�ned the key constraint
itemKey at Line 4. This constraint is applied on subelements item and
their attribute uid. The elements item and car have attribute ref . It is
a reference to complex types de�ned at the Lines 32 and 42. The element
gift is assigned with one required attribute price with data type integer. Its
content is de�ned as a choice between item and car.

13

1: <?xml version="1.0" encoding="utf-8"?>

2: <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

3: <xs:element name="ship">

4: <xs:key name="itemKey">

5: <xs:selector xpath="item"/>

6: <xs:field xpath="@uid"/>

7: </xs:key>

8: <xs:complexType>

9: <xs:sequence>

10: <xs:element name="orderperson" type="xs:string" />

11: <xs:element ref="item" minOccurs="1" />

12: <xs:element name="gift" type="xs:integer"

minOccurs="0" maxOccurs="1">

13: <xs:complexType>

14: <xs:choice>

15: <xs:element ref="item" />

16: <xs:element ref="car" />

17: </xs:choice>

18: </xs:complexType>

19: <xs:attribute name="price" type="xs:integer"

use="required"/>

20: </xs:element>

21: <xs:element ref="car" minOccurs="0"

maxOccurs="unbounded" />

22: </xs:sequence>

23: </xs:complexType>

24: </xs:element>

25: <xs:element name="shipto">

26: <xs:complexType>

27: <xs:sequence>

28: <xs:element name="name" type="xs:string"

minOccurs="0" />

29: </xs:sequence>

30: </xs:complexType>

31: </xs:element>

14

32: <xs:element name="item">

33: <xs:complexType>

34: <xs:sequence>

35: <xs:element name="title" type="xs:string"

minOccurs="0" />

36: <xs:element name="quantity" type="xs:integer"

minOccurs="0" />

37: <xs:element name="price" type="xs:integer"

minOccurs="0" />

38: </xs:sequence>

39: <xs:attribute name="id" type="xs:string" />

40: </xs:complexType>

41: </xs:element>

42: <xs:element name="car">

43: <xs:attribute name="price" type="xs:integer"

use="required"/>

44: <xs:attribute name="quantity" type="xs:integer"

use="required"/>

45: <xs:attribute name="color" type="xs:string""/>

46: </xs:element>

47:</xs:schema>

Figure 2.3: XSD example

15

Chapter 3

Conceptual Modeling

Conceptual modeling allows to model data regardless of their representation
in target platform. We use it to create model of domain and then we �nd
correspondences between model and concrete instances.

This section contains basic information about conceptual model XSEM
for XML as described in [18]. This approach is based on MDA � Model
Driven Architecture [13]. It is a generally used method for software engineer-
ing which we utilize in this thesis. We will recognize two types of models.
Platform independent model (PIM) describes domain independently on data
representation. And platform speci�c model (PSM) represents data modeled
by the PIM diagram. The aim of this work is to create a connection between
conceptual model represented by PIM and data represented by XSD.

Beside this method, we will describe other commonly used approaches
for conceptual modeling like Entity-Relationship (ER) Model [5] and Uni�ed
Modeling Language (UML) [24].

3.1 Related Conceptual Models

3.1.1 ER Model

The Entity-Relationship model [5] is a simple conceptual model used pri-
marily for database modeling. It provides two modeling constructs � entity
type and relation type that allows to simply model the domain.

Entity types, or shortly entities, are used for modeling of real-world ob-
jects. Each entity has zero or more attributes with properties of the modeled
object and a name for its identi�cation in ER model.

16

Relation types are used to specify the relations between entities. Similarly
to entities, each relation type has a name and attributes. Moreover, each of
them is assigned with a set of entities that participate on this relation.

The work [3] extends ER Model by adding constructs for modeling of
DTD � optional, required and choice attributes. Similarly, XER [22] is an
extension which enriches the model with constructs more suitable for XML
Schema modeling.

3.1.2 UML

UML [24] class diagrams are mainly used to describe software systems but
it is possible to use them for data modeling as well. UML provides con-
structs for di�erent types of relations (for example association, inheritance
or composition). The approaches based on UML usually apply MDA. There
are several approaches allowing to model XML data such as [4][17][21]. For
PIM there are usually used extensions of UML constructs for speci�c XML
schema language.

3.2 XSEM

This thesis uses conceptual model called XSEM [18]. XSEM is a model based
on MDA approach which extends the ER model. It contains two subparts
XSEM-ER and XSEM-H. The �rst part XSEM-ER is PIM used for modeling
at conceptual level without any connection to XML schema languages. The
second part XSEM-H is PSM designed to allow representation of di�erent
XML schemas.

3.2.1 Platform Independent Model

Platform independent model is conceptual level with no relation to speci�c
representation. We can see an example of PIM as a UML [24] class diagram
in Figure 3.1. UML o�ers more constructs but we consider only classes with
attributes having names and data types and binary associations.

We de�ne a path between two PIM classes c1 and cn as an expression
c1 − ...− cn where c1,...,cn are PIM classes and for each i ∈ 1, ..., n, there is
a PIM association connecting ci and ci+1.

The diagram contains 8 PIM classes: Address, Customer, Purchase, Car,
Supplier, Reseler, E-Shop and Car Shop. Two classes Address and Supplier

17

Figure 3.1: PIM diagram

contains PIM attributes. There are attributes Street, City and Country with-
out de�ned data type and attributes Engine, Max Speed, Price and Power
with de�ned data type.

In the example are used two types of relations: generalization (Car Shop
to Reseler and E-Shop to Reseler) and association (Address to Customer,
Customer to Purchase, Purchase to Care, Purchase to Reseler and Car to
Supplier). The associations are assigned with multiplicities.

3.2.2 Platform Speci�c Model

A PSM diagram is also a UML class diagram (see Figure 3.2) extended with
speci�c constructs for XML modeling. However, a PSM diagram is a tree
which can be translated to a representation in an XML schema. In addition,
multiple PSM diagrams can be derived from a single PIM diagram (see
Figure 3.2).

A PSM class cPSM represents a PIM class cPIM and speci�es how in-
stances of cPIM are represented in the modeled XML format. A PSM as-
sociation goes from parent PSM class cPSM1 to child PSM class cPSM2 and

18

represents a path between PIM classes represented by cPSM1 and cPSM2.
cPSM can be assigned with a label. If cPSM has label l, it is translated

to element with name l. cPSM can be assigned with a content as a choice.
In that case it speci�es that for all classes listed in the choice only one
association to these classes can be instantiated. Another special construct
called structural representative is a PSM class that inherits attributes and
content from other PSM class. The choice between NewCustomer and Ex-
istingCustomer can be seen on right diagram on Figure 3.2. This diagram
also shows the structural representative NewCustomer which inherits from
ExistingCustomer. The generated XSD from this PSM diagram is shown in
Figure B.2.

Figure 3.2: PSM diagram

In the left diagram in Figure 3.2 there are 5 PSM classes: Address, Cus-
tomer, Order, Car and Supplier. The class Order represents the PIM class
(see Figure 3.1) Purchase. The rest of the classes represent PIM classes de-
�ned in PIM diagram according to their name.

XSD generated from the left PSM diagram in Figure 3.2 is shown in
Figure B.1.

The associations between PSM classes represent the associations between
PIM classes except the association aPSM between Car and Customer in the
right PSM diagram. This association represents the path Car−Purchase−
Customer.

19

Chapter 4

Related Work

4.1 Reverse Engineering

In paper [19] the process of reverse engineering for conceptual modeling is
proposed. It describes a situation when an XSD and a PIM diagram is given
as an input and the algorithm searches for optimal matching between them.
In Figure 4.1 [10] the XSD represents Schema Level and the PIM platform
independent level. The levels in this architecture are connected and it allows
to propagate the changes through these connections. The aim of this work is
to create connections between them. In particular we improve the solution
proposed in [19] to increase precision of matching and the e�ciency of this
process.

Figure 4.1: Five level XML evolution architecture

20

The �rst part of this algorithm computes an initial PSM diagram from
the XSD. This is done by converting all element de�nitions with complex
type into classes and element de�nitions with simple type into attributes.
Note that only sequences of elements or choices are considered. The attribute
declaration with name n is converted to a PSM attribute of class cPSM with
name n.

The second phase consists of four parts of semi-automatic conversion.

• Class Mapping Estimation � Each class cPSM is compared with each
class cPIM from PIM diagram. The similarity of their names and names
of their attributes is computed. Structural comparison between neigh-
bors of cPIM and children of cPSM is exploited as well.

• Class Mapping � Mappings ordered by estimated similarity are o�ered
to a user who selects the optimal ones.

• Association Mapping - In this step a mapping between associations
in PIM diagram and PSM diagram has to be determined. The list of
available paths is again provided to a user for �nal decision. The paths
are ordered by their weights.

• Subtree Mapping � In the last step element attributes and subtree
elements are recursively mapped.

This work proposed basic algorithm to �nd correspondences between
XSD and PIM. In this thesis we will try to improve this algorithm by �exible
selection of the methods used for class mapping estimation and association
mapping.

4.2 XCase

XCase [27] implements XML conceptual model XSEM. The work is orga-
nized to Projects which contain PIM diagrams and one or more PSM dia-
grams. Applying XSEM we �rst model a schema in a PIM where we provide
an XML-independent conceptual description of a given problem domain. On
the base of the PIM schema we model one or more schemas in PSM where
we specify how the data is to be represented in concrete types of XML
documents.

21

UML class diagrams are used as PIM and a small augmentation of this
model as PSM. Applying MDA in an advanced way, XCase greatly facilitates
not only the design but also the maintenance of the XML schema.

The main goal of XCase project is to examine possibilities of XSEM
and conceptual modeling for XML in general. The tool is original, because
neither a conceptual model for XML nor a tool for conceptual modeling
of XML has been developed neither in commercial nor academic conceptual
modeling community to our best knowledge. However, the other works which
provide constructs to model XML data are limited as discussed in [18].

We wil use XCase as a platform for implementation of the algorithm
introduced in this thesis.

4.3 Schema Matching

This section is based on technical report [16] which describes many tech-
niques for XML similarity measure and matching problem. This report o�ers
an overview for three variants based on input data.

• Comparison of two XML documents � Among others this part contains
the most commonly used algorithms for tree edit distance and usage
of root paths.

• Comparison of an XML document and an XML schema � The least
explored variant.

• Comparison of two XML schemas � Because of the nature of this work
we will focus on the third variant. There are described many schema
integration systems and techniques for clustering.

We consider a schema matching problem as a problem of similarity of
two sets of regular expressions.

The general idea of schema matching is to create various matchers. A
matcher is a function which evaluates similarity of a particular feature. The
similarity sim is de�ned as a value from interval [0; 1] where sim = 0 means
no similarity and sim = 1 is maximal similarity. The results of all matchers
are aggregated to get the overall, so-called composite, similarity.

22

4.3.1 COMA

COMA system [8] has been designed as a system for investigating of com-
posite match approaches. It supports many input schemas and has a large
library of match algorithms. The examined data can di�er and the selection
of speci�c matchers and the strategy of order of their usage can a�ect the
�nal result. For such purposes COMA allows to combine those algorithms
or create di�erent matching strategies.

A user can specify the match strategy, i.e. select the matchers and their
combination and accept or refuse match candidates.

COMA works with directed acyclic graphs S1 and S2. The match oper-
ation takes two graphs and computes which elements corresponds to each
other. From di�erent matchers a similarity cube is computed. A similarity
cube consists of 3-tuples (two fragments f1 ∈ S1, f2 ∈ S2 and a result of a
j-th matcher simj(f1, f2). The gathered results are �nally aggregated and
the matching candidates with the highest similarity value are selected.

COMA supports many di�erent techniques for measuring similarity and
it is easily extensible. Some of these matchers are listed in Section 4.4. The
matchers are in COMA divided into three categories:

• Simple matchers � The matchers are oriented on elements. This cate-
gory includes element, attribute or data type names. Representatives
of this group are n-grams, a�xes, su�xes, edit distance, synonyms,
data types or user feedback.

• Hybrid matchers � The matchers are used as a combination of simple
matchers and/or other hybrid matchers to get more accurate results.
For example element name hybrid matcher is proposed as a simple
name matcher combined with tokenization and expanded abbrevia-
tions and acronyms. The group also includes structural matchers. For
example NamePath matcher uses concatenated element names from
all nodes on the path from the root node.

• Reuse-oriented � The matchers are motivated by situation when the
currently analyzed schema is the same or at least similar as the previ-
ously analyzed schema.

COMA++ [2] is new version of COMA. This version improves system
architecture and brings some new features. Main improvements lies in more
e�ective implementation of matchers, uniform support for di�eren languages

23

(including SQL, OWL and XSD), repositories of schemas and a fragment-
based approach.

The idea of schema matching with various matchers which are combined
into the composite similarity is widely used and there are many other ap-
proaches based on this idea (e.g. [12]).

4.3.2 Similarity Flooding

Similarity �ooding [14] is an iterative algorithm to compute graph matching.
Unlike the many approaches based on matchers and aggregation it results
from an assumption that if an element is similar, then its adjacent elements
are also similar and their similarity value is increased.

The algorithm works in the following steps:

1. Create directed labeled graphs from given XML Schemas. Each edge
represents triple: a source node, a target node and a label of the edge.

2. Between these graphs the initial mapping is computed using a string
matcher. This matcher is based on comparison of common pre�xes and
su�xes.

3. The next step is the iterative part of the method. When two nodes
are similar the similarity of adjacent elements increases. This step is
repeated until all model elements stabilize which means that addition
is bellow a �xed value.

4. The last operation of the algorithm selects a subset of node pairs with
'most plausible' matching entries.

4.3.3 Decision Trees

In [6] a �exible way of similarity measure is proposed as a possible improve-
ment for COMA. The presented matching strategy is based on three aspects:

1. Performance � there are many similarity measures which can be used
on di�erent data. If we consider that we want to use k measures on m
source nodes and n target nodes, we will have to compute m× n× k
similarity values. From the values not all are necessary. So the authors
want to minimize performance needed for the computations.

24

2. Quality � as mentioned above, some computations are useless. They
can even degrade right results. For instance if we use average as the
aggregation function, we can �nd out that after one highly ranked
measure and one low ranked measure from same group we get relatively
small similarity value. So it is a good task to improve quality of �nal
values.

3. Flexibility � �nally it is important to say that data are not same. We
should analyze the data from di�erent domains with di�erent demands.
Selection of proper metrics is crucial.

For the reasons mentioned above, the authors proposed to exchange the
common aggregation functions for decision trees.

De�nition 3. A decision tree is a tree whose internal nodes are the similar-
ity measures, and the edges represent conditions on the result of the similarity
measure.

The trees contain instructions and the order for a matching system. An-
other selected matcher is based on the result of a previous matcher.

Value v, speci�ed by each node, selects which children matcher will be
called. The children count is not limited, so it is possible to set match for
v > 0.8, mismatch for v < 0.2 and call other matcher for v

∫
(0.2; 0.8).

The usage of tree can result in distribution of similar metrics (like Lev-
enshtein and 3-grams) into distinct parts of the decision tree and thus they
will not interfere as we can see in Figure 4.2 [6]. There is one precision based
decision tree. It contains several matchers for string similarity measure and
one matcher for context measure. The string matchers are used only if the
parent matcher does not �nd match.

The algorithm begins with two input elements with assigned name and
context in the node with Equality matcher. It computes the similarity value
of the names and on the basis of the result it decides for a child node. If the
names are equal there is no need for more string similarity measures and the
Context matcher is selected, otherwise the algorithm continues in the Label
Size Sum node. The algorithm continues until it reaches the leaf node and
decides whether the elements match or not.

The main part of this approach lies in generation or modi�cation of the
decision trees to get optimal results for di�erent domains. This can be done
partially by a domain expert who modi�es the decision tree by requirements
of speci�c domain or by machine learning with user feedback.

25

Figure 4.2: Decision tree example

4.3.4 Usage Driven Similarity

Usage driven similarity [7] represents a di�erent approach. Instead of an-
alyzing only data, the analysis focuses on queries, i.e. operations with the
data.

The algorithm works in two phases: feature extraction and matching.
It is based on so-called structure level features (SLUB) and element level
features (ELUB).

Structure level features represents relationships between attributes used
in queries in same schema. An attribute can be used as a result if used in
SELECT clause, can �lter data in WHERE or HAVING clause, can be used
as aggregator in GROUP BY clause or can be used as order attribute in
ORDER clause.

A usage relationship is also de�ned if two distinct attributes are used
in the same role. Thus 4 roles are de�ned and we get total of 16 possible
de�ned combinations of roles.

From these relationships a graph is created with attributes as nodes and
relationships as edges. A weight of the edges is de�ned as a frequency of
their respective relationship.

Three di�erent query types are excepted:

• SPJGO � Single-block Select-Project-Join queries with optional group-
ing and ordering. This query is parsed as it comes.

26

• SPJGO-UEI � SPJGO query with Union, Except and/or Intersect are
parsed for each sub-query separately.

• SPJGO-N � SPJGO queries with Nested sub-queries is at �rst parsed
as SPJGO and then new relationships are found between outer at-
tributes and inner attributes on speci�c positions.

Except structure-level features, there are also proposed so-called element
level features. These features comprise a speci�c usage of each single at-
tribute. For example, if the attribute is often used in join clause, we can
expect it should be de�ned as a key in schema (see Section 2.3).

Beside feature extraction, matching and scoring functions are proposed
as a way to select from given graph the best matching candidate.

4.3.5 Domain � Schema Similarity

Paper [11] is aimed at a di�erent situation than the previous ones. Previous
works always compare two semantically equal schemas. This work covers a
situation when we have one domain XML schema and a large number of
source XML schemas.

The similarity measure contains three important factors.

1. Ratio of interesting objects (RIO) � It is a ratio between nodes which
are both in domain and input schema.

2. Cardinality similarity of node pairs (CSNP) � It is set to 1 when the
two node pairs have consistent relative cardinality; otherwise it is set
to ω. ω represents the degree that user can tolerate with the cardinality
di�erence.

3. Similarity of node pairs (SNP) � This value is based on relationship
of the examined pairs. If both pairs are in relation child-parent or
descendant-ancestor, the value is set to CSNP. If one pair is in rela-
tionship child-parent and one descendant-ancestor, then the value of
CSNP is multiplied by user-de�ned constant. If both pairs are siblings,
the value of SNP is set to 1.

This approach provides some additional improvements that can increase
the overall system performance. Consider domain schema with set of nodes
V and input schema with set of nodes Vi. It detects unimportant nodes
v ∈ V \ Vi and removes them by usage of three simple rules:

27

1. If node v is root node, then all the child edges need to be deleted.

2. If node v is a leaf node, then the parent edge needs to be deleted.

3. If node v is an internal node, then: (1) for all child nodes vi, the
cardinality of vi is updated as maximum of cardinality between v and
vi; (2) all edges relating to node v are deleted; (3) new edges linking
the parent node and all the child nodes are inserted and re-labeled.

After application of these rules, the result becomes a schema tree or a
forest of schema trees. A new coding schema is proposed to speedup the
computation. With these prepared trees the SNP value is computed.

4.4 Similarity Matchers

In this section we will list some common similarity matchers [23].

4.4.1 Element Level

String Based

This group of similarity metrics works with words as sequences of letters.
These metrics are often used to match names or descriptions. They are
simple but, in many cases, give very good estimation. These methods works
in a very similar way. From two strings they produce a similarity value.

• Pre�xes and su�xes � The �rst method takes two strings s1 and s2 and
checks whether the s1 starts with s2. Su�xes solve the same situation
only check whether s1 ends with s2.

• Edit distance � This method takes two strings s1 and s2, compares
them and �nds the shortest edit distance. Edit distance represents the
number of operations which have to be done to transform s1 into s2.
Particular methods can di�er in operations used. Commonly used op-
erations are insert character, delete character and substitute character.
It is possible to set the di�erent weight for each operation and use this
to penalize them.

Example 1. The similarity value between words horse and mouses
with weights 1 for deletion and insertion and 2 for substitution is 5.

28

If we lower the substitution weight to 1 (for example because we expect
typing errors) the similarity value lewers 3.

• N-grams � This method takes two strings s1 and s2 and computes the
number of the same n-grams. An n-gram is a sequence of n characters
in a string. The n-grams from s1 and s2 are created and stored in set
S1 (S2 respectively). These sets are compared and the �nal value is
ratio between matching n-grams and all distinct n-grams.

Example 2. The 3-grams for word horse are hor, ors and rse.

Language Based

The previous methods works well but they do not work with natural language
wheras the names are usually de�ned by human. The methods understand
meaning of input strings and transform them to forms more suitable for
further processing.

• Tokenization � This technique is usually used when multiple words
are used in a single element or attribute name. The words can be
recognized by blank characters, punctuation or cases. This method
splits the words into independent tokens. For each of them other listed
methods can be then used.

Example 3. The sentence The brown dogs sleep. is recognized as
following tokens: the, brown, dogs, sleep.

• Lemmatization � The input strings are lemmatized to get a basic form
which is send to another processing.

Example 4. The word dogs is recognized as dog.

• Elimination � Eliminates a word or words which do not have semantical
meaning (e.g. prepositions or conjunctions) which can highly boosts
total e�ciency.

Example 5. The word The would be removed by elimination.

29

Thesauri

This group is focused on the meaning of the examined strings.

• Common knowledge thesauri � This is an important linguistic method.
It uses a lexical database of a speci�c language and can be used for
synonym or homonym search.

Example 6. The word brown is assigned following synonyms in the
WordNet [26] database: brownish, chocolate-brown, dark-brown.

• Domain speci�c thesauri � Apart from dictionaries based on natural
language dictionaries bound to a particular domain can be used.

Constraint Based

Constraint based techniques are methods which consider internal limitations
of the given environment.

• Datatypes � Comparison of other attributes can help to understand
more aspects of the compared classes. Data type recognition can be
done not only at the semantic level, but it is also possible to compare
hierarchical level and inheritance of the data types.

Example 7. The integer data type is similar to short data type.

• Multiplicity � Another constraint-based technique which compares car-
dinality of the given objects.

4.4.2 Structure Level Techniques

The techniques work with labeled graphs. The similarity value is based on
similarity value of child or parent nodes.

• Children - This method compares two nodes and computes the simi-
larity on the basis of similarity of their children sets.

• Leaves - Unlike the previous method this method compares the leaf
sets. Two nodes are similar if their leaf sets are similar.

30

Chapter 5

Algorithm

The main goal of this thesis is to design an appropriate algorithm which
will be able to �nd mappings between PSM and PIM diagrams. We use the
XML Schema as a platform for PSM. The algorithm is designed with great
emphasis on maximum e�ciency. The result should be checked by a domain
expert who will control the found mappings and will be able to simply repair
or decline wrong decisions.

For maximum e�ectiveness, we designed a solution which uses the data
from the previous calculations and tries according to the results of new im-
proved calculations. These calculations include both analysis of the PIM
diagram in terms of individual classes and the structural analysis. The algo-
rithm also aims at data preparation for comparison algorithms and seeking
for the shortest path.

In this section we will �rst describe the process of analysis and prepara-
tion of the PIM diagram data suitable for subsequent calculations. We will
show the creation and usage of decision tree for algorithm control. Next, we
will focus on comparing the similarities between PIM and PSM classes. We
will introduce new method for path searching. And, �nally, we will describe
the system for obtaining the input from a user.

5.1 Overview

In Algorithm 1 we can see the simpli�ed process of PIM to PSM mapping
over a set of XSD schemas FXSD and a user de�ned PIM diagram dPIM .
By PIM diagram we mean a set of PIM classes CPIM and relations between
them. The relations can be associations, aggregations or generalizations. On

31

the other hand, the set of XSD schemas is expected, which are matched
during the computation process to PIM. We also expect a set of methods
M to be used for the initial analysis.

The �rst step of the algorithm is obtaining analysis data from PIM dia-
gram dPIM . This process is shown in Section 5.2. The result of this analysis
is used by buildTree method for creation of decision tree T as we will de-
scribe in Section 5.3. Each XSD schema fXSD ∈ FXSD is then converted into
PSM diagram dPSM by createPSM method. We use the depth �rst search
(dfs) to get the classes in PSM diagram, i.e. these classes are analyzed from
leaf nodes to root nodes. Each PSM class cPSM ∈ dfs(dPSM) is matched
against dPIM by computeSimlaries method with usage of decision tree T .
And the user then selects the optimal one in classSelection. In a similar way
the paths are computed and o�ered to user. In last step the pathSelection
is used to get the right path from user.

Algorithm 1: XSD to PIM mapping

Input: a set of XSD schemas FXSD and a PIM diagram dPIM

Output: mapped PSM diagrams to PIM diagram

1: begin

2: analysis = analyze(dPIM)
3: T = buildTree(analysis)
4: foreach XSD schema fXSD ∈ FXSD do

5: dPSM = createPSM(fXSD)
6: foreach PSM class cPSM ∈ dfs(dPSM) do
7: similarities = computeSimilarities(cPSM , dPIM , T)
8: match[cPSM] = classSelection(similarities)
9: paths = computePaths(cPSM , dPSM , dPIM)
10: path[cPSM] = pathSelection(paths)

11: end

12: end

13: return (match[cPSM], path[cPSM])

14: end

32

5.2 PIM Analysis

The �rst part of the algorithm is the analysis of PIM diagram. This analysis
is one of the most important parts. The shape of the decision tree and
the procedures and methods, which are then used for further calculations
depend on this analysis. The analytic methods, so-called analyzers, work
with features.

De�nition 4. A feature is a measurable characteristic common for PIM
and PSM.

De�nition 5. An analyzer is a method mana which takes as input a PIM
class cPIM and analyzes a feature. Each analyzer is assigned with its feature.

One feature can be analyzed by more analyzers. The result of the analyzer
is a number, called threshold which is used to determine whether feature
speci�c matchers will be used. The analyzer can be also used to gather some
method speci�c data for matchers. Both return values are optional.

Then we compute and aggregate the similarity of features to get the
overall similarity. In this text we use the following features of PIM diagram
and PIM classes:

• Class and attribute name

• Attribute data type

• Class and attribute occurence

• Descendants similarity

For the analysis of PIM we di�erentiate two main types of analyzers.

• Element-based analysis � It focuses primarily on data types or classes
of names and it computes statistics over all classes contained in a
diagram.

• Structure-based analysis � It focuses on the structure of a PIM diagram
and prepare data for structural similarity matchers and path selection.

Beside these methods we use data-preparation methods for preparation
of PIM classes. These will help with further computation as described in the
following section.

33

Our proposed algorithm has three main parts as we can see in Algo-
rithm 2. The algorithm gets as input PIM diagram dPIM . For each PIM
class cPIM ∈ dPIM we �rst call each of the data-preparation methods mpre.
Then, the element-based methods mana are called to get the analytic data
from each cPIM . The last step of analysis are structure-based methods mstr.
These methods work with dPIM and are able to get structural information.
The algorithm returns computed thresholds and method speci�c data for
similarity computation.

Algorithm 2: PIM analysis

Input: a PIM diagram dPIM , mpre, mana, mstr

Output: key-value pairs analysis with analyzed results

1: begin

2: foreach PIM class cPIM ∈ dPIM do

3: foreach m ∈ mpre do

4: analysis[m] = m(cPIM)
5: end

6: foreach m ∈ mana do

7: analysis[m] = m(cPIM)
8: end

9: end

10: foreach m ∈ mstr do

11: analysis[m] = m(dPIM)
12: end

13: return analysis

14: end

5.2.1 Data Preparation

Data-preparation methods take PIM classes and expand them to structures
which can be used in further analysis. They do not analyze the data itself
but create specialized data for analytic methods and can in�uence the �nal
result.

Bellow is a list of data preparation methods which we implement in this
work.

• Tokenization � This method takes all names (class, attribute, data

34

type) and splits them accordingly into basic recognition symbols. We
search for capital letters, underscores and other punctuation symbols.
The split names are then stored beside original names and are used in
all other methods.

• User-speci�c thesauri � Another generally used method to improve ef-
�ciency is to create a speci�c limited thesauri we allow the user to
include a domain speci�c thesauri. In many cases the domain speci�c
thesauri di�ers in many ways from widely used ones. This extension
allows the domain expert to set his own thesaurus for better under-
standing of the domain.

5.2.2 Element-Based Analysis

The element-based analysis gathers important information from PIM classes.
This comprises di�erent attributes like class name or speci�ed data types.
This process is designed to be maximally transparent so new analytic meth-
ods can be simply added which allows to get more information for further
computations.

Beside this analysis, we also prepare data structures which will be used
in next steps and, in general, they have to be calculated. The data depend
on the speci�c analytic method but, in general, we mean data which can
in�uence whether the method should be used in computation or how it will
work with additional comparisons. If the analysis found that the comparison
method would have bad or none results, it is not used during decision tree
creation.

Each method will analyze each of the PIM classes and it depends entirely
on it what information it uses and how. It can also return the threshold
value. It is a value that in�uence the selection of methods used in decision
tree and during comparison. Threshold is a method-speci�c value which can
be modi�ed by the user.

Below is a list of basic analyzing methods that are implemented directly
in the experimental application.

• Length � There are several properties we can observe on class names.
String length is one of the properties. We count the number of letters
used in names and on the basis of average length we can adjust used
methods for the best performance ratio. This metric is very important
if we want to compare used abbreviations between PIM and PSM.

35

• Data Types � Another important aspect to get is data types usage.
On the basis of this analysis, data type comparison is included in the
�nal decision tree. This method takes all PIM classes and attributes
and gathers information about their de�ned data types.

• Occurrences � The last but not least analysis focuses on usage of dis-
tinct occurrences de�ned on PIM attributes and on relations between
PIM classes.

5.2.3 Structure-Based Analysis

The structure-based analysis considers the whole PIM diagram and suggest
the best strategy for path searching.

Floyd-Warshal Algorithm When we prepare PIM diagram, we primar-
ily count distances between all vertices. We use the Floyd-Warshall algorithm
[9] to compute the shortest paths between PIM classes. However, we make
a small modi�cation to be able to gain the whole path itself not only path
length.

The Floyd-Warshall is an algorithm which compares all possible paths
between each pair of vertices u and v in a weighted graph. The algorithm is
based on typical usage of a dynamic programming method.

In this thesis we use this algorithm on PIM diagram. The PIM classes
are used as vertices and PIM associations as edges with weight 1.

Consider a weighted graph G, vertices V numbered 1 through N and
method dist(u, v, w). The method dist(u, v, w) returns the length of the
shortest path between u and v with usage of vertices {1...w} and it is com-
puted as a minimum of dist(u, v, w − 1) and sum of lengths of paths which
contain w.

dist(u, v, w) = min{dist(u, v, w − 1), dist(u,w,w − 1) + dist(w, v, w − 1)}

Dense Subgraph Searching

De�nition 6. Density d of a PIM diagram with PIM classes CPIM and PIM
associations APIM is de�ned as d = |APIM |

(|CPIM |
2)

.

For large PIM diagrams with high density d of associations the selection
of the paths becomes very complicated. Hence, we propose a method based

36

on [1] that will lower the number of nodes in graph and prepare data for
path selection.

This method works with PIM diagram as a graph and it is based on
dense subgraph detection. It �nds a dense subgraph and merges its nodes
to a single node so-called cloud. We call this method repeatedly to decrease
the number of nodes in graph under the user de�ned value. This modi�ed
graph is then used for path selection and user involvement (we will describe
path selection in Section 5.8). The merged graph allows to use bfs algorithm
to �nd all paths between mapped PIM paths. We do not use this method
for small graphs and graphs with small density of edges.

De�nition 7. A cloud with de�ned densityd is a set of PIM classes with
the density of edges between them is higher or equal as d.

The size of cloud depends on density value. The value should not be too
high to �nd small number of small subgraphs but, on the other hand, it
should not be too low to �nd only one large subgraph. We found out that
the optimal value is 0.7.

In Algorithm 3 we have a PIM diagram and a density value d on input.
We begin with empty node set S and de�ne another density value d0 for
current density of S. In each step we compare whether the set still meets
the requirements on density. Then the selectGamma method is called. This
method tries to get new node which satis�es the current density. If no such
node is found another node from CPIM is selected and d0 is recomputed.
When there are no nodes or the density is too small S is returned subgraph.

Example 8. There is a PIM diagram in Figure 5.1(a). We can see its cloud
representation in Figure 5.1(b) where A = a, d, g, h, i, B = j, k, l,m and
C = b, c, e, f .

Example 9. In this example we will describe the situation of PIM analysis
on the diagram in Figure 5.2. We will use the Tokenization as method for
preparation. For element-based analysis we will use Length, Data Type and
Occurence analyzers (see Section 5.2.2) and for structure-based analysis we
will use the Floyd-Warshall algorithm as described in Section 5.2.3.

First Tokenization will split the class, attribute and data type names into
separate tokens as shown in Table 5.1.

The Length analyzer will compute the average length of used names, the
Data Type analyzer will investigate the usage of distinct data types and the
Occurrence analyzer will compute number of distinct occurences de�ned on
PIM classes and attributes. The whole results are described in Table 5.2.

37

Algorithm 3: Dense subgraph search

Input: A PIM diagram dPIM with classes CPIM , density d
Output: Dense subgraph

1: begin

2: d0 = 1
3: x = select(CPIM)
4: S = {x}
5: while d0 ≥ d do
6: x = selectGamma(CPIM , d0)
7: if x = 0 then

8: return S
9: end

10: S = S ∪ {x}
11: d0 =

|E(S)

(|S|
2)

12: end

13: return S

14: end

Name Tokens

SiteOwner Site, Owner
MediaAgenture Media, Agenture
GraphicDesigner Graphic, Designer

Table 5.1: Tokenization

5.3 Decision Tree

The decision tree creation is based on the PIM analysis in the previous
step. The algorithm works with matchers as de�ned in Section 4.4. They are
separated into groups by the feature they compare. Beside this division, each
method is assigned with a priority which is used to get the e�cient methods
on top, wheras the time-consumpting methods are used only if others fail.
The priority also selects the order of examined features. Each method has a
default priority and the user can modify this value to get di�erent tree.

As we can see, Algorithm 4 works with methods grouped by feature and
sorted by priority in methodsfeat. As the root method is selected the method

38

e f

hg

ba

d

c

i

l m

j k

(a) Classes

A B

C

(b) Clouds

Figure 5.1: Cloud creation

Method Name Threshold Data

Length � Average length of name: 6.8
Data Types 50% Distinct data types: 6
Occurrence 7.89% Distinct occurrences: 3

Table 5.2: Used analyzers

with the highest priority. The rest of methods from the same feature group
are added by addMethodToTree(node, method) method. This method takes
node ns in decision tree and tries to add new method mn. We recognize the
following possible situations.

• ns has no child � mn is added as a child of node (see Figure 5.3(a))

• ns has children c1, ..., cn with the same feature as the mn � If the
method has the same priority, it is added as a child of ns (see Fig-
ure 5.3(b)), otherwise addMethodToTree(c,mn) is called for each c ∈
{c1, ..., cn}

• The ns has children c1, ..., cn with di�erent feature thanmn � addMethodToTree(c,mn)
is called for each c ∈ {c1, ..., cn} and if feature of c1, ..., cn is same as
feature of ns, the mn is added as a child of ns (see Figure 5.3(c))

39

Figure 5.2: Analyzed PIM diagram

5.3.1 Matchers

We use the following methods for node comparison:

Matched Thesauri This method works with results of previous computa-
tions. The thesauri contains matched pairs. strPIM is the name of a PIM class
and strPSM the name of a PSM class. It checks whether the pair (strPIM ,
strPSM) was a user-con�rmed match. The return value of this method is 0
when no match is found or 1 if the thesauri contains the pair. We used this
value because the mapping war already con�rmed, so the algorithm expects
there is no need for further comparision.

Pre�x This method takes two strings strPIM and strPSM . It checks whether
the shorter string is the abbreviation of . The strings strPIM and strPSM

are separated to the tokens a1 a2 ... an and b1 b2... bm and the value of
similarity is computed as a ratio between the size of S = {(ai; bj)| ai =
abbreviation(bj)||bi = abbreviation(aj)} and maximum number of tokens in
strPIM and strPSM .

40

Algorithm 4: Decision Tree Creation

Input: methods sorted by priority
Output: decision tree T

1: begin

2: root = nil
3: foreach methodsfeat in methods do
4: if root = nil then
5: root = methodsfeat[0]
6: end

7: foreach methodf in methodsfeat do
8: addMethodToTree(root, methodf)
9: end

10: end

11: return root;

12: end

Epref (a, b) =
size(S)

max(n,m)

Levenshtein This algorithm computes the shortest edit distance for op-
erations insert, update and delete a character from strPIM to strPSM . The
value of similarity is computed as a ratio between the number of same char-
acters and the length of compared strings.

Elev(strPIM , strPSM) = 2×(max(strPIM ,strPSM)−levenshtein(strPIM ,strPSM))
len(strPIM)+len(strPSM)

Length Ratio This method computes length ratio between string strPIM

and strPSM . The similarity value is computed as a ratio between length of
these strings.

Elen(strPIM , strPSM) = min(len(strPIM),len(strPSM))
max(len(strPIM),len(strPSM)

Note that we decreased the importance of this matcher, because it is not
precise method. We use it as a method which determines whether to use
Pre�x matcher for strings with high length ratio or Levenshtein matcher for
strings of similar length.

41

node

method

node

(a) without children

node

method

node

c1 c2 c1 c2

(b) same feature and priority

node node

c1 c2 c1 c2

method method

(c) di�erent feature and pri-
ority

Figure 5.3: The decision tree creation

Data Type In this method we compare the types for basic similar types
like numbers � doubles and �oats. The similarity value is in this case com-
posed of the value of data type name and the data type relation. The values
are multiplied. The value of data type name is computed in the same way as
in case of class and attribute names and the similarity of data type depends
on their relation. For similarity of basic and derived data types we used the
modi�ed Type Tree as proposed in [15]. In particular is is extended with
more abstract data types (text, calendar, numeric, logical and other) to
create more coherent hierarchy (see Figure 5.4 [15]). The similarity value of
two data types d1 and d2 is computed as a function of depth and the shortest
path length.

It is de�ned as follows:

Edt(d1, d2) =

{
e−βl × eαh−e−αh

eαh+e−αh , d1 ̸= d2
1, d1 = d2

where d is depth of the node which subsumes nodes d1 and d2, l is the length
of path between them and α and β are the correction values. The optimal
value, presented in [15], is recommended α = β = 0.3057. The values for
selected types are shown in Table 5.3.

42

Figure 5.4: XSD Type Hierarchy

Thesauri In this method we make comparison of the name of a class
against all items in user thesauri. In this case the value of similarity for
synonyms is �xed, we use same value as suggested in [8] and it is 1.0.

Trigrams This method is an alternative to Levenshtein. The strings strPIM

and strPSM are transformed to sets of trigrams TPIM and TPSM and the value
of similarity is the ratio between Ts = TPSM ∩TPIM and Ta = TPSM ∪TPIM .

Esim = size(Ts)
size(Ta)

Children This method is a structural comparison method based on simi-
larity of child nodes. We will compute the similarity between PSM node cPSM

and PIM node cPIM by comparing their child nodes in PSM diagram chPSM

43

d1 d2 Depth Path length Similarity

int long 5 1 0.67
double �oat 2 2 0.30
string unsignedLong 1 7 0.03

Table 5.3: Example of data type similarity

and neighbor nodes nPIM . We compute the total distance d(cPSM , chPSM)
from cPSM to all its children chPSM and the total distance d(cPIM , chPSM)
from cPIM to all representatives of chPSM . The distance between two classes
dist(cPSM , chPSM) is de�ned as shortest path between them.

d(cPSM) =
∑

dist(cPSM , chPSM)
d(cPIM) =

∑
dist(cPIM , representative(chPSM))

The �nal similarity value is the ratio between these distances, i.e.

Esim = min(d(cPSM),d(cPIM))
max(d(cPSM),d(cPIM))

Example 10. Considering Example 9 for the data analysis and the methods
described in Section 5.3.1 in Table 5.4, we will get the tree in Figure 5.5.

Feature Method Name Priority

class name

Matched Thesauri 99
Length Ratio 80
Levenshtein 70
Pre�x 70

data type Data Type 60
structural similarity Children 20

Table 5.4: Used matchers

The matchers are grouped by the following features: class name, data type
and structural similarity and sorted by priority. The group class name has
the highest priority so Matched Thesauri is used as the root node. The rest
of class name matchers follows. Then the Data Type and Children matcher
is used.

44

Matched Thesauri

Length Ratio

Prefix Levenshtein

Data Type Data Type

Match MatchMismatch Mismatch

10

Data Type

Mismatch

Match

>0.5 <0.5

Children Children

Children

Figure 5.5: Decision tree

5.4 PSM Creation

In this section we brie�y describe the mapping between XML schema and
PSM diagram based on [19].

The translation of XSD schema sXSD to PSM diagram dPSM starts with
globally de�ned elements. The elements with a complex data type are recur-
sively parsed and translated to PSM classes. To simplify the algorithm we
expect each complex type to be de�ned globally (there is a simple process to
transform a locally de�ned type to global). The elements with simple type
content are converted to attributes.

We want to transform element E with de�ned type T and label l to PSM
class cPSM . If T was not already processed, we will create cPSM with the
name of T and label of l. If T has been processed as PSM class c′PSM and
is shared with other element E ′, we create new structural representative of
c′PSM with label l.

T is translated with all attributes and content model. An attribute a

45

with name l and datatype t is transformed to PSM attribute aPSM of class
cPSM with name l and type t. Note that XCase currently does not support
creation of extended or restricted data types so t is transformed as a new
type. The operators in content model we currently support are sequence
or choice. Each of them is translated to content model of cPSM and inner
element declarations are translated recursively. The sequence is translated
as a list of PSM classes with a speci�ed order. The choice is translated as a
PSM content choice, i.e. only one of the PSM children can be instantiated.

Example 11. As an example we provide the translation of XML schema S1

(Figure B.3) to PSM diagrams dPSM1 (Figure 5.6).

Figure 5.6: PSM diagram

5.5 Similarity Computation

Now, we have analyzed data from PIM, created a decision tree and created
a PSM diagram from an XSD. In this section we will use these items to
compute similarity between PSM and PIM classes.

In Algorithm 5 we can see two parts. At Line 3 the array with all simi-
larity values is computed by method sim. PSM class cPSM is compared with
each PIM class cPIM ∈ dPIM with decision tree T . When all values are com-
puted by sim the results are grouped by feature and the maximum for each
feature is selected. The maximums are then aggregated at Line 7, where all
values are �attened as an average value, i.e.

46

sim =
simf1+simf2+...+simfn

n

Algorithm 5: Similarity Computation

Input: PSM Class cPSM , PIM diagram dPIM , decision tree T
Output: Vector sim with similarity values for cPSM

1: begin

2: foreach cPIM ∈ dPIM do

3: similarityV alues = sim(cPSM , cPIM , T)
4: foreach Feature fn in SimilarityValues do
5: simfn = max(SimV aluesFeat)
6: end

7: sim[CPIM] =
simf1+simf2+...+simfn

n

8: end

9: return sim

10: end

Algorithm 6 works with one PSM class cPSM and one PIM class cPIM .
The classes are compared with the usage of decision tree T . The computation
starts in the root of the tree T . The method in the node is used to evaluate
similarity between cPSM and cPIM . The result is stored to array simV alues
associated with the used method. The next child node is selected by the
result of the similarity method.

The method getChild at Line 9 uses the similarity simV alues[method]
value computed by current node curNode. On the basis of the construction
proposed int Section 5.3 we expect that the decision tree node n has one or
two children nc1 (and nc2). One child is expected if n is the last node for
a feature. Two children are expected if nc1 compares the same feature as n
and nc2 compares any other feature (this child is used when the match is
resolved). Situation when n has two or more children occurs when its child
matchers have same priority and n is used to select which will �t for concrete
situation (for example LengthRatio matcher).

Each decision tree node is assigned with a values, so-called borders, which
de�nes which child is selected. For example the decision tree node Length
Ratio on 5.5 has border 0.5, i.e. if the result of Length Ratio is lower than
0.5 the Pre�x matcher is called, for result higher than 0.5 th Leventshtein
matcher is used.

47

In case of di�eren child features, the �rst child is selected when we expect
the similarity value is low thus the next matcher of the same feature should
be selected to try to �nd similarity in other way. The second child means
we have high similarity value and thus we do not have to compute similarity
for this feature.

Algorithm 6: Decision tree similarity computation

Input: PSM Class cPSM , PIM Class cPIM , decision tree T
Output: Vector simV alues of similarity values between cPSM and

cPIM

1: begin

2: curNode = root(T)
3: while not leaf(curNode) do
4: method = curNode− > method
5: simV alues[method] = method(cPSM , cPIM)
6: curNode = curNode− > getChild(simV alues[method])

7: end

8: return simV alues

9: end

5.6 Mapping Selection

Once the values of similarity between classes are computed, the selection of
suitable candidates can be done. This choice is let to the user who selects
from the possibilities sorted by the degree of similarity.

This mapping is also stored for later calculations in case of multiple input
�les from the same source which use the same names for the same classes.
It can be also used by structure level matchers (e.g. Children matcher).

Example 12. The similarity values for cPSM NewBann from Example 9
are shown in Table 5.5.

5.7 Path Computation

This section deals with �nding paths between classes that have already been
mapped and a newly mapped class. Assume that we have currently mapped

48

Ling DataType Structural Total

Banner 53.85% 23.11% 100.00% 58.99%
MediaAgenture 30.00% 50.00% 25.00% 35.00%
SiteOwner 12.50% 50.00% 25.00% 29.17%
Client 15.38% 50.00% 12.50% 25.96%
Visitor 0.00% 50.00% 25.00% 25.00%
GraphicDesigner 18.18% 50.00% 0.00% 22.73%
Purchase 13.33% 3.00% 50.00% 22.11%
Site 0.00% 9.00% 50.00% 19.67%
Visit 0.00% 0.00% 50.00% 16.67%
Address 0.00% 0.00% 12.50% 4.17%

Table 5.5: Simiarity values for NewBann

a PSM class cPSM and its children Cch. We have to map the associations
between cPSM and Cch to paths between their representing PIM classes.
During later schema evolution this allows us to propagate changes of selected
parts in PIM into already de�ned PSM without involvement of a domain
expert.

On the basis of the previously prepared computations we can use directly
the shortest path if there is only one connection between classes. This path
was computed by the Floyd-Warshall algorithm during analysis of PIM dia-
gram (see Section 5.2.3). If there are more paths the algorithm will use the
bfs algorithm to �nd all available paths and sort them by by length.

The input graph of bfs depends on whether we reduced PIM diagram by
the dense graph reduction as described in Section 3, or we use the original
PIM diagram.

5.8 Path Selection

In the �nal step the system o�ers the best found path between two PIM
classes to the domain expert. The paths are sorted by the computed length
and number of clouds and allows the user to accept o�ered possibilities.

The presented paths depend whether the detection of dense subgraphs
was used. In case we did not create modi�ed graph, all paths are considered
and sorted by length and o�ered to a domain expert to select the optimal
one. Otherwise, the paths with merged nodes are o�ered. The domain expert

49

selects one of them and then speci�es a node in each cloud which is used
again to compute by bfs all paths in each cloud. The computed paths are
sorted by length and o�ered to user.

Example 13. Consider two PIM classes cPIM1 and cPIM2 and a graph with
clouds A, B, C, D and E as shown in Figure 5.7. Each of these clouds
represents complete graph K3. We look for a path between cPIM1 ∈ A and
cPIM2 ∈ C. The algorithm will o�er the paths A−B − C, A−E −D − C,
A−B−D−C and A−E−D−B−C (note that if we use bfs algorithm on the
classes we get 72 possible paths). The user selects one of these possible paths
and select a node from each cloud. So if we select the path A− B −D − C
and nodes cP1 and cP2 the algorithm will o�er only four following possible
paths sorted by length:

• cPIM1, cP3, cP4, cP7, cP2, cP8, cP1, cP9, cP10, cP6, cP5, cPIM2

• cPIM1, cP4, cP7, cP2, cP8, cP1, cP9, cP10, cP6, cP5, cPIM2

• cPIM1, cP3, cP4, cP7, cP2, cP8, cP1, cP9, cP10, cP6, cPIM2

• cPIM1, cP4, cP7, cP2, cP8, cP1, cP9, cP10, cP6, cPIM2

A B

E D C

c PIM1

c PIM2c P9

c P2

c P3

c P4

c P1

c P10 c P6

c P5

c P7 c P8

Figure 5.7: Path selection

50

Chapter 6

Results

6.1 Testing Implementation

We used the XCase tool as a basic platform for implementation of decision
tree algorithm. For the testing purposes we implemented analysis of PIM
diagram with Occurence, Datatype and Length analyzers. We also prepared
the creation of decision trees and, last but not least, we implemented the
similarity evaluation and mapping selection.

The algorithm can be started in XCase toolbar under the Reverse com-
mand group byXSD->PSM command. Note that this dialog is context based
thus it is important to have opened project and PSM diagram. The applica-
tion contains simple window for setting of methods priority and weight (see
Figure 6.1). After the settings the dialog with �le selection appears. Unlike
the original implementation of reverse engineering, in XCase we allow user
to select multiple �les (it has no signi�cant impact on functionality, it just
simpli�es transformation of more schemas).

The class selection uses the data gathered from matchers in a decision
tree and o�ers the sorted results to the user. Figure 6.2 shows these results
in class selection window. This window contains information about a PSM
class and all PIM classes. On top there is the name of a PSM class, in this
case PickUpLocation, followed by a list of PIM classes. Each o�ered mapping
contains the name of a class (Address, Acc, etc.), the feature based results
� name, datatype and children, and the �nal aggregated similarity. The user
selects one mapping by double clicking on the list item.

The implementation is focused on decision tree and matchers experi-
ments, thus the path selection and cloud creation is not a part of this imple-

51

Figure 6.1: Settings window

mentation. The found mappings have no e�ect on XCase project and cannot
be saved. We plan to add this functionality as a next step of our research.

6.2 Data sets

For a purposes of experiments we created 3 PIM diagrams describing simple
situation of car rental company (see Figure 6.3 for one of diagram). These
diagrams do not di�er in structure but we created three di�erent name sets
to show the advantage of decision trees for string comparison.

PIM A This is the diagram in Figure 6.3. The diagram was created with
an emphasis on correct full names. It was designed to be maximally helpful
for mapping algorithms.

PIM B The names in this diagram were created very similarly, i.e. the
classes associated with vehicle got Vehicle pre�x.

PIM C In this case we created names with maximal focus on abbreviations
and partially synonyms. The aim of this diagram is not to show that the
XCase mapping algorithm does not implement these speci�c matchers, but to
show the possibility of selection the right matcher during matching process.

As an input for PSM diagram we created four simple XSD schemas based
on OpenTravel online XML schemas [20]. We used them as a template for
�nal schemas. Systems like OpenTravel contain hundreds of complex types

52

Figure 6.2: Class selection window

very closely linked together and we do not need the types which are not
included in our PIM diagram, so for purposes of our experiments we removed
the unnecessary classes and �attened the schemas. In particular the used
schemas describe a request and a response of a car rental and location of a
car vendor. All used PIM diagrams and schemas are placed on the attached
DVD.

We compared our results with current implementation of reverse engi-
neering in XCase based on [19] implemented by Jakub Klimek. This work
depends on a list of �xed matchers with possibility of weight settings. For
the purposes of the experiments we used the default values.

For the experiments we used Matched Thesauri, Length Ratio, Leven-
shtein, Pre�x, Thesauri, Data Type and emphChildren matchers as shown
in Figure 6.4. We set the border value on Pre�x and Levenshtein to 0.1 to
minimize the number of unnecessary calls, i.e. the Thesauri matcher is used
only if the similarity on Pre�x and Levenshtein matchers is lower then 0.1.
For the user thesaurus we used following synonyms:

53

Figure 6.3: Car rental PIM diagram

• address, destination, location

• car, auto, automobile, machine, motorcar, vehicle

• vendor, seller, marketer, rental

• preference, option, alternative, choice

6.3 Metrics

We measured two main metrics for each PIM diagram. The �rst one p is
position of correct mapping in mapping list. This is probably one of the
most important variables of the whole process, because it allows the domain
expert to e�ectively select the right mapping. We computed the �nal value
for the PIM diagram as the average value of position of all found mappings.

54

Matched Thesauri

Length Ratio

Prefix Levenshtein

Data Type Data Type

Match MatchMismatch Mismatch

10

Data Type

Mismatch Match

>0.5<0.5

Children Children

Children

User Thesauri User Thesauri

Data Type

MatchMismatch

Children

<0.1 >0.1 <0.1 >0.1

Data Type

MatchMismatch

Children

Figure 6.4: Experimental decision tree

In addition, we added one sub-metric � the worst position. It shows how is the
algorithm able to provide balanced values over di�erent inputs. The second
metric d is the di�erence between the similarity of the correct mapping and
the �rst mapping in list (only if the correct mapping is not the �rst one).
This value shows the "con�dence" the algorithm had in o�ering a wrong
mapping. It distinguishes the situation when p is high but d is low and the
matcher was close to select the correct one from the situation when the p
and d are high and the mapping algorithm made a big mistake.

We measured mappings of PIM classes. Although PIM attributes are
used in the diagrams their main purpose is to provide the information to the
attribute-based matchers.

6.4 Results

We run all our experiments on standard personal computer with dual core
processor AMD 2.7 GHz, with 2 GB RAM and installed Windows 7.

In general, the results ful�lled our expectations but still there were a few
interesting results as we can see in Table 6.1 for the XCase mapper results
and in Table 6.2 for decision tree results.

55

PIM diagram
XCase

Avg. pos. Worst pos. Avg. dist. Avg. dist (%)

PIM A 1.47 5 0.06 32%
PIM B 1.8 5 0.04 20%
PIM C 2.7 12 0.04 28%

Table 6.1: Precision of XCase

Diagram PIM A was the easiest mapping example for the XCase map-
per, because it contains simple and similar names to the ones used in XSD
schemas. The worst position 5 of 11 is a good result. More interesting is the
average distance which is the highest from all PIMs. The algorithm did not
make much mistakes, but it was convinced they are right.

Surprisingly, decision tree did not make its best results on PIM A. The
average depth was worse than the depth of the XCase algorithm. The cause
of this result can be the selection of string matcher or used coe�cients.
Other possibility is that the worse value is a consequence of more matchers
and their wrong selection. As we can see in Figure 6.5(a) the highest usage
of Pre�x matcher in this case was not the best selection for highly similar
strings. The other measures are similar as for the XCase algorithm and the
average distance is also the highest.

PIM diagram
Decision tree

Avg. pos. Worst pos. Avg. dist. Avg. dist (%)

PIM A 1.66 6 0.05 26.2%
PIM B 1.57 4 0.03 24.7%
PIM C 1.71 5 0.04 16%

Table 6.2: Precision of decision tree

In diagram PIM B the XCase algorithm began to lose. The average posi-
tion value 1.8 is still good and the worse value stays 5. The average distance
lowers (the lowest from all diagrams) and shows that the correct mapping
still was not far.

On the other hand, decision tree algorithm provided better results. The
average position was 1.57 and it has a small distance between correct and
wrong mappings. The chart in Figure 6.5(b) shows the switch between usage

56

of Pre�x matcher and Levenshtein matcher. The Thesaurus matcher was not
used as in the previous case.

Finally, on the third diagram PIM C the XCase algorithm made the worst
result. The main reason of the worse average position is probably inability
to translate address to location.

Decision tree algorithm was able to use synonym translation and thus
it was capable to keep the average position under 2. As we can see in Fig-
ure 6.5(c) the usage of Thesaurus matcher highly increase.

In general, these experiments show that the �xed matcher can give cor-
rect mappings but due to its limited number of algorithms it is unable to
react on di�erent situations. The usage of decision trees allows to balance
the found mappings with regards to input schemas.

These experiments was focused only on class names, i.e. strings, the im-
pact of the proposed method would be probably higher if we tested structure
or more complex features.

57

(a) PIM A

(b) PIM B

(c) PIM C

Figure 6.5: Usage of String comparison methods

58

Chapter 7

Conclusion

In this thesis, we focused on the problem of mapping multiple schemas from
di�erent sources to one common PIM diagram. We described problems with
inconsistency of XML schema usage and made a brief introduction to XML.
We made a survey of current reverse engineering and XML Schema match-
ing approaches. We presented the idea of model driven development and
conceptual modeling, basic used conceptual modeling approaches and, in
particular, model XSEM in Chapter 3.

In the second half of this thesis, we focused on improvement of the reverse
engineering process presented in [19]. We introduced new approach based on
�exible matching process of the XSEM model. The process is based on anal-
ysis of PIM diagram before the mapping starts. The data gathered by this
analysis are used to build a decision tree with nodes created from di�erent
matching methods. Then we use it to �nd mappings between PIM and PSM
classes and attributes. Unlike the brutal-force mapping systems, the trees
allow to extend the number of used matchers without higher requirements
on performance.

The proposed algorithm is very �exible. By the modi�cation of tree it
can adapt to di�erent data sources and, unlike the usage of �xed matchers,
our approach allows to use more di�erent matchers without lowering overall
performance, i.e. the overall similarity computation can bene�t from them
and return more precise results. On the other hand, the structure of the tree
can be its greatest weakness. Wrong structure of matchers can provide more
unbalanced results than with usage of algorithm with �xed matcher set.

We also proposed a new approach for mapping associations between PSM
classes and paths between PIM classes. In Section 5.2.3 we use dense sub-

59

graph search to lower the number of PIM classes. Over this smaller graph we
use Floyd-Warshall algorithm or breadth-�rst search to compute the paths
between the classes and then we o�er them to the user to select the optimal
candidate.

7.1 Future Work

It is clear that the results of our and similar algorithms depends on selected
matchers and their settings. In our future work we will focus on extending
the set of used matchers and we will try to �nd the ideal weight and priority
values automatically.

Secondly building of a decision tree is the cornerstone of our algorithm,
so we will also focus on possible strategies of its creation to improve the
adaptability to di�erent inputs.

And last but not least possible direction of our research will go toward
automatic modi�cation of the decision tree during similarity computation.
This could be done on the basis of statistical usage of the matchers and
their repositioning in the tree, or by a quick analysis of input XML schemas,
their elements and attributes. This could highly improve the precision of
computation on large sets of similar data.

60

Bibliography

[1] Abello, J., Resende, M. G., and Sudarsky, S. (2002). Massive Quasi-
Clique Detection. In Proceedings of the 5th Latin American Symposium
on theoretical informatics (April 03 - 06, 2002). S. Rajsbaum, Ed. Lec-
ture Notes In Computer Science, vol. 2286. Springer-Verlag, London,
598-612.

[2] Aumueller, D., Do, H., Massmann, S., and Rahm, E. (2005). Schema
and ontology matching with COMA++. In Proceedings of the 2005
ACM SIGMOD international Conference on Management of Data (Bal-
timore, Maryland, June 14 - 16, 2005). SIGMOD '05. ACM, New York,
NY, 906-908.

[3] Badia, A. (2002). Conceptual Modeling for Semistructured Data. In
Proceedings of the Third international Conference on Web informa-
tion Systems Engineering (Workshops) - (Wisew'02) (December 11 -
11, 2002). WISEW. IEEE Computer Society, Washington, DC, 170.

[4] Bernauer, M., Kappel, G., and Kramler, G. (2003). Representing XML
Schema in UML - An UML Pro�le for XML Schema. Technical Report
November 2003, Department of Computer Science, National University
of Singapore, 2003.

[5] Chen, P. (1976). The Entity-Relationship Model-Toward a Uni�ed View
of Data. ACM Transactions on Database Systems, 1(1):9 - 36, Mar.
1976.

[6] Duchateau, F., Bellahsene, Z., and Coletta, R. (2008). A Flexible Ap-
proach for Planning Schema Matching Algorithms. In Proceedings of
the OTM 2008 Confederated international Conferences, Coopis, Doa,
Gada, Is, and ODBASE 2008. Part I on on the Move To Meaning-
ful internet Systems: (Monterrey, Mexico, November 09 - 14, 2008). R.

61

Meersman and Z. Tari, Eds. Lecture Notes In Computer Science, vol.
5331. Springer-Verlag, Berlin, Heidelberg, 249-264.

[7] Elmeleegy, H., Ouzzani, M., and Elmagarmid, A. (2008). Usage-Based
Schema Matching. In Proceedings of the 2008 IEEE 24th international
Conference on Data Engineering (April 07 - 12, 2008). ICDE. IEEE
Computer Society, Washington, DC, 20-29.

[8] Do, H. and Rahm, E. (2002). COMA: a system for �exible combina-
tion of schema matching approaches. In Proceedings of the 28th in-
ternational Conference on Very Large Data Bases (Hong Kong, China,
August 20 - 23, 2002). Very Large Data Bases. VLDB Endowment,
610-621.

[9] Wikipedia, Floyd�Warshall algorithm � Wikipedia, The Free Encyclo-
pedia, 2010 Online; accessed 16-July-2010

[10] Klímek, J. (2009), XML schema evolution, Master thesis, Charles Uni-
versity. http://www.ksi.m�.cuni.cz/ klimek/master.pdf

[11] Li, J., Liu, J., Liu, C., Wang, G., Yu, J. X., and Yangt, C. (2007).
Computing structural similarity of source XML schemas against do-
main XML schema. In Proceedings of the Nineteenth Conference on
Australasian Database - Volume 75 (Gold Coast, Australia, December
03 - 04, 2007). ACM International Conference Proceeding Series, vol.
313. Australian Computer Society, Darlinghurst, Australia, 155-164.

[12] Madhavan, J., Bernstein, P. A., and Rahm, E. (2001). Generic Schema
Matching with Cupid. In Proceedings of the 27th international Confer-
ence on Very Large Data Bases (September 11 - 14, 2001). P. M. Apers,
P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamohanarao, and R. T. Snod-
grass, Eds. Very Large Data Bases. Morgan Kaufmann Publishers, San
Francisco, CA, 49-58.

[13] Miller, J., and Mukerji, J. MDA Guide Version 1.0.1. Object Manage-
ment Group, 2003. http://www.omg.org/docs/omg/03-06-01.pdf.

[14] Melnik, S., Garcia-Molina, H., and Rahm, E. (2002). Similarity Flood-
ing: A Versatile Graph Matching Algorithm and Its Application to
Schema Matching. In Proceedings of the 18th international Conference

62

on Data Engineering (February 26 - March 01, 2002). ICDE. IEEE
Computer Society, Washington, DC, 117.

[15] Hong-Minh, T. and Smith, D. (2007). Hierarchical Approach for
Datatype Matching in XML Schemas. In Proceedings of the 24th
British National Conference on Databases (July 03 - 05, 2007). BN-
COD. IEEE Computer Society, Washington, DC, 120-129. DOI=
http://dx.doi.org/10.1109/BNCOD.2007.10

[16] Mlynkova, I., and Pokorny, J. (2006). Exploitation of Similarity and
Pattern Matching in XML Technologies. Prague, Czech Republic.

[17] Narayanan, K., and Ramaswamy, S. (2005). Speci�cations for Mapping
UML Models to XML. In Proceedings of the 4th Workshop in Software
Model Engineering, Montego Bay, Jamaica, 2005.

[18] Ne£aský, M. (2008). Conceptual Modeling for
XML, PhD thesis, Charles University. IOS Press.
http://kocour.ms.m�.cuni.cz/.necasky/dw/thesis.pdf

[19] Ne£aský, M. (2009). Reverse Engineering of XML Schemas to Con-
ceptual Diagrams, in Proceedings of Sixth Asia-Paci�c Conference on
Conceptual Modelling, Wellington, New Zealand, Australian Computer
Society, ISBN: 978-1-920682-77-4, ISSN: 1445-1336, pp. 117-128, Jan-
uary 2009.

[20] OpenTravel Speci�cation http://opentravel.org/Speci�cations/OnlineXmlSchema.aspx

[21] Routledge, N., Bird, L., and Goodchild, A. (2002). UML and XML
schema. In Proceedings of the 13th Australasian Database Conference
- Volume 5 (Melbourne, Victoria, Australia). ACM International Con-
ference Proceeding Series, vol. 18. Australian Computer Society, Dar-
linghurst, Australia, 157-166.

[22] Sengupta, A., Mohan, S., and Doshi, R. (2003). XER - Extensible Entity
Relationship Modeling. In Proceedings of the XML 2003 Conference,
pages 140 - 154, Philadelphia, USA, Dec. (2003).

[23] Shvaiko, P., and Euzenat, J. 2005. A survey of schema-based matching
approaches, in Journal on Data Semantics IV, ser. Lecture Notes in
Computer Science, 2005, ch. 5, pp. 146-171.

63

[24] Object Management Group. UML Infras-
tructure Speci�cation 2.1.2, nov 2007.,
http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF/.

[25] The Unicode Standard 5.2.0. The Unicode Consortium, dec 2009.,
http://www.unicode.org/versions/Unicode5.2.0/

[26] Fellbaum, Ch. (1998) WordNet: An Electronic Lexical Database. Cam-
bridge, MA: MIT Press.

[27] XCase - tool for XML data modeling. http://www.ksi.m�.cuni.cz/xcase

[28] Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., and Yergeau,
F. (2008). Extensible Markup Language (XML) 1.0 (Fifth Edi-
tion). W3C, November 2008. http://www.w3.org/TR/2008/REC-xml-
20081126/.

[29] Thompson, H. S., Beech, D., Maloney, M., and Mendelsohn, N. (2004).
XML Schema Part 1: Structures (Second Edition). W3C, October 2004.
http://www.w3.org/TR/xmlschema-1/.

64

Appendix A

DVD Content

The DVD-ROM is a part of this thesis. It contains the text of the work,
source code of the XCase tool, the source code of the implemented proposed
algorithm and the executable �les of the XCase application with imple-
mented algorithm. The following �les and directories are included:

• text � directory with the text of the thesis in PDF

• src � directory with source codes of XCase and the algorithm (src/X-
Case/Reverse2)

• bin � directory with the executables of XCase

• data � directory with �les used in the experiments

65

Appendix B

Used XML Schemas

B.1 Figure 3.2

<?xml version="1.0" encoding="utf-8"?>

<xs:schema xmlns="http//www.example.org/"

elementFormDefault="qualified"

targetNamespace="http//www.example.org/"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Purchase" type="Purchase" />

<xs:complexType name="Purchase">

<xs:sequence>

<xs:element name="Car" type="Car" />

<xs:element name="Customer" type="Customer" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="Car">

<xs:sequence>

<xs:element name="Supplier" type="Supplier" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="Supplier" />

<xs:complexType name="Customer">

66

<xs:sequence>

<xs:element name="Address" type="Address" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="Address" />

</xs:schema>

B.2 Figure 3.2.2

<?xml version="1.0" encoding="utf-8"?>

<xs:schema xmlns="http//www.example.org/"

elementFormDefault="qualified"

targetNamespace="http//www.example.org/"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Car" type="Car" />

<xs:complexType name="Car">

<xs:sequence>

<xs:element name="Supplier" type="Supplier" />

<xs:choice>

<xs:element name="Customer"

type="NewCustomer" />

<xs:element name="Customer"

type="ExistingCustomer" />

</xs:choice>

</xs:sequence>

</xs:complexType>

<xs:complexType name="Supplier" />

<xs:complexType name="NewCustomer" />

<xs:complexType name="ExistingCustomer" />

</xs:schema>

67

B.3 Figure 11

<?xml version="1.0" encoding="utf-8"?>

<xs:schema xmlns="cz.mff.xcase.example/"

elementFormDefault="qualified"

targetNamespace="cz.mff.xcase.example/"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Purchase" type="Purchase" />

<xs:complexType name="Purchase">

<xs:sequence>

<xs:element name="MA" >

<xs:complexType>

<xs:attribute name="Name" type="xs:string"

use="required" />

</xs:complexType>

</xs:element>

<xs:choice>

<xs:element name="NewBann" type="Banner"

maxOccurs="unbounded" />

<xs:element name="OldBann" type="Banner"

maxOccurs="unbounded" />

</xs:choice>

<xs:element name="Web" type="Web" maxOccurs="unbounded" />

</xs:sequence>

<xs:attribute name="Price" type="xs:int" use="required" />

<xs:attribute name="Impresions" type="xs:long"

use="required" />

</xs:complexType>

<xs:complexType name="Banner">

<xs:sequence>

<xs:element name="Designer">

<xs:complexType />

</xs:element>

</xs:sequence>

<xs:attribute name="Type" type="xs:string" />

<xs:attribute name="size" type="xs:string" />

68

</xs:complexType>

<xs:complexType name="Web">

<xs:attribute name="Server" type="anyURI"

use="required" />

</xs:complexType>

</xs:schema>

69

	Introduction
	XML
	Motivation
	Content Overview

	XML Technologies
	XML
	Structure

	DTD
	XML Schema

	Conceptual Modeling
	Related Conceptual Models
	ER Model
	UML

	XSEM
	Platform Independent Model
	Platform Specific Model

	Related Work
	Reverse Engineering
	XCase
	Schema Matching
	COMA
	Similarity Flooding
	Decision Trees
	Usage Driven Similarity
	Domain – Schema Similarity

	Similarity Matchers
	Element Level
	Structure Level Techniques

	Algorithm
	Overview
	PIM Analysis
	Data Preparation
	Element-Based Analysis
	Structure-Based Analysis

	Decision Tree
	Matchers

	PSM Creation
	Similarity Computation
	Mapping Selection
	Path Computation
	Path Selection

	Results
	Testing Implementation
	Data sets
	Metrics
	Results

	Conclusion
	Future Work

	References
	DVD Content
	Used XML Schemas
	Figure 3.2
	Figure 3.2.2
	Figure 11

