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Abstract: Social networks can be helpful for the analysis of behaviour of people.
An existing social network is rarely available, and its nodes and edges have to
be inferred from not necessarily graph data. Link prediction can be used to
either correct inaccuracies or to forecast links about to appear in the future. In
this work, we study the prediction of missing links in a social network inferred
from real-world bank data. We review and compare both verified and modern
approaches to link prediction. Following the advancements of deep learning in
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scale to large networks. We propose an adjustment to an existing graph neural
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outperform the verified link prediction methods with graph neural networks.
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Introduction
Social networks represent human relationships. They can constitute relations
between family members, co-workers, or people who often shop at the same stores.
Many industries can benefit from the analysis of social networks. Marketing
departments that would like to target advertisement to specific groups of people
could analyse their past behaviour. A bank might want to personalise its products
to the clients based on their observed interactions. Or health departments could
improve tracing individuals infected with some disease.

However, it is quite presumptuous to assume that such social networks exist
or that they are easily available. Due to various constraints in the real world, such
as personal information protection laws, there is either not enough data to create
a social network or there is enough data, but the data is protected and not easily
accessible. Both nodes and edges have to be inferred from both relational and
non-relational data (Brugere et al. 2016). The nodes can be either some entities
in the source data or they might represent several clustered entities. Edges are
inferred based on entity information. Entities which are similar in some way,
for example, their attributes have similar values, may be connected by edges.
There can be also temporal similarity – nodes having similar attributes in some
timespan.

In this work, we analyse Inferred Social Networks (ISNs) and study link pre-
diction methods in such networks. We have an access to real-world data from
banking domain which serve as the main dataset used in our work. Link predic-
tion is an essential problem in inferred social networks since the underlying data is
often imperfect – some links are missing because of various reasons, e.g., network
changes in time, and it would be worthwhile to predict which links are missing or
which of them will appear or disappear in the future. Generally, algorithms used
on social networks are well described (Chakrabarti et al. 2006); however, there is
very little work on inferred social networks.

The objective of this thesis is to describe verified link prediction methods,
adapt them to the real-world banking domain inferred social network, and perform
experiments with them.

In particular, being given an ISN, we predict in which stores a client shops,
who are his friends and household members and in which types of shops he shops
most often. Based on an ISN inferred from data at the end of each month, we
predict which points of sale (POSs) will be frequented by a given client in the
next month.

With the advent of deep learning in the last several years, neural networks are
more and more applied to graphs. In 2020, there have been 49 papers studying
machine learning methods for graph data accepted to the International Confer-
ence on Learning Representations (Ivanov 2020). So called graph neural network
(GNN) network architectures significantly outperform traditional link prediction
methods on various graph datasets. However, there is not much work on utilising
graph neural networks on complex social networks. In this work we adapt graph
neural networks to inferred social networks and investigate whether they are able
to achieve results comparable to well-known statistical methods.

The contribution of this thesis is the analysis and comparison of common
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link prediction methods and GNNs on inferred social networks; We propose an
adjustment to the GNN architecture and show that it achieves results comparable
to other GNNs in the link prediction task on an inferred social network. We also
propose an alternative scoring function for link prediction using GNNs which
outperforms existing methods on some tasks.

Structure of the Thesis
The thesis is split into the following chapters. Chapter 1 defines inferred social
networks and explains the problems we try to solve, optimal results which could
be achieved, and the constraints arising from the use of real-world data.

In Chapter 2 we define common GNNs methods used to train them.
Chapter 3 reviews traditional and deep learning based methods for link pre-

diction.
Chapter 4 describes data with which we work in detail, it also explains how

the inferred networks were created.
In Chapter 5 we define our GNN architecture and describe the GNN models

which we adapted to our dataset and with which we experimented. We also
describe used scoring functions.

Chapter 6 thoroughly describes our experimental settings, evaluation metrics,
the selection of data and goes through the results.
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1. Problem Definition
In this chapter we first define basic graph theory concepts and then describe
common banking domain issues and propose how they could be solved using
inferred social networks.

1.1 Basic Definitions
Before we define a social network, we first introduce basic graph theory notions.

Graph consists of a set of nodes (also called vertices or entities) connected by
edges (also called relations or links). Graph can be directed, meaning its edges
have a direction. In a multigraph, we allow more than one edge between two
vertices and loops: edges going from a node back into it.

A social network is a graph, where nodes have types (such as “person”, “shop”,
“account” etc.) and attributes or sometimes called features (such as “name”,
“age”, “address”, etc.). The edges also have types (distinct from the node types)
and attributes, and they can be both directed or undirected. Nodes or edges of
the same type have the same set of attributes. Attributes can be of generally any
type: string, integer, decimal number, etc., or they can be empty (missing).

For example, a bank. Node types could be client, account, city, and ATM.
The edge types would represent various interactions between the nodes, such as
withdrawal of money from an account or client living in a city. Withdrawal could
have the amount and time as attributes.

Let us define an inferred social network. Inferred social network is a social
network created from relational and non-relational data (Brugere et al. 2016).
Both nodes and edges are inferred using real world entity information. The
nodes are either real world entities (e.g., people, places) or they might represent
aggregated entities (e.g., shops selling the same type of products).

Edges are placed between nodes based on some predefined rules, consisting
of the entity features, existing relations in the data, or a combination of both.
Manually we can connect nodes that have the same features (e.g., people living
at the same address). Statistical link prediction system estimates links based on
some patterns in nodes (e.g., people often shopping in the same type of store).

Such a network can be inferred for a series of timespans, e.g., a network for
every month.

1.2 Bank Problems
In this section, we describe the main banking problems1:

• Loan – predict whether a client will take a loan in the future

• Default – predict whether a client will miss a payment deadline
1Some information about bank problem comes from non-public documentation of research

project TAČR TH03010276.
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• Fraud – predict whether a client will try to acquire a loan based on mis-
leading or untruthful information

• Churn – predict whether a client will prematurely pay off a loan or transfer
the loan to a different bank

If we were given a social network of the clients, we might be able to solve
these problems.

Firstly, we distinguish loan from mortgage. A loan is when a bank lends
a small amount of money to a client with a relatively high interest rate, but the
money need not be secured by something the client owns. On the other hand,
a mortgage is money lent to a client to pay for a real estate. The interest rate of
a mortgage is often lower than of a loan, but it needs to be secured by the real
estate: in case the client does not pay their mortgage, the real estate is signed
over to the bank.

The loan problem could be solved by analysing behaviour of clients forgoing
the moment when they take a loan. Clients who need a loan may not have a lot of
money in general and they may have less money imminently before taking a loan
than they usually do. There are patterns in social networks determining whether
clients take loans or not: people with lower education may be more likely to need
a loan, employees of some employers can generally be less likely to take loans
(e.g., employees of rich companies, such as Google, may not need a loan). In this
work, we do not analyse the behaviour of clients taking a mortgage.

Married couples may have a higher chance of getting a loan since their com-
bined income is usually higher than the income of one person, and it is more likely
they will be able to repay the debt even in case one of them loses a job. However,
when people are not married but live in the same household, the bank may not
know about this because people can have a different corresponding address. If
a person withholds the common household information from the bank, they could
be given a loan even though the other person from the same household already
might have been granted a loan. Were there enough similar cases, we could be
able to predict that people live in the same household and prevent this type of
fraud.

Similarly, there are triggering events that can help us predict client defaults.
If several colleagues of a client suddenly lose a job, this client might be prone to
losing a job too, resulting in missing a payment.

When a client pays off their debt prematurely, their real world friends might
be more likely to repay their debt too, e.g., because there can be a better loan offer
from another bank, and this information is passed among friends. Clients who
had taken a loan in the past and whose friends or colleagues have subsequently
got a loan with a lower interest rate may be more likely to switch banks.

1.3 Real World Data
In order to solve the above problems, an artificial social network has been in-
ferred (Holubova et al. 2019). Both the nodes and the edges are artificially
created from the original data.

There are missing values for some entities, e.g., some clients do not have
their education status filled in, whether they have children, etc. Also, as the
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dataset consists of client data collected over several years, not all information
has been acquired at all times. This makes the inferred social network inherently
incomplete. Not only node attributes are missing, but so are some of the links
between the nodes.

Another issue with solving the main bank problems is generally missing an-
notated data. There are very few frauds to be able to observe the behaviour of
fraudsters. There are no exact data before which loan payments should be paid
off, making any default prediction system hardly evaluable. Money in a bank
account of a client may not be the only money he has. Employer of a client is
not exactly known, and friends of colleagues are definitely not known.

In order to solve the main problems, we need to solve some smaller problems,
for which we have enough data. As previously described, predicting household
members would helpful for solving fraud and churn. Predicting friends of clients
can help us foresee any defaults. We believe that predicting favourite types of
shops, merchant category codes (MCCs), could be helpful for predicting who will
take a loan. It is also desirable, although not an objective of this thesis, to fill in
missing attributes of nodes (clients and other entities).
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2. Graph Neural Networks
In this chapter, we provide an overview of GNNs and describe the most com-
monly used variations in more detail. Firstly, we describe the message-passing
framework, which is the basis for most GNN architectures. Then we delve into
more complicated GNN models used for solving complexity and memory issues
with large graphs. We also review recent efforts in pretraining GNNs.

2.1 Message-Passing Framework
Graph neural networks is a class of machine learning algorithms (Scarselli et al.
2009). Given a graph, GNN can learn a deep representation of nodes and edges;
it can be used to predict relations, classify nodes or edges, etc. Liu et al. 2020;
Wu et al. 2020; Dwivedi et al. 2020 survey an extensive number of various graph
neural network types and try to classify them and compare them.

Let us define a GNN. Let V be a set of nodes, and let (vi, vj) ∈ E be a set of
edges. Node features hi

0 ∈ Rd for node vi are d-dimensional real vectors 1.
Gilmer et al. 2017 show that GNNs can be understood as a special case of the

message-passing framework. It has two phases: the message-passing phase and
the readout phase.

During the message-passing phase, information is passed between nodes along
the edges. Node representations h

(l+1)
i , on (l+1)-th layer, are updated using mes-

sages m
(l+1)
i computed from the previous layer representations of the neighbouring

nodes:
m

(l+1)
i = aggregate(l+1)({hl

j | vj ∈ N(vi)}) (2.1)

where N(vi) is the neighbourhood of node vi (more precisely, a set of nodes, from
which there is a directed edge to vi), and aggregate (possibly trainable) function
can be any function such as sum.

Hidden representation is computed from the aggregated representations of
neighbours and hidden representation of the current node from the previous layer:

h
(l+1)
i = combine(l+1)(hl

i, m
(l+1)
i ) (2.2)

where the combine function is often a layer-specific learnable function.
During the readout phase, a feature vector is computed for the whole graph:

ŷ = readout({hL
v |v ∈ V })

where L is the last layer. In case one does not need to represent the whole graph,
or a subgraph, the readout phase can be omitted. These cases include node
classification and link prediction. See Figure 2.1 for an example of a graph and
Figure 2.2 for an application of GNN on node v0.

Most approaches do not consider edge features on the input (Kipf et al. 2017;
Schlichtkrull et al. 2017; Hamilton et al. 2018; Xu et al. 2018), and only learn
edge representations by aggregating the features of incident nodes.

1The 0 in h0
i means that the features are on 0-th layer, as we reuse this notation for describing

representation at other layers.
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Figure 2.1: Example of a graph.

hv0

hv1 hv2 hv3

hv4 hv5hv6

Figure 2.2: Forward propagation of GNN in graph from Figure 2.1 for node v0.
A similar computational graph is created for every node.

Schlichtkrull et al. 2017 propose a graph neural network suited for hetero-
geneous (or relational) graphs: relational graph convolutional network (RGCN).
They compute node representation using Equation 2.3

h
(l+1)
i = σ

⎛⎝∑︂
r∈R

∑︂
j∈Nr(vi)

1
ci,r

W l
rhl

j + W l
0hl

i

⎞⎠ (2.3)

where Nr(vi) are the neighbours of node vi connected using only edges of relation
type r, ci,r is a normalisation constant and W l

r are learnable parameters.
If the number of edge types is too big, they decompose the W l

r matrices.
Weight matrix decomposition helps the model generalise better when the number
of edge types is large. It also prevents the model from overfitting. They propose
two options to decompose the weight matrices.

Let B ∈ N be the number of bases. Basis decomposition is defined as:

W l
r =

B∑︂
b=1

al
rbV

l
b (2.4)

where al
rb, and V l

b are both learnable parameters but only al
rb is edge type specific.

Block-diagonal decomposition is defined as a sum of submatrices on the diag-
onal of the weight matrix.

W l
r =

B⨁︂
b=1

Ql
rb (2.5)

where Ql
rb ∈ R(d(l+1)/B)×(dl/B) is edge and basis specific block-diagonal trainable

matrix.
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2.2 Large Graphs
Because GNNs can be very large, it can be challenging to train them due to many
reasons. If the graph contains many nodes, edges, or attributes, it may not fit
into the computer memory or the GPU memory.

If the graph is too dense (nodes have a high degree), there are issues with
message aggregation because a lot of information has to be included in a fixed
sized vector. This could make the model too generic as each node receives too
much irrelevant information from its neighbourhood. Moreover, it causes a per-
formance issue, as the gradient needs to be propagated to too many nodes, the
time grows exponentially as the number of layers is increased. Such a problem
prevents training deep models.

Hamilton et al. 2018 present a model called GraphSAGE. During the train-
ing of a node embedding, it randomly samples a small number of the adjacent
nodes, making it feasible to use deep graph neural networks on large graphs. In
addition to the sampling, they also use various embedding aggregation methods
(the aggregate function from Equation 2.1): mean of the embeddings, max pool-
ing, and an LSTM network (Hochreiter et al. 1997). As combine function, they
concatenate the inputs and use a feedforward network on top of the result.

LSTM network seems like a rather counterintuitive choice of an aggregation
function, as it is used for learning sequences (and it expects sequential data on the
input). The neighbourhood of a node does not possess such ordering. The reason
for using this network is that it does not need to have a predefined input size (such
as a feedforward network). To overcome the ordering constraint whilst retaining
the unlimited input size, they randomly order the nodes in the neighbourhood
and empirically show that this heuristic is sufficient to make the model work.

Another possibility to address the computational and memory requirements
for training GNNs is introduced by Chiang et al. 2019. Instead of training on the
whole graph, they sample the nodes so that the graph induced on these nodes is
as dense and possible, and they train the network only on this subgraph. They
use graph partitioning software METIS (Karypis et al. 1999) to cluster similar
nodes of the graph into a relatively large number of clusters. In each epoch,
several different clusters are considered to reduce the bias of the clusters.

The results show that the training time and memory can be significantly
reduced when a large number of layers is used. However, when the network has
at most 2 layers, the time saving is insignificant because the graph clustering is
also a complex procedure.

2.3 Other GNN Works
Xu et al. 2018 show that some graph neural network architectures such as (Kipf
et al. 2017; Hamilton et al. 2018) have theoretically limited power when distin-
guishing different graphs. They compare the GNNs with a well-known heuristic
for testing whether two graphs are isomorphic, the Weisfeler-Lehman test (WL
test) (Leman et al. 1968), and show that GraphSAGE and GCN are not as ex-
pressive as the Weisfeler-Lehman test. On the other hand, all GNNs are at most
as powerful as the WL test. Mainly, the aggregate and readout functions have
to be injective to distinguish two topologically different neighbourhoods.
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Given the shortcomings of these methods, they design a simple GNN architec-
ture, graph isomorphism network (GIN), and theoretically prove that it is more
expressive than GCN.

h
(l+1)
i = MLP (l+1)((1 + ϵ(l+1)) · hl

i +
∑︂

vj∈N(vi)
hl

j) (2.6)

where MLP means multilayer perceptron, by MLP we understand any feedforward
neural network; ϵ(l+1) is a layer-specific learnable parameter. They show that
using ϵ fixed to 0 still achieves strong results, even outperforming a model where ϵ
is learned.

Veličković et al. 2018 propose graph attention network (GAT), a model which
uses the attention mechanism (Bahdanau et al. 2016) on messages passed from
neighbours:

el
i,j = LeakyReLU(aT [Whl

i ∥ Whl
j])

αl
i,j = softmaxi(el

i,j)
h

(l+1)
i =

∑︂
vj∈N(vi)

αi,jW
lhl

j

(2.7)

where LeakyReLU (Maas et al. 2013) is non-linear activation function, a is a
trainable parameter, and [· ∥ ·] is a concatenation operator. Actually, there is
more than one attention computed for different parts of the input; these are
called “attention heads”. Their results are concatenated. Attention mechanism
provides an efficient way to “attend” to more important features and discard-
ing the irrelevant ones; it is extensively used in natural language processing and
computer vision. GAT shows performance comparable with GCN on node clas-
sification tasks.

2.4 Pretraining GNNs
Sometimes, we need to perform a task on node or edge types that exist in numbers
too small for us to use them in a (semi)-supervised training. Instead, we would
like to use some other node/edge types to pretrain the neural network while
still being able to generalise on the original task. Following pretraining, we might
either finetune the model on the small set of nodes or edges of the type in question
or perform our task with only the pretrained model.

Z. Hu et al. 2020 propose a pretraining framework (GPT-GNN) inspired by the
state-of-the-art language model, GPT (Radford et al. 2019). They pretrain the
model by trying to reconstruct a graph corrupted by randomly removed edges
and masked node attributes. GPT is an autoregressive model (a model that
learns P (xi+1|x1, ..., xi)) based on the transformer (Vaswani et al. 2017). They
create a permutation of nodes and then try to decode the removed edges and
node attributes in the permutation order from the existing part of the graph.
The permutations are random so that the model does not learn any specific node
ordering. GPT-GNN gains approximately 10% mean reciprocal rank in edge
prediction task over a not pretrained model.

W. Hu et al. 2020 present a much simpler architecture than GPT-GNN. They
perform a few pretraining tasks on node level: context prediction, masked node
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attribute prediction, and on graph level: structural similarity prediction and
graph-level property prediction. The graph-level prediction tasks are not ap-
plicable to our case because we train our model on one large graph, whereas
graph-level pretraining is suitable when training on a large set of small graphs.
Context prediction classifies whether a neighbourhood of a node and context of
a node belongs to the same node, where context is defined as an induced subgraph
on nodes that are at least k1 hops away from the node in question and at most k2
hops away. Attribute prediction simply masks random attributes of a node and
lets the model predict them. Generally, the model outperforms a not pretrained
baseline by about 7 − 9%, however on some graphs, they show the pretraining
underperforms the baseline.
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3. Related Work
In this chapter, we describe both traditional statistical link prediction methods
and more recent methods which use graph neural networks.

Social networks exhibit some characteristic properties. Links are more often
formed incident to nodes with high degree (Bringmann et al. 2010). This enables
one to use algorithms for link prediction which depend solely on this assumption.

3.1 Traditional Algorithms
The algorithms in these sections use a similarity measure between two nodes
in a graph to predict a missing link. Despite their simplicity, they can achieve
reasonably good performance (Liben-Nowell et al. 2003). One important disad-
vantage of these methods is their inability to exploit node attributes, a property of
social networks which contains a lot of information about the structure. Another
disadvantage of most of these methods is their strong assumption on forming
a link: structural proximity of the edge’s end nodes. P. Wang et al. 2015 survey
state-of-the-art (at the time of writing) link prediction methods.

Bringmann et al. 2010 propose an association rule mining algorithm, Graph
Evolution Rule Miner (GERM), for predicting the future evolution of a network
(and hence link prediction). Association rule mining generally aims to find fre-
quent rules or patterns in a database of sets of items, a detailed description of
pattern mining algorithms is beyond the scope of this thesis; we refer the reader
to a survey of pattern mining algorithms (Fournier-Viger et al. 2020).

Jaccard Coefficient is a measure used for estimating similarity between
two sets (Jaccard 1912). In the context of social networks, it is used for link
prediction. The score can be computed as follows:

Jaccard(u, v) = |N(u) ∩ N(v)|
|N(u) ∪ N(v)| (3.1)

where N(u) is a set of neighbouring nodes of node u.
Adamic et al. 2003 proposed a similarity statistic, Adamic-Adar Index,

defined as follows:

AdamicAdar(u, v) =
∑︂

w∈N(u)∩N(v)

1
log |N(w)|

Resource Allocation Index is similar to Adamic-Adar except it does not
take the logarithm of the denominator:

ResourceAllocation(u, v) =
∑︂

w∈N(u)∩N(v)

1
|N(w)|

When the number of common neighbours of u and v is low, the difference between
Adamic-Adar and Resource Allocation Index is insignificant (Zhou et al. 2009).

Preferential Attachment assumes that the probability of an edge is pro-
portional to the number of neighbours of the nodes on its ends (Liben-Nowell
et al. 2003):

PreferentialAttachment(u, v) = |N(u)| |N(v)|
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Notice that preferential Attachment does not use common neighbours of n and v,
which is the main difference from the previously described methods.

3.2 GNN-Based Link Prediction
There are several options how to perform link prediction using GNNs. The most
straightforward is to use embeddings of source and target nodes and combine them
to compute a link probability. Schlichtkrull et al. 2017 perform link prediction this
way. The link prediction model is called DistMult (Yang et al. 2015). DistMult
receives representations of two nodes (source and target), and edge type, and
returns edge-type specific score of edge existence.

distmult(s, t, r) =
∑︂

s · wr · t (3.2)

where s, t are the node representations of source and target nodes, respectively,
and wr is a learnable tensor for the edge type r.

Zhang et al. 2018 propose using the induced subgraph around the edge in ques-
tion to estimate its likeliness. This method overcomes the limitation of most other
methods, which is the assumption that two nodes are likely to link if they have
common neighbours or similar features. They show that the network structure
is approximately learned using an n-hop neighbourhood of a node. By sampling
positive and negative edges and their n-hop neighbourhoods from the graph, they
create their dataset.

Additionally, nodes are labelled according to their distance to source and
target nodes of each edge. Source and target have label 1, nodes with distance 1
from both source and target have label 2, etc. Nodes that are more than n hops
away from either source or target are given label “∞”.

Let us define line graph L(G) for a graph G = (V, E). Each node in L(G)
represents an edge in G. Two nodes in L(G) are adjacant if the corresponding
edges are incident in G.

Following the methods described by Zhang et al. 2018, Cai et al. 2020 predict
edges by creating a line graph from the original graph and converting the problem
of link prediction to node classification (Cai et al. 2020). To preserve node at-
tributes and node labels (which would otherwise be turned into edge attributes),
they create edge features by concatenating the attributes of the neighbouring
nodes in the original graph.

Rossi et al. 2020 propose a model for learning temporal events in graphs. An
event is an attribute change or creation of a node or an edge at time t (deletion is
not considered). Given a continuous time dynamic graph, the algorithm aims to
learn the graph embedding at all times. Continuous time means that the graph
is represented as a list of (large number of) events, as opposed to a discrete time
graph which is a list of snapshots of the graph in time. The method is evaluated
on link prediction on a network of Twitter interactions and it outperforms other
link prediction methods on this highly dynamic graph.
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4. Dataset
We are using data provided by a bank. The data spans over a period of 3 years
and it contains anonymised information about clients, accounts, transactions,
loans, and ATM withdrawals. The original data contains inconsistencies arising
from the fact that the data were collected in various systems and by different
banks (in the past, the bank was split into two banks). There are also general
errors in the data, such as company accounts are sometimes assigned sex.

Two teams were working with the data, one from the Charles University (CU
team) (Holubova et al. 2019) and the other from software company Profinit (PF
team). Their approach slightly differs, the CU team infers a social network con-
taining various types of nodes and edges. The PF team, however, creates several
networks, each network containing only client nodes, with edges representing mu-
tual similarities computed using various input data.

The CU team distinguishes a low-level and high-level view of the network.
High-level view contains only clients as nodes with edges between them repre-
senting various kinds of relations. Low-level view includes also other entities,
such as ATMs, shops, and employers. We work with both low and high-level
view of the network. The nodes may also be clustered in order to reduce the size
of the network, e.g., shops can be grouped based on their merchant category code
(MCC). Each merchant (store or eshop) has been assigned an MCC; it identifies
a “category” of products or services it sells, e.g., MCC 5462 are bakeries.

4.1 Dataset CU
This dataset is an inferred social network created by the CU team. The resulting
social network is very large (see Table 4.1 for the number of nodes and Table 4.2
for the number of edges). Because of the lack of computational resources for
estimating whether there should be an edge between two nodes (creating the
high-level view), the dataset has been restricted. The remaining nodes in the
smaller dataset are called “active”. Column “Restricted count” in Table 4.1 shows
the number of nodes of given type which were used for computing similarities.
Nodes have various attributes of various types (strings, numbers, categories).

Client nodes were restricted to only those living in Prague. From other nodes
which were restricted, only those with which there was an interaction more than k
times were kept. The parameter k was set for each node type separately until an
acceptable number of nodes was reached. For example, only eshops with at least
5 transactions were kept.

Each edge type has only one attribute, a floating point weight.

4.2 Dataset PF
Dataset PF is a dataset created by the PF team. It is a dynamic dataset con-
taining client data for a period of two years. The network is computed for each
month in the observed period. It contains only similarities of clients based on
various information and their favourite POSs. POSs are places where a customer
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Figure 4.1: Edges between entities (e0, e1) and intermediates (p0...3)

pays for goods or services, the most obvious example is a shop.
Based on the data from each month, we could, for example, predict which

POSs will be the client’s favourite in the following months.
Every month 47−49 thousand of client–MCC edges are added, and about the

same number of them removed.
The client nodes are the ones described in Section 4.1.

4.2.1 Similarity Edges
We use three types of similarity edges. The first edge type, let us call it type A, is
client similarity computed from the amount of money spent by the client in Czech
stores in the given month, considering only stores where the client shopped at
least three times. The second type of edges, type B, is client similarity computed
from the number of ATM withdrawals in the last year, considering only ATMs
where the client made at least 10 withdrawals. The third used edge type, type
C, is computed using the sum of outgoing transactions in the last year.

The PF team computes the similarities as follows. They distinguish two types
of nodes: entities and intermediates. Entities are the nodes between which the
similarity is to be estimated, e.g., clients. Intermediates are selected types of
nodes used to compute the similarity transitively. They compute the similarity
between entities using transitive edges through intermediates. Entities sharing
no intermediates have 0 similarity. Each entity has reflexive similarity 1. See
Figure 4.1 for an illustration of entity–intermediate relations.

Each entity e has an ability to connect with intermediates (Ce), computed
as an average of weights ve,p of edges incident to this node. Similarly, each
intermediate p has also an ability to connect to entities, computed in the same
way: Cp. For example, the average number of outgoing transactions weighted by
the amount.

The similarity between an entity and an intermediate is evaluated as follows:

we,p = ve,p√︂
Ce · Cp
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Similarity between two entities e1, e2 is we1,e2 ; it is evaluated as:

We1,e2 =
∑︂

p

√
we1,p · we2,p

we1,e2 = We1,e2√︂
We1,e2 · We1,e2

Only edges with similarity at least 0.05 were kept.
Because the number of possible pairs is very large, the candidate edges are

restricted using local-sensitive hashing (LSH) (Leskovec et al. 2020). LSH is
a family of hashing functions that map similar points from a metric space to
the same bucket with high probability. Dissimilar points are mapped to the
same bucket with low probability. Using LSH makes the resulting network an
approximation but it significantly speeds up the computation. More information
on LSH can be found in book by Leskovec et al. 2020.

In Table 4.3, we provide the average numbers of edges that were computed
each month.

4.2.2 POS Nodes
There are 60 951 unique POS nodes, with 43 unique MCCs, in 125 countries. Due
to minor inconsistencies in the data, we were not able to exactly extract the cities
in which these POSs are located. Nevertheless, after some semi-automatic post-
processing, we arrive at are 11 883 unique cities and 51 363 unique POS names.

As the cardinality of the categorical features describing POSs is very large, we
need to reduce it in order to make the training feasible and improve generalization.
Because almost every POS has a different name, we decided to drop this feature
altogether as it does not bring any valuable information for the majority of the
POS nodes.

On average, there are 5.1 POSs in each city; however, in 60% of cities there
is only one POS, in 80% of cities there are only 3 POSs; on the other hand, in
each of the top 1% (= 119) of cities there is more than 58 POSs, and in the top
1 city there are 2 496 POSs. See Figure 4.2 for plot of the distribution of POSs
in cities.

The distribution of POSs in countries is slightly more balanced. On average,
there are 487 POSs in a country but the median is only 23. See Figure 4.3 for
the distribution.

MCCs distribution is even more balanced. On average, each MCC is assigned
to 1 417 POSs. Moreover, half of the MCCs are assigned to at least 340 POSs.
See Figure 4.4 for MCC distribution.
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Figure 4.2: Distribution of POSs in cities.
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Figure 4.3: Distribution of POSs in countries.
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Type Variant Count Restricted count
Client 406 521 54 904
Counterparty Internal 155 825 18 154
Counterparty External 2 695 595 20 629
Employer 78 461 27 644
Shop Store 840 237 33 308
Shop Eshop 1 264 666 43 457
ATM 122 334 22 776
ATM v2 176 335 23 762
MCC Code 1 320 602
MCC Group 43 43
MCC Class 17 17
Currency 260 260
Bank 57 57
Risk score 8 8
Risk class 6 6
Education 8 8
Social status 7 7
Marital status 5 5
Household members 10 10
Household children 9 9
Phone type 3 3
Segment 12 12
Address Street 82 262 82 262
Address Town part 15 094 15 094
Address Town 6 258 6 258
Address District 77 77
Address Region 14 14
Zip code 2 670 2 670
Country 249 249

Table 4.1: Inferred social network nodes. Type column is the name of the node,
Variant column represents a sub-type of the node, type and variant uniquely
identify a node. Count column represents the number of nodes in the original
data. Restricted count represent the number of nodes kept after preprocessing.
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Type Description Weight Count

Client - Client Outgoing payments sim 12 636 662
Client - Client Outgoing domestic payments sim 12 530 540
Client - Client Outgoing foreign payments sim 1 504 887
Client - Client Incoming payments sim 13 316 522
Client - Client Incoming domestic payments sim 13 415 303
Client - Client Incoming foreign payments sim 1 380 568
Client - Client Salary transfer sim 5 045 505
Client - Client SIPO payments sim 849 035
Client - Client Permanent payments sim 4 624 085
Client - Client Loan receiving sim 3 337 333
Client - Client Loan instalements sim 3 268 742
Client - Client Debit card transactions sim 11 147 509
Client - Client Debit card payment sim 10 374 993
Client - Client Debit card payment with cashback sim 123 149
Client - Client ATM withdrawal sim 10 563 408
Client - Client ATM withdrawal domestic sim 9 316 026
Client - Client ATM withdrawal foreign sim 3 142 220
Client - Client MCC class sim 10 571 834
Counterparty - Counterparty Incoming counterparty payments sim 5 955 885
Counterparty - Counterparty Outgoing counterparty payments sim 5 372 484
ATM - ATM ATM witdhdrawal in Czechia sim 526 603
Country - Country Payments and withdrawals sim 20 503
Client - Client Household members 1 29 976
Client - Client Friends 1 37 743
Client - Counterparty Sending money to counterparty count 4 100 416
Client - Counterparty Receiving money from counterparty count 5 604 070
Client - Bank Communicating with bank count 2 240 956
Client - Country Spending money in country count 427 189
Client - Shop Shopping in an eshop count 4 124 379
Client - Shop Shopping in a store count 19 837 284
Client - ATM Withdrawing from an ATM count 5 313 151
Client - Currency Making transactions in currency count 394 831
Client - Employer Receiving money from an employer count 304 333
Client - MCC Shopping in shops with MCC class count 2 464 846
Client - MCC Shopping in shops with MCC code count 7 290 679
Client - Risk Score Risk score 1 108 387
Client - Risk Class Risk class 1 137 612
Client - Education Education 1 133 075
Client - Social Status Social status 1 130 852
Client - Marital Status Marital status 1 133 336
Client - Household Members Household members 1 130 852
Client - Household Children Household children 1 135 425
Client - Phone Type Phone type 1 135 425
Counterparty - Segment Counterparty segment 1 675
Client - Town part Client town part 1 403 752
Client - Town Client town part 1 384 848
Client - ZIP Client ZIP 1 478 975
Client - Country Client country 1 426 208
ATM - Town ATM Town 1 4 205
ATM - Country ATM Country 1 122 263

Table 4.2: Inferred social network edges. The type and description columns
uniquely identify an edge. The weight column denotes how the edge weight was
computed: either a similarity score (sim), number of edges connecting given nodes
(count), or just identity edges (1). The weight of the edge is normalised so that
the value is near 0.
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Type Type Average month edges
Client - Client A 7 633 475
Client - Client B 1 665 577
Client - Client C 4 842 046

Table 4.3: PF Dataset similarity edges

5411 5813 4111 5310 5199
MCC

0

1

2

3

4

lo
g1

0(
co

un
t)

Distribution of POS MCC

Figure 4.4: Distribution of POS MCC.
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5. Model
In this chapter, we describe the settings and the variations of the architectures
(which themselves are described in Chapter 2) with which we experiment. We ex-
perimented with several GNNs, mainly GCN, GIN, GAT, GraphSAGE, and our
model, the DeepGCN, and with traditional link prediction methods: Jaccard Co-
efficient, Resource Allocation Index, Preferential Attachment, and Adamic Adar.
We also describe the scorers used to compute the score of a candidate edge using
GNNs.

5.1 Statistical Models
Among the traditional, statistical link prediction methods, we chose Jaccard Co-
efficient, Resource Allocation Index, Preferential Attachment and Adamic Adar.
These methods are implemented in the NetworkX library (Hagberg et al. 2008)
and are easy to use.

A disadvantage of these methods is that they are unable to process graphs with
more than one type of nodes or edges. This disadvantage is especially limiting if
we want to predict edges between nodes of the same type, such as the client–client
household edges. A way to deal with this issue is to select and filter the input
graph for predicting each type of edge or merge multiple edges.

5.2 GNN Models
We experiment mainly with GCN, GIN, GAT, GraphSAGE, and DeepGCN.
Great advantage, contrary to the traditional link prediction methods, is the abil-
ity to process various types of nodes and edges. Neural networks are known to
learn which features are important and which not, making them easier to use
without expert domain knowledge. One does not need to spend as much time
preprocessing the data as one would have to with the statistical methods.

We trained the model using mini-batches. At each step, a set of edges of
a given type is sampled from the graph, and the surrounding subgraph is ex-
tracted for each hidden layer in the network. This method significantly increases
training speed because of two reasons. Firstly, the gradient needs to be propa-
gated through fewer nodes, and secondly, there are more backpropagation steps
per epoch (this holds for any mini-batch training).

5.2.1 Scorers
We use two types of scoring functions. The first is DistMult, described in Equa-
tion 3.2 The likelihood of edge existence can be obtained by computing sigmoid
of the result:

score(s, t, r) = 1
1 + e−distmult(s,t,r) (5.1)

The other method for computing edge score we tried is to concatenate the
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representation of the end nodes of an edge and run a neural network on it:

score(s, t, r) = MLPr,out(LeakyReLU(MLPr,in([s ∥ t]))) (5.2)

where [· ∥ ·] is concatenation. We call this scorer the DeepScorer.

5.2.2 Training
We train the model by minimising cross entropy between the scores and labels:

H(p, q) = −
∑︂
x∈X

p(x) log q(x) (5.3)

where X is the set of training examples and p, q represent real and predicted
distributions.

We use negative sampling (Mikolov et al. 2013) during training. That is, for
each existing (positive) edge, we sample n non-exiting (negative) edges, where n
is a small number (∼ 5 − 10). The negative edges are sampled so that the source
node is included in some edge from the positive edges, and the destination node
is selected randomly (within the given node type). Compared to sampling both
ends of the negative edge randomly, fixing one end makes the task more realistic
and harder because the edge is more likely to exist. In order to prevent the model
from overfitting on the existence (or non-existence) of positive (or negative) edges,
we remove the positive edges from the graph in each mini batch.

Before training, we set aside a portion of the edges for evaluation, and com-
pletely delete them from the training graph, so that the neural network can not
learn anything about their existence. On the other hand, the network might learn
that these edges do not exist in the graph (through negative sampling); however,
since this holds for all the GNNs we are comparing, and since the chance of se-
lecting a high number of these edges as negatives is very small, it does not matter
much.

For some tasks, we experiment with pretraining. During pretraining we train
the link prediction not only on the type of the edge we want to predict but on
more types of edges. Even though there are better approaches (Z. Hu et al. 2020;
W. Hu et al. 2020), this one is relatively easy to implement and according to W.
Hu et al. 2020 still might yield an improvement over the original task. Despite the
fact that Z. Hu et al. 2020 report slightly better performance over non-pretrained
models, we decided not to implement their architecture. Firstly because the
improvement is quite small, and also because training transformer architecture
very time consuming without a GPU (even a very scaled down version of it), and
even with a GPU the training is extremely unstable (Popel et al. 2018).

5.2.3 DeepGCN
We propose an adjustment to the basic GCN architecture. Firstly, instead of
applying a trainable matrix to the neighbour representations during aggregations,
we use a more expressive multilayer neural network. Inspired by GIN, we also
use the representation of the center node itself. The difference from GIN is that
we also apply a neural network before adding it to the results. Another neural
network is applied to the result:

h
(l+1)
i = MLP

(l+1)
out (MLP

(l+1)
self (hl

i) + aggregate
(l+1)
vj∈N(vi)(MLP

(l+1)
neigh(hl

j))) (5.4)
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where aggregate function is either sum, mean, or max. By using a deeper neural
network, we believe that the model will be able to learn more complex transfor-
mations. We assume that using MLPself could improve shallow GNNs because
without it the model would sum the node features with neighbour representations
(as it is in GIN) instead of the transformed features. MLPneigh only provides big-
ger representational power than a trainable matrix. MLPout further improves the
node representation by applying a transformation on the sum.

We call this model the DeepGCN.
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6. Experiments
In this chapter, we report the results of the experiments we have done. Generally,
they differ in the input data or the model architecture. The experiments aim to
solve problems described in Chapter 1.

This chapter is divided into several sections. In Section 6.1, we analyse the
dataset size with respect to available computational resources. Section 6.2 de-
scribes the metrics used to compare the results. Section 6.3 provides an overview
of our experimental setup and lists the specific parameters with which we exper-
iment. In the following two Sections (4.1, 6.5), we describe the experiments that
were performed on the two datasets, and we provide and discuss the results. In
Section 6.3.2 lists the particular versions of software used in the implementation.
Finally, in Section 6.6 we discuss the failed attempts at implementing some GNN
models.

6.1 Notes on Data
To the best of our knowledge, no framework for working with graph neural net-
works (M. Wang et al. 2020; Grattarola et al. 2020; Fey et al. 2019) is able to
process graphs larger than memory. Generally, to apply a graph neural network
on a graph, the graph needs to be several times (∼ 10, depending on its sparse-
ness and the number of the training edges) smaller than the available RAM. The
mentioned frameworks store the graph in special formats, e.g., various types of
sparse matrices in order to speed up computation. The storage of the graph can
be configured, but it still might be infeasible to use a GNN, because during back-
propagation the gradient needs to be remembered for each node/edge for each
layer in the network and then applied, in parallel, to the network weights.

In addition, because the dataset contains anonymised information about real
world clients of a bank, it has to stay on a predetermined secured server. The
server has 64GB of memory and a single CPU. Although the server resources
could be increased to some extent, it still would not suffice for the task at hand.
We experiment with various graph sizes and training set sizes.

In Table 6.1, we provide a comparison of RAM allocation and time measure-
ments while using different sized datasets. As can be seen, when we use the
dataset with 16 million edges, the RAM can rise up to 56GB (even if only 1-layer
GNN is used). Note that in the original CU dataset, there are almost 200 million
edges.

The number of edges is not the only variable influencing the usage of RAM.
It is also the sparseness of the graph. The denser the graph, the more RAM is
needed for training. Meaning, the fewer nodes per fixed number of edges are in
the graph, the more edges are needed for propagating the gradient.

Also, this data comes from a relatively small bank with approximately 400
thousand clients. If we were to perform the same experiments on data from
a larger bank, such as Česká Spořitelna, which has approximately 4.5 million
clients (Česká Spořitelna 2020), the hardware resource would not suffice for the
whole dataset.

Note that the time in Table 6.1 is influenced by the size of mini batch, we
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Edges Nodes Train Edges Data Layers RAM Time
16 473 128 224 144 683 Static 1 8GB 7s
16 473 128 224 144 683 Static 2 19GB 45s
16 473 128 224 144 2 556 047 Static 1 56GB 675s
8 271 701 256 261 242 995 Dynamic1 2 35GB 55s

1 This run is repeated for each month in the dataset.

Table 6.1: RAM consumption and time of training on various sizes of graph and
training set. Edges column denotes the number of edges in the graph. Nodes col-
umn denotes the number of nodes in the graph. Train Edges column denotes the
number of edges used for prediction. Data column denotes whether the dataset is
static or dynamic. Layers column denotes the number of GNN layers. Time col-
umn denotes the number of seconds it takes to train a GCN model with DistMult
predictor on the dataset for one epoch.

use size 64 for the first two experiments and 8 192 for the last two. Even though
it makes it seemingly incomparable, we think it much more resembles the real
situation, as for larger training sets, larger batch sizes are used. Also, because we
train the model on a CPU, the training time does not linearly scale with batch
size, as it would (to some extent) on a GPU.

To make our task feasible, we could either split the network into several pieces
(graph partitioning) or omit some edges in the graph.

Graph partitioning assigns each vertex of a graph into one of c clusters. A
partitioning that aims at the smallest number of edges between partitions is called
the minimum c-cut. For a fixed c the problem is solvable in O(nc2), where n is the
number of vertices (Goldschmidt et al. 1988). Nevertheless, graph partitioning
is computationally demanding and the clustered graphs lose a lot of information,
because a lot of inter-partition edges are deleted.

We chose to limit the number of edges between nodes by removing the most
improbable ones – we are dealing with inferred social network, so improbable
edges are therefore well defined.

6.2 Evaluation Metrics
Because we want to predict new edges in a network where it is much more likely
that there is no edge between two random nodes, accuracy is not a suitable
metric. A simple baseline could easily outperform a good model when measured
by accuracy by simply classifying a candidate edge as non-edge. Instead, we use
the average precision (AP) as our main evaluation metric.

Let us define precision and recall:

precision = tp

tp + fp

recall = tp

tp + fn

where tp, fp, fn is the number of true positives, false positives, and false nega-
tives, respectively. AP then averages precision across all recall levels.
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We also evaluate the models using the whole precision-recall curve and observ-
ing precision at various recall levels. Interesting recall levels are those where the
precision begins to decrease rapidly. Precision at both high and low recall levels
is interesting. At the low recall level, precision is usually high, meaning a small
number of links is predicted very accurately, and a model with such predictive
capability might be used without (or with a very low) human interaction. On
the other hand, high recall levels have lower precision, but they still can be used
for assisting humans in revision of the predicted links by greatly reducing the
number of candidate links to review.

6.3 Experimentation Workflow
In this section, we describe the process which lets us acquire the final hyperpa-
rameters used in the models. We also describe the specific settings of individual
models with which we experimented.

Even though we believe our experimental process is adequate, it is by no
means exhaustive, and we cannot possibly guarantee our results are the best that
can be achieved on the data, as there are hundreds hyperparameters to be set and
due to the computational limitations, we have to search for them more manually
than automatically (using a hyperparameter search algorithm (Yu et al. 2020)).
Our hyperparameter selection process starts with a relatively small grid search
for a subset of parameters — learning rate, batch size, number of hidden layers,
the dimensionality of hidden layers, and hidden layer activations. This search is
run for every GNN model we use. Based on the results, we disregard the worst
performing hyperparameters and continue searching manually. This process is
repeated on some smaller sets of parameters.

We further experiment with the learning rate decay. We started with lower-
ing the learning rate by some factor every few epochs (one-step decay), which
we further improved by a custom learning rate schedule by performing the de-
cay at a selected epoch. We also used a technique that reduces the learning
rate once a selected metric (loss, average precision, etc.) stops improving; in
Pytorch (Paszke et al. 2019) it is called ReduceLROnPlateau. However, as the
training progresses, metrics usually do not improve at every step, sometimes
they slightly decrease between two epochs, and one does not want to decay the
learning rate at every small decrease of the metric. Setting the tolerance for the
metric variance for the ReduceLROnPlateau is difficult. After some experimen-
tation with ReduceLROnPlateau, we decided not to use it, as it is possible to
achieve the same results using a predefined learning rate decay schedule without
the tiresome work of adjusting ReduceLROnPlateau.

6.3.1 Hyperarameters
In this section, we describe the hyperparameters with which we experiment.
Mainly, we tuned the hyperparameters on the prediction of favourite MCCs.

The final hyperparameters are in Table 6.2. Generally, these parameters are
used for all tasks, unless they are overwritten in the respective task-specific tables:
6.3, 6.4, 6.5, 6.6, and 6.7.

We have experimented with the following parameters:

27



Parameter Value
multigraph aggregation1 sum
parameter initialization Xavier2

batch size 8 192
use edge weights False
trainable embeddings3 True
embedding dimension 29
hidden layer dimension 32
layer activations none
negative sampling factor 10
pretraining non-evaluation edges4 100 000
GCN aggregate function sum
DeepGCN aggregate function sum
GraphSAGE aggregate function max
GraphSAGE dropout 0.0
GIN aggregate function sum
GIN learn epsilon True
GIN initial epsilon 0
GAT number of heads 1
1 Aggregation function of incoming edges with various types.
2 Glorot et al. 2010
3 Nodes that do not have any features use trainable embeddings.
4 The edge types on which the evaluation is not be performed.

Table 6.2: Default hyperparameters. These parameters are used for all methods
and tasks unless they are overridden in the tables following.

• The GNN model: {GCN, GIN, GraphSAGE, GAT, DeepGCN}

• The scorer: {DistMult, DeepScorer}

• The number of layers: {1, 2, 3}

• The activations of layers: {none, ReLU, LeakyReLU, GELU, softplus}

• The dimensionality of the layers: {16, 32, 64, 128}

• The initial learning rate: 10−5–10−2

• The learning rate decay method: {ReduceLROnPlateau, one-step,
schedule}

• The learning rate schedule

• The learning rate decay factor: 0.1–0.5

• The batch size: 64–16384

• The weight of the loss for positive edges: {1, 1.2}

• The aggregator for different edge types: {sum, mean, max}
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Model Dataset LR LR schedule aggregate
GAT D-NoSim 6 · 10−4 [60, 100] sum
GAT D-All 8 · 10−4 [40, 80, 110] sum
GraphSAGE D-NoSim 2 · 10−4 [20, 60] sum
GraphSAGE D-All 6 · 10−3 [20, 40, 60, 80] mean
GIN D-{NoSim|All} 4 · 10−5 [20, 60] sum
DeepGCN D-{NoSim|All} 2 · 10−4 [50, 100] sum
GCN D-NoSim 2 · 10−4 [50, 100] sum
GCN D-All 2 · 10−4 [50, 150] max

Table 6.3: Specific hyperparameters for the client–MCC edge prediction task.

Model Dataset Scorer LR LR schedule batch size
GCN D-{NoSim|All} DeepScorer 1 · 10−4 [45] 64
GCN D-{NoSim|All} DistMult 5 · 10−5 [40] 64
DeepGCN D-{NoSim|All} DeepScorer 5 · 10−4 [50, 100] 64
DeepGCN D-{NoSim|All} DistMult 5 · 10−4 [40] 64

Table 6.4: Specific hyperparameters for the client–client household edge predic-
tion task.

• The number of negative edges factor: {3, 5, 10, 20}

• Using edge weight: {yes, no}

On top of these parameters, we experimented with parameters specific to the
GNN architecture.

GIN

As an aggregate function in the GIN model, we use a linear layer with LeakyReLU,
with 0.01 negative slope, 0.2 dropout (Srivastava et al. 2014), and another linear
layer without activation. We let the network learn ϵ from Equation 2.6.

We experimented with various dropout values: {0, 0.2, 0.5}, fixing ϵ or making
it trainable. We also tried various networks for the aggregate functions, generally
experimenting with a series of linear layers followed by an activation {linear,
ReLU, LeakyReLU} and/or dropout.

GraphSAGE

We tried different aggregators of the embeddings: sum, mean, max, or LSTM
layer.

GAT

We experimented with the number of attention heads: 1 or 2. We found that one
attention head works best.
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Model Dataset Scorer LR LR schedule
GCN D-All DistMult 1 · 10−3 [40, 80, 100]
GCN D-NoSim DistMult 5 · 10−4 [15, 40]
GCN D-{NoSim|All} DeepScorer 5 · 10−4 [15, 40]

Table 6.5: Specific hyperparameters for the client–store edge prediction task.

Model Dataset Scorer LR LR schedule aggregate
GCN D-NoSim DeepScorer 1 · 10−4 [45] sum
GCN D-NoSim DistMult 1 · 10−4 [30] max
GCN D-All DeepScorer 5 · 10−4 [50, 100] sum
GCN D-All DistMult 1 · 10−4 [30] max
DeepGCN D-NoSim DeepScorer 1 · 10−4 [30] sum
DeepGCN D-NoSim DistMult 1 · 10−4 [30] sum
DeepGCN D-All DeepScorer 1 · 10−4 [45] sum
DeepGCN D-All DistMult 1 · 10−4 [45] sum

Table 6.6: Specific hyperparameters for the client–client friends edge prediction
task. All models in this task have batch size 64.

DeepGCN

We have experimented with various neural networks for MLPself , MLPneigh,
and MLPout. Generally, it was always a fully connected feedforward neural net-
work followed by an activation and/or dropout. It turned out, that the RAM
consumption grows very quickly with any additional parameters in the GNN
layers. In the end, we used a simple 32 dimensional linear layer without any
activation nor dropout.

Pretraining

When we perform pretraining on any dataset, we use all the edge types but client
similarity edges. This is to reduce the training time. We reduce the number of
training edges. We sample at most 105 of edges of types on which the evaluation
will not be performed. This makes the training faster.

During training, we take the average of losses computed for each edge type.
We also experimented with adding more weight to the edge types with fewer
edges; however, it did not show any improvement.

6.3.2 Implementation
The GNN models are implemented in the Deep Graph Learning (DGL), ver-
sion 0.5 (M. Wang et al. 2020), a Python library for implementing GNNs. DGL
is built on top of a well known deep learning library, PyTorch, version 1.7.1
(Paszke et al. 2019). DGL provides an interface for implementing operations on
graphs, such as the message-passing framework used in many GNN architectures.

The traditional methods are already implemented in NetworkX 2.5 (Hagberg
et al. 2008), a Python library containing many graph algorithms.
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Model Scorer LR LR schedule aggregate
GCN DistMult 6 · 10−4 [20] sum

Table 6.7: Specific hyperparameters for the favourite POS prediction task.

Parameter Value
epochs 4
batch size 128
learning rate 10−5

encoder layers dimensionality [29, 128]
decoder layers dimensionality [128, 29]
KL-divergence weight 0.9

Table 6.8: VAE hyperparameters. See Section 6.5.1 for more information

Most GNN models we use are implemented in DGL.
GCN, GraphSAGE, and GAT could be used as they are with our experimental

settings. We adjusted the GIN model so that it works with mini-batch training.
This can be easily done by following the DGL documentation (DGL 2020).

All of the models work only with simple graphs (without multiple types of
nodes and edges). To overcome this, we use dgl.nn.HeteroGraphConv, a class in
DGL, to which a GNN model is supplied for each type of edge. We use the same
model architecture for all edge types (with independent, trainable parameters).

We work with Python 3.8.3.

6.4 Dataset CU
In order to reduce the computational requirements, we first reduce the dataset
to only “active” nodes and edges between them. We believe that it is desirable
to experiment with as many methods and as many hyperparameters as possible.
Although running some of these experiments for the whole dataset would be
feasible, it would make the process considerably slower. As the objective of this
thesis is not to train the best possible model on the whole data but rather compare
selected methods, we chose to limit the dataset to speed up our experiments. For
example, pretraining of a GCN model on a selected subset of edges takes more
than a day on the secured server, and we need to run it several times to test
more than one set of hyperparameters. Such process would not be possible on
a dataset order of magnitude larger, as can be seen in Table 6.1. We write about
the need to reduce in dataset in detail in Section 6.1.

6.4.1 Subsets of Data
Initially, we started with a dataset consisting of only one type of edges between
nodes of the same type. The client–client similarity edges are aggregated into
one, and the new edge weight is the sum of the weights of the original edges
between given nodes. The resulting graph (containing only one similarity edge
between a pair of clients) is filtered so that each person has at most 30 neighbours.
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Edge Type Edge Variant Edges Used
Client - Client aggregated top 30
Client - Client Friends all
Client - Client Household all
Client - ATM Withdrawing from an ATM all
Client - Counterparty Receiving money all
Client - Counterparty Sending money all
Client - Counterparty Alignment all
Client - Employer Receiving money all
Client - MCC Shopping in shop with MCC top 10
Client - Shop Shopping in an eshop all
Client - Store Shopping in a store all
Client - ZIP Client ZIP all

Table 6.9: Edges in the dataset D-Sim. Column Edges Used denotes whether the
original data have been restricted, “top 10” means that for each node, edges to
the 10 most similar nodes (of given type) are kept.

The number (30) of neighbours is selected so that the dataset is small enough
to allow reasonable training time and RAM consumption while still retaining
enough information about the network. The top 10 of most frequented MCCs
define the favourite MCCs for each client. All of the edges we aim to predict are
also selected from the database. The used edges are described in Table 6.9. We
call this dataset D-Sim.

Then, instead of using aggregated similarity edges, we use each similarity
edge type separately and limit them so that each client has a similarity edge
of the given type to 10 of its neighbours. The number (10) is selected so that
the network is small enough. The used edges are described in Table 6.10. This
dataset cannot be used with non-GNN methods as is because there are multiple
types of edges between nodes of the same types. When we use non-GNN methods
(Jaccard coefficient, Adamic-Adar, etc.) on this data, we merge multiple edges
to one. We call this dataset D-All.

We also create a dataset consisting of edges used in dataset D-All, except the
client–client similarity edges. We do this because it would be desirable to know
whether (and how much) the link prediction performance improves by adding the
similarity edges. If the link prediction is not significantly better with similarity
edges on the input, it means that they might not be used altogether. This would
make the system much more scalable, as the similarity edges need not be com-
puted for each pair of (client) nodes. The used edges are described in Table 6.11.
We call this dataset D-NoSim.

For client nodes we also use attribute features shown in Table 6.12. Ordinal
features are normalised, nominal features are one-hot encoded. Except for the
education status, which is converted to ordinal feature because it can be linearly
ordered. When a feature is missing for a client, we add a new, binary feature for
it, indicating whether the original feature is not null.
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Figure 6.1: Precision-recall curve of favourite MCC prediction on D-All dataset.

6.4.2 Favourite MCC
For our first experiment, we chose to predict favourite MCCs. In the subset of the
data we use, there are 305 173 client–MCC edges. As mentioned in Chapter 1,
we believe that predicting favourite MCCs might help solving the loan problem.

Using datasets D-All, D-Sim, D-NoSim, we ran approximately 300 experi-
ments on this task, differing in model and hyperparameter selection. Each exper-
iment takes approximately 30 minutes to 4 hours to finish on our secured server.
And pretraining the model on the other types of edges takes about one day.

We randomly selected 10% (about 30 000) client–MCC edges and removed
them completely from the graph. The training was performed on the rest of
the dataset by predicting masked client–MCC edges. During both the training
and the evaluation, we use negative sampling, with 10 negative samples per one
positive.

Results

The results are provided in Table 6.13. The actual precision-recall curves of
models evaluated on the D-All, and D-NoSim dataset are depicted in Figures 6.1
and 6.2, respectively.
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Figure 6.2: Precision-recall curve of favourite MCC prediction on D-NoSim
dataset.
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For the D-All dataset, we can see in Figure 6.1, that even though some meth-
ods perform better than others, the shape of the precision-recall curve is quite
similar for most of the models, except the Jaccard Coefficient.

The unusual shape (precision increases as recall increases) of the precision-
recall curve of Jaccard Coefficient model is caused by a large number of false
positives. More specifically, we believe it is caused by a lot of client–MCC edges
with ends that have a large number of incident nodes, and on the other hand,
pairs of client and MCC nodes without an edge between them which have small
neighbourhoods. This is a direct consequence of the fact that the Adamic Adar
Index and the Resource Allocation Index both have high precision at low recall
levels and lower precision at high recall levels, and of the Jaccard Coefficient
formula 3.1 which instead of the neighbourhood sizes of common neighbours (as
in Adamic Adar Index and Recource Allocation Index), it uses the size of the
neighbourhood of the end nodes themselves.

Note in Table 6.13 and Figure 6.2, that some methods perform significantly
worse on the D-NoSim dataset, namely the Adamic Adar Index, the Jaccard Co-
efficient, and the Resource Allocation Index. This is caused by a smaller number
of common neighbours of nodes between which an edge should be predicted, and
these methods mainly depend on the number of common neighbours. On the
other hand, the GNN methods perform well as it does not utilise common neigh-
bours, but rather uses learned embeddings for nodes. Preferential Attachment
also performs well, even though it uses only neighbourhood sizes of the candidate
edges to score them – assuming nodes with large neighbourhoods are likely to
link.

We have tried many hyperparameter settings when training the GNN models.
The training was quite stable, and almost none of the settings caused a divergence.
We believe that the GNN models performed worse than the statistical methods
on the D-All dataset because the data is hugely imbalanced. There are 338 MCCs
(the most commonly used by clients), and the number of clients which shop at
shops with these MCCs is very much imbalanced. On average, 902 people use
each MCC but the median is 23, and the top 5% most frequent MCCs are used by
more than 3 774 clients each, and the mostly frequented MCC is used by 34 411
clients.

The most used MCCs are 5411 – Grocery Stores, 6011 – Financial Institutions
- Manual Cash Disbursements, 5812 – Eating places and Restaurants, and 5912
– Drug Stores and Pharmacies. On the other hand, some airlines, hotels, car
rental services have their own MCC, and very few clients have these as their
favourite: 3769 – Stratosphere Hotel and Casino, 3513 – Westin Hotels, and 3100
– Malaysian Airline System, are all a favourite MCC of only one client. Because
many clients shop in these MCCs, they can probably be predicted with little input
from the network structure (intuitively, grocery store are likely to be favourite
types of shops of most clients).

6.4.3 Household Members
As previously mentioned in Chapter 1, household member prediction is useful for
solving the fraud problem. Specifically, people might lie about not living with
another person in order to be given a loan. Banks might like to detect these
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Figure 6.3: Precision-recall curve of household members prediction on D-All
dataset.

people.
We try both the traditional methods and GNNs. Because training a GNN

model, and especially searching for its hyperparameters, is very time consuming,
we chose only the best methods from the previous task, prediction of favourite
MCCs.

In the subset of data we use, there are only 3 419 household members edges.
We use only 20% of them as training data because we believe that the situation,
where less than half of household member edges is known, is more realistic and
because there needs to be a reasonable amount of edges for evaluation.

Results

In Table 6.14 and Figures 6.3 and 6.4, we can see that the traditional methods
significantly outperform any GNN. The training of GNNs on this task proved
challenging. When training to only predict household members, the neural net-
work was very unstable and we were not able to make it converge.

We can see in Figure 6.3, that the pretraining of GCN significantly im-
proves over the non-pretrained model. Unfortunately, the same does not hold
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Figure 6.4: Precision-recall curve of household members prediction on D-NoSim
dataset.

the D-NoSim dataset, and we observe a negative transfer to the final task. Such
behaviour is observed by W. Hu et al. 2020, who show that on some datasets
pretraining hurts the performance on the downstream task.

6.4.4 Favourite Shops
Predicting favourite shops of a client is useful for studying their behaviour. For
example, it would be useful to know that some clients buy airplane tickets several
times a year, these clients may be, for example, offered a travel insurance. It might
also be beneficial for predicting whom to offer a loan or a mortgage, e.g. a client
who usually shops in stores selling expensive items is likely not to need a loan,
but he might need a mortgage at some point.

In the restricted version of our dataset, there are 2 840 053 client–store edges;
we use 90% of them for training.
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Figure 6.5: Precision-recall curve of favourite stores prediction on D-All dataset.

Results

See Table 6.15 and Figures 6.5 and 6.6 for the results. We tried to use the
DeepGCN model, but after a few epochs the training failed due to a memory error.
This behaviour is strange because the memory usage should not be increasing
dramatically after every epoch; we suspect there is an error in DGL, the graph
neural network library we use.

On both the D-All, and the D-NoSim dataset there is a clear drop in precision
of Adamic-Adar Index, Jaccard Coefficient, and Resource Allocation Index. This
is caused by edges with end nodes that do not have many common neighbours,
as we explained in Section 6.4.2.

Note that all the GNN methods have relatively similar AP. It is caused by
an unbalanced distribution of favourite shops among clients. On average, a store
is a favourite of 15 clients. However, the top 1% of shops is frequented by more
than 1 195 clients. 11 678 clients frequently shop in the most favourite store:
McDonald’s Prague. Ikea is the second most favourite store with 10 381 clients,
and Tesco in Nový Smı́chov, Prague is the third most frequented store with 10 010
clients. See Figure 6.7 for the distribution.
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Figure 6.6: Precision-recall curve of favourite stores prediction on D-NoSim
dataset.

6.4.5 Friends
Predicting friendship relations among clients can be beneficial for many tasks.
Knowing which clients are friends enables the bank to more efficiently market its
products, because friends might share information about their banking product.
A better product, e.g., a mortgage with a lower interest rate, might be offered to
a client who has many friends who are in a situation in which they might also
need a mortgage.

Also, clients whose friends are defaulting on their loans may be more likely
to default, because their friends may have the same employer, or they live in the
same area where the employment heavily depends on a particular industry, e.g.,
coal mines.

In the restricted dataset, there are 2 877 client–client friendship edges.

Results

As can be seen in Table 6.16, statistical methods performed very well. From
that,test it is obvious that friendship links are between nodes that already have
a lot of common neighbours. Interestingly, the performance is often better when
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Figure 6.7: Distribution of favourite shops among clients. The vertical axis de-
notes the logarithm of the number of clients which have given shops as favourite.

the method is used on a dataset that does not use any similarity edges between
clients. That can actually be viewed as an advantage, as the similarity edges need
not be precomputed in order to predict friends.

Some of the statistical methods perform very well, such as the Resource Allo-
cation Index with 0.92 AP. It is a consequence of how these edges were inferred
– clients who often frequented the same restaurants at similar times are consid-
ered friends. This creates a short path in the network between the clients – both
using similarity of the clients and by using the client–store payments edge. This
is precisely why statistical methods using common neighbours work well on this
task.

The labelled dataset (edges to be predicted) size is very small for a neural
network, it is hence difficult to make the GNN to generalise.

We suspect that DeepScorer performs better than DistMult because it is more
“powerful” (it has more parameters, it is deeper), hence being able to learn better
final embedding and not depending so heavily on the GNN architecture and the
network structure. The same holds for DeepGCN.

6.5 Dataset PF
As this is a dynamic dataset; we predict the edges in the future. Given client
similarity edges and their favourite POSs in one month, we predict which POSs
will be their favourite in the next month. Even though we only predict one month
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Figure 6.8: Precision-recall curve of friends prediction on D-All dataset.

to the future, we use only one model for all months. An autoregressive approach
could be used to predict the edges in more distant future: at month t infer edges
for month t + 1, and using the inferred edges, predict edges for month t + 2, etc.

The data has been gathered in a two-year period; we set aside 4 months
for evaluation (4 months to be predicted, so the data actually comes from 5
months). We restricted the client similarity edges so that each client has at
most 20 neighbours per each similarity edge type. The number of neighbours is
selected so that the training of the models is reasonably fast. Even after this, the
training of GNNs takes approximately 20 hours until convergence.

6.5.1 POS information
As described in Section 4.2.2, the dimensionality of POS features is too high.
Were the features continuous, we would have used some traditional method for
dimensionality reduction, such as Principle Component Analysis (Pearson 1901).
However, since the features are discrete, and the dimensionality is quite high with
respect to the number of examples, we need to use a more sophisticated dimen-
sionality reduction method. We chose Variational Autoencoder (VAE) (Kingma
et al. 2014).
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Figure 6.9: Precision-recall curve of friends prediction on D-NoSim dataset.

VAE is a neural network model which learns a mapping from the features
space to a latent, less dimensional space (encoder), and mapping from the latent
space back to the feature space (decoder). The variational component of VAE,
represented as part of the loss function, ensures that the examples are not mapped
to a discrete point in the latent space but are mapped to a ball in the latent space.
Even though VAE is much more prominently used for generating new, artificial
examples (often pictures), it can be used as a dimensionality reduction technique.

After training VAE, the low dimensional representation is obtained by map-
ping the POSs using the encoder to the latent space. We use a 29 dimensional
latent space (same as the features of client nodes).

See Table 6.8 for the list of parameters used during training of VAE.

6.5.2 Results
In Table 6.17, we report the average precision of next month’s favourite POS
prediction. In this task, a GNN achieves significantly better results than most
methods. It is caused by the property of the Adamic Adar Index, the Jaccard
Coefficient, and the Resource allocation Index, giving nodes that do not share
any common neighbours zero scores. More clearly, this can be seen in Figure 6.10,
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Figure 6.10: Precision-recall curve of next month favourite POS prediction.

where there is a sudden drop in precision, around 0.2 recall level.
This task is harder than those from Section 6.4, because the edges we are

predicting were not inferred from the rest of the data on which the prediction
is conditioned. It is quite interesting to see that Preferential Attachment has
reasonably good results because this method only uses the number of neighbours
(not common neighbours) for each node when predicting a link.

6.6 Failed Attempts
Initially, after reading GNN literature described in Chapters 2 and 3, we set out
to implement those methods and experiment on our datasets. However, it turned
out to be quite challenging.

Firstly, using a GNN on a line graph as in the paper by Cai et al. 2020 is
impossible with a dataset as large as ours. The number of vertices in a line
graph is the same as the number of edges in the original graph, by definition, and
the number of edges of a line graph is much higher than the original number of
vertices (especially if the average vertex degree is high). The largest graph the
original paper uses is about 7 thousand nodes and 50 thousand edges, whereas
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we have hundreds of thousands of vertices and millions of edges.
We also wanted to fully implement RGCN, including its matrix decomposition.

However, it has been a challenge to implement RGCN under our experimentation
settings (mini batch training) in the framework of our choice: DGL. Nevertheless,
using GCN on our graph is very similar to RGCN, as there are not many edge
types, and the weight matrix decomposition used in RGCN would not help (as
stated by the authors).
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Edge Type Edge Variant Edges used
Client - Client Outgoing payments top 10
Client - Client Outgoing domestic payments top 10
Client - Client Outgoing foreign payments top 10
Client - Client Incoming payments top 10
Client - Client Incoming domestic payments top 10
Client - Client Incoming foreign payments top 10
Client - Client Salary transfer top 10
Client - Client SIPO payments top 10
Client - Client Permanent payments top 10
Client - Client Loan receiving top 10
Client - Client Loan instalements top 10
Client - Client Debit card transactions top 10
Client - Client Debit card payment top 10
Client - Client Debit card payment with cashback top 10
Client - Client ATM withdrawal top 10
Client - Client ATM withdrawal domestic top 10
Client - Client ATM withdrawal foreign top 10
Client - Client MCC class top 10
Client - Client Friends all
Client - Client Household all
Client - ATM Withdrawing from an ATM all
Client - Counterparty Receiving money all
Client - Counterparty Sending money all
Client - Counterparty Alignment all
Client - Employer Receiving money all
Client - MCC Shopping in shop with MCC top 10
Client - Shop Shopping in an eshop all
Client - Store Shopping in a store all
Client - ZIP Client ZIP all

Table 6.10: Edges in the dataset D-All. Column “Edges used” denotes whether
the original data have been restricted, “top 10” means that for each node, edges
to the 10 most similar nodes (of given type) are kept.

45



Edge Type Edge Variant Edges used
Client - Client Friends all
Client - Client Household all
Client - ATM Withdrawing from an ATM all
Client - Counterparty Receiving money all
Client - Counterparty Sending money all
Client - Counterparty Alignment all
Client - Employer Receiving money all
Client - MCC Shopping in shop with MCC top 10
Client - Shop Shopping in an eshop all
Client - Store Shopping in a store all
Client - ZIP Client ZIP all

Table 6.11: Edges in the dataset D-NoSim. Column “Edges used” denotes
whether the original data have been restricted, “top 10” means that for each
node, edges to the 10 most similar nodes (of given type) are kept.

Feature Ordinal Cardinality One-hot Encoded
Is physical person no 2 no
Birth year yes — no
Gender no 2 no
Score yes — no
Education no 8 no
Social status no 7 yes
Marital status no 5 yes
Number of household member yes — no
Number of children yes — no

Table 6.12: Client features.
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Method Scorer Pretrain Data AP
Adamic Adar Index — — D-All 0.7763
Adamic Adar Index — — D-Sim 0.7771
Adamic Adar Index — — D-NoSim 0.1700
Jaccard Coefficient — — D-All 0.5376
Jaccard Coefficient — — D-Sim 0.4422
Jaccard Coefficient — — D-NoSim 0.1580
Resource Allocation Index — — D-All 0.7839
Resource Allocation Index — — D-Sim 0.7865
Resource Allocation Index — — D-NoSim 0.1677
Preferential Attachment — — D-All 0.7674
Preferential Attachment — — D-Sim 0.7610
Preferential Attachment — — D-NoSim 0.7370
GCN DistMult yes D-NoSim 0.7648
GCN DistMult yes D-All 0.7636
GCN DistMult no D-Sim 0.7529
GCN DistMult no D-All 0.7628
GIN DistMult no D-All 0.7552
GraphSAGE DistMult no D-All 0.7462
GAT DistMult no D-All 0.7345
DeepGCN DistMult no D-All 0.7554
GCN DeepScorer no D-All 0.7594
GIN DeepScorer no D-All 0.7467
GraphSAGE DeepScorer no D-All 0.7509
GAT DeepScorer no D-All 0.6959
DeepGCN DeepScorer no D-All 0.7516
GCN DistMult no D-NoSim 0.7611
GIN DistMult no D-NoSim 0.7504
GraphSAGE DistMult no D-NoSim 0.7521
GAT DistMult no D-NoSim 0.7219
DeepGCN DistMult no D-NoSim 0.7308
GCN DeepScorer no D-NoSim 0.7469
GIN DeepScorer no D-NoSim 0.7482
GraphSAGE DeepScorer no D-NoSim 0.7333
GAT DeepScorer no D-NoSim 0.7168
DeepGCN DeepScorer no D-NoSim 0.7495

Table 6.13: MCC prediction scores with 90% training data.
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Method Scorer Pretrain Data AP
Adamic Adar Index — — D-All 0.5739
Adamic Adar Index — — D-NoSim 0.5441
Jaccard Coefficient — — D-All 0.6143
Jaccard Coefficient — — D-NoSim 0.6954
Resource Allocation Index — — D-All 0.6482
Resource Allocation Index — — D-NoSim 0.6636
Preferential Attachment — — D-All 0.1355
Preferential Attachment — — D-NoSim 0.1665
GCN DistMult yes D-NoSim 0.1197
GCN DistMult no D-NoSim 0.1335
GCN DistMult no D-All 0.1245
GCN DistMult yes D-All 0.2449
DeepGCN DistMult no D-NoSim 0.3131
DeepGCN DistMult no D-All 0.1443
DeepGCN DeepScorer no D-All 0.1399
DeepGCN DeepScorer no D-NoSim 0.3578

Table 6.14: Household members prediction with 20% training data.

Method Scorer Pretrain Data AP
Adamic Adar Index — — D-All 0.8100
Adamic Adar Index — — D-NoSim 0.3803
Jaccard Coefficient — — D-All 0.7726
Jaccard Coefficient — — D-NoSim 0.3794
Resource Allocation Index — — D-All 0.8064
Resource Allocation Index — — D-NoSim 0.3803
Preferential Attachment — — D-All 0.8836
Preferential Attachment — — D-NoSim 0.9144
GCN DistMult no D-All 0.5869
GCN DistMult no D-NoSim 0.5867
GCN DeepScorer no D-All 0.5852
GCN DeepScorer no D-NoSim 0.5842
GCN DistMult yes D-All 0.5875
GCN DistMult yes D-NoSim 0.5882

Table 6.15: Favourite shops prediction with 90% training data.
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Method Scorer Pretrain Data AP
Adamic Adar Index — — D-All 0.8736
Adamic Adar Index — — D-NoSim 0.9046
Jaccard Coefficient — — D-All 0.8193
Jaccard Coefficient — — D-NoSim 0.6574
Resource Allocation Index — — D-All 0.8754
Resource Allocation Index — — D-NoSim 0.9290
Preferential Attachment — — D-All 0.4552
Preferential Attachment — — D-NoSim 0.6132
GCN DistMult no D-NoSim 0.3023
GCN DistMult yes D-NoSim 0.2760
GCN DistMult yes D-All 0.1294
GCN DistMult no D-All 0.1747
GCN DeepScorer no D-All 0.2928
GCN DeepScorer no D-NoSim 0.3562
DeepGCN DeepScorer no D-All 0.3927
DeepGCN DeepScorer no D-NoSim 0.5058
DeepGCN DistMult no D-All 0.3575
DeepGCN DistMult no D-NoSim 0.3774

Table 6.16: Friends prediction with 20% training data.

Method Scorer AP
Adamic Adar Index — 0.2750
Jaccard Coefficient — 0.2745
Resource Allocation Index — 0.2749
Preferential Attachment — 0.5647
GCN DistMult 0.6659

Table 6.17: Prediction of next month’s favourite POSs.
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Conclusion
This thesis focuses on link prediction methods and their usage in the context
of inferred social networks. Our goal was to evaluate verified link prediction
methods on a real world ISN.

We reviewed common link prediction methods and state-of-the-art GNNs ar-
chitectures and approaches for training them. Selected GNNs were then applied
to our datasets and used for solving several link prediction tasks. We show that
it is difficult to outperform traditional and relatively simple link prediction meth-
ods, such as Adamic Adar Index, with complex neural networks, even after an
extensive hyperparameter search. We also show that GNNs achieve higher pre-
cision than the verified link prediction methods when the tasks are harder, and
the existence of a predicted link is likely even between nodes sharing no common
neighbours, which happens more often when the edges are not inferred from the
data, on which the GNN is conditioned.

We proposed an adjustment to an existing GCN architecture, called Deep-
GCN, and an alternative to DistMult, a link scoring method, called DeepScorer.
Both DeepGCN and DeepScorer are comparable to GCN and DistMult, respec-
tively, across a variety of tasks. In some cases, the DeepGCN outperforms the
original GCN, especially when the dataset is smaller.

Overall, GNNs are difficult to optimise. Most methods were originally pro-
posed for a much smaller dataset or datasets consisting of a large number of small
graphs. Nevertheless, we have shown that some GNN methods can be used even
on relatively large datasets. On the other hand, we have found out that GNNs
tend to overfit on very small training data, and our model (DeepGCN), is able
to generalise better on these datasets.

We have experimented with GNN pretraining to address the issues with
a small training dataset. A pretrained GNN model achieves relatively high scores
on some small datasets but still underperforms the traditional link prediction
methods. On one task, the pretraining caused a negative transfer, very much
underperforming the other models.

Using a good ISN is crucial for achieving the best results. We show that even
simple methods outperform state-of-the-art neural networks when the dataset
contains important similarity edges. On the other hand, when the inference of
similarity edges between very large sets of nodes is not feasible, GNNs can achieve
better results.

There is a clear scalability issue in GNNs, both in terms of time needed to train
the network and memory resources required to make the training even feasible.
In future work, we believe this issue should be addressed. Also, filling in missing
values in node attributes using inferred social network is an interesting topic for
future work.
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Veličković, Petar et al. (2018). “Graph Attention Networks”. In: arXiv: 1710.
10903.

Wang, Minjie et al. (2020). “Deep Graph Library: A Graph-Centric, Highly-
Performant Package for Graph Neural Networks”. In: arXiv: 1909.01315.

Wang, Peng et al. (2015). “Link prediction in social networks: the state-of-the-
art”. In: Science China Information Sciences 58.1, pp. 1–38. issn: 1674-733X,
1869-1919. doi: 10.1007/s11432-014-5237-y.

Wu, Zonghan et al. (2020). “A Comprehensive Survey on Graph Neural Net-
works”. In: IEEE Transactions on Neural Networks and Learning Systems,
pp. 1–21. issn: 2162-237X, 2162-2388. doi: 10.1109/TNNLS.2020.2978386.

Xu, Keyulu et al. (2018). “How Powerful Are Graph Neural Networks?” In: arXiv:
1810.00826.

Yang, Bishan et al. (2015). “Embedding Entities and Relations for Learning and
Inference in Knowledge Bases”. In: arXiv: 1412.6575.

Yu, Tong and Hong Zhu (2020). “Hyper-Parameter Optimization: A Review of
Algorithms and Applications”. In: arXiv: 2003.05689.

Zhang, Muhan and Yixin Chen (2018). “Link Prediction Based on Graph Neural
Networks”. In: arXiv: 1802.09691.

Zhou, Tao, Linyuan Lu, and Yi-Cheng Zhang (2009). “Predicting Missing Links
via Local Information”. In: The European Physical Journal B 71.4, pp. 623–
630. doi: 10.1140/EPJB/E2009-00335-8.

53

https://arxiv.org/abs/1310.4546
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1080/14786440109462720
https://doi.org/10.2478/pralin-2018-0002
https://arxiv.org/abs/2006.10637
https://doi.org/10.1109/TNN.2008.2005605
https://arxiv.org/abs/1703.06103
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1909.01315
https://doi.org/10.1007/s11432-014-5237-y
https://doi.org/10.1109/TNNLS.2020.2978386
https://arxiv.org/abs/1810.00826
https://arxiv.org/abs/1412.6575
https://arxiv.org/abs/2003.05689
https://arxiv.org/abs/1802.09691
https://doi.org/10.1140/EPJB/E2009-00335-8


List of Figures

2.1 Example of a graph. . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Forward propagation of GNN in graph from Figure 2.1 for node v0.

A similar computational graph is created for every node. . . . . . 9

4.1 Edges between entities (e0, e1) and intermediates (p0...3) . . . . . . 16
4.2 Distribution of POSs in cities. . . . . . . . . . . . . . . . . . . . . 18
4.3 Distribution of POSs in countries. . . . . . . . . . . . . . . . . . . 18
4.4 Distribution of POS MCC. . . . . . . . . . . . . . . . . . . . . . . 21

6.1 Precision-recall curve of favourite MCC prediction on D-All dataset. 33
6.2 Precision-recall curve of favourite MCC prediction on D-NoSim

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.3 Precision-recall curve of household members prediction on D-All

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.4 Precision-recall curve of household members prediction on D-

NoSim dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.5 Precision-recall curve of favourite stores prediction on D-All dataset. 38
6.6 Precision-recall curve of favourite stores prediction on D-NoSim

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.7 Distribution of favourite shops among clients. The vertical axis

denotes the logarithm of the number of clients which have given
shops as favourite. . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.8 Precision-recall curve of friends prediction on D-All dataset. . . . 41
6.9 Precision-recall curve of friends prediction on D-NoSim dataset. . 42
6.10 Precision-recall curve of next month favourite POS prediction. . . 43

54



List of Tables

4.1 Inferred social network nodes. Type column is the name of the
node, Variant column represents a sub-type of the node, type and
variant uniquely identify a node. Count column represents the
number of nodes in the original data. Restricted count represent
the number of nodes kept after preprocessing. . . . . . . . . . . . 19

4.2 Inferred social network edges. The type and description columns
uniquely identify an edge. The weight column denotes how the
edge weight was computed: either a similarity score (sim), number
of edges connecting given nodes (count), or just identity edges (1).
The weight of the edge is normalised so that the value is near 0. . 20

4.3 PF Dataset similarity edges . . . . . . . . . . . . . . . . . . . . . 21

6.1 RAM consumption and time of training on various sizes of graph
and training set. Edges column denotes the number of edges in
the graph. Nodes column denotes the number of nodes in the
graph. Train Edges column denotes the number of edges used for
prediction. Data column denotes whether the dataset is static or
dynamic. Layers column denotes the number of GNN layers. Time
column denotes the number of seconds it takes to train a GCN
model with DistMult predictor on the dataset for one epoch. . . 26

6.2 Default hyperparameters. These parameters are used for all meth-
ods and tasks unless they are overridden in the tables following. . 28

6.3 Specific hyperparameters for the client–MCC edge prediction task. 29
6.4 Specific hyperparameters for the client–client household edge pre-

diction task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.5 Specific hyperparameters for the client–store edge prediction task. 30
6.6 Specific hyperparameters for the client–client friends edge predic-

tion task. All models in this task have batch size 64. . . . . . . . 30
6.7 Specific hyperparameters for the favourite POS prediction task. . 31
6.8 VAE hyperparameters. See Section 6.5.1 for more information . . 31
6.9 Edges in the dataset D-Sim. Column Edges Used denotes whether

the original data have been restricted, “top 10” means that for
each node, edges to the 10 most similar nodes (of given type) are
kept. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.10 Edges in the dataset D-All. Column “Edges used” denotes whether
the original data have been restricted, “top 10” means that for each
node, edges to the 10 most similar nodes (of given type) are kept. 45

6.11 Edges in the dataset D-NoSim. Column “Edges used” denotes
whether the original data have been restricted, “top 10” means
that for each node, edges to the 10 most similar nodes (of given
type) are kept. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.12 Client features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.13 MCC prediction scores with 90% training data. . . . . . . . . . . 47
6.14 Household members prediction with 20% training data. . . . . . . 48
6.15 Favourite shops prediction with 90% training data. . . . . . . . . 48

55



6.16 Friends prediction with 20% training data. . . . . . . . . . . . . . 49
6.17 Prediction of next month’s favourite POSs. . . . . . . . . . . . . . 49

56



List of Abbreviations
AP average precision. 26, 38, 40

DGL Deep Graph Learning. 30, 31

GAT graph attention network. 11, 22, 31

GCN graph convolutional network. 11, 22, 23, 31, 36, 44, 50

GIN graph isomorphism network. 11, 22, 23, 24, 29, 31

GNN graph neural network. 3, 4, 8, 10, 14, 22, 23, 24, 25, 27, 28, 29, 30, 31,
32, 35, 36, 38, 40, 41, 42, 43, 50

ISN inferred social network. 3, 4, 50

LSH local-sensitive hashing. 17

MCC merchant category code. 7, 15, 17, 21, 27, 32, 33, 35, 36, 54

POS point of sale. 3, 15, 16, 17, 18, 21, 40, 41, 42, 54

RGCN relational graph convolutional network. 9, 44

VAE Variational Autoencoder. 41, 42

57


	Introduction
	Problem Definition
	Basic Definitions
	Bank Problems
	Real World Data

	Graph Neural Networks
	Message-Passing Framework
	Large Graphs
	Other GNN Works
	Pretraining GNNs

	Related Work
	Traditional Algorithms
	GNN-Based Link Prediction

	Dataset
	Dataset CU
	Dataset PF
	Similarity Edges
	POS Nodes


	Model
	Statistical Models
	GNN Models
	Scorers
	Training
	DeepGCN


	Experiments
	Notes on Data
	Evaluation Metrics
	Experimentation Workflow
	Hyperarameters
	Implementation

	Dataset CU
	Subsets of Data
	Favourite MCC
	Household Members
	Favourite Shops
	Friends

	Dataset PF
	POS information
	Results

	Failed Attempts

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations

