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Supervisor: doc. RNDr. Irena Holubová, Ph.D., Department of Software Engi-
neering

Abstract: The vast majority of current multi-model querying solutions require
the user to have intimate knowledge of the specific models involved. There exists
a single approach for truly unified multi-model querying, but this approach is
not practically usable for most users due to its complexity. In this thesis we
present MMQL, a multi-model query language based on category theory, which
was designed using SPARQL as a basis. Using MMQL, users can formulate multi-
model, multi-database queries without needing to know about the way the data is
stored. We also present our proposal for the implementation of MMQL, including
the required supporting algorithms. To verify the validity of our proposal, we
built the proof-of-concept tool MM-quecat, an implementation of basic MMQL
concepts. We then evaluated MM-quecat in a scenario involving PostgreSQL and
MongoDB, querying both databases with a single MMQL query. As we present
one of the first ever approaches for unified multi-model querying, we also analyze
the weaknesses and limitations of the proposed approach, opening the door for
future iterations and improvements.
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Introduction

Foreword
In recent years, we have seen more and more projects steer away from traditional
relational databases, instead opting for NoSQL databases thanks to their many
advantages, especially in the world of big data where replication and sharding are
requirements, not benefits. Similarly, we are seeing an increase in the usage of
multi-model data, whereby different parts of data are stored in their most natural
representation, utilizing the specifics of each particular model.

Where there is data, there is a need for querying, and multi-model scenarios
are no exception. However, querying multi-model data is exceptionally challeng-
ing, as querying data from multiple models in the same query is non-trivial. Many
databases today are multi-model to some extent, supporting a couple of selected
models, but in general their query languages only support the secondary models
as an extension. For this reason, the vast majority of existing multi-model query-
ing approaches require the user to have knowledge of the particular data models
when composing queries. This can be highly impractical, especially when the
data is stored across multiple different databases, necessitating the knowledge of
multiple query languages and the composition and unification of query results.

We believe that an approach allowing the composition of queries over multiple
models and databases in a unified, model-agnostic way would be very beneficial,
greatly reducing the complexity of multi-model querying. One such approach
was proposed in 2021 in the form of MultiCategory [1], allowing unified multi-
model querying based on functional folds, supported by a theoretical framework
based on category theory [2]. However, while this approach is certainly robust,
we question its wide applicability, as the provided query language carries consid-
erable difficulty in forming queries for users who are not intimately familiar with
functional programming. In addition, this approach does not take into consid-
eration data redundancy, which is a key feature of multi-model, multi-database
environments. For this reason, we believe that a more approachable solution is
needed, ideally with a familiar and understandable query language.

In order to query multi-model data in a unified way, we need a unified repre-
sentation. In the past, several approaches have attempted to use category theory
to model data with support for querying, including Spivak et al. [3] with their
Categorical Query Language (CQL) for relational data, and CGOOD [4] which
focuses on the object-oriented data model with its own query language based
on graph pattern matching. However, these approaches do not fully consider
multi-model data in its generality. Luckily for us, an approach has been recently
proposed for the unified representation of general multi-model data using cat-
egory theory [5][6]. When presenting their findings, the authors of this unified
representation expressed the possibility that their categorical model could be used
as a basis for a unified multi-model querying solution. This is where this thesis
begins its work, attempting to design a new multi-model querying approach with
little in the way of approaches to rely on.
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Goals
First of all, a query language is necessary for any kind of querying. Since the
unified categorical data representation we will be relying on [5][6] represents data
using category theory, our language will need to be a categorical query language.
While we could design a query language from the ground up, it is considerably
easier to start with another language as a template, making modifications as
necessary. Since a category may be visualized in the form of a directed multigraph,
the first goal of this thesis is to analyze existing graph query languages, and to
adapt one of them to be suitable for categorical data. In this way, we aim to
design a categorical multi-model query language.

While the design of such a query language allows the formation of multi-model
queries in a unified fashion, a query language is nothing without a concrete plan of
how to implement it. The proposal of an approach for the implementation of such
a query language is arguably even more complicated than designing the language
itself however, as many sparsely-studied problems specific to multi-model data
arise along the way. Examples of these problems include, but are not limited to:
the construction of multi-model query plans, finding the optimal order of multi-
model joins, and evaluating the cost of multi-model query plans. As such, the
second goal of this thesis is to propose an approach for the implementation of our
query language. As we lack relevant prior approaches to base our work on, we do
not aspire for our proposed design to be universal or well-optimized. Instead, we
will focus on the clarity and simplicity of proposed algorithms and approaches,
to form a solid basis for future work on this subject.

With a multi-model query language and an implementation proposal in hand,
we need to verify that our proposal is well-formed. For this reason, the third
goal of this thesis is to create a proof-of-concept implementation of our proposed
multi-model querying approach, ultimately testing our proposal in a multi-model,
multi-database scenario. Due to the sheer amount of work required for the design
of the query language and supporting algorithms in such a complex problem
domain with so little related work to fall back on, it is not within the scope
of this implementation to be a fully-fledged, optimized, user-friendly piece of
software. Instead, its purpose is to verify the validity of the concept itself, and
to provide a platform for the examination of the strengths and weaknesses of the
approach.

Finally, we recognize the fact that regardless of the amount of effort and time
spent, no first attempt at anything is ever perfect. For this reason, the fourth and
last goal of this thesis is to be as critical as possible when discussing the possible
limitations and weaknesses of our proposals. This will ensure that this thesis can
become a jump-off point for future related works, which can iterate and improve
upon our proposals, moving them closer to real-world applicability.

Thesis Structure
First, we will briefly introduce multi-model data in Chapter 1, and we will show-
case some of the most popular data models. Afterwards, we will give a brief
overview of the unified categorical representation of multi-model data which we
will be using as a basis for our work in Chapter 2. The final piece of related
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work we will examine is the set of existing graph query languages, where we will
attempt to analyze the existing approaches to decide upon a candidate language
to modify for our problem domain. This examination is presented in Chapter 3.

Our original work starts with Chapter 4, where we present MMQL, a unified
and declarative multi-model query language which we created, taking inspiration
from the SPARQL query language. In addition we will present the algorithms
and approaches necessary for the implementation of MMQL in Chapter 5, but we
should make it clear that the goal of this chapter is not a concrete implementation,
but rather a proposal of the algorithms necessary for such an implementation.

Moving on to the practical part of this thesis, in Chapter 6 we present MM-
quecat, our proof-of-concept implementation of MMQL, allowing basic unified
querying with PostgreSQL and MongoDB. In Chapter 7, we briefly present our
ongoing related work on a user interface for MM-quecat, showing the user expe-
rience we are aiming for. Finally, in Chapter 8 we experimentally evaluate our
solution, measuring the amount of overhead compared to native queries, as well
as analyzing the main performance bottlenecks of our approach in MM-quecat.
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1. Multi-Model Data
In the past, applications have tended to use mainly relational databases as their
preferred way of storing data. This has been in large part due to the lack of matu-
rity in the multi-model data ecosystem, which has slowly been changing in recent
years. While sticking to a single data model (relational for example) has many
benefits in terms of uniformity of modeling, access and management, in some use
cases, it may be desirable to leverage the unique advantages offered by the usage
of multiple different data models. Testament to this is the number of multi-model
database technologies on the rise in both academia and industry settings. Among
these are polystores [7][8] (database systems consisting of multiple heterogeneous
integrated database systems) and multi-model database systems [9][10] (database
systems supporting the storage of multiple data models at the same time). While
both of the mentioned multi-model options allow multi-model querying, neither
provides a unified querying experience which would allow the user to ignore the
specifics of the given models. Altogether, we can broadly describe this trend
towards using multi-model data as the NoSQL movement [11].

The biggest advantage of using multiple data models within an application
is the possibility of modeling the data in the most appropriate way possible,
meaning being able to for example model graph data using graph structures,
rather than having to reshape the data to conform to a different model. Along
with that, this approach can bring performance benefits, as databases suited to a
particular model are naturally faster at storing and retrieving data in its native
model [12].

This chapter introduces the most popular data models, and showcases why
one may want to use them to model their data. It is important to understand
the need for multi-model data before we delve deeper into the contents of this
thesis, whose usefulness hinges on the fact that multi-model data is omnipresent
in today’s database ecosystem.

When talking about multi-model data, it can also be useful to have a unified
vocabulary, since the terminology can differ between different data models. Such
a unification was proposed by Pavel Koupil in his 2022 dissertation [13], and is
shown in Table 1.1. There, we can see a set of unifying terms which cover the
terminology of various popular models, for example the term kind is used to refer
to tables in relational data, collections in document data, or column families in
columnar data. This thesis uses this unifying terminology in multiple places, so
it is recommended that the reader is familiar with these terms before moving on.

1.1 Aggregate-Oriented Models and Aggregate-
Ignorant Models

Before delving into the specifics of the various data models, we should note a
major divide among how the data models behave. They can be divided into two
main camps.

The first one is aggregate-oriented models, which generally store and operate
on aggregates – data units with complex and often nested structure. Aggregate-
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Table 1.1: Unification of terms in popular models, proposed by Pavel Koupil [13]
Unifying
term

Relational Array Graph RDF Key/Value Document Column

Kind Table Matrix Label Set of
triples

Bucket Collection Column
family

Record Tuple Cell Node /
edge

Triple Pair (key,
value)

Document Row

Property Attribute Attribute Property Predicate Value JSON Field
/ XML
element or
attribute

Column

Array – – Array – Array JSON array
/ repeating
XML
elements

Array

Structure – – – – Set / ZSet /
Hash

Nested
document

Super
column

Domain Data type Data type Data
type

IRI /
literal /
blank
node

– Data type Data
type

Value Value Value Value Object Value Value Value

Identifier Key Coordinates Identifier Subject Key JSON
identifier /
XML ID or
key

Row key

Reference Foreign key – – – – JSON
reference /
XML
keyref

–

oriented models generally focus on manipulating aggregates with various opera-
tions. Database systems working with aggregates can use the aggregate bound-
aries to determine which bits of data will be manipulated together, which can
be useful for sharding or replication. As a result, cross-aggregate operations may
be inefficient, or in some cases, totally impossible while maintaining Atomicity,
Consistency, Isolation and Durability (ACID). Examples of aggregate-oriented
models include document, column-family, and key-value models.

In contrast, aggregate-ignorant models do not have a universal strategy of
drawing aggregate boundaries, as these boundaries depend on how we manipulate
the data. This can be an advantage in the absence of a primary structure for
accessing and manipulating the data, as it allows one to easily work with the data
in different ways. Examples of aggregate-ignorant models include relational and
graph models.

1.2 Relational Model
Relational data is arguably the oldest data model which is widely used today [14].
Whenever one is designing a system which requires some sort of data persistence,
relational databases are usually among the first options to be examined. This
is in large part due to their great track record of being solid, tested and well-
understood by many.
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Data in the relational model is organized into tables, with each table having
a rigid schema defined by a set of columns, and data being stored in the form of
table rows. The relational model generally contains some kind of key or identifier
for each table row, be it a simple or compound one. An example of relational data
can be seen in Figure 1.1, where it is shown in the form of an ER diagram [15]
on the left, and in its native representation on the right.

Vendor ProductManufactured

country (Varchar(56))
name (Text)

cdf (Char(16))

id (Long)
asin (Char(16))
title (Text)
price (Decimal)
brand (Text)

productId (Long)

imgUrl (Varchar(256))

id name country cdf

10001 Books Inc. Czechia ...

10002 Toys Inc. Slovakia ...

productId asin title price brand imgUrl

103 ... Pyramids 300 Book ...

104 ... Pyramids 450 Audiobook null

105 ... Death 300 Book ...

106 ... Baby Doll 2500 Toy ...

107 ... RacingCar 1500 Toy ...

10001 104

10001 105

10002 106

10002 107

10001 103

id productId

Figure 1.1: An example of relational data [16].

When querying relational data (typically using SQL), the largest amount of
effort is generally spent on joining data together using database joins, in order to
extract the data from the normalized form that it is stored in. This is a tradeoff
which many are happy to make, considering relational databases generally offer
great support for Online Transactional Processing (OLTP) workloads in the form
of transactions – bundles of database commands which are executed with ”all
or none” semantics. Relational systems also tend to have very good support of
database integrity management tools, allowing database administrators to have
full confidence in the continued integrity of their data.

However, the NoSQL movement has brought with it a desire for database
horizontal scalability, as use cases arise where simply vertically scaling a relational
database system by improving its hardware is not always enough [17]. In such
use cases brought on by the advent of Big Data, many are seeking to leverage the
benefits of traditional relational databases in the context of scalable and highly
available data. This has spawned efforts which can be described as the NewSQL
movement [18]. As examples, one can look at databases like CockroachDB1 or
VoltDB2, which offer relational databases with the speed and scalability of NoSQL
systems.

For the purposes of this thesis, it is necessary to point out a few represen-
tative database system for each data model, for the purposes of developing a
universal querying approach. It would not be reasonably feasible to develop such
an approach with respect to every database from each data model, therefore we
simply select a couple of popular representative systems which feature the main
characteristics of its corresponding data model. For relational databases, we put
forward PostgreSQL3 and MySQL4 as some of the most popular options.

1https://www.cockroachlabs.com/product/
2https://www.voltactivedata.com/
3https://www.postgresql.org/
4https://www.mysql.com/
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1.3 Document Model
One of the main critiques often leveraged at relational databases, especially by
developers who highly value speed of development, is the fact that they can have
a prohibitively high start-up cost in terms of data modeling and database man-
agement. If speed of development and ease of reasoning about the data model
are of high importance, one may soon find themselves considering document ori-
ented databases [19]. These databases are aggregate-oriented, with the aggregate
boundaries being drawn as the boundaries of documents – self-contained pieces
of data with a potentially complex structure. We can think of documents in a
document-oriented database in terms of objects in a programming language – each
has a structure and carries some data. Objects in the document-oriented model
generally do not need to adhere to a schema, which makes document databases
popular where ease of development is paramount. An example of document data
may be seen in Figure 1.2.

{
  _id : 2022001

  customer: {

    customerId: 1,

    firstName: Mary,

    lastName: Smith,

    street: Letenská,

    city: Prague,

    postalCode: 11000,

    country: Czechia

  },
  contact : {

    cellphone: +420123456789,

    email: mary@smith.cz

  },
  items: [ {

      productid: 107,

      title: RacingCar,

      brand: Toy,

      price: 1500,

      quantity: 3

    }, {

      productid: 105,

      title: Death,

      brand: Book,

      price: 300,

      quantity: 1

    } ] }

{
  _id : 2022078

  customer: {

    customerId: 3,

    firstName: John,

    lastName: Newlin,

    street: Technická,

    city: Prague,

    postalCode: 16200

  },
  contact : {

    phone: +420222333444,

    email: john@cuni.cz

  },
  items: [ {

      productid: 104,

      title: Pyramids,

      brand: Audiobook,

      price: 450,

      quantity: 1

    }, {

      productid: 107,

      title: RacingCar,

      brand: Toy,

      price: 1500,

      quantity: 2

    } ] }

_id (Number)

Customer Ordered Order

Items

ContactType

Product

customerId (Number)

value (String)key (String)

title (String)

price (Number)

productid (Number)

brand (String)

firstName (String)
lastName (String)

city (String)

country (String)
postalCode (String)

street (String)
quantity (Number)

Figure 1.2: An example of document data in the JSON format [16].

Choosing a representative of the document model is not difficult, as Mon-
goDB5 is a very prominent and popular document database, which is very widely
used in practice. MongoDB organizes documents into collections, which are sets
of related documents which may be queried together. Working with MongoDB
can have a relatively user-friendly learning curve, as one can store objects from
most popular programming languages into the database in JSON6 form with-
out too many modifications, unlike the relational model where Object-Relational
Mappers (ORM) are often required. However, in more complex use cases where
working with multiple documents in a single transaction is required, developers
may find the complexity resurfacing.

5https://www.mongodb.com/
6https://www.json.org/json-en.html
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1.4 Graph Model
Graph databases model data in terms of objects (nodes) and relationships between
those objects. There exist two main kinds of graph models – edge-labeled graphs
and property graphs. Both of these graph models are discussed at greater length
in Section 3.1. To see an example of data in the graph model, we refer the reader
to Figure 1.3.

_tgt (REF)
_src (REF)

PersonPost HasCreated Knows

length (Long)
content (String)
language (String)
browserUsed (String)
locationIP (String)
creationDate (String)
imageFile (String)
id (Long)

_tgt (REF)
_src (REF)

Tag HasInterestHasTag

_tgt (REF)
_src (REF) id (Long)

value (String) _tgt (REF)
_src (REF)

Customer

country (String)
postalCode (String)
city (String)
street (String)
birthday (DateTime)
gender (String)
lastName (String)
firstName (String)
id (Long)

value: review

firstName: Mary

lastName: Smith

gender: Female

birthday: 1989-09-21

street: Letenská

city: Prague

postalCode: 11000
country: Czechia

HasTag
HasCreated

Knows

1
Person Customer

3

imageFile: ...
creationDate: 2022

locationIP: 192.168.0.11

browserUsed: Safari

language: Czech

content: ...

length: 154

Post

4
Tag

HasInterest

2

firstName: Anne

lastName: Maxwell

gender: Female

birthday: 1996-04-17

street: Ke Karlovu

city: Prague

postalCode: 11000

Person

Figure 1.3: An example of graph data [16].

In general, graph databases are best suited for use cases where the graph na-
ture of the data is important. These systems excel at querying for relationships
between objects, and at finding patterns in the data. Unlike relational data, re-
lationships in graph data models are first-class entities, and may often be given
properties. In theory, graph databases provide a performance advantage com-
pared to relational databases when considering graph-oriented workloads, how-
ever, this is not a clear-cut point of consensus in the academic community [20].

Regardless of performance implications however, it is undeniable that when
presented with graph-like data, it is most convenient to model that data in a
graph database. As such, a number of graph databases have reached wide adop-
tion today. One of the foremost representatives of graph databases is Neo4j7.
Although the rest of this thesis considers Neo4j as the main representative of
graph databases, a special mention should be made to RDF data which is briefly
discussed in Section 3.1.1, as RDF is also a graph data format, and is often used
in the semantic web community.

1.5 Wide-Column Model
Wide-column data may seem very similar to relational data on the surface –
both have concepts like rows and columns, storing data in table-like structures.
However, the major difference from the relational model is the fact that the
names and format of the columns may differ between rows of the same table (or
column family, as it is sometimes called). Column-oriented databases store data

7https://neo4j.com/
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in column-major order rather than in row-major order, meaning all values for a
single column are stored contiguously, rather than contiguously storing all values
for a single row. This confers performance benefits in many cases, such as for
workloads where reading all data related to a single record is rare. An example
of columnar data is shown in Figure 1.4.

cdf
...

id
10001

name
Books Inc.

country
Czechia

Industry
Printhouse
Audiomedia

cdf
...

id
10002

name
Toys Ins.

country
Slovakia

Contact
address ...
phone ...

Contact
address ...
phone ...

website ...

Column family Vendor

id (Long)
name (String)
country (String)
cdf (String)
industry (Set<String>)

VendorContactType

value (String)key (String)

Figure 1.4: An example of columnar data [16].

When picking a representative for wide-column databases, Apache Cassandra8

is a clear candidate, as it is open-source and widely used.

1.6 Key-Value Model
A key-value database or key-value store may be thought of as a hash table,
which is designed to quickly store and retrieve opaque values. As such, key-value
databases are very well suited to workloads like caching, often times being used
as an in-memory cache of a slower, on-disk database. Naturally, the weakness of
key-value databases is the fact that they are not generally designed to examine
or query the actual values stored in any way beyond retrieving them based on
the key. Therefore, they may not be ideal for more complex transactional or
analytical workloads. See Figure 1.5 for an example of key-value data.

Product Manual

ProductId (String)

HasManual

ProductId Content

"pdf"

"mp4"

106

107
Content (Binary)

Figure 1.5: An example of key-value data [16].

We will consider Redis9 and Riak KV10 as representatives of a key-value stores
for the purposes of this thesis.

8https://cassandra.apache.org/_/index.html
9https://redis.io/

10https://riak.com/products/riak-kv/
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2. Categorical Data
Representation
In the previous chapter, we examined the various data models which are widely
in use today. As we saw, there is great variety between the models, and the same
thing is true for the query languages designed for their respective models.

In this chapter, we will explore a concrete unified representation [6][5] of multi-
model data using category theory, a powerful branch of mathematics which stud-
ies mathematical structures and relations between them. We will also discuss the
benefits of such a representation, and we will then utilise it to build a universal,
multi-model query language.

2.1 Benefits of a Unified Representation
As discussed in Chapter 1, there already exist two approaches to encompass-
ing multiple data models in a single database system – polystores [7][8] and
multi-model database systems [9][10]. However, neither approach provides a true,
seamless, multi-model experience in terms of data modeling, querying and man-
agement, or this experience is only limited to two or three select models [10].
Naturally, it would be beneficial to be able to work with all popular models in
such a unified way. Ideally, such a unified representation allows us to do the
following [6]:

1. capture all the existing models, preferably in the same and definitely in a
standard way;

2. query across multiple interconnected models efficiently;

3. perform correct and complete evolution management, i.e., propagation of
changes;

4. enable data migration without complex reorganisations; and

5. permit integration of new data models.

Specifically, for the purposes of this thesis, having such a unified representation
of multi-model data would form the perfect base for designing a multi-model
query language. This is why we will spend a short while examining the unified
representation of multi-model data proposed by Martin Svoboda, Pavel Koupil
and Irena Holubová [6][5]. To demonstrate the concepts that we will explain
in this chapter, we present a sample multi-model scenario in Figure 2.1, with a
corresponding Entity Relationship (ER) schema shown in Figure 2.2.

2.2 Basics of Category Theory
As mentioned earlier, category theory [21] is a branch of mathematics which
studies mathematical structures and relations between them. A category C =
(O, M, ◦) consists of three entities:
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street
Letenská

Ke Karlovu
Technická

{ _id : { customer : 1, number : 2},

  contact: {

    cellphone : +420123456789,

    email : mary@smith.cz },

  items: [

  { id: B1, name: Pyramids,

    price: 200, quantity: 2},

  { id: A7, name: Sourcery,

    price: 200, quantity: 1 } ] }

2

3

product: T1, quantity: 2

product: B4, quantity: 1

product: H1, quantity: 1

product: B3, quantity: 2

table Customer collection Ordercolumn family Orders key/value pairs Cart

1
1

orders

orders

customerId orders

2
customerId

3
customerId

[(1,1), (1,2), ...]

[(2,1), (2,2)]

[(3,1), (3,2), (3,3)]

city
Prague
Prague
Prague

postalCode
11000
11000
16200

id name surname
1 Mary Smith
2 Anne Maxwell
3 John Newlin

tag
13
17
19

graph Friends

1

32

Mary

Smith

Anne
Maxwell

John
Newlin

friend friend

friend

Figure 2.1: A sample multi-model data scenario [6].

• A class O, whose elements are called objects. This class may also alterna-
tively be referred to as Obj(C).

• A class M, whose elements are called morphisms, each of which has a target
object and a source object. This class may also alternatively be referred to
as Hom(C).

• A binary operation ◦ called the composition over morphisms.

A useful visualization form of a category is the form of a multigraph, with cat-
egory objects forming its set of vertices and schema morphisms forming directed
edges.

We represent morphisms f ∈ M : A → B, as arrows, with A, B ∈ O. We
refer to object A as the domain of morphism f and to object B as its codomain1.
Let f : A → B, g : B → C ∈ M be morphisms, then the composite morphism
g◦f ∈ M is also part of the set of morphisms in the same category, also called the
transitivity property. The morphism composition operation is not only transitive,
but it is also associative, i.e., h◦(g◦f) = (h◦g)◦f for any morphisms f, g, h ∈ M
such that f : A → B, g : B → C, and h : C → D. Finally, for every object A ∈ O,
an identity morphism 1A must exist, where f ◦1A = f = 1B ◦f for any f : A → B.
With respect to the composition operation, this identity morphism therefore acts
as a unit element.

Address

OrderFriend

Audiobook

Book

Product

Customer

Cart

Items

Orders

Id

Surname

Street PostalCode

City
Quantity Id Price

Name

Pages

Length

Quantity

Number

Contact Type

Value Name

(1,*)

(0,*) (0,*) (0,*)

(0,*)

(1,1)

(0,*)

(0,*)

(0,*)

(0,*)

Tag

Name

PublisherPublishes

Name
(0,*)

(1,1)

Figure 2.2: ER schema of the sample multi-model scenario in Figure 2.1 [6].
1The domain and codomain may also be referred to by dom and cod.
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With these basic concepts from category theory, we can introduce the unified
model [5][6] which we will be using in the rest of this thesis. We will introduce
three main concepts which together form the basis of this model – the schema
category describing the schema of the data in question, the instance category
describing actual data conforming to its corresponding schema category, and the
mappings which describe how objects from the schema category are stored in
the underlying databases. Note that the introduction of the following concepts
is somewhat informal and does not cover every single aspect of the categorical
model, and for this reason we refer the reader to the original sources on the
matter [5][6] for a more comprehensive definition.

2.3 Schema Category
We define a schema category [5][6] as a tuple S := (OS, MS, ◦S), with O being
the set of schema objects, MS being the set of schema morphisms, and ◦ being
the morphism composition operation. Schema morphisms in MS connect pairs
of objects from OS. We distinguish two types of morphisms in MS:

• Base morphisms are morphisms which are explicitly defined; and

• Composite morphisms which are obtained via the composition of base or
composite morphisms via the composition operation ◦.

We define each schema object o := (key, label, superid, ids) ∈ OS to be
a tuple. Let O ⊆ N be a set of numbers forming the set of object identifiers.
Then key ∈ O is an automatically assigned object identifier, unique for each
schema object. We can optionally define names for schema objects using the
label property, which is defined as ⊥ when missing. Naturally, we also need our
schema to contain the model of the data it represents. For this reason, each
object contains a set of attributes superid ̸= ∅, where each attribute corresponds
to a morphism signature, introduced in the following paragraph. The set superid
models the data each object is expected to contain. Finally, the set ids ̸= ∅ ⊆
P(superid) is a set of identifiers, each being a set of attributes from superid. This
allows us to uniquely distinguish individual data instances using their attributes.

Each morphism m := (signature, dom, cod, min, max) ∈ MS is also defined
as tuple, regardless of whether the morphism is base or composite. Firstly, let
us define the alphabet M, and the set of possible strings M∗ over this alphabet
(including ε which denotes an empty string). These strings are ordered lists of
symbols from M, concatenated using the · operator (for example 1 for a string
containing a single character, 1.2.3 for a string with three characters, and ε for
an empty string). For a given morphism m, signature ∈ M∗ uniquely identi-
fies this morphism, save for all identity morphisms which share the ε signature.
If m is a base morphism, its signature will be a single alphabet symbol, i.e.
signature ∈ M. If m is a composite morphism however, its signature will be a
string signature ∈ M∗ \ (M ∪ {ε}), as this allows us to decompose a compos-
ite morphism into its constituent base morphisms according to the ◦ operation.
The domain and codomain of m are represented by dom and cod respectively,
with both referring to schema objects in O. In order to model the cardinality
of each morphism, we also have the properties min ∈ {0, 1} and max ∈ {1, ∗},
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which specify the minimal and maximal number of occurrences of each specific
morphism in the instance category respectively.

Type

11430

Price

124

52
Id


122

48

39

36

Name

123

50

51

Product

121

53
5746

49

40

47

35

25
Order

111 2724 Contact


113 2928

33 31

Number

112
26

Value

116
34

Name

115
32

Items

1173738Items


117
58

Audiobook

125 5554 Length


12656

61

Publisher

130

64

59 Pages

12860Book


127

Publishes

129

62

63

65 Name

13166

Cart

119 4542

43

Orders

110 2321

Quantity

120

44

Customer

100

22

417

1 18 20
3

9

City

107

14

5

Id

101 2

Name

102 4

Friend

109

1917

Tag

103 6

Street

106

12
PostalCode


108

16

11

Address

105
13

10

15

Surname

104

8

Figure 2.3: Schema category which was extracted from the sample ER schema in
Figure 2.2 [6].

When it comes to morphism composition, we define the signature of the com-
posite morphism m2 ◦m1 to be signature := signature2·signature1, unless either
morphism is an identity morphism, in which case the resulting signature is the sig-
nature of the other morphism. The domain and codomain are composed naturally,
resulting in the composite morphism having the domain of m1 and codomain of
m2. Finally, we define the composite cardinalities to be min = min(min1, min2)
and max = max(max1, max2). With the necessary definitions out of the way,
we present an example of a schema category in Figure 2.3, where we can see
the schema category corresponding to the sample multi-model scenario presented
earlier in Figure 2.1.

2.4 Instance Category
As we mentioned earlier, the schema category S only describes the schema of the
data, not data instances themselves. For this, we need to introduce the notion
of an instance category [5][6]. An instance category I = (OI, MI, ◦I) has the
same structure as the corresponding schema category S, meaning that for each
schema object and morphism in S, there exists a corresponding instance object
or morphism in I and vice versa. A particular instance category I describes the
data stored in a set of databases at a particular point in time, being essentially a
snapshot of the entire data set. Whenever the underlying data changes, this will
naturally induce a new instance category, with the relevant changes reflected.

Even though the sets of objects OS and OI have the same structure, just like
MS and MI, their representation must necessarily differ in order to be able to
model the data instance. Let V be a set of all possible primitive values within the
data instance we are describing. Then each instance object oI := {t1, t2, . . . , tn} ∈
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OI is a set of tuples ti : superid → V for all i ∈ N, 0 < i ≤ n, specifying the
concrete values this instance object has in the current data instance. The specific
set of tuples defined for a particular data instance for an instance object oI ∈ OI is
called the active domain of this instance object, meaning the set of data currently
bound to it.

Recall that each schema object also contains a set of identifiers ids, each of
which uniquely identifies a particular object instance. In an instance category,
this unique identification property must hold for each id ∈ ids for each oI ∈ OI.
This means that if we project the active domain of this object to any particular
identifier of this object, the number of unique tuples in the active domain must
not change.

Now that we have explained the notion of instance objects when compared
to schema objects, let us also introduce instance morphisms, which act as binary
relations between instance object active domains. Let us consider an instance
morphism mI ∈ MI, mI : o1 → o2 for some objects o1, o2 ∈ OI. Then mI ⊆
o1 × o2, meaning that the morphism is a subset of the relation induced by the
Cartesian product of o1 and o2 (meaning the product of their active domains).
Note that even though we define morphisms to be directed, we can traverse them
in the opposite direction as they are defined as relations, which will be useful to
us later.

2.5 Mapping Data to the Categorical Represen-
tation

In the previous sections, we defined the notion of a schema category representing
the data schema, and an instance category representing the entire set of data
at a particular point in time. However, in order to be able to automatically
transition between the native data model and the categorical model, we also need
to know how they map to each other. For this reason, we introduce the notion
of mappings [6], which specify how data for one or more schema objects and
morphisms are stored within a particular kind (recall Table 1.1) for a particular
database. For example, this could mean describing the structure of rows in a
table in the relational model, the structure of documents in a collection in the
document model, or the structure of objects and their relationships in the graph
model and so on. As it is likely that the entire schema will not fit within a single
kind of a single database, it is expected that there will be multiple mappings for
any given schema category, possibly even with some degree of overlap between
the mappings if data redundancy is present. These mappings may be created
manually by the user using a tool like MM-evocat [22] which we will be working
with later in this thesis, but there are also approaches which attempt to infer the
mapping from the databases themselves like MM-infer [23]. Note that sometimes,
we may use the terms mapping and kind interchangeably in this thesis (especially
during algorithmic descriptions), but in those cases we are always referring to the
mapping which maps a given kind to its categorical representation.

Each of these mappings consists of a root object, denoting the root of the
context of this kind within the schema category, the name of the kind which this
mapping corresponds to, the source database of the kind, and finally an access

16



path, which describes the internal structure of the kind, and its mapping to the
categorical representation. The access path for any given kind has a tree-like
structure rooted in the mapping’s root object, and recursively specifies the shape
of the kind. We generally use a JSON-like representation of the access path, as
shown in Figure 2.4.

{ 
  _id : { 
    customer : 1, 
    number : 2 
  }, 
  contact : { 
    cellphone : +420123456789, 
    email : mary@smith.cz 
  }, 
  items : [ 
    { 
      id : B1, 
      name : Pyramids, 
      price : 200, 
      quantity: 2 
    }, { 
      id : A7, 
      name : Sourcery, 
      price : 200, 
      quantity : 1 
    } 
  ] 
}

collection Order

{
  _id : {
    customer : 1.21.24,
    number : 25
  },
  contact : 27 {
    31.29 : 33
  },
  items : 35 {
    id : 47.39,
    name : 49.39,
    price : 51.39,
    quantity : 37 
  }
}

kind name: Order

Orders 
110

Type 
114

Id 
101

Customer
100

Items 
117

Order 
111

Contact 
113

Quantity 
118

_id

items

contact

Price 
124

Id 
122 Name 

123

Product 
121

Number 
112

Value 
116

Name 
115

23
24

26

25

21

22

1

2

27
28

29
30

31

32

33

34

35

36
38

40

39
37

47

48

49

50

51

52

(0,*)

(1,*)(0,*)

(0,*)(1,*)

(1,1)

(0,*)

(0,*)

(0,*)(0,*)
(0,*)(0,*)

(1,1)(1,1)

(1,1)(1,1)

(0,*)(1,1)

(0,*) (0,*)

(1,*) (1,1)

(0,*) (1,*) (0,*) (1,*) (1,1) (1,1)

Figure 2.4: Collection Order, an access path for kind Order, and the correspond-
ing part of schema category S [6]

When defining a property within the access path, we always define its name
and structure, where the structure is constrained by the particular database model
(for instance, mappings for kinds in a purely relational database are always flat
with no nested properties, and their property names must be unique). This
structure in the form of an access path must always cover at least one identifier
of the root object, as without it, it would not be possible to distinguish different
object instances. We will point out that not every schema object needs to be
the root object of a mapping, as mappings generally map the values of many
schema objects which are specified within a single mapping (for example the set
of customer names, surnames and ids from a single relational table).

We distinguish three possibilities for the kinds of child properties in the access
path for a given mapping:

• The child property is a direct neighbour of its parent in the schema category,
meaning it is accessible via a base morphism.

• The child property is inlined from a more distant position within the schema
category, meaning it is accessible from its parent via a composite morphism.
Note that multiple paths can exist in the schema category between any given
objects, which is why the exact composition of the composite morphism is
important.

• The child property is auxiliary, meaning no corresponding object exists in
the schema category. The purpose of such properties is purely structural.
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The aforementioned associated morphisms are also called the property context,
as they determine which schema object each property maps to (if any). Properties
can have other kinds of names than simple static names, specifically we distinguish
the following possibilities:

• Static names are user-defined as required by the structure of the underlying
kind;

• Dynamic names are derived from instances of particular schema objects
(for example types of contact like phone or email within a customer contact
object); and

• Anonymous properties which do not have a name, or their naming is not
permitted within the given model (for example array elements in JSON).

When it comes to the values of properties, we distinguish only two types of
values:

• Simple properties which only contain primitive values; and

• Complex properties containing a set or list of child properties, like a nested
array or nested object in JSON.

Note that the explanation of the concept of mappings was considerably less
formal than the ones for schema and instance categories, as the formal definition is
more complex in the case of mappings. For a more formal definition of the concept
of a mapping, please refer to the paper by Pavel Koupil and Irena Holubová, where
an exact definition is given [6]. While reading the original proposal of these ideas
is not strictly necessary for readers of this thesis, it will certainly make the rest
of it more digestible, as we will be expecting a certain level of familiarity with
these concepts.

2.6 The Need for a Categorical Query Language
Now that we have examined the basics of category theory and the unified model
we will be considering in the rest of this thesis, let us consider the why of building a
query language using this unified model. As discussed earlier, there is no standard
truly multi-model query language, which would be able to uniformly encompass
all currently popular data models. The utility of such a query language should
be fairly apparent – one does not need to bother with a different query language
for each subset of their data which happens to be stored in a database with a
different paradigm. On the contrary, queries across the entirety of one’s data may
easily be expressed in the same query language.

Even in the situation where one is not particularly perturbed by the need
to know multiple query languages, there are still a few more problems on the
horizon. Namely, there is an issue with queries which cross the boundaries of
multiple database systems. For example, let us consider a scenario where we store
a table of user information in PostgreSQL, and we store the order information
in a collection in MongoDB. In such a case, expressing a query which crosses
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the boundaries of both databases is impossible without sharing the same query
language.

As the reader now hopefully shares our enthusiasm for the existence of such
a language, we must still formalize the requirements for such a language. This
language should:

• be able to encompass the particulars of all popular data models,

• be able to express queries crossing model boundaries,

• be expressive and readable,

• leverage the power of category theory,

• be intuitive and familiar to users of existing query languages,

• have the capability of being nearly as performant as native queries where
possible.

Considering we may look at a category as a multigraph, we may not need
to create a categorical query language from scratch. We can attempt to take
inspiration in existing graph query languages, which is the focus of the following
chapter.
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3. Existing Graph Query
Languages
Before engaging in the endeavor of designing a brand new graph query language
for the categorical representation described in the previous chapter, it is prudent
to first analyze other existing graph query languages, and consider their features,
advantages and disadvantages. The most popular graph query languages are
SPARQL [24], Cypher [25], Gremlin [26] and PGQL [27]. Another language
worth mentioning is G-CORE [28], a graph query language designed by a team
of academics and industry professionals, although it does not currently have an
implementation. This chapter explores the properties of these languages and
attempts to make a comparison of their capabilities.

3.1 Graph Data Models
Graph data can be modeled in a variety of ways, and each data model will nat-
urally require a different kind of query language, despite containing only graph
data. As such, a proper analysis of existing graph query languages necessitates a
formalization of these data models. Naturally, a number of different graph data
models have been tried in practice, but two have emerged as the most commonly
used: edge-labeled graphs and property graphs, as described by Angles et al. [29]
All of the aforementioned graph query languages operate on one of these two data
models.

This section does not provide a rigorous definition of these data models, as
their details may vary slightly between databases and query languages. Instead, it
aims to illustrate the concepts of each data model and to showcase how they model
data. As an aside, all graphs are implied to be directed multigraphs consisting of
a set of vertices and a set of edges, unless explicitly specified otherwise.

3.1.1 Edge-Labeled Graphs
Edge-labeled graphs are graphs which assign a label to each edge from a set of
labels. Each edge has exactly one label, while vertices are unlabeled.

This data model is quite simple yet strong. A vertex with a property can
be modeled by introducing a new vertex containing the property value and con-
necting it with the original vertex via an edge labeled with the property name.
Similarly, it is possible to model labeled vertices by introducing a new vertex
containing the vertex label value, and connecting it with the original vertex via
an edge labeled with an arbitrarily defined label, selected to denote vertex labels.
The edge-labeled graph model is also capable of representing edge properties.
This can be achieved by reification - materializing the edge into an extra vertex
connected with new edges to both ends of the original edge. The extra vertex
can then be linked with additional edges to other vertices representing the prop-
erty values. An example of data modeled as an edge-labeled graph may be seen
in Figure 3.1.
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Figure 3.1: Data modeled as an edge-labeled graph.

Edge-labeled graphs are the data model for the Resource Description Frame-
work (RDF) [30], for which SPARQL [24] acts as the most popular query lan-
guage. RDF is a framework for representing information on the Web, and it
models information as triples in the form subject predicate object. RDF graphs
may contain three types of nodes: Internationalized Resource Identifiers (IRIs),
literals (value types like strings and numbers) and blank nodes (vertices without
a globally persistent IRI). Predicates are always IRIs, which can be equated to
edges with labels from edge-labeled graphs.

3.1.2 Property Graphs
A graph data model used more widely in practice by graph-oriented databases
is the property graph. A property graph can be seen as an extension of edge-
labeled graphs, where both vertices and edges may be labeled. In addition, each
vertex and edge may be associated with a set of key-value pairs called attributes,
which store additional information about the vertex or edge. An example of data
modeled as a property graph can be seen in Figure 3.2.

These additional constructs do not give property graphs a higher expressive
power compared to edge-labeled graphs, but they do carry other benefits. First
of all, the structure of the data in property graphs may be easier for users to
work with, since data related to a particular vertex or edge is associated directly
with that vertex or edge, rather than residing in a different vertex. Additionally,
imagine a scenario where we have an edge-labeled graph, and we need to add a
property to an edge which previously did not have any properties. The solution
to this problem is to use reification and create a new in-between vertex holding
the new property. However, such a change is disruptive to the schema of the data,
and will necessarily break existing queries. Using the property graph model, such
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Figure 3.2: Data modeled as a property graph.

a change can be done without significantly disrupting the schema.
The property graph model forms the basis for the majority of modern graph

data platforms. The foremost among them are Neo4j1 and Apache TinkerPop2,
which primarily allow querying with Cypher [25] and Gremlin [26] respectively.

3.2 Language Features
With the graph data models clarified, we analyze the specifics of each selected
graph query language. The presented languages are a sample of the most popular
graph query languages which cover a variety of concepts and problem domains.
Specifically, this section focuses on the querying capabilities of the given lan-
guages, and only briefly covers their mutation functionality.

3.2.1 SPARQL
As SPARQL [24] is primarily used as the query language for RDF [30], it is
different from the other selected query languages in that it operates on an edge-
labeled graph. It operates in terms of triple patterns – whitespace-separated lists
consisting of a subject, predicate, and object. Any part of the triple pattern
may consist of a constant (IRI or RDF literals like strings and numbers) or a
variable. These triple patterns can then be used to match parts of the queried
graph. SPARQL itself only supports querying, but SPARQL 1.1 Update [31],
which is an update language for RDF graphs, allows for updates with a syntax
very similar to SPARQL.

A simple SPARQL query which retrieves a list of books released in 2015
and their respective authors (ordered by birth year) may be seen in Figure 3.3.
It can be seen that the SPARQL query structure is in some ways inspired by
SQL – we have a SELECT clause specifying what the query should return, as well
as a WHERE clause specifying the conditions for the returned variables, and an
ORDER BY clause. However, these similarities end upon inspection of the graph
querying capabilities of SPARQL. In order for a set of variable bindings to be

1https://neo4j.com/
2https://tinkerpop.apache.org/
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PREFIX lib: <http://example.org/library#>

SELECT ?author ?book
WHERE
{

?author lib:authored ?book .
?book lib:releaseYear 2015 .
?author lib:birthYear ?authorBirthYear .

}
ORDER BY ASC(?authorBirthYear)

Figure 3.3: Basic SPARQL query example.

returned by the query, their substitution into the WHERE clause must induce a valid
subgraph of the queried graph. This WHERE clause utilizes the aforementioned
triple patterns to this end. In the sample query, the first triple pattern specifies
that the query should match triples in the form of ?author lib:authored ?book
., where the dot at the end signifies the end of the triple. The second triple
specifies that the matched book should be released in 2015. Specifying both
triples after one another in the WHERE clause functions as their conjunction - both
must match in order for the entire WHERE clause to match. Lastly, the PREFIX
clause simply specifies the prefix lib: to be equivalent to the namespace IRI
http://example.org/library#. This does not increase the expressive power of
SPARQL, but it makes queries significantly more readable compared to queries
which use the full namespace IRI at every occurrence.

SPARQL also supports more complex graph patterns such as joins, unions,
differences, optional matching, and filtering. Joins are implicit both between
triple patterns and graph patterns – they act as a natural join on the set of
shared variables between the two patterns whenever they are specified within the
same graph pattern. The MINUS and NOT EXISTS expressions allow the elimina-
tion of matches depending on the evaluation of a pattern and the existence of a
pattern respectively. Using the OPTIONAL keyword, the query may specify that
parts of the graph pattern are optional, meaning that when they cannot be suc-
cessfully matched for a given solution, that solution is not discarded, but rather
any unmatched variables remain unbound. Filtering matches are possible using
the FILTER keyword, which specifies a condition and filters all matches which do
not satisfy this condition.

More complex graph pattern matching can be seen in Figure 3.4. This query
returns the list of authors and co-authors of books which have been released in
2015 or later, and additionally returns the book rating if it is available. If the
rating is not present in the data, that book is still returned, with the ?rating
variable remaining unbound. The UNION construct in the query ensures that
results will be returned for both authors and co-authors of any given book.

When it comes to navigational queries (i.e. queries which navigate the graph),
SPARQL uses the concept of property paths. These are constructs not unlike
regular expressions, which specify possible routes through a graph between two
graph nodes. Property paths may contain RDF terms or variables at both ends,
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PREFIX lib: <http://example.org/library#>

SELECT ?author ?book ?rating
WHERE
{

{ ?author lib:authored ?book . }
UNION
{ ?author lib:coauthored ?book .}

?book lib:releaseYear ?releaseYear .
OPTIONAL { ?book lib:rating ?rating . }

FILTER(?releaseYear >= 2015)
}

Figure 3.4: More complex graph pattern matching in a SPARQL query.

but they cannot contain variables as part of the path itself. An example of
a property path is lib:TheHobbit lib:sequel+ ?book ., which will bind the
?book variable to any book which follows The Hobbit as a direct or indirect
sequel. A path like lib:TheHobbit lib:sequel/lib:rating ?rating . would
bind ?rating to the rating of The Hobbit’s direct sequel. Additional property
path features include inverse paths from object to subject, alternative paths or
negated property sets which match any except the specified IRIs in the path.

Figure 3.5 shows a query which returns the list of all authors who co-authored
a book with J. R. R. Tolkien. This query uses a property path to find all books
co-authored by Tolkien, and then uses an inverse path from these books to their
co-authors. Note that it is necessary to filter Tolkien himself from the results of
the query, as the ?author variable would otherwise match Tolkien himself, as he
is naturally a co-author for all books he co-authored.

PREFIX lib: <http://example.org/library#>

SELECT DISTINCT ?author
WHERE
{

lib:JRRTolkien lib:coauthored/ˆlib:coauthored ?author .
FILTER(?author != lib:JRRTolkien) .

}

Figure 3.5: Graph navigation in a SPARQL query.

SPARQL is most notably supported by the Virtuoso3, Amazon Neptune4,
3https://virtuoso.openlinksw.com/
4https://aws.amazon.com/neptune/
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Stardog5, Apache Jena Fuseki6 or GraphDB7 graph databases.

3.2.2 Cypher
Cypher [25] is a declarative graph query language originally developed by Neo4j.
It was open-sourced in 2015 and contributed to the openCypher [25] project,
which is now responsible for maintaining the language. Cypher operates on a
property graph data model, referring to the vertices of the graph as nodes and the
edges as relationships. Its structure is inspired by SQL, as queries are composed
of various clauses. Its pattern matching is also inspired by SPARQL [24]. Cypher
may be used for both querying and updating graphs.

Clauses in a Cypher query are chained together, and the results of each clause
become the inputs for the next clause. Regarding basic graph pattern match-
ing, Cypher notation tries to be very intuitive when it comes to the underly-
ing graph data model. It models relationships as an arrow between two nodes:
(a)-[r]->(b). Such a pattern describes a directed relationship r from the node
a to the node b. Note that both nodes and relationships do not have to be
named, they may simply use the () and [] notation respectively. The pattern
(a)-[]-(b) will match the relationship in either direction. These patterns are
used in the MATCH clause, which matches the patterns to the underlying data and
binds any variables accordingly.

It should be noted that unlike SPARQL, Cypher does not return matches
where the same graph relationship is found multiple times in a single pattern.
What this means is that if we specify a pattern like (a)-[]->(b)<-[]-(c),
Cypher implicitly makes sure that the node a is distinct from the node c. If
allowing the return of the same node in different parts of the pattern is desirable,
multiple consecutive MATCH clauses must be used, matching parts of the pattern
separately and using some common variables to join them together.

MATCH (author:Author) -[:AUTHORED]-> (book:Book {releaseYear: 2015})
RETURN author, book
ORDER BY author.birthYear ASC

Figure 3.6: Basic Cypher query example.

The last information needed for composing a simple query is knowing how to
specify labels and properties. The construct (a:Author surname: "Tolkien")
-[r:AUTHORED]-> (b) will match a to nodes labeled Author and with the prop-
erty surname equal to ”Tolkien”, and r to relationships typed AUTHORED. The
query shown in Figure 3.6 uses these principles to return a list of books released
in 2015 and their respective authors (ordered by birth year). The RETURN clause is
used for projection on the output variables, and it is mandatory in queries which
do not mutate the underlying dataset. The ORDER BY clause works similarly to
SQL.

5https://www.stardog.com/
6https://jena.apache.org/documentation/fuseki2/
7https://graphdb.ontotext.com/
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Much like SPARQL pattern matching, joins happen implicitly when we specify
multiple MATCH clauses in succession. The NOT operator acts as a difference – its
usage in a WHERE clause after a MATCH clause will eliminate matching results from
the results of the MATCH clause. Optional pattern matching is also supported with
the OPTIONAL MATCH clause. Filtering is accomplished with the WHERE clause.

MATCH (author:Author) -[:AUTHORED]-> (book:Book)
OPTIONAL MATCH (book) -[:RATING]-> (rating:Rating)
WHERE book.releaseYear >= 2015
RETURN author, book, rating.average AS rating

UNION

MATCH (author:Author) -[:COAUTHORED]-> (book:Book)
OPTIONAL MATCH (book) -[:RATING]-> (rating:Rating)
WHERE book.releaseYear >= 2015
RETURN author, book, rating.average AS rating

Figure 3.7: More complex graph pattern matching in a Cypher query.

Figure 3.7 shows a more complex example of graph pattern matching using
some of the features mentioned above. The depicted query returns the list of au-
thors and co-authors of books released in the year 2015 or later, and additionally
returns the book rating if it is available (for simplicity’s sake, we assume that the
rating is stored in a node connected to a book via the RATING relationship). It
should be noted that Cypher does not have an easy way of specifying alternate
matches like SPARQL does, and the UNION clause works at the level of query re-
sults. Therefore we need to run both queries independently, and then UNION their
results. Cypher also does not yet support post-union processing, so if we wanted
to order the results of the union, we would need to resort to other workarounds.

As far as navigational queries go, the strength of Cypher is considerably lower
than that of SPARQL. Traversal of a path is limited to a single relationship type
(i.e. label), and if multiple labels are desired, the traversal has to be broken up
into multiple parts. The same applies to properties of the relationship – path
pattern matching is only able to match the same set of properties and property
values for each relationship in the path. Variable-length pattern matching is
signified by the usage of the * operator. The pattern (a)-[*2]->(b) is equivalent
to the pattern (a)-[]->()-[]->(b), i.e. a path of length 2. The length of this
path can be variable: (a)-[*2..4]->(b) means that the path is at least of length
2 but no more than length 4. Either of these bounds can be omitted, meaning
length X or more or length X or less. If both bounds are omitted, the path can
be of any length: (a)-[*]->(b), as the lower and upper bounds default to 1 and
infinity respectively. The ability to specify a range for the path length present in
Cypher is not present in SPARQL.

What Cypher lacks in terms of path traversal specification, it makes up for in
other ways of working with paths. It features paths as a first-class citizen of the
language, offering the ability to save paths to variables or to return them from
queries. It also has a number of interesting functions like searching for one or all
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shortest paths between two nodes in the graph. Cypher also has native support
for list primitives, something which is missing from SPARQL (and RDF).

MATCH path = (:Book {title: "The Hobbit"}) -[*:SEQUEL]-> (book:Book)
RETURN book.title AS title, length(path) + 1 AS seriesNumber

Figure 3.8: Graph navigation in a Cypher query.

Figure 3.8 demonstrates a query which returns the list of all sequels of the
book The Hobbit transitively. The query also returns for each book its number in
the series, meaning The Hobbit’s direct sequel will have the number 2, its sequel
the number 3 and so on.

The most notable databases using Cypher are Neo4j8, Amazon Neptune9,
Memgraph10, Katana Graph11 and RedisGraph12.

3.2.3 Gremlin
Gremlin [26] is a graph traversal language operating on property graphs. It
was developed by Apache TinkerPop of the Apache Software Foundation, and is
available under the Apache License 2.0. Gremlin is a functional language which
operates in terms of a data flow. A traversal in Gremlin consists of a sequence
of steps, each of which performs an operation on the underlying stream of data.
This data is functionally passed between three kinds of steps: map steps which
transform the data, filter steps which filter, and remove some of the data, and
side effect steps which can compute statistics about the data stream.

g.V().
hasLabel(’Book’).
has(’releaseYear’, 2015).
as(’book’).

in(’authored’).

hasLabel(’Author’).
as(’author’).

select(’book’, ’author’).
by(’title’).
by(’name’)

Figure 3.9: Basic Gremlin query example with imperative traversal.
8https://neo4j.com/
9https://aws.amazon.com/neptune/

10https://memgraph.com/
11https://katanagraph.com/
12https://redis.io/docs/stack/graph/
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Figure 3.9 shows a simple Gremlin query which retrieves the list of books re-
leased in 2015 and their respective authors, returning their titles and names. The
g.V() step returns a list of all vertices in the graph. Using hasLabel(’Book’),
only vertices with the Book label are selected. Similarly, the has() step filters
out books which were not released in 2015. The as() step is not a real step,
but rather a step modulator which assigns a label to the previous step, making it
accessible by later steps. It can be thought of as referencing to that step with a
variable. Edge traversal is performed with the in() step, which in the example
traverses incoming edges with the authored label. Other edge traversal steps ex-
ist which traverse edges in a specified direction, or both. The select() step takes
data from previously labeled steps and collects them, additionally projecting the
data to the book title and author name.

Gremlin differs from the previously mentioned graph query languages by al-
lowing imperative graph traversal as shown in Figure 3.9, but it also supports
declarative traversals, as well as allowing mixing of imperative and declarative
traversals. An example of a declarative traversal can be seen in Figure 3.10.
While declarative pattern matching is possible, it is considerably less succinct
than its SPARQL or Cypher equivalents, as Gremlin focuses primarily on graph
traversal. Gremlin also supports filtering and unions, but other more complex
operation like set differences and optional matching require extra effort.

g.V().
match(

as(’tolkien’).
hasLabel(’Author’).
has(’name’, ’J. R. R. Tolkien’),

as(’tolkien’).
out(’coauthored’).
as(’book’),

as(’book’).
in(’coauthored’).
as(’coauthor’),

where(’coauthor’, neq(’tolkien’))
).
select(’coauthor’).by(’name’)

Figure 3.10: Declarative graph pattern matching in a Gremlin query.

Gremlin supports variable-length paths via the repeat() step, which offers
both do-while and while-do semantics. The repeat() step may repeat any
traversal, meaning the repeated traversal may itself consist of multiple steps.
Figure 3.11 showcases this in a query which performs a full traversal of the graph
by iteratively following edges. This traversal starts with the author J. R. R.
Tolkien, and follows outgoing edges until it gets to end nodes which have no out-
going edges. It uses the simplePath() step to eliminate any potential cycles in
the graph during traversal. It also contains another stop condition – the max-
imum traversal depth of 10 set with loops().is(10). Gremlin is also able to
return entire paths from a query.
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g.V().
hasLabel(’Author’).
has(’name’, ’J. R. R. Tolkien’).

repeat(out().simplePath()).
until(outE().count().is(0).

or().loops().is(10))

Figure 3.11: Graph navigation in a Gremlin query.

Gremlin can be used for both Online Transaction Processing (OLTP) and On-
line Analytical Processing (OLAP), meaning a Gremlin traversal can be executed
as either a real-time database query, or as a batch analytics query. Notable graph
databases implementing Gremlin are Amazon Neptune13, OrientDB14, Blaze-
graph15 and Titan16.

13https://aws.amazon.com/neptune/
14https://orientdb.org/
15https://blazegraph.com/
16https://titan.thinkaurelius.com/
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4. MMQL – A Categorical Query
Language
So far, we have examined the particulars of multi-model data, introduced a cat-
egorical model for representing said data, and we have formulated the need
for a query language to query this model. Based on requirements specified
in Section 2.6, this chapter introduces the Multi-Model Query Language
(MMQL), a query language created specifically to query the aforementioned
categorical representation. Before we introduce MMQL, the reader may get a
taste of the language by examining the example query shown in Figure 4.1.

SELECT {
?customer ordered ?productName ;

name ?customerName .
}
WHERE {

?product 49 ?productName ;
-39/36 ?order .

?order -23/21 ?customer .
?customer 3 ?customerName .

FILTER(?productName = "Lord of the Rings")
}

Figure 4.1: An example query in MMQL, retrieving customers who ordered
the Lord of the Rings book. The corresponding schema category is shown
in Figure 2.3.

MMQL is a query language for categorical data which operates on a schema
category. Its purpose is to query data in a unified way using the categorical
representation, again utilizing categorical data representation to return the data
in a unified representation. As such, if data stored across a variety of different
databases is modeled using a schema category, one can query all of that data
using a single, unified query language. Under the covers, this singular query is
translated into potentially many subqueries in the relevant databases’ own query
languages, and the results of those queries are joined to create the final query
result. We should note that MMQL is a querying-only language, it does not
aspire to handle any data modifications.

Designing a query language is no trivial task, therefore this chapter pays
special attention to the design process behind MMQL, and various key decisions
made during its design. This chapter explores the major concepts in MMQL,
but its full grammar is available in Attachment A.1. A comparison of constructs
supported in MMQL is shown in Table 4.1, where we show a feature comparison
with selected popular query languages, which are used in some of the most popular
databases in their respective models (as we discussed in Chapter 1).
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Table 4.1: Comparison of constructs supported in MMQL and in single-model
query languages [32].
MMQL PostgreSQL

(SQL)
Neo4j
(Cypher)

MongoDB Cassandra
(CQL)

FROM FROM - db.collection FROM
SELECT SELECT RETURN $project SELECT
WHERE WHERE WHERE $match WHERE
FILTER condition(s) condition(s) condition(s) condition(s)
COUNT,
MIN, MAX,
AVG

GROUP BY
... HAVING

COUNT,
MIN, MAX,
AVG

aggregate(...) GROUP BY

graph
pattern

JOIN MATCH $lookup -

OPTIONAL OUTER
JOIN

OPTIONAL
MATCH

- -

UNION UNION UNION $unionWith -
EXCEPT EXCEPT WHERE

NOT
$setDifference -

ORDER BY ORDER BY ORDER BY sort ORDER BY
OFFSET OFFSET SKIP skip -
LIMIT LIMIT LIMIT limit LIMIT
DISTINCT DISTINCT DISTINCT distinct DISTINCT
AS AS AS ”alias” :

”$field”
AS

{ SELECT
... }

( SELECT ...
)

CALL
MATCH

- -

4.1 Taking Inspiration from SPARQL
In Chapter 3, we have discussed existing graph query languages which may be
suitable for the purpose of querying categorical data. Naturally, it is easier to
modify and adapt an existing query language, than to design one from the ground
up. Not only is designing a complete grammar a complicated process, but one
must pay close attention to making sure that the language has the desired expres-
sive power, while maintaining ease of use, readability, and ease of implementation.
As such, MMQL is based on SPARQL [24], a query language for RDF [30] data
discussed in Section 3.2.1.

As a reminder, SPARQL queries operate on the concept of RDF triples -
tuples in the form of subject-predicate-object. As RDF expresses data in the form
of IRIs, all three members of said triples may be IRIs. This is actually the
catalyst of why SPARQL was chosen as the base language for MMQL - having a
language which works with global identifiers transitions easily into working with
globally-identified schema objects and morphisms. For example, in SPARQL,
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we may use the triple ?customer <http://xmlns.com/foaf/0.1/name> "Alice
Anderson" to describe a customer variable having the name Alice Anderson. An
important observation is that a schema category with its objects and morphisms
is reminiscent of an RDF graph. The basic idea of MMQL is then to replace IRIs
in SPARQL subjects and objects with references to schema category objects,
and to replace IRIs in SPARQL properties with references to schema category
morphisms. If we have a schema morphism with the signature of 42 which refers to
the relationship between a customer and their name, we can express an equivalent
triple in MMQL like so: ?customer 42 "Alice Anderson".

While it is not immediately clear that such a modification to SPARQL will
yield a reasonable categorical query language, the suggestion itself is not so far-
fetched. However, it is not yet obvious why SPARQL was chosen as the base
language for MMQL. The first reason for that has already been touched on
slightly, which is the fact that modifying an existing language is simply easier
from a development point of view. However, the more important reason is the
reason of usability - SPARQL is very good at expressing complex graph pat-
terns, including constructs like paths in a graph. When working with a more
complex schema category, it is imperative that compound morphisms are easy
to express in the query language, allowing greater readability and better ex-
pressiveness of the language. SPARQL with its property paths [33] allows the
chaining of properties into paths in the property graph, allowing the user to
express a “transitive friendship”, i.e. friends of friends recursively, using the sim-
ple form ?customer <http://xmlns.com/foaf/0.1/knows>+ ?friend, mean-
ing that the http://xmlns.com/foaf/0.1/knows occurs in the path 1 or more
times. Similarly, it is possible to chain together different properties, allowing us to
retrieve the name of a friend: ?customer <http://xmlns.com/foaf/0.1/knows>
/ <http://xmlns.com/foaf/0.1/name> ?friendName. It is this capability that
proves very important when working with categorical data, because it maps per-
fectly to compound morphisms. As such, if the respective morphisms would have
the signatures 60 and 42, we could use the MMQL notation ?customer 60/42
?friendName. This method of graph traversal is very intuitive and allows MMQL
to be very expressive when working with the schema category.

4.2 Design Process
Before we start introducing the various concepts in MMQL, we will shortly de-
scribe the process used to arrive at the current iteration of MMQL, as well as
the supporting algorithms presented in Chapter 5. Firstly, we evaluated the
graph query languages discussed in Chapter 3, and selected SPARQL as the best
candidate for adaption to a categorical domain, for reasons specified in the pre-
vious section. Afterwards, we used an iterative process where we incrementally
took concepts from SPARQL one-by-one and attempted to transition them to
work with our categorical data model. This was a very lengthy and cumbersome
process, however it was aided by a single key fact, which is the power of the
categorical model. Since the categorical model we are using has the capability
of representing multi-model data in a unified way, we only need to worry about
supporting all concepts of the categorical model itself, at which point we will
transitively support the relevant features of the various data models. Even so,
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the design process was arduous, which is why it was aided by a set of approx-
imately 20 sample scenarios, which the author of this thesis constructed to aid
in the iterative process. With each new iteration of MMQL or its supporting
algorithms, they were manually evaluated in these scenarios on paper, and notes
were made of possible issues arising from the current iteration. In this way, we
arrived at the form in which MMQL and its supporting algorithms are presented
in this thesis. These scenarios changed dramatically over time as the proposed
approach evolved, and because they are not particularly relevant to presenting
the final iteration of MMQL and its supporting algorithms, they are omitted from
this thesis.

4.3 Basic Concepts of MMQL
To see the bare bones of MMQL at work, let us look at the query shown in
Figure 4.2. Just like SPARQL, each query consists of a few main clauses, the
mandatory ones being SELECT and WHERE. We will start by introducing the WHERE
clause, since it is responsible for the selection of the data, with the SELECT clause
being responsible for projection to the desired form.

SELECT {
?customer name ?name .

}
WHERE {

?customer 42 ?name .
}

Figure 4.2: A basic MMQL query selecting customer names.

4.3.1 WHERE Clause
The WHERE clause defines a graph pattern, using triples of the form subject-
predicate-object. Each such triple must also end with a period, marking its end.
This graph pattern defines the data which should be matched by the query, as per
the schema category. A variable is defined using the syntax ?varName, with each
variable matching a specific schema object. Variables are strongly typed, meaning
it is disallowed to use the same variable in positions implying different schema
objects - if the variable ?customer is used in the position of a schema object with
a key of 10, it must always be used in that position. Unlike SPARQL, variables in
MMQL may only be placed in the subject and object positions, they may never
be in the predicate position. The reason for this decision is the fact that placing
variables in the subject position (and therefore querying schema morphisms) has
the semantics of querying the schema category itself and not the underlying data.
These semantics are not desired for MMQL, as the schema category is simply a
model of the data, and MMQL focuses on querying the data only. Looking at
Figure 4.3, we can see examples of statements one may use in the WHERE clause.
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WHERE {
// Simply traversing a morphism
?customer 42 ?name .
// Morphism traversal in the opposite direction
?name -42 ?customer .
// Chaining morphisms
?customer 55/31 ?orderNumber .
// Repeating subjects - syntactic sugar for graph patterns
?customer 42 ?name ;

55/31 ?orderNumber .
// Filtering data
FILTER(?orderNumber >= 15)
// Using aggregations
FILTER(?orderNumber = MAX(?orderNumber))
// Optional pattern - variables will be null if not found
OPTIONAL {

?customer 23 ?address .
}

}

Figure 4.3: A showcase of WHERE clause contents.

The job of the WHERE clause is to specify the data to query and bind variables
to the matched data. Semantically, the WHERE clause induces a schema category,
where each variable has its own schema object, such that there exists a homomor-
phism between this induced schema category and the original schema category.
Such a homomorphism maps all schema objects corresponding to variables to the
schema objects queried by those variables. As a result, we may think about the
data matched by the WHERE clause as forming an instance category conforming
to the aforementioned induced schema category, with other clauses of the query
operating on this instance category. However, a more practical approach to rea-
soning about this is to imagine that the WHERE clause is matching graph patterns,
and its result is a set of matching graph patterns, where each pattern contains a
set of variable bindings to their real values. The other clauses would then operate
on these graph patterns found within the data, performing tasks like projection
or ordering.

4.3.2 SELECT Clause
At first glance, the SELECT clause looks a lot like the WHERE clause, which is be-
cause both clauses specify some kind of graph pattern. However, their semantics
are very different. It is the job of the SELECT clause to project the matched data
to a shape which is desired for the output of the query. Just like in SQL one
might want to only query certain properties, or to return them in a given order,
in MMQL, one may choose the schema to which the query results will adhere.

The SELECT clause uses new morphism definitions, not the ones from the
schema category. This allows the user to not just select parts of existing data
in the same shape it is already in, but change the shape of the data altogether.
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SELECT {
// Define new morphisms using alphanumeric identifiers
?customer name ?customerName .
// Form more complex graph structures
?customer ordered ?product .
?product name ?productName .
// Syntactic sugar also applies here
?customer name ?customerName ;

ordered ?product .
// Syntax for a blank node - node without data
// This is useful for creating new shapes in the graph
?customer details _:customerDetails .
_:customerDetails name ?customerName .
// Aliasing and aggregations
?customer orderedNum COUNT(DISTINCT ?productName) AS ?numProds .

}

Figure 4.4: A showcase of SELECT clause contents.

Morphism definitions having user-defined names is useful, because for example if
the user then takes the query results and converts them into JSON1, the JSON
document will not only have a meaningful structure, but its properties will be
aptly named. Please refer to Figure 4.4 for examples of statements possible within
the SELECT clause.

Again, the SELECT clause has some specific semantics in terms of category
theory. The SELECT clause induces a new schema category, and the results of
the query form an instance category adhering to this schema category (which is
different from the schema category used to model the data).

Observant readers who are already familiar with SPARQL may note that the
MMQL SELECT clause looks similar to the SPARQL CONSTRUCT clause, which
is not a coincidence. Both clauses specify a graph pattern rather than a list of
variables to return. However, because MMQL is a categorical query language, it
also returns data in the categorical representation. It is naturally expected that a
user may want to get the data in a more practical representation (such as JSON
or RDF), however, this is not part of the query language, but rather is something
that is handled by the tooling around MMQL. The topic of transforming data
outputted by the query is expanded on further in Section 5.2.8.

It is also worth mentioning the optional FROM clause, which may be present
between the SELECT and WHERE clause together with a schema category identi-
fier. In the case that a particular MMQL query engine contains multiple defined
schema categories, this gives the user the option to specify the one they wish to
query. If there are multiple schema categories but the FROM clause is omitted, it
is up to the query engine to decide which schema category is the default one to
use in such cases.

1https://www.json.org/json-en.html
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4.4 Advanced Concepts of MMQL
So far, we have presented a sufficient amount of information for a reader to pick up
MMQL at a very basic level. However, eventually, users will need more advanced
constructs present in other query languages, like those pertaining to ordering or
aggregating data. This chapter expands on those concepts, in no particular order.

4.4.1 ORDER BY Clause
Data ordering is a necessity for any query language, and MMQL naturally does
include it. Figure 4.5 shows the usage of ordering in MMQL - let us consider some
items for which users are able to submit reviews with their ratings. As shown,
we can use MMQL to calculate the average user rating for each item, and order
those items by their average rating in descending order.

SELECT {
?item averageRating AVG(?rating) AS ?avg .

}
WHERE {

?review 40 ?item ;
42 ?rating .

}
ORDER BY ?avg DESC
LIMIT 10
OFFSET 20

Figure 4.5: A showcase of the ORDER BY, LIMIT and OFFSET clauses.

Semantically, if we consider the SELECT clause to return graph instances, then
the ORDER BY clause introduces a higher-order graph, which dictates the relative
ordering of those graph instances. In other words, we divide up the instance cat-
egory corresponding to the SELECT clause into maximally connected components,
and assign ordering to those components based on the ordering parameters.

4.4.2 LIMIT and OFFSET Clauses
To facilitate the incremental querying of a large amount of data, MMQL includes
the LIMIT and OFFSET clauses. These clauses respectively limit the number of
graphs matching the SELECT clause to return, and skip a specific number of them
with respect to their ordering.

It only makes sense to use the LIMIT and OFFSET clauses when grouped to-
gether with ORDER BY, as without it, the order of the results is undefined. As
such, iteratively using OFFSET and LIMIT without ORDER BY may yield duplicate
or missing records, depending on the implementation of MMQL and the state of
underlying data in the data stores.
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4.4.3 Advanced Graph Manipulation
While simple graph patterns introduced so far may be sufficient to get the job
done in most scenarios, the advantage of MMQL is its great expressiveness when
it comes to graph patterns. This subsection introduces a few helpful concepts in
MMQL which will help the user write more expressive and readable queries.

Morphism traversal and chaining was introduced in Figure 4.3, but let us
examine its semantics in more detail. When specifying a graph pattern of the form
?customer 55/31 ?orderNumber, that is semantically equivalent to specifying
the triples ?customer 55 ?order and ?order 31 ?orderNumber. However, it
may still be useful to use morphism chaining whenever possible, as depending on
the MMQL implementation, the query engine may optimize the query execution
by discarding data which is not actually needed in the query, even if it is part of
the queried subgraph. Morphism chaining may include the following modifiers: |
to introduce alternative paths, ?, * and + with the same semantics as in regular
expressions (optional, repeated any number of times and repeated at least once,
respectively), together with brackets () to control precedence. However, do note
that in order for a repeated morphism to be valid, it must form a cycle in the
schema category, otherwise such repetitions would not be possible.

SELECT {
_:sameOrder customer ?customerA ;

customer ?customerB ;
product ?productName .

}
WHERE {

?customerA 55/36/12 ?productName .
?customerB 55/36/12 ?productName .

FILTER(?customerA != ?customerB)
}

Figure 4.6: A query selecting two different customers who ordered an item with
the same name.

The inquisitive reader may have started to wonder what happens if the same
variable is used multiple times in the query. By the principle of least surprise,
this notation (showcased in Figure 4.6) means that all occurrences of the same
variable refer to the same value. This is useful in cases similar to the one shown
in Figure 4.6, where we want to use a graph pattern to specify that multiple
sources point to the same thing. This would have been also possible to express
without this feature, simply using different variables together with FILTER, how-
ever this feature greatly aids the expressiveness of MMQL.

4.4.4 Data Types
MMQL considers a few primitive data types, aside from categorical data: strings,
integers, and booleans. This set of data types may however be freely extended.
SPARQL supports working with floating-point numbers, dates or language-tagged
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strings, and in principle, there is nothing preventing MMQL from being extended
to do so as well. In addition, the set of filtering operations in MMQL may also be
freely extended together with the set of data types, allowing the future inclusion
of features like regular expression matching.

4.4.5 Filtering and Aggregation
FILTER clauses may be used to introduce selection into the query, with the valid
operators being = (equality) and ! = (inequality), as well as four other comparison
operators: <, <=, >, >=.

In addition to FILTER clauses, MMQL also offers VALUES clauses, which con-
strain a variable to a set of possible values, specified in the form of VALUES ?var
{ "value1", "value2" }.

Aggregations naturally may be used as one of the operands of a comparison
expression, as well as elsewhere in the object position in a triple. The available
aggregation functions are COUNT, SUM, AVG, MIN and MAX.

4.4.6 Set Operations
As shown in Table 4.1, MMQL also supports set operations in the capacity that
one would expect a fully-fledged query language to support them.

SELECT {
?customer boughtOrReviewed ?productName .

}
WHERE {

{
?customer 60/34 ?productName .

}
UNION
{

?customer 76/34 ?productName .
}

}

Figure 4.7: Using UNION in MMQL.

The UNION statement combines the result sets from two graph patterns in
the WHERE clause. Such a case is shown in Figure 4.7, where we can see a query
selecting a list of product names for each customer, that the customer bought
or reviewed. While both patterns combined by UNION do not necessarily need to
have an identical structure, all variables used in SELECT must have their value
definitely bound in all UNION variants. This rule applies in other situations as
well - the only time when variables are allowed to be unassigned is when they are
part of an OPTIONAL statement, which accepts a graph pattern and marks it as
optional, leaving its variables unbound if its pattern is not present in the data.

The MINUS statement again takes two graph patterns, and results in solutions
which are compatible with the first graph pattern, but not the second one. This is
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SELECT {
?customer bought ?productName .

}
WHERE {

?customer 60 ?product .
?product 34 ?productName .
MINUS {

?product 34 "Lord of the Rings" .
}

}

Figure 4.8: Using MINUS in MMQL.

showcased in Figure 4.8, where we can see a query returning customers and their
purchased products, but not returning any customers who happened to order the
Lord of the Rings book.

The reader may notice that while query languages like SQL often also possess
an INTERSECT clause representing set intersection, MMQL does not. This is by
design, as modeling set intersection in terms of graph patterns simply means
merging the patterns into a single one, returning matches for both patterns.

4.4.7 Subqueries
Naturally, the expressive power of MMQL is not sufficient for some queries as
defined so far. For example, let us consider the situation where we want to find
out the highest rating given to any item by any user, and we want to select all
items having received such a rating. This is not achievable with a single query in
MMQL, since we need to perform a calculation across all instances of a particular
kind, and then continue working with that value.

Therefore it is necessary to use query nesting - MMQL supports writing
queries inside the WHERE clause of higher-level queries. In such a case, variables
from the SELECT clause of the nested query are bound into the context of the
WHERE clause of the containing query. We can see this happening in Figure 4.9,
where an inner query computes the maximal rating given to any product, with
the instance category for the inner query SELECT clause just containing a single
active domain row for the maxRating object, having the value of the maximal
product rating. As a result, we can bind the variable into the context of the con-
taining query, and filter only products which have received the highest available
rating in any review.

It should be noted that joining the inner SELECT variables into the outer WHERE
clause only works when there is a common variable to use as a join point. The
reason why this join point is not required in Figure 4.9 is that it can be inferred
from the shape of the inner SELECT clause that it will only contain a single active
domain row, and can therefore be used as a constant in the outer query.

There is a tradeoff to take note of here in connection to the way nested queries
are joined to parent queries. As presented, it is not valid to form subqueries in
which the schema permits multiple active domain rows without a join point.

39



SELECT {
?product hasMaxRating ?rating ;

name ?productName .
}
WHERE {

?review 40 ?product ;
42 ?rating .

?product 34 ?productName .

{
SELECT {

_:maxRating rating MAX(?oneRating) as ?maxRating .
}
WHERE {

?review 40 ?product ;
42 ?oneRating .

}
}

FILTER(?rating = ?maxRating)
}

Figure 4.9: Nested query in MMQL.

However, there may be queries which will always return a single active domain
row despite their schema allowing them to return multiple (for example if we
filter the set of customers by their ID). In these instances, it may be desirable
to defer the validation of the subquery join point until the subquery has already
been executed, and to allow the joining of queries which only contain a single
active domain row regardless of their result schema. However, this would mean
that the validity of such a query cannot be verified without executing it. As such,
we posit that both approaches are valid, and we chose the former approach due
to its user-friendliness.

4.4.8 Grouping
The perceptive reader familiar with SPARQL may have noticed that we did not
mention the inclusion of the equivalent of SPARQL’s GROUP BY in MMQL. This
is not an accident, but rather a conscious decision, which was made in light of
the fact that MMQL already implicitly supports grouping in another way. In the
context of grouping without aggregation, there is not much to consider, as this
can be achieved using graph patterns.

However, in the context of aggregations across grouped sets of solutions, things
get more interesting. Aggregations in MMQL are evaluated based on the depen-
dence of variables on other variables, which is best demonstrated using the query
shown in Figure 4.10 as an example. Let us examine the SELECT clause in this
query, where we can see that the value of the ?rating variable is dependent
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SELECT {
?product name ?productName ;

avgRating AVG(?rating) AS ?avgRating .
}
WHERE {

?review 40 ?product ;
42 ?rating .

?product 34 ?productName .
}

Figure 4.10: MMQL query containing implicit grouping.

on the value of the product variable2. For this reason, the aggregation of the
?rating variable is also dependent on the value of the ?product variable, ef-
fectively meaning that it will be evaluated separately for each product. The
equivalent PostgreSQL query which could be generated from the MMQL query
in Figure 4.10 is shown in Figure 4.11.

SELECT product.name, AVG(review.rating)
FROM review INNER JOIN product ON review.productId = product.id
GROUP BY review.productId

Figure 4.11: SQL query equivalent to the MMQL query shown in Figure 4.10.

For completeness, we will also mention that aggregations across an entire
kind are also possible in MMQL. An example of this was already shown in the
subquery of the query shown in Figure 4.9. This is achieved by simply making
the aggregation not depend on any variables other than the aggregated variable
itself.

2This is achieved using morphism contractions, which are explained later in Section 5.2.7.
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5. Algorithms for Implementing
MMQL
Having proposed a multi-model query language called MMQL in Chapter 4, in
theory we could now start writing queries encompassing multiple data models.
However, designing such a language is only half the work. Naturally, for a query
language to be useful, it must also be executable. Designing the supporting
algorithms which are necessary for the implementation of a query language is far
from trivial, which is why we will spend a considerable amount of effort describing
them in this chapter. A very rough basis of an approach for unified multi-model
querying based on category theory was first outlined by Pavel Koupil and Irena
Holubová [6] as part of the potential future applications of their proposed unified
categorical representation of multi-model data. This chapter builds on their initial
ideas, developing them into a set of fully-fledged algorithms which support the
implementation of our proposed query language – MMQL.

As the implementation effort itself is also non-trivial, we will separate it into a
separate chapter altogether, and in this chapter, we will only focus on the design
of the algorithms themselves. The algorithms presented in this chapter form
the basis of MM-quecat, a proof-of-concept implementation of MMQL described
in Chapter 6.

5.1 Proposed approach
Since we want to reuse existing database systems as they are, our querying ap-
proach must necessarily rely on the translation of MMQL queries into queries in
the databases’ native query languages, subsequently transforming the retrieved
data into our categorical representation. However, to enable us to reason better
about the whole approach, let us first describe it from a very high level view. As
such, we can divide our proposed approach into the following steps:

1. Create a set of query plans. Analyze the query and prepare a plan of which
data from which databases should be used during the query execution. In
the case of data redundancy, multiple alternative query plans are created.

2. Create a join plan for each query plan. Given a query plan, joining data
from different databases may be required. The point of a join plan is to
define the join points for the query plan, as well as the data which will be
necessary from both ends of the join point to perform the actual join.

3. Select the best query plan. If there are multiple possible query plans due
to data redundancy, the best query plan must be selected by the query
planner, if a specific plan was not explicitly requested by the user. Note
that this step may need to come after the query part translation step instead
if the query planner needs to use the generated native queries to make an
estimation of the cost of the entire query.

4. Process individual query parts. If we consider a query part to be a self-
contained unit of execution, we need to translate it into a database-native
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query. We define query parts in such a way that it is always possible to
translate a single query part into a single native query.

5. Merge query part results. When we have the native database query for each
query part, we need to execute it, transform the result into the categorical
representation, and merge the retrieved data together.

6. Perform projection on the result. After merging all query part results into
a single one (corresponding to the contents of the entire WHERE clause of the
query), we need to project the results to the desired final representation as
described by the SELECT clause, before returning them to the user. Also,
there may be some MMQL statements which cross database boundaries,
which makes them impossible to execute fully within the context of a single
query part. Therefore we need to execute these deferred statements in this
step.

7. Transform the result into the desired format. Since an instance category
may not be the desired output format for many use cases, this optional
step lets users specify which format the query results should be returned
in, like JSON or RDF.

An example of a query being processed may be seen in Figure 5.1. The steps
as shown in the diagram do not correspond one-to-one to the steps outlined in
this chapter, but the overall flow is the same. Figure 5.1 comes from a conference
demo paper which the author of this thesis coauthored with Pavel Koupil and
Irena Holubová, but which is not yet published at the time of writing of this
thesis [32].

As we will see later on in this chapter, a number of tradeoffs were involved
in the formation of this version of the proposed approach. Since MMQL and its
supporting algorithms are attempting to break new ground in a sparsely studied
area, our main goals for this approach were simplicity and comprehensibility,
with performance not being a large focus point. Considering we are proposing
one of the first ever unified querying solutions for the multi-model, multi-database
environment, we are aware that any solution we propose at this stage will have
limitations and weaknesses, which is why we focus on designing a simple solution
first, analyzing its limitations, and pointing out what may be improved by future
works on this topic.

5.1.1 Database Wrappers
As we divide the MMQL query into separate query parts, the idea is for each
query part to be a self-contained unit of execution which compiles down to a single
native database query, regardless of the specific database. We also wish to design
our algorithms to be database agnostic, as the spectrum of multi-model databases
is vast, and we do not want to confine ourselves to a specific set of them. Both
of these facts motivate the concept of database wrappers, which encapsulate the
specifics of each database and its native query language behind a generic interface.
As the general idea of the wrappers is encapsulation of database-specific logic,
we have two main requirements for the design of this generic interface:
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SELECT {

    _:friendsOrders friend ?friendA ;

        friend ?friendB ;

        numProds COUNT(DISTINCT ?comProd)

            AS ?numProds .

    ?friendA name ?friendAName ;

        surname ?friendASurname .

    ?friendB name ?friendBName ;

        surname ?friendBSurname .         

} WHERE {

    ?friendA -4/5 ?friendB .

    FILTER(?friendA < ?friendB)


    ?friendA -9/19/-12/-13 ?comProd ;

        1 ?friendAName ;

        3 ?friendASurname .

    ?friendB -9/19/-12/-13 ?comProd ;

        1 ?friendBName ;

        3 ?friendBSurname .

} ORDER BY ?numProds DESC

Phase I: Multi-model querying

Phase II: Query decomposition into query parts

Phase III: Query parts translation into DSL

Phase IV: Evaluation of a translated query part (locally)

Id
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MATCH (a:Customer)-[:Friends]->(b:Customer)

RETURN a.id, a.name, a.surname, b.id, b.name, b.surname;

db.order.find(

  { },

  { _id: 0, customerId: 1, "items.productId": 1 } );

Id
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Name
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1

2

3

4 5 Id Customer Orders Product

Items

Id

Order
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a.surname
Smith

Maxwell
Newlin

a.name
Mary
Anne
John

a.id
1
2
3

b.surname
Maxwell
Newlin
Smith

b.name
Anne
John
Mary

b.id
2
3
1

 { customerId: 1, items: [
     { productId: P5 }, { productId: P7 }, { productId: P29 } ] }

 { customerId: 2, items: [

     { productId: P11 }, { productId: P29 } ] }


 { customerId: 3, items: [
     { productId: P11 }, { productId: P29 }, { productId: P7 } ] }


Phase V: Transformation into unified representation

Phase VI: Finalization of query evaluation

Phase VII: Transformation into desired representation

friendASurnamefriendAName friendBSurnamefriendBName numProds

SmithMary MaxwellAnne 1
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2 Anne Maxwell
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_

Anne Maxwell
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_:3 _:1
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Mary Smith John Newlin

_31 2

2

P5 P7 P29

_

Figure 5.1: A diagram showing the full querying workflow [32].

44



• The interface should be general enough to allow the addition of any database
system which we may reasonably expect to support;

• The interface should abstract away all categorical concepts from the wrap-
pers’ implementations where possible to make supporting new databases
easier; and

• The order in which wrapper interface methods are called should be irrele-
vant.

Perhaps the last goal is worth elaborating on – since MMQL allows the def-
inition of statements in any order, it is also desirable for our query translation
algorithm to be able to process these statements in any order. For this reason,
all methods in the wrapper interface will make the wrapper simply ”remember”
this operation, and finally, when the entire query is processed, a finalization
method will be called on the wrapper, building the native query. In this way,
the database wrappers operate similarly to a builder object in the builder design
pattern [34]. With these goals in mind, we propose the following methods for the
generic database wrapper interface:

• defineKind(kindId, kindName) which is an initialization function, as-
signing the identifier kindId to the kind name kindName. The kind name
refers to for example table names in PostgreSQL or collection names in
MongoDB. Note that a single kind name can be registered multiple times
under different identifiers, in which case its data is retrieved independently
multiple times.

• addProjection(propertyPath, kindId, variableId) which adds projec-
tion of a specific property to a query, i.e. given a specific kind, this method
will add the specified property of this kind to the native query output.

• addFilter(variableId, filterOp, constant) which constrains the value
of a property identified by variableId to a logical relation specified by
filterOp (such as equality or inequality), using constant as the second
operand. Note that the variable variableId does not need to exist before
this method is called, as the validation is delayed until the moment of
generation of the native query. In addition, we also consider an overload
addFilter(propertyPath, kindId, filterOp, constant) which does not
require its filtered property to be a part of the projection, instead specify-
ing the path directly. This overload is necessary because of triples which
contain constant literals.

• addFilter(variableId1, filterOp, variableId2) which creates a relation-
ship between the values of two variables, eliminating solutions where this
relationship is not satisfied. This can be used together with aggregations,
whose results have their own variable identifiers.

• addValueSet(variableId, constants) which constrains the value of a prop-
erty identified by variableId to the set of values provided in constants.
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• addJoin(kindId1, kindId2, joinProperties) which performs a join oper-
ation on the two kinds provided. Note that we call it a join operation, but
for example, in the case of the graph model, this entails a graph traversal
rather than a join in the relational sense.

• addRecursiveJoin(recursiveJoinPath) which performs a series of recur-
sive joins between various kinds in the query part (if recursion is supported).
If we have a morphism with repetition, its domain must necessarily be the
same as its codomain, otherwise it would not be possible to repeat it. This
kind of recursive joining is useful in cases of transitive relationship traversal
(for example finding all superiors of a given company employee), and it is
generally supported in the relational model with recursive common table
expressions1, and in the graph model with variable length paths2.

• addAggregation(aggregationType, aggregationRootKindId,
rootIdPaths, kindId, propertyPath, variableId) which performs an ag-
gregation of the specified type on the specified property of the specified kind.
The aggregation may have multiple possible roots (for example averaging
the item price for a set of customers, each of whom has made multiple or-
ders with multiple items - should we average the items per order, or per
customer?), and for this reason, the aggregation root is also specified, along
with one of its identifiers. The result of this aggregation is stored in the
variable identified by variableId.

• buildQuery() which takes the information collected from all method calls
on this wrapper and generates the native database query based on it.
This method contains the majority of the actual wrapper logic, with the
other methods mostly just storing the arguments for processing by this
method. The result of this method is a tuple (nativeQuery, variableMap),
where nativeQuery is the built native query in a string representation, and
variableMap contains a map of variable identifiers included in the projec-
tion to property paths within the native query result.

Naturally, not all databases support all of these operations, for example Cas-
sandra does not support joins3. For this reason, each database wrapper also
exposes the following properties about the functionality the underlying database
has:

• isJoinSupported which specifies whether the database supports (inner)
joins. For example, most relational databases do, as do graph databases
in the form of graph traversals. Document databases may support joins,
but for example MongoDB only supports left outer joins. Naturally, the
inner join operation can be emulated using the left join operation, but the
wrapper implementer may not want to support this due to the involved
complexity. Finally, some databases like Cassandra do not support joins of
any kind.

1https://www.postgresql.org/docs/current/queries-with.html
2https://neo4j.com/docs/cypher-manual/current/syntax/patterns/

#cypher-pattern-varlength
3We only consider the built-in capabilities of the given databases, not user-defined proce-

dures.
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• isOptionalJoinSupported which specifies whether the database supports
optional (left outer) joins. This is necessary because of the OPTIONAL clause
in MMQL. In the situation that optional joins are not supported, the joins
must be performed at the categorical level.

• isNonIdFilterSupported which specifies whether the database supports
filtering of properties outside of the identifier set of the root object of a
given kind. For example, many key-value databases treat stored values as
opaque objects, not allowing filtering based on their value, but only their
retrieval.

• isCountAggregationSupported which specifies whether the database sup-
ports the COUNT aggregation. We also define a corresponding property for
each type of aggregation supported in MMQL.

• isRecursionSupported which specifies whether the database supports re-
cursive queries, which may necessitate the recursive joining of kinds. Such
joins are generally supported in relational and graph databases, and allow
the traversal of tree or graph structures in a single query.

For each interface method mentioned, we will also define an optional coun-
terpart which means that this operation should be included in the query, but
with optional semantics. In some cases, the implementations will be identical
(for example in SQL, adding projection on an optional column will return NULL
if that column is not set for a particular row). However, in some cases, there
may be differences (for example in SQL, we would generate an inner join for a
non-optional join operation, whereas we would generate a left outer join in the
optional case). When defining the interface methods, we used a set of arguments
which must also be explained in detail:

• propertyPath is an ordered list of property names, forming a traversal from
the kind root to a leaf property. This property path, along with name
information (for example, whether the name is dynamic), also carries the
property type at each level, in order to allow database wrappers to correctly
deal with nested objects and arrays. The argument rootIdPaths is a list of
property paths.

• kindId is the identifier of the kind to which this operation applies. This
identifier can be mapped to the kind name configured in the database wrap-
per at initialization time. The inclusion of an identifier instead of a name
allows us to query the same kind multiple times within a query part, for ex-
ample joining customers together with other customers based on the equal-
ity of their names. Similarly, kindName refers to the name of the kind
identified by kindId in its respective database.

• variableId identifies the output field of the native query. We cannot gen-
erally make assumptions about how the query output may be structured,
as this decision is ultimately up to the database wrapper. For this reason,
whenever defining a property which should be part of the native query out-
put, we assign it a variable identifier. When the native query is compiled,
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the database wrapper returns a mapping of variable identifiers to concrete
property paths within the query output, allowing us to parse this output
into a categorical representation correctly.

• joinProperties contains a set of tuples, with each tuple containing a prop-
erty path within the corresponding kind. These tuples define join points for
the join operation. Note that a limitation of our approach is that we only
support joins on equality. In theory though, joins with more complicated
conditions could also be supported.

• aggregationType specifies the type of aggregation which should be per-
formed, like counting or averaging.

• recursiveJoinPath is a list of join path segments, where each join path
segment may either be a tuple (kindId1, kindId2, joinProperties) symbol-
izing a join between two kinds, a path segment with a repetition specifier
(?, ∗ or + as in regular expressions), or multiple path segments chained
together. In this way, we can represent arbitrary morphism paths with
repetitions as sequences of joins between kinds, with some subsequences
optionally repeated as necessary. Note that whenever a path segment is
repeated, its first kind must be the same as its last kind in order for the
repetition to be valid.

With the database wrapper interface specified, we can see that in its simplest
form, implementing a database wrapper is actually rather straightforward. In
order to support a new database in the most minimal form possible, we can
simply implement the function addProjection, at which point we will be able
to query any data from this database, even though we would not be able to filter
this data or perform joins and aggregations at the database level, forcing them
to be executed in a slower way at the instance category level.

5.2 Algorithms
In Section 5.1, we described the high-level steps involved in our proposed ap-
proach for the implementation of MMQL. In this section, we will examine the
outlined steps in greater detail, specifying a concrete algorithm for each, as well
as discussing the presented algorithms and their weaknesses.

Before we start discussing the particulars of the individual algorithms, we need
to discuss one key characteristic of our proposed approach. As we attempted to
divide the whole approach into a number of well-defined, easily digestible algo-
rithms, we were faced with a decision. On one hand, we could try to propose an
algorithm which attempts to translate the query as a whole into native database
queries, taking into account all parts of the MMQL query such as projection
and ordering. However, as we discovered during the design process, such an ap-
proach would result in a monolithic, very complex algorithm which is hard to
reason about, making its modifications or analysis impractical. For this reason,
we opted for a simplification in this matter – when creating a query plan and
dividing the query into query parts, we only consider the contents of the query’s

48



WHERE clause, as this clause is actually the only truly necessary part for the re-
trieval of data from databases. In this way, we are able to limit the query part
translation algorithm to a set of graph patterns and a few other concepts. This
has some implications for the possible performance of our approach, as all query
elements outside the scope of the WHERE clause must be handled by the MMQL
query engine, which is undoubtedly much less efficient than using native database
queries where possible. However, as a whole, this allowed us to greatly simplify
and modularize the proposed algorithms.

In general, we will discuss performance optimization possibilities when pre-
senting the algorithms, but we will not include these optimizations in the algo-
rithms themselves for the sake of simplicity.

5.2.1 Query Preprocessing
As mentioned in the introduction to this chapter, when constructing native
database queries, we will only consider the WHERE clause of the MMQL query.
However, before we proceed with the main parts of the querying process, we need
to perform a couple of additional steps first. One thing which needs to be done
is general adjustments to the query structure to make its processing easier in the
following steps. However, as the WHERE clause has the semantics of inducing a
schema category, we will also need to construct this schema category for further
usage. In addition to constructing this schema category, we will also need to
construct the corresponding mappings. Lastly, query validation should be a part
of this process, like the validation of variable types. We will not present any val-
idation algorithms as they would be relatively straightforward, and for the rest
of this chapter, we will assume that input queries are well formed and valid. The
full query preprocessing algorithm is shown in Algorithm 5.1, and we will shortly
discuss its constituent parts in greater detail.

Query Modifications

In Chapter 4 during the introduction of MMQL, we mentioned its power in the
form of graph patterns, including constructs like ending triples with a semicolon
instead of a period to repeat the same subject in multiple triples. However, as
these constructs are simply syntactic sugar, we convert them to sets of triples
with an explicitly specified subject to simplify their further processing (lines 1-9
in Algorithm 5.1).

The most interesting part of the query preprocessing step is compound mor-
phism decomposition (lines 10-20 in Algorithm 5.1). Recall that in MMQL, we
may specify compound morphisms using the syntax 55/31, meaning the traver-
sal of morphism with signature 55, followed by the traversal of morphism with
signature 31. Again, as we attempt to make the query processing simple, we
decompose all compound morphisms into base morphisms4, inserting technical
temporary variables with unique names in between the base morphisms. An ex-
ample of this can be seen in Figure 5.2, where we can see a triple containing a
compound morphism, and the decomposed representation of this triple. As far

4For the purposes of the algorithms in this chapter, we will consider base morphisms to be
traversals of a base morphism in any direction.
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Algorithm 5.1: Query Preprocessing Algorithm.
Input: SELECT – query SELECT clause

WHERE – query WHERE clause
1 foreach graph pattern P in SELECT ∪ WHERE do
2 if P has repeated subject subject and morphism morphism then
3 delete P from query
4 foreach object in P do
5 add triple subject morphism object to query

6 else if P has repeated subject subject then
7 delete P from query
8 foreach morphism, object in P do
9 add triple subject morphism object to query

10 foreach triple subject, morphism, object in WHERE do
11 if morphism is compound and not repeated then
12 b := getBaseMorphisms(morphism)
13 delete triple subject morphism object from WHERE
14 prevV ar := subject
15 foreach baseMorphism in b do
16 if baseMorphism is the last element in b then
17 newV ar := object

18 else
19 newV ar := getUniqueVarName()
20 add triple prevV ar baseMorphism newV ar to WHERE

21 foreach triple subject, morphism, object in WHERE do
22 if morphism is base then
23 if morphism is −oppositeMorphism then
24 delete triple subject morphism object
25 add triple object oppositeMorphism subject
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as MMQL is concerned, both of these constructs are semantically equivalent. Fi-
nally, for each morphism, we can also traverse it in the opposite direction with
the MMQL unary minus operator. Without loss of generality, we can reverse the
direction of traversal for base morphisms along with swapping the subject and
object, which simplifies further processing of these opposite-direction traversals
(lines 21-25 in Algorithm 5.1).

WHERE {
// Compound morphism before preprocessing
?customer 55/31 ?orderNumber .

// Decomposed compound morphism with inserted variable
?customer 55 ?51d747110d95 .
?51d747110d95 31 ?orderNumber .

}

Figure 5.2: Compound morphism decomposition.

Note that compound morphism decomposition only applies to compound mor-
phisms without repetition. When morphisms with repetition are encountered,
they are left intact, as it may be necessary to form recursive queries in this in-
stance, and it is not possible to decompose morphisms with infinite upper bound
repetition.

The inquisitive reader may raise the question of optimization – is it possi-
ble for the query engine to omit ”useless” data along the path of the compound
morphism, only retrieving the data necessary for the query variables? However,
recall Chapter 2 where we introduced the notion of the schema and instance cate-
gory. The instance category must conform to its corresponding schema category,
meaning that if our schema category has base morphisms 55 and 31, these mor-
phisms must also exist as instance morphisms, making this kind of optimization
impossible if we intend to stick with the categorical model throughout the pro-
cess. Not all hope is lost though, as there is a way to make this optimization
work. If the query engine notices that a particular set of morphisms is only ever
traversed together in a compound morphism, it could perform a contraction of
these morphisms in the schema category, defining a new schema category where
this compound morphism is transformed into a single base morphism. In this
fashion, the instance category would now contain the formerly compound mor-
phism as a base morphism, allowing the query engine to omit irrelevant data from
the query plan.

Constructing the Schema Category

As we mentioned in the introduction of this subsection, before we may continue
with the rest of the process, we must first construct the schema category induced
by the WHERE clause, which will be used in the following subsections. The original
schema category which the query was made with is therefore only used as the
input for the algorithm for the construction of the schema category induced by
the WHERE clause, which we will introduce shortly. The same applies to the
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original mappings, which must also be adjusted. However, before we explain how
this is done, we should mention why it needs to be done. In fact, if we have a
query which contains a maximum of one variable per schema object, this step
is totally unnecessary. The reason for the existence of this step is queries which
have multiple variables corresponding to the same schema object (for example,
recall Figure 4.6, showing a query selecting two different customers who purchased
an item with the same name). In this case, we need a way to separate the values
of both variables, as their possible sets of values may not be the same.

To solve the issue of multiple variables per schema object, we propose a modifi-
cation to the original schema category. We will not provide an explicit algorithm
for this, as its creation from the following definitions is straightforward. Let
S = (OS, MS, ◦S) be the original schema category (recall Section 2.3), and let
VarW HERE be the set of variables in the query WHERE clause. We will define
SW HERE := (OSW

, MSW
, ◦SW

) For each var ∈ VarW HERE and o ∈ OS, we define
a schema object ovar ∈ OSW

whose instances will contain the values of variable
var. Additionally, as the query does not need to contain all (or any) identifiers of
any particular schema object which is part of the query, we also add all schema
objects necessary for all identifiers of all objects ovar ∈ OSW

to OSW
. These ad-

ditional objects are inserted separately for each ovar ∈ OSW
, they are not shared

in the case that multiple variables refer to the same schema object in S.
For each ovar1, o′

var2 ∈ OSW
and m = (s, o, o′, min, max) ∈ MS, if the triple

?var1 s ?var2 exists in the WHERE clause, then we define
mvar12 := (svar12, ovar12, o′

var12, min, max) ∈ MSW
. In addition, just as we did

with schema objects, we will define the required morphisms to satisfy all identifiers
of all ovar ∈ OSW

to be part of MSW
. Using these definitions, we will also consider

morphism signatures s to be equivalent to svar12 when used in triples of the form
?var1 s ?var2 in the rest of this chapter when working with SW HERE. This
allows us to reason more simply about the query processing algorithms, as we can
keep using signatures specified in the query to refer to corresponding signatures
from SW HERE, since given a triple, this mapping is always unambiguous.

Finally, we define ◦SW
to be the natural extension of ◦S over MSW

. We show
an example of the construction of this induced schema category using a schema
category shown in Figure 5.3 and a query shown in Figure 5.4, with the schema
category induced by the query’s WHERE clause being shown in Figure 5.5. Note
that the Surname schema object is missing, as it is not part of the query’s WHERE
clause, nor is it part of any object’s ids.

We need to mention that the WHERE clause may contain the OPTIONAL, UNION
and MINUS clauses in addition to graph patterns and filters. As far as the gener-
ation of the new schema category goes, OPTIONAL is quite simple, as we simply
consider its contents the same way as non-optional graph patterns, save for mod-
ifying the morphism cardinality at join points to have a minimum of zero, as the
optional parts may or may not exist. It is remarkably similar for MINUS, where
we can treat the forbidden pattern as an optional pattern, using it to filter the
final result set. In the case of UNION, we simply consider both of its operands to
be optional as far as the schema category is concerned.

As for nested queries, they are evaluated recursively from the most nested
to the least nested, and their results are joined to the containing query’s WHERE
clause. This means that at the level of the schema category, we simply need to
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Figure 5.3: A sample schema category showing a set of customers in a relational
database, and a set of orders in a document database, with each order containing
the identifier of the ordering customer.

SELECT {
_:shared name ?sharedName ;

price ?sharedPrice .
}
WHERE {

?customer1 2 ?sharedName ;
-4 ?order1 .

?customer2 2 ?sharedName ;
-4 ?order2.

?order1 6 ?sharedPrice .
?order2 6 ?sharedPrice .

}

Figure 5.4: A query returning two customers with the same name who placed an
order with the same total price, corresponding to the schema category shown in
Figure 5.3.
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Figure 5.5: Schema category induced by the WHERE clause of the query shown
in Figure 5.4.

define the appropriate schema objects corresponding to the results of the nested
query.

Constructing New Mappings

With the new schema category SW HERE in hand, we naturally also need to ad-
just the set of mappings M corresponding to S to be valid for SW HERE. This is
necessary because these modified mappings MW HERE will be used for the genera-
tion of query plans and the translation of query parts to native database queries,
both of which operate on the SW HERE schema category. Before continuing, it is
recommended that the reader is intimately familiar with the concepts introduced
in Section 2.5. It is also worth remembering that for queries with at most one
variable per schema object, this operation is effectively a no-op, and its purpose
is to correctly handle queries with multiple variables per one schema object.

As we mentioned earlier, we restrict our approach to queries for which every
property selection from a kind must necessarily contain the entire property path
from the root. For this reason, it is sufficient to examine only kinds whose root
objects are present in the query.

Given M, let us define MW HERE in the following way. For each mapping
m ∈ M with root object o, discard it if its root object is not part of the query.
Otherwise, for each ovar ∈ OSW

, we define mvar ∈ MW HERE. For each property
ϕ ∈ m, we define the corresponding property ϕ′ ∈ mvar recursively by replacing
occurrences of signatures s ∈ S with signatures svarxy ∈ SW HERE for the cor-
responding objects ovarx, ovary ∈ SW HERE. This formulation seems complicated,
but when explained with plain words, it is actually rather straightforward – for
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each schema object in SW HERE which is the root of some kind’s mapping, we are
simply constructing an equivalent mapping, but using the new variable-specific
objects and morphisms from SW HERE. For example, let us consider a query se-
lecting two different customers, with the customer kind having its own mapping.
This definition would create two instances of this mapping, each for one of the
customer variables, in such a way that when querying the customers’ data from
the database, the correct data ends up in the correct customers’ instance objects,
taking into account that some may be shared due to the shape of the query. We
can see an example of such mappings in Figure 5.6, which correspond to the
schema category shown in Figure 5.5.

Customer<PostgreSQL>1

{

	 id: 11,

	 name: 21

}

Order<MongoDB>1

{

	 id: 51,

	 customer_id: 11.41,

	 price: 61

}

Customer<PostgreSQL>2

{

	 id: 12,

	 name: 22

}

Order<MongoDB>2

{

	 id: 52,

	 customer_id: 12.42,

	 price: 62

}

Figure 5.6: Mappings corresponding to the induced schema category shown in
Figure 5.5.

Note that it may be necessary for a single property ϕ to produce multiple
properties ϕ′, ϕ′′ and so on. This can happen in the specific cases of nested ar-
rays in the mapping, as we are able to bind multiple distinct variables to different
elements of the array. We do not need to give this scenario any special consid-
eration, as long as we presume that given ϕ′ or ϕ′′, we are able to determine
ϕ, allowing us to correctly construct the appropriate database query during the
translation of query parts.

5.2.2 Query Plan
Now that the query has been preprocessed, the query engine must first create a
set of query plans dictating how the query will be executed (recall Phase II in
Figure 5.1). In simple terms, we consider a query plan to be a plan of which
data will be retrieved from which database, and in what way. When we consider
the situation of no data redundancy, we only need to consider a single query
plan on the level of MMQL, as there is only one database from which we can
retrieve any given kind. Naturally, the databases’ query planners will come into
play under the covers, and during the execution of native database queries, the
database planners will certainly consider a number of different plans. However, in
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the context of MMQL, the query planner only needs to decide where to retrieve
the data from, and the optimization of native queries is left up to the databases
themselves. When we consider data redundancy, there will be multiple query
plans generated on the MMQL side.

More formally, we consider a query plan to be a set of query parts, such that
each distinct base morphism which is part of the MMQL query WHERE clause, is
assigned to exactly one query part. A query part is a set of mappings, assigning
base morphisms to kinds defined in mappings. This means that for each morphism
in the query, we make a decision on which kind this morphism should be retrieved
from. The algorithm for the creation of query plans is shown in Algorithm 5.2.
In simple terms, for each base morphism in the query, it retrieves the set of kinds
of which this morphism is a part (lines 1-7), and then generates a set of query
plans by Cartesian product of all morphism-kind assignments (lines 8-12).

Algorithm 5.2: Query Plan Generation Algorithm.
Input: WHERE – query WHERE clause

MW HERE – set of mappings adjusted for the schema category induced
by the WHERE clause

// Map listing the set of possible source kinds for each morphism
1 morphismKindMap := {}
2 queryP lans := [ ]
3 foreach triple subject morphism object do
4 foreach mapping m in MW HERE do
5 namePath := getPropertyPath(morphism, m)
6 if namePath is not NULL then
7 morphismKindMap.append(morphism, m)

8 kindAssignments := cartesianProduct(morphismKindMap)
9 foreach kindAssignment in kindAssignments do

10 queryP lan := createQueryPlan(kindAssignments)
11 if queryP lan is not NULL then
12 queryP lans.append(queryP lan)

There are a couple interesting functions being called in this algorithm which
are worth mentioning. The first of them is getPropertyPath, which given a
morphism and a kind’s mapping, returns an ordered list of properties which form
a traversal from the kind root to the morphism within the kind. If the morphism
does not exist in the kind, this function returns NULL, which is why we can see
this function being used to check whether a morphism lies in a given kind.

The next interesting function is createQueryPlan, which may be seen in
Algorithm 5.3. This function accepts a mapping of morphisms to their source
kinds, and returns a query plan for this mapping. This function’s job is to divide
the query into query parts, forming the query plan. It also validates the query
plan, as it only makes sense to assign a morphism to be selected from a kind when
the entire property path to this morphism is also being selected from the same
kind. This has a very important consequence for the set of queries which our
approach is able to process, as given this constraint, any MMQL query which is
only operating on a subforest of a kind’s access path which does not include the
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kind root object is not valid. For example, given the schema category and access
path shown in Figure 2.4, a query only selecting order items and their names,
but not containing any variable for the Order schema object, would produce zero
valid query plans as proposed. This is fixable by adding special cases for such
queries to the algorithm, which might insert the necessary variables for a valid
query plan to be generated. However, we omitted these special cases for the sake
of simplicity.

Algorithm 5.3: Function createQueryPlan from Algorithm 5.2.
1 function createQueryPlan(kindAssignments):

Input: kindAssignments – the source kind for each morphism
2 foreach morphism, kind in kindAssignment do
3 namePath := getNamePath(morphism, kind)
4 isP lanV alid := isPathInKind(kindAssignment, kind)
5 if NOT isP lanV alid then
6 return NULL

7 queryParts := getQueryParts(kindAssignments)
// A query plan is a list of query parts

8 return queryParts

Additionally, we have the getQueryParts function, which performs the actual
division of the query into query parts. We consider a query part to be a maximal
connected component of kinds from the same database in the query in the case
that the database’s wrapper supports joins, or a single kind in the case that
joins are not supported. The reason for this is that we need each query part to
be convertible to a single native database query, and if joins are not supported
at the database level (like in Cassandra, a columnar database), each kind must
be separated into its own query part. This function is shown in Algorithm 5.4.
There we can see a few more functions worth explaining being used, specifically
getConnectedComponents which returns kinds contained within a given query
part grouped by reachability, i.e. if there are multiple kinds within this query part
which are not directly connected. This can happen if we are selecting multiple
kinds from the same database, but in between them is a kind from a different
database. There is also the getDBWrapper function, which returns a database
wrapper for a given query part, as described in Section 5.1.1.

The perceptive reader may have noticed that the presented algorithm does
not take into account morphisms with repetition, which is intentional. When we
are dealing with morphisms with repetitions, things get considerably more com-
plex, therefore they were omitted from the algorithms for the sake of simplicity.
Repeated morphisms may require special support on the database level, which is
why the database wrappers contain the isRecursionSupported property, telling
us whether we can form recursive queries in this database. For example, this is
possible in most graph databases with their path matching capabilities. If recur-
sion is not supported on a database level or the repeated morphism is a compound
morphism crossing database boundaries, the MMQL query engine would have no
choice but to emulate this functionality by itself, and perform the required joins
at the level of the instance category. This is not only extremely inefficient, but
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Algorithm 5.4: Function getQueryParts from Algorithm 5.3.
1 function getQueryParts(kindAssignments):

Input: kindAssignments – the source kind for each morphism
// Initial query parts are kinds grouped by their database

2 queryParts := groupBy(kindAssignments, x => x.database)
// If the kinds for a given query part do not form a single

connected component, split this query part such that each
new query part forms a connected component

3 foreach queryPart in queryParts do
4 disjointKindSets := getConnectedComponents(queryPart)
5 queryParts.remove(queryPart)
6 queryParts.extend(disjointKindSets)

// If the database for this query part does not support joins,
separate each kind into its own query part

7 foreach queryPart in queryParts do
8 W := getDBWrapper(queryPart)
9 if not W .isJoinSupported then

10 queryParts.remove(queryPart)
// This is a simplified way of expressing that the

morphism mappings for each kind in queryPart are
split into a separate query part

11 foreach kind in queryPart do
12 queryParts.append(kind)

13 return queryParts

also needlessly complicated, which is why we do not present a full algorithm for
this scenario.

Another thing missing from the presented algorithm is handling of OPTIONAL,
UNION and MINUS clauses, which is intentional. When constructing a query plan,
we consider optional graph patterns as if they were not optional, assigning source
kinds to morphisms. Similarly, both UNION operands are considered to be optional
by the query planner, as either one of them may or may not exist in any given
instance. Finally, the second operand of MINUS clauses is treated as if it was
optional, attempting to match the pattern in the data, and removing the matching
solutions.

As an example, recall the query from Figure 5.4, whose WHERE clause induced
the schema category presented in Figure 5.5. We can see the division of the
triples from this query’s WHERE clause into query parts in Figure 5.7. Note that
because PostgreSQL supports inner joins, both customers’ data can be queried
together in a single query part, but because MongoDB does not support inner
joins natively5, the queries for the two orders need to be separated into two query
parts. The reader may have also noticed that there are some extra triples selecting
the customers’ identifiers, the addition of which we will discuss in Section 5.2.3.

5MongoDB does support the left join operation, which makes it possible to implement an
inner join as well, but for the purposes of this example, we consider MongoDB as not supporting
inner joins.
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Query Part 1 (Customer<PostgreSQL>1, Customer<PostgreSQL>2) {
?customer1 21 ?sharedName .
?customer1 11 ?customerId1 .

?customer2 22 ?sharedName .
?customer2 12 ?customerId2 .

}
Query Part 2 (Order<MongoDB>1) {

?order1 41 ?customer1 .
?customer1 11 ?customerId1 .
?order1 61 ?sharedPrice .

}
Query Part 3 (Order<MongoDB>2) {

?order2 42 ?customer2 .
?customer2 12 ?customerId2 .
?order2 62 ?sharedPrice .

}

Figure 5.7: Decomposition of triples into query parts based on the query shown
in Figure 5.4.

5.2.3 Join Plan
With a set of query plans generated by the algorithm presented in the previous
subsection, one may think that we are ready to select the best query plan and
continue with query execution. However, there is one more thing that needs to
be done beforehand, as it may have an impact on the choice of the best query
plan. We are talking about join plans – since we are dealing with multi-model
data, it is likely that we will have a query with multiple query parts, with the
necessity of joining their results together to get the full query result.

In general, join order optimization is a known hard problem [35], with multi-
model join optimization is even harder with relatively little related work to fall
back on, which is why attempting to solve it would be outside the scope of this
thesis. For this reason, in this subsection, we will discuss join plans in a slightly
different fashion. For our purposes, a join plan is a set of join points in the query,
where each join point consists of neighboring kinds, as well as the join identifier.
The join identifier is one of the ids (recall Section 2.3) of the schema object which
the given kinds need to be joined on.

In general, the properties which are a part of the ids of any given schema
object do not need to be a part of the query, even if the object itself is a part of
it. However, if this object happens to be the join point between two kinds, this
would pose an issue, because we need one of that object’s identifiers in order to
determine how to join the data from both kinds. For this reason, if none of the
object’s identifiers are a part of the query, we will need to insert the selection of
at least one such identifier to make the join possible. Note that there can even
be multiple objects which are part of a single join point between two query parts,
which is why we need to consider all of them. Therefore, in this subsection, we
present Algorithm 5.5, where we show our proposed approach of finding all join
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points for a given query plan, and the selection of the necessary identifiers.
The join plan algorithm identifies join points by looking for specific patterns in

the query plan (line 5 in Algorithm 5.5). These patterns involve two neighboring
query parts, having a triple from each query part, with both triples sharing
a schema object. This shared schema object which forms the intersection of
the query parts must be part of both triples, but the direction of the triples is
irrelevant, i.e. the intersection object may be either the subject or object of the
given triples. Once the intersection object is found, its identifiers are examined,
and an identifier is selected which may be queried using both kinds at the join
point. Then, the selection of this identifier from the intersection object is added
to both query parts in the form of triples with unique variable names (if not
already present).

A special case to consider is when the intersection object has a signature of ϵ,
meaning the object is identified only by its value. This means that we are joining
two query parts by the value of an attribute, like joining two different customers
on the equality of their name. In this case, no extra work is needed, as the value
necessary for the join is already being selected.

Algorithm 5.5: Join Plan Algorithm.
Input: queryP lan – the query plan for which we need to create a join plan

1 foreach neighboring query parts q1, q2 in queryP lan do
2 foreach triple t1 in q1, triple t2 in q2 do
3 m1 := t1.morphism
4 m2 := t2.morphism

// The parentheses in this pattern mean schema objects, and
the labeled dashes represent morphisms. We match the
pattern regardless of the direction of traversal of the
morphism, which is why they are depicted as undirected.

5 if t1 and t2 match the pattern () -m1- (I) -m2- () then
6 ids := getIds(I)
7 k1 := getKind(t1)
8 k2 := getKind(t2)
9 foreach id in ids do

10 if id is ϵ then
11 queryP lan.joinPoints.add((q1, q2, I, id))
12 break
13 if id can be selected from k1 and k2 then
14 r1 := getRootObject(k1)
15 r2 := getRootObject(k2)
16 foreach prop in id do
17 if prop is not selected from I in q1 then
18 add triples selecting prop from I to q1
19 if prop is not selected from I in q2 then
20 add triples selecting prop from I to q2

21 queryP lan.joinPoints.add((q1, q2, I, id))
22 break
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Finally, we mentioned earlier in this subsection that we do not attempt to solve
the hard problem of multi-model join order optimization. In our implementation
of the core parts of these algorithms (described in Chapter 6), we will mention
that we are using software called MM-evocat [22], which provides us with the
functionality of merging instance categories together. For this reason, we do
not need to worry about coming up with a basic replacement for a join order
optimizer, because if we send query parts to MM-evocat to process in parallel,
MM-evocat decides the order of the joins, relieving us of the responsibility.

5.2.4 Picking the Best Query Plan
As a result of our work in the last subsection, we now have a set of query plans,
each of which has an associated join plan (which does not define the order of joins,
but rather the set of joins itself). The next thing we need to do is we need to pick a
query plan. However, this turns out to be much more complicated than it sounds.
Single-model query planning and optimization are already known to be a hard
problem [36]. When we move into the world of multi-model data, polystores like
BigDAWG6 include multi-model query planners and optimizers, but these do not
fit neatly to our problem domain due to the number of extra considerations owing
to our categorical data representation. For this reason, proposing an approach for
the problem of multi-model query planning and optimization is outside the scope
of this thesis. However, for the benefit of future work on this subject, we will
discuss the possible inputs which could be used for the development of a suitable
multi-model query planner for MMQL.

When it comes to the information we already have, the query planner could
take into account various features of the query plans themselves. For example,
the number of databases used in the query may be relevant, as it is likely that
a query which utilizes 4 databases to retrieve the same data as a query utilizing
only 2 databases may be less performant. The specific databases used may also
be relevant, as the query planner could use information about the current load on
the databases to select a plan which utilizes databases which are not overloaded.
Another piece of information for a multi-model query planner to consider is the
amount of work necessary to perform additional work on the MMQL query engine
side, like projection, ordering, or deferred statements which will be introduced
shortly in Section 5.2.5. The cost of these tasks is prohibitively high, especially
for large amounts of data, which is why they should be avoided at all costs.

In addition, a multi-model query planner working with multiple databases can
rely on the single-model query planners native to those databases. Most databases
expose some kind of functionality which allows users to access information about
the query planner. For example, SQL has the EXPLAIN keyword, which when used
together with a query, will return information like the total plan cost (generally
expressed in abstract units, but sometimes also in units like the approximate
number of disk accesses necessary), information about which indexes the query is
using, or the approximate number of rows which may be returned by the query.
In this way, the query planner might avoid slow queries which do not have indexes
available, and prefer faster queries which are able to use indexes. Similarly, the
Neo4j query planner can estimate the number of rows returned by various stages of

6https://bigdawg.mit.edu/

61

https://bigdawg.mit.edu/


the query. Examples of the outputs of the PostgreSQL and Neo4j query planners
can be seen in Attachment A.2 and Attachment A.4 respectively. Note that in
order to make use of the generated native queries, the query planner would need
to defer the choice of best plan one step further in the process, meaning query
translation would need to happen for each generated query plan, and only then
would the best plan be selected.

For some databases, the information returned by their query planner may be
less useful however. For example in MongoDB, the query planner is able to say
whether a given query will use an index without actually executing the query,
but does not give any kind of cost estimate. To get the cost associated with a
given query, one must execute the query using an explain command, which runs
the query and only then returns the cost. We can see examples of both modes
of operation of the MongoDB query planner in Attachment A.3. In general, a
multi-model query planner should ideally take into account all of this information
to make an educated guess about the cost of each query plan, selecting the plan
with the lowest cost for execution. Similarly, such a query planner should expose
information about its decision making process to allow users to better understand
the query plans, and potentially add indexes to the relevant databases to make
queries more performant.

5.2.5 Translation
Now that we have constructed and selected a query plan consisting of query parts,
we need to translate each query part into a corresponding native database query
(recall Phase III in Figure 5.1). Even though we already mentioned this, it is such
a crucial fact that we will remind the reader of this again – the query plan only
concerns the WHERE clause of the query, describing a way to get to the result of this
clause. This is an important fact to keep in mind throughout this subsection, as
we will be operating with the newly defined schema category SW HERE, however
this schema category does not represent the result of the query, but the result of
only the query’s WHERE clause. The following subsections will then transform the
result of the WHERE clause into the result of the entire query. We also recommend
that the reader is familiar with the concept of database wrappers, introduced
in Section 5.1.1.

The query part translation algorithm is relatively simple at its core – for each
query part in the selected query plan, iterate over the set of statements within
this query part, and call the necessary function on the query part’s corresponding
database wrapper to produce a native database query. We should note that we
have not defined what it means for a statement to be within a query part, as
a query part is defined as a set of morphism-kind mappings. If the statement
is a triple, we simply mean that the triple’s morphism (base or compound) is
located entirely within that query part. If a triple cannot be assigned cleanly to
a single query part as it crosses query part boundaries, we consider this triple to
be part of a set of deferred statements to be executed at a later point, which are
described in more detail in Section 5.2.7. Similarly, FILTER statements may also
cross query part boundaries, leading to them not being part of any single query
part, instead being deferred for later execution.

Along with building the native query via the database wrapper, a mapping
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builder is also used to construct the mapping which specifies how the result of this
query maps to the categorical representation, specifically to the SW HERE schema
category described earlier in this chapter. The base algorithm for the processing
of query parts is shown in Algorithm 5.6, where we can see the enumeration of
all possible statements. The statements are processed one-by-one in an arbitrary
order, incrementally giving the database wrapper and mapping builder commands
about the things which the native database query needs to accomplish.

Algorithm 5.6: Query Part Translation Algorithm.
Input: queryP lan – the query plan for which we need to translate query

parts into native queries
1 foreach queryPart in queryP lan do
2 W := getDBWrapper(queryPart)
3 MB := MappingBuilder()
4 foreach kind in queryPart do
5 W .defineKind(getId(kind), kind.name)
6 processProjectionTriples(queryPart, W , MB)
7 processJoinTriples(queryPart, W )
8 processValuesStatements(queryPart, W )
9 processFilterStatements(queryPart, W )

10

11 queryPart.nativeQuery, variableMap := W .buildQuery()
12 queryPart.mapping := MB.buildMapping(variableMap)

Translating Graph Patterns

As we can see in Algorithm 5.6, the core of the algorithm itself is not that com-
plicated. However, the most crucial work is hidden in the functions called by
this algorithm, with processProjectionTriples and processJoinTriples be-
ing the most important of them all. Without other clauses, MMQL would still
function as a unified multi-model query language, albeit limited in certain as-
pects. For this reason, we will examine the processProjectionTriples and
processJoinTriples functions in more detail. Note that earlier, we specified
that a triple only belongs to a query part if all of its constituent base morphisms
do. For this reason, we do not need to worry about triples which must be deferred
in these functions.

In Algorithm 5.7, we can see the details of the processProjectionTriples
function. This function processes the set of triples within a single query part,
transforming graph patterns into database wrapper function calls. Recall that
in Section 5.2.1, we preprocessed triples with base morphisms to always traverse
their morphisms in-order, meaning we do not have to worry about reverse traver-
sals outside repeated compound morphisms. This means that we can be confident
that for any given triple, its subject is always a variable, and the object is either
a variable or a constant. We also do not consider triples whose object is non-
terminal, meaning it is either a constant or a variable with a primitive value, as
these triples are later processed during the processing of join triples. We recognize
three main situations when it comes to the set of triples within a query part:
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1. The triple’s morphism contains repetitions, but the entirety of morphism
lies within a single query part. In this case, morphism needs to be trans-
lated into a combination of recursive joins and a projection, or it needs to
be deferred if recursion is not supported. This would be implemented by
the processRepeatedMorphism function, although we omit this function
from the algorithms shown, as its implementation would be too long.

2. The triple’s object is a constant c, in which case we need to add a filter
to the triple’s containing kind, forcing the specified property value to be
equal to c. In case that non-identifier filtering is not supported (such as in
key-value databases), this filtering must be deferred.

3. The triple’s object is a variable, in which case we need to add projection of
this variable to the corresponding kind.

Algorithm 5.7: Function processProjectionTriples from
Algorithm 5.6.
1 function processProjectionTriples(queryPart, W , MB):

Input: queryPart – the query part being translated
W – database wrapper for this query part
MB – mapping builder for this query part

2 foreach triple subject morphism object in queryPart do
3 if morphism is base then
4 if object is not terminal then
5 continue
6 kind := getKind(morphism)
7 path := getPropertyPath(morphism, kind.mapping)
8 if object is constant then
9 pathMorphism := getPathMorphism(path)

10 if not W .isNonIdFilterSupported and pathMorphism not in
getRootObject(kind).ids then

11 defer triple as a deferred statement
12 else
13 W .addFilter(path, getId(kind), =, object)

14 else
// object is a variable

15 varId := getVarId(object)
16 kindId := getId(kind)
17 W .addProjection(path, kindId, varId)
18 MB.defineVariable(varId, path)

19 else
20 processRepeatedMorphism(triple, queryPart, W , MB)

We also mentioned the processJoinTriples function, which we can see in
Algorithm 5.8. This function also processes the set of triples in the query part,
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just like processProjectionTriples, but instead of looking for patterns re-
quiring projection, it looks for the required join points in this query part. Re-
call that in Section 5.2.3, we introduced the join plan generation algorithm,
which looked for join points between query parts. The algorithm within the
processJoinTriples function is remarkably similar in its structure, but with
one key difference. At the level of joining query parts, we solved the join problem
by selecting the required ids from each query part, relying on the algorithm which
converts query part results into an instance category to do the joining using these
identifiers. In this case, the join is happening at the native database level, which
means that rather than selecting the correct object identifiers, we need to actually
generate the database join. For this reason, we find all the join points between
two kinds in the query part, and for each join point, we create joins using the
correct identifiers. Also note that we do not need to use the mapping builder in
any way in this function, as we are only performing the work required to join the
kinds together at the native query level, but we are not modifying the results of
the query.

Algorithm 5.8: Function processJoinTriples from Algorithm 5.6.
1 function processJoinTriples(queryPart, W ):

Input: queryPart – the query part being translated
W – database wrapper for this query part

2 foreach triples t1, t2 in queryPart do
3 m1 := t1.morphism
4 m2 := t2.morphism
5 if t1 and t2 match the pattern () -m1- (I) -m2- () then
6 ids := getIds(I)
7 k1 := getKind(t1)
8 k2 := getKind(t2)
9 if k1 = k2 then

10 continue
11 foreach id in ids do
12 if id is ϵ then
13 pathk1 := getPropertyPath(t1, k1.mapping)
14 pathk2 := getPropertyPath(t2, k2.mapping)
15 W .addJoin(getId(k1), getId(k2), (pathk1, pathk2))
16 break
17 if id can be selected from k1 and k2 then
18 joinProperties := [ ]
19 foreach prop in id do
20 pathk1 := getPropertyPath(prop, k1.mapping)
21 pathk2 := getPropertyPath(prop, k2.mapping)
22 joinProperties.add((pathk1, pathk2))
23 W .addJoin(getId(k1), getId(k2), joinProperties)
24 break

Finally, even though we do not show their handling in the algorithm for sim-
plicity, we need to discuss paths containing morphism repetitions using the ?, ∗
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and + MMQL operators. In the case that such a morphism spans multiple query
parts, we have no choice but to defer its processing to the instance category
level, retrieving all instances of all kinds along the morphism path using native
queries, and creating the corresponding instance morphisms manually. However,
it is entirely possible for a morphism path with repetition to fit within a single
query part – imagine an example scenario where we have a set of employees,
and each employee also has a superior identifier containing the identifier of that
employee’s direct superior. In such a scenario, we may want to retrieve the set
of all superiors for a given employee, transitively, which is certainly possible na-
tively if the employees are stored in a relational table or a graph. For these cases,
the database wrapper contains the isRecursionSupported field, which specifies
whether we can process recursive queries at a native level. If so, then we can de-
fine recursive queries using the addRecursiveJoin(recursiveJoinPath) method
of the database wrapper. The argument to this method is essentially a path
consisting of joins between two kinds, where parts of the path may be repeated.
For each join point, we must define the property paths for properties on both
sides of the join point, just like when we were defining single joins. Additionally,
recall that in the case of any repetitions, the source and destination kind must
be the same to satisfy MMQL type constraints. This means that the concept of
repeated paths works well with the other concepts like projection or selection,
since adding projection for a given kind will naturally extend this projection to
all instances of this kind, regardless of the number of repetitions used to arrive
to them.

Now that we know how to process projection and join triples, we can look
at Figure 5.8, where we can see the native queries generated for the query parts
shown in Figure 5.7. Notice that the native queries are identical for both Mon-
goDB query parts in this case, which means that the data will be retrieved twice,
but inserted into different instance objects and morphism each time. Naturally,
retrieving the same data twice is redundant (although in the general case, the data
for multiple variables corresponding to the same schema object can be different),
therefore the MongoDB query could be executed only once as an optimization,
and its results could be used for both MongoDB query parts.

Translating Filtering Conditions

In MMQL, we support three kinds of filtering operations: WHERE clauses contain-
ing logic expressions, VALUES clauses containing a set of possible values for a given
variable, and triples with a constant on one end, forcing the value of a particular
property to be equal to that constant. We already addressed the triples with
constants in Algorithm 5.7, which means that we still have to deal with VALUES
and WHERE clauses.

Firstly, let us deal with the simpler case of VALUES clauses, which accept a
single variable and a set of allowed values for this variable. The translation of
this construct is quite simple, given that non-identifier filtering is supported by
the underlying database. If this kind of filtering is not supported, naturally the
processing of this clause will need to be deferred and emulated at the instance cat-
egory level. The function processValuesStatements is shown in Algorithm 5.9.

With the VALUES statement out of the way, the last filtering condition we need
to handle is FILTER statements, which are the most complicated. Not only do
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// PostgreSQL query for Query Part 1
SELECT customer1.id AS customerId1,

customer2.id AS customerId2,
customer1.name AS sharedName

FROM customer AS customer1
JOIN customer AS customer2
ON customer1.name = customer2.name;

// MongoDB query for Query Parts 2 and 3
db.orders.aggregate([

{
"$project": {

"id": 0,
"price": 1,
"customer_id": 1

}
}

])

Figure 5.8: Native queries generated for the query parts shown in Figure 5.7.

Algorithm 5.9: Function processValuesStatements from
Algorithm 5.6.
1 function processValuesStatements(queryPart, W ):

Input: queryPart – the query part being translated
W – database wrapper for this query part

2 foreach VALUES statement values in queryPart do
3 variable, constantList := values
4 W .addValueSet(getVarId(variable, constantList))

we have a set of possible logical operators to consider, but operands of a FILTER
statement can be either variables, constants, or aggregations which we didn’t
have to consider earlier. In the cases of aggregations, we must first check if the
required aggregation is supported by the underlying database, and defer this filter
in the case that it is not. If the aggregation is supported, an aggregation root
is selected as the lowest possible aggregation root in the access path, meaning if
there are multiple nested levels of arrays, the most nested one is always selected
(as per the semantics of MMQL). It is worth pointing out that in cases where the
aggregation root is outside the query part containing the aggregated variable, this
aggregation must necessarily be deferred. Each aggregation call on the database
wrapper creates a new variable with the results of the aggregation, and this
variable is then used in the filter call on the database wrapper.

The function processFilterStatements can be seen in Algorithm 5.10. Note
that symmetric cases where the order of operands is swapped is not covered by
the function, as these cases are solved by simply swapping the order of operands
(for example filters with a variable and a constant are symmetric to filters with
a constant and a variable). In addition the shown function omits the checks
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which verify that the appropriate aggregation type is available via this database
wrapper. In the case that the aggregation type is unavailable, this filter is de-
ferred. This function also uses the helper function createAggregation, whose
purpose is to create the appropriate aggregation and return the variable identi-
fier for its result. Its implementation is shown in Algorithm 5.11. We will point
out that a function findAggregationRoot is called in this function, which given
the assumption that the aggregation root for this aggregation is located within
the same query part, returns the kind containing the aggregation root, as well
as the path to the root within the kind. The last function worth mentioning is
getPathsForProps, which simply returns a property path for each of the provided
morphism signatures, effectively just locating them within their source kind.

Algorithm 5.10: Function processFilterStatements from
Algorithm 5.6.
1 function processFilterStatements(queryPart, W ):

Input: queryPart – the query part being translated
W – database wrapper for this query part

2 foreach FILTER statement filter in queryPart do
3 lhs, op, rhs := filter
4 if lhs is variable and rhs is constant then
5 W .addFilter(getVarId(lhs), op, rhs)
6 else if lhs is variable and rhs is variable then
7 W .addFilter(getVarId(lhs), op, getVarId(rhs))
8 else if lhs is aggregation aggregationType over lhsV ar then
9 lhsAggregationV arId := createAggregation(queryPart,

aggregationType, lhsV ar)
10 if rhs is constant then
11 W .addFilter(lhsAggregationV arId, op, rhs)
12 else if rhs is variable then
13 W .addFilter(lhsAggregationV arId, op, getVarId(rhs)
14 else if rhs is aggregation aggregationTypeRhs over rhsV ar then
15 rhsAggregationV arId := createAggregation(queryPart,

aggregationTypeRhs, rhsV ar)
16 W .addFilter(lhsAggregationV arId, op,

rhsAggregationV arId)

Translating Set Operations

The reader has surely noticed that yet again, we omitted the handling of the
OPTIONAL, UNION and MINUS clauses for simplicity, which is why we will mention
how they would tie into the translation algorithm. In general, we can distinguish
two main scenarios – either the entirety of a given clause is within a single query
part, or there is only a part of it. In the case that any of these clauses cross query
part boundaries, we duplicate the clause to each query part, preserving only the
statements which correspond to the respective query part.
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Algorithm 5.11: Function createAggregation from Algorithm 5.10.
1 function createAggregation(queryPart, aggregationType, aggregationV ar,

W ):
Input: queryPart – the query part being translated

aggregationType – the type of aggregation to perform
aggregationV ar – the variable being aggregated
W – database wrapper for this query part

2 aggregationRootPath, aggregationRootKind :=
findAggregationRoot(queryPart, aggregationV ar)

3 kind := getKind(aggregationV ar)
4 propertyPath := getPropertyPath(aggregationV ar, kind.mapping)
5 aggregationRootObj := getSchemaObject(aggregationRootPath)
6 foreach id in aggregationRootObj.ids do
7 if id can be selected from aggregationRootKind then
8 rootIdPaths := getPathsForProps(id,

aggregationRootKind.mapping)
9 variableId := generateNewVariableId()

10 W .addAggregation(aggregationType, aggregationRootKind,
rootIdPaths, getId(kind), propertyPath, variableId)

11 return variableId

In Section 5.1.1, we mentioned the existence of optional overloads of various
database wrapper methods. The purpose of these optional overloads is the han-
dling of the OPTIONAL clause, as we cannot use an inner join to create optional
relationships between kinds, we must use an outer join variant instead. For this
reason, all statements within an OPTIONAL clause are handled in the same fash-
ion as their non-optional variants, but we call the optional overloads of wrapper
methods instead of the non-optional ones.

In the case of UNION, we can simply treat both of its operands as optional,
retrieving the relevant data if it is present. However, there is a need to filter out
solutions for which neither side of the union expression contains a match. If the
entire UNION clause is located within a single query part, this constraint may be
expressed at the native query level in a relatively straightforward way, enforcing
the presence of the relevant optional properties in the result. If this is not the
case, then this constraint needs to be deferred to the categorical level.

As for MINUS, we need to handle the situation differently based on whether
we can evaluate the entirety of the clause within a single query part. If so, then
we join the second operand of the MINUS clause to its first using an optional join,
subsequently adding a filter removing all solutions whose optional joins yielded
a non-empty value. Otherwise, we again need to defer the elimination of invalid
solutions to the categorical level.

Mapping Builder

Lastly, we will briefly mention the functionality of the mapping builder we are us-
ing in the translation algorithm shown in Algorithm 5.6. The job of the mapping
builder is to construct a mapping (recall Section 2.5) which maps the result of
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each query part to the categorical representation. We can imagine this as being
equivalent to defining a database view returning exactly the results of our query,
and creating a mapping treating this database view as a single kind.

The interface of the mapping builder is quite simple, providing two methods:

• defineVariable(variableId, propertyPath, kind) which associates the
variable identified by variableId with the property represented by the path
propertyPath in kind. The mapping builder simply stores this information
until buildMapping is called.

• buildMapping(variableMap) which accepts a variableMap, mapping vari-
able identifiers to property paths within the native query result. Using this
mapping, the builder now has the original property path (including cate-
gorical information like the morphism signatures along the path) and the
property path within the native query result. Given both of these, the map-
ping builder can construct a mapping which simply assigns the appropriate
categorical identifiers to paths in the native result.

The purpose of the design of the mapping builder is the simple fact that we
cannot make general assumption about the allowed variable names or naming
conventions for any given database, meaning we cannot simply ask a database to
name a given query output a certain way. For this reason, we leave the ultimate
naming of constituent parts of the query part result up to the database wrapper,
using variable identifiers instead. When defining a projection, we assign a variable
identifier to this projection in the database wrapper. Upon building the native
query, the database wrapper returns the final variable map, and this map is used
to construct the categorical mapping for the native query result. Note that the
path returned by the builder has the same structure (meaning length and types of
constituent properties) as the property path used to define the variable, which is
why the internals of the mapping builder are actually relatively straightforward.

5.2.6 Joining Data
With a query plan formed and selected, in the previous subsection we compiled
each query part into a native database query intended to be executed with a
specific database. We also mentioned the need to build a corresponding mapping
for each query part, but we did not elaborate further, instead referring to this
subsection, where we will describe in detail how data retrieved as the result of a
native database query is transformed into the categorical model, and how their
results are joined together. For reference, this part of the algorithm corresponds
to phases IV and V from Figure 5.1.

The first part of this problem is the transformation of data in the context of
a particular data model to an instance category conforming to a specific schema
category. An algorithm for this model-to-category transformation was proposed
by Pavel Koupil and Irena Holubová [6] (presented as Algorithm 1 in their pa-
per). This algorithm, given a schema category and a mapping describing how a
particular kind maps to the schema category (recall Chapter 2), transforms data
in the shape of this mapping’s access path to an instance category. We will not
describe this algorithm in more detail, as only its inputs and outputs are relevant
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for our purposes, and we instead refer the reader to the original source for more
details. The input mapping for this algorithm needs to be constructed in such a
way that its structure describes exactly the structure of the data returned by the
native database query, specifying how each property maps to a schema object.
The most obvious idea would be to perhaps include this logic in the database
wrappers themselves, as the wrappers are the ones building the native queries,
and therefore will have the information necessary to also build this mapping.
However, this would prove impractical, as the main purpose of database wrap-
pers as described in Section 5.1.1 is to isolate the logic specific to each database
to a minimal unit, making their implementation as straightforward as possible
to allow easy extension for new database systems. Adding the mapping building
logic to the database wrappers would therefore directly contradict this idea, as
it would now be necessary for each implementer of a database wrapper to work
with categorical concepts, which is not necessary as proposed in Section 5.1.1.

Since adding the mapping building logic to database wrappers themselves does
not seem like a good idea, we instead introduced the concept of a mapping builder,
which is shown in the algorithms presented in Section 5.2.8. This mapping builder
constructs the mapping by being invoked together with the abstract database
wrapper by the algorithms. When this mapping is constructed together with
the native database query for a given query part, the aforementioned model-to-
category algorithm is executed, resulting in an instance category containing the
results of the native query.

As described in the original source of the model-to-category transformation
algorithm, instances of each kind are inserted to the instance category one-by-
one. This begs the question of what happens when we have multiple kinds (note
that a kind in this context refers to the mapping created for each query part,
not the original kinds in the queried schema category) which need to be joined
together in the instance category. Luckily for us, this is achievable for instance
categories using pullbacks, which are a generalization of the Cartesian square and
intersection [37][38]. Using the example presented by Pavel Koupil and Irena
Holubová [6], let us consider the following query: “For each customer who lives
in Prague, find a friend who ordered the most expensive product among all cus-
tomer’s friends.” We can see the decomposition of this query into query parts, as
well as the generated native database query for each query part, in Figure 5.9.

In Figure 5.10, we can then see how the categorical results for each query part
will be joined together with pullbacks. The first pullback joins the relational data
with graph data (P1 = resultREL ▷◁100 resultGRAP H), while the second one joins
the document data with the result of the first pullback (P2 = P1 ▷◁100′ resultDOC).
As described in Section 5.2.3, the join ordering problem is known to be hard,
doubly so in multi-model scenarios, therefore it falls outside the scope of this
thesis, and we leave it as part of future work on this topic.

For another example, we will remind the reader of the query in Figure 5.4.
Recall that in Figure 5.8, we showed the generated native queries for this MMQL
query. In Figure 5.11, we can see the results of these native queries as returned
by the respective databases. With these results, after their transformation to
an instance category, we can expect to see the instance morphism 41 to contain
the following relations, showing relations between active domain rows of instance
objects (each object active domain row is a set of tuples (signature, value)):
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SELECT customerId

FROM Customer

WHERE city = "Prague";


MATCH
    (c:CUSTOMER)
        -[:KNOWS]->
            (f:CUSTOMER)
RETURN
    c.id, c.name, c.surname,
    f.name, f.surname, f.id;


db.orders.aggregate( [
    { $unwind : "$items" },
    { $sort : { "items.price" : -1 } },
    { $group : {
	 _id : "$_id.customerId",
	 items : { $push : { name : "$items.name", price : "$items.price" }}
	 } },
    { $project: {
	 _id : 1,
	 name : { $arrayElemAt : [ "$items.name", 0 ] },
	 price : { $arrayElemAt : [ "$items.price", 0 ] } } 
    } ] );
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Figure 5.9: Query decomposition into relational (purple), graph (blue) and doc-
ument (green) query parts, showing the corresponding generated native database
queries for each query part [6].
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Customer c.id c.name c.surname f.name f.surname f.id
1 1 Mary Smith Anne Maxwell 2
2 1 Mary Smith John Newlin 3

2 Anne Maxwell John Newlin 3

c.id c.name c.surname f.name f.surname f.id
1 Mary Smith Anne Maxwell 2
1 Mary Smith John Newlin 3
2 Anne Maxwell John Newlin 3
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Figure 5.10: Joining of query parts from Figure 5.9 using pullbacks [6].
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// PostgreSQL query
1,4,Alice
2,3,Bob
5,6,Charlie

// MongoDB query
{ customer_id: 1, price: 30 },
{ customer_id: 2, price: 25 },
{ customer_id: 3, price: 25 },
{ customer_id: 4, price: 30 },
{ customer_id: 5, price: 50 },
{ customer_id: 6, price: 10 }

Figure 5.11: Native query results for the queries shown in Figure 5.8.

• ({(6,30)}, {(1,1),(2,Alice)})

• ({(6,25)}, {(1,2),(2,Bob)})

As we can see in the first row, there is an order with a total price of 30 which
was placed by a customer with an ID of 1 named Alice. Let us also look at the
instance morphism 42:

• ({(6,30)}, {(1,4),(2,Alice)})

• ({(6,25)}, {(1,3),(2,Bob)})

We can see that a different customer named Alice with an ID of 4 has also
placed an order with a total price of 30, and similarly, two different customers
named Bob with IDs 2 and 3 have both placed an order with a total price of 25.
There were also two customers named Charlie, but their orders do not have the
same price, which is why they are excluded.

This approach for merging instance categories, coupled with the model-to-
category transformation, leaves us with a single instance category representing
the result of the MMQL WHERE clause.

5.2.7 Projection
With the instance category representing the result of the WHERE clause in hand,
meaning we have already processed the selection part of the query, we also need
to process the projection part, meaning the SELECT clause. However, before we
do that, there is one more thing which needs to happen – execution of deferred
statements. To get an overview of how this fits into the overall approach, we
refer the reader to Figure 5.1, whose Phase VI corresponds to the contents of this
subsection.
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Deferred Statements

As mentioned in Section 5.2.8, there are certain MMQL statements which cross
database boundaries, and therefore cannot be executed at the database level.
For example, we could have a FILTER statement demanding the equality of two
variables whose values come from different databases. Such statements must
necessarily be processed by the MMQL query engine, and in the constraints of
our approach where each query part is an executable unit independent of other
query parts, this is unavoidable. There is a possibility that for approaches which
introduce dependencies between queries, a certain part of this may be optimized,
for instance possibly adding a constraint to a query based on the results of another
query. However, as this is purely an optimization, we opted not to include this
in our approach.

When it comes to the set of features which may possibly be a deferred state-
ment, we have a few options, except for which all statements are not deferred:

• Triples with repeated compound morphisms may be deferred statements
in cases where the compound morphism being repeated crosses query part
boundaries;

• FILTER statements may be deferred in cases where both operands of the
included logic expression are variables or aggregations of variables, each of
which is queried from a different database, or in cases where a required
aggregation is not supported by the corresponding database; and

• FILTER and VALUES statements in query parts whose database wrappers
define the isNonIdFilterSupported property to be false.

The processing of deferred statements essentially means their emulation by
the query engine using the instance category corresponding to the query’s WHERE
clause. We will not provide an explicit implementation of this algorithm, as its
implementation would be lengthy and its inclusion in this thesis redundant, and
all of the necessary operations are straightforward emulation of the statements.
Lastly, we will point out that the set of deferred (or deferrable) statements will
vary depending on the design of the supporting algorithms for MMQL, as MMQL
itself does not necessitate the deferral of any statements, opening the door to
future optimizations.

Projection Algorithm

After the processing of deferred statements, we are ready to approach the main
topic of this subsection, which is projection to the desired representation. In this
step, we take the instance category corresponding to the WHERE clause of the query,
and transform it into an instance category corresponding to the SELECT clause,
which induces its own schema category. It is worth mentioning the construction
of this schema category, as we will need the morphisms contained within to have
correct cardinalities. This can be achieved by iterating over the morphisms de-
fined in the SELECT clause, and for each of them, finding all paths in the schema
category induced by the WHERE clause between the subject and object of the triple
where the morphism is defined, disregarding paths containing cycles. We do not
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consider paths with cycles, as a cycle starting and ending with the same variable
necessarily cannot have any effect on the cardinality of the final morphism, as it
forms an identity function. Note that there can indeed be multiple paths, for ex-
ample if we consider two customers who each have a home address listed, we may
have a query expressing the fact that both customers who ordered a specific item
live at the same address, giving us two paths between the item ordered and the
customer address. For each morphism, we must examine all paths, selecting the
minimal and maximal cardinality of the entire path, and then select the minimal
value of the sets of minimal and maximal cardinalities to get the final minimal
and maximal cardinality of the morphism. This is because if multiple paths exist
between the same two variables, a particular result will only be included in the
instance category only if all of the paths match (unless some of those paths are
optional and generated by the OPTIONAL clause, however we still need to consider
them for the minimal and maximal calculation). The algorithm generating the
schema category induced by the SELECT clause can be seen in Algorithm 5.12.
We will point out the function getPathsInSchema used in line 10 of the afore-
mentioned algorithm, which finds all paths in the schema category between two
schema objects, provided to the function using the src and dst arguments for
source and destination respectively.

Algorithm 5.12: Projection Schema Algorithm.
Input: SW HERE – schema category induced by the WHERE clause

SELECT – SELECT clause of the MMQL query
1 SSELECT := ∅
2 foreach triple subject morphism object in SELECT do
3 foreach var in [subject, object] do
4 oldObj := SW HERE .getObjectFromVar(var)
5 newObj := SSELECT .getObjectByKey(oldObj.key)
6 if newObj is NULL then
7 SSELECT .objects.add(oldObj)

8 newMorphism := SSELECT .getMorphism(morphism)
9 if newMorphism is NULL then

10 paths := getPathsInSchema(SW HERE , src=subject, dst=object)
11 foreach path in paths do
12 if path contains cycles then
13 paths.remove(path)

14 minCards := [ ]
15 maxCards := [ ]
16 foreach path in paths do
17 minCards.add(getMinCardinality(path))
18 maxCards.add(getMaxCardinality(path))
19 minCard := min(minCards)
20 maxCard := min(maxCards)
21 newMorphism := Morphism(morphism, subject, object, minCard,

maxCard)
22 SSELECT .morphisms.add(newMorphism)
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With the schema category for the SELECT clause in hand, we can proceed to
projecting the actual data, using the algorithm shown in Algorithm 5.13. This
algorithm receives two inputs – the instance category for the WHERE clause con-
structed in previous steps, and the schema category induced by the SELECT clause.
Its output is then data in the form of an instance category corresponding to the
SELECT clause. This algorithm copies over data from instance objects for the
WHERE clause to instance objects for the SELECT clause (since variable projection
does not modify the set of values). It is worth explaining the notation map(path,
x => ...) used on line 14 of Algorithm 5.13, which means the application of
the lambda function in the second argument to map on each element of path.

Algorithm 5.13: Projection Instance Algorithm.
Input: IW HERE – instance category containing the results of the WHERE

clause
SSELECT – schema category induced by the SELECT clause

1 ISELECT := ∅
2 foreach schemaObj in SSELECT .objects do
3 instanceObj := IW HERE .objects.getByKey(schemaObj.key)
4 ISELECT .objects.add(instanceObj)
5 foreach schemaMorphism in SSELECT .morphisms do
6 subject := schemaMorphism.domain
7 object := schemaMorphism.codomain
8 paths := getPathsInSchema(SW HERE , src=subject, dst=object)
9 foreach path in paths do

10 if path contains cycles then
11 paths.remove(path)

12 instancePaths := [ ]
13 foreach path in paths do
14 instancePath := map(path, x => getInstanceMorphism(x, IW HERE))
15 instancePaths.add(instancePath)
16 contractedPaths := map(instancePaths, contractMorphisms)
17 instanceMorphism :=

baseInstanceMorphismIntersection(contractedPaths)
18 instanceMorphism.schemaMorphism := schemaMorphism
19 ISELECT .morphisms.add(instanceMorphism)

When it comes to creating the set of instance morphisms, it gets more com-
plicated. For morphisms from the SELECT clause which correspond to base mor-
phisms from the WHERE clause, we can simply copy the instance morphism over to
the new instance category, with a new signature corresponding to the signature
specified in the SELECT clause. However, it is possible for a morphism from the
SELECT clause to correspond to a path (or set of paths) with length greater than
one in the categorical representation of the WHERE clause. In this case, we need
to introduce the notion of morphism contractions. Given a compound morphism
mapping a subject to an object, its contraction is a base morphism with the same
mapping. In other words, we merge the base morphisms which form the com-
pound morphism into a single base morphism in the new instance category. To
do this, we must again get the set of paths (disregarding cycles) in the instance

76



Algorithm 5.14: Function contractMorphisms from Algorithm 5.13.
Input: instancePath – list of base instance morphisms forming a path in the

instance category induced by the WHERE clause
1 contractedPath := copy(instancePath)
2 while len(contractedPath) > 1 do

// If our path ends with morphisms (X) -a- (Y) -b- (Z),
contract these morphisms to create a morphism (X) -a+b- (Z)

3 b := contractedPath.popBack()
4 a := contractedPath.popBack()
5 joinedMappings := join(a.mappings, b.mappings, xa => xa.codomain, xb

=> xb.domain)
6 contractedMappings := [ ]
7 foreach joinedMapping in joinedMappings do
8 contractedMapping := joinedMapping.a.domain,

joinedMapping.b.codomain
9 contractedMappings.add(jcontractedMapping)

10 contractedMorphism := InstanceMorphism(contractedMappings)
11 contractedPath.add(contractedMorphism)
12 return contractedPath.first()

category induced by the WHERE clause, and perform morphism contraction on
each path. Finally, to produce the new instance morphism for the result instance
category, we perform an intersection of all base morphisms created as a result of
the path contractions, meaning the final domain-codomain map only contains a
mapping of domain to codomain if all paths contain this mapping.

Additional Considerations

The perceptive reader may have noticed that the algorithm which we presented
in Algorithm 5.13 does not take into account the OPTIONAL, UNION and MINUS
clauses of MMQL. Indeed, the semantics of paths contained within these clauses
are different in the context of creating result instance morphisms, however we
intentionally omitted them from Algorithm 5.13 to preserve its simplicity and
readability.

When it comes to paths within (or partially within) the OPTIONAL clause, we
can disregard them if there exists at least one non-optional path, as the non-
optional paths constrain the instance morphism to a set of mappings, and re-
gardless of the existence of a particular optional mapping, the corresponding
non-optional mapping always exists. If no non-optional paths exist, then we de-
fine the instance morphism to be the union of all optional paths, after morphism
contraction has been applied to them. This is because for any given domain-
codomain mapping to exist in the result instance morphism, it is enough for any
given optional path to exist in the instance category corresponding to the WHERE
clause.

Earlier, we specified that both arguments of the UNION clause are treated as
optional. If the entirety of a given UNION clause could be resolved within a single
query part, we do not need to perform any extra work, as not only do we have
the correct data in the instance morphisms, but the set of instance objects is also
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correctly filtered. In the case that the UNION clause spans multiple query parts,
we need to additionally filter the set of instance objects to eliminate those for
whom neither UNION argument was matched.

As for the MINUS clause, the final instance morphism is the result of taking the
instance morphism from the first argument of MINUS, while for any given domain-
codomain mapping, if this mapping is also contained in the second argument of
MINUS, it is eliminated. Note that if the MINUS clause is contained entirely within
a single query part, the required results have already been filtered out, meaning
the filtering at this level is trivial, removing no mappings.

The last simplification made in the algorithm is the omission of constants
and aggregations present in the SELECT clause. While aggregations present here
could be computed at the database level to increase overall efficiency, this is
an optimization which would complicate the algorithms further, which is why
we opted to simply explain it in this fashion. Aggregations and constants in
the SELECT clause would have schema objects defined just like variables, with
corresponding instance objects having a constant value in the case of constants.
In the case of aggregations, their values would be computed according to their
semantics as described in Section 4.4.8, with the instance morphisms being defined
accordingly.

We should also mention that the algorithms presented in this subsection are
critical to query performance, as morphism contraction is an extremely expensive
operation for a large dataset, entailing an inner join across all data in the instance
morphism for each contraction. The true cost of the contraction operation will
be further explored in Chapter 8.

The final piece of the projection algorithm is taking care of the ORDER BY,
LIMIT and OFFSET clauses of the query. Again, while these could be handled at
the database level natively, this is purely an optimization, and it would complicate
the structure of our algorithms, which is why we opted to address them here. As
far as ordering is concerned, the final instance category would be divided up
into maximal connected components, and these connected components ordered
by the ordering criteria. A special instance object would then be inserted into the
instance category, with a morphism mapping sequence numbers from 1 to N to
the connected components. LIMIT and OFFSET are quite simple in their function,
meaning we would simply restrict the result set as required.

To give a concrete example, recall the query from Figure 5.4, and the results
of the generated native queries from Figure 5.11. Given these results, the final
instance category which represents the result of the MMQL query will have the
following active domain rows for the :shared object:

• {(name,Alice),(price,30)}

• {(name,Bob),(price,25)}

Again, note that each active domain row is a set of tuples (signature, value).
Normally when working with a schema category, base morphism signatures are
integers which are automatically assigned, but technically a base morphism sig-
nature can be any string, which is why we allow their naming in the MMQL
SELECT clause.
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5.2.8 Transforming Data
As the result of the algorithm as proposed up to this point, we have an instance
category corresponding to the schema category induced by the MMQL query’s
SELECT clause. However, query results in the form of an instance category may
not be practical for most use cases. For this reason, we recognize the need for the
query results to be transformed into a more suitable format, like JSON or RDF.
As MMQL is a categorical query language with categorical inputs and outputs,
we believe that the transformation of data is best left out of the language itself,
instead relying on supplemental query tooling to perform this job. Despite this,
we will describe our proposed approach for such a transformation, as we believe
it is necessary to showcase the end-to-end validity and usability of the proposals
made in this thesis. This final part of the entire workflow corresponds to Phase
VII as shown in Figure 5.1.

In general, we can formalize this problem as the transformation of an in-
stance category to a specific data model. As we mentioned in Section 5.2.6, Pavel
Koupil and Irena Holubová proposed an algorithm for model-to-category trans-
formation [6], which we are using to transform data retrieved by native database
queries into a categorical representation, and to subsequently join the data from
multiple databases into a single instance category representing the WHERE clause of
the MMQL query. However, in the same paper, they also proposed an algorithm
for a transformation in the opposite direction, meaning category-to-model (Al-
gorithms 4 and 5 in their paper). As it turns out, this algorithm solves exactly
the problem we need to solve in order to transform the result instance category
to a format like JSON or RDF. For this reason, we propose that this algorithm
be used for this transformation, and we refer the reader to the original source for
more details on this algorithm.

It is worth mentioning that this transformation requires an input in the form
of a mapping (recall Section 2.5), which specifies the shape of the resulting data.
This mapping can be inferred from the shape of the MMQL SELECT clause in a
straightforward way for some data models, for example in the graph model, we are
simply transforming graph data to graph data in another representation, meaning
relatively few modifications are necessary. However, for some data models like
the document model, this gets somewhat complicated. The document model
operates with tree structures, which in general do not permit lower levels of the
tree to refer to upper levels. This can pose a problem in the instance that the
schema category induced by the SELECT clause contains back edges, forward edges
or cross edges (borrowing terminology from the well-known Depth First Search
algorithm), which was not an issue with graph data.

There are multiple possible solutions to the problem of transforming general
directed graphs to trees [39], but we will mention two main approaches which are
best suited to our use case. The first approach is to automatically determine the
schema object which will become the root of the tree, and construct a tree rooted
in this schema object, replacing back, forward or cross references in the tree
with object identifiers where possible, and with inlined data where not possible
(for example with objects which have no identifier, such as JSON arrays). The
automatic determination of the tree root is simple in the case where the graph
already forms a tree, but in the more general case, we would need to pick such a
tree root based on an algorithm, for example one which would pick a tree root such
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that the number of edges in the tree preserved from the original graph is maximal.
The second approach would be to prompt the user to manually select the tree
root when requesting a transformation which requires a root to be selected and
the root cannot be determined automatically, for example when transforming to
JSON when the schema category induced by the SELECT clause is not already
a tree. However, neither of the proposals is perfect as a transformation from a
general graph to a tree necessarily carries some tradeoffs, which is why we believe
that users of MMQL should try to formulate their queries to output categorical
data in the shape of trees where possible.
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6. MM-quecat
In the previous two chapters, we introduced MMQL, as well as the support-
ing algorithms enabling its implementation. However, we presented both on a
theoretical level only. To properly evaluate the validity and correctness of our
proposal, it must be verified in practice by way of implementation. Therefore
this chapter presents MM-quecat1, a proof-of-concept implementation of the core
concepts of MMQL. The purpose of this implementation is the verification of our
proposed approach. Full implementation of all MMQL concepts for all scenar-
ios would be beyond the scope of this thesis, which is why the implementation
focuses only on the key parts of MMQL. This chapter not only describes the im-
plementation of MM-quecat itself, but also the technical challenges faced along
the way.

6.1 Solution Architecture
MM-quecat is a Python 32 library which provides the functionality of executing
MMQL queries. Its interface is rather simple on the surface - it provides a function
execute query, which takes the input query as a string, and returns an instance
category (see Section 2.4) representing the result of the query.

To do this, it needs to communicate with MM-evocat [22], which is a multi-
model data modeling and evolution framework based on category theory, writ-
ten as a Java server application. MM-evocat has the functionality of creating
a schema category (see Section 2.3). For that reason, MM-quecat’s main in-
terface function execute query also contains a parameter containing the ID of
the schema category, which refers to a schema category within MM-evocat. In
MM-evocat, one can not only model the schema category, but also create the
mappings necessary to transform data from its native representation into the
categorical representation, using an algorithm for model-to-category transforma-
tion [6]. While including MM-evocat in the solution does introduce overhead in
the form of network communication, the benefits it brings outweigh the negatives
for our purposes, since it includes the categorical modeling tools which are neces-
sary for MM-quecat to do its job. Without MM-evocat, MM-quecat would need
to implement all of the necessary functionality itself, effectively duplicating the
functionality of MM-evocat to avoid network overhead, which is not desirable at
this point of the tool’s lifecycle as proof-of-concept software. MM-evocat is also
still in active development by its author and is not yet fully finished, which fur-
ther complicates its usage, as we will mention again going forward in this chapter.
Perhaps in the future, if the a full and optimized implementation of MM-quecat
is desired and when MM-evocat’s development is finished, both tools could be
merged into a single one.

The architecture of the whole solution can be seen in Figure 6.1, which shows
MM-quecat communicating with MM-evocat via HTTP. We can see that MM-
quecat sends requests to an instance of MM-evocat which contains the necessary
schema category and mappings representing the data being queried, as well as

1https://github.com/yawnston/querycat
2https://www.python.org/
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Figure 6.1: Architecture of the MM-quecat solution.

maintaining the connections to the relevant databases. Note that at no point
does MM-quecat actually need to communicate with the queried databases di-
rectly, as the queries generated by MM-quecat are passed to MM-evocat, which
executes the queries and transforms their results to the categorical representa-
tion using a mapping provided by MM-quecat3. This increases the modularity
of the solution, as MM-quecat only needs to rely on the categorical interface of
MM-evocat, and the database wrappers (recall Section 5.1.1 where we introduced
the notion of database wrappers) have their implementation greatly simplified,
as they only need to generate the native queries without having to worry about
executing them, or transforming their results to a categorical representation4.
Lastly, Figure 6.1 shows that MM-evocat also has its own PostgreSQL database
which it uses to store schema and mapping data, as well as instance categories.
This database is separate from the databases containing the actual data being
queried. Going forward, MM-quecat will also be wrapped in a simple HTTP
API as required for the purposes of the querying tool which we will introduce
in Chapter 7, as this querying tool will continue being worked on as part of a
conference demo paper which the author of this thesis is co-authoring [32].

For completeness, we should also mention the choice of Python as the lan-
guage for the implementation of MM-quecat. The ecosystem of tools developed
for multi-model data representation at the Faculty of Mathematics and Physics
of Charles University, which MM-quecat and MM-evocat are a part of, already
contains projects in both Java and Python, making both languages natural can-
didates for the cohesion of the tool ecosystem. From these two languages, Python
was chosen due to the personal preferences of the author of this thesis, as they
have extensive experience with Python, but little to no Java experience. To add
to this, it is the author’s personal belief that Python, with its simplicity, ease of
use and universal usefulness, is the language of the future, and will continue to

3While direct database communication is not necessary in MM-quecat’s current form, the
implementation of a fully-featured multi-model query planner would necessitate this direct
connection, as the query planner would need access to the databases’ own query planners,
usually in the form of a database explain command, to assess the cost of MMQL multi-model
query plans.

4A potential problem may arise if the database wrappers need to access the database interface
to query it for the supported query language version in cases where the database wrapper is
deciding whether it may use a newer language feature. However, this would be solved by simply
adding the database connection to MM-quecat just like in the case of the query planner.
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gain market share while Java slowly fades away to make room for more modern
languages.

Since MMQL is a multi-model query language and MM-quecat is a library
implementing MMQL, we also need to discuss MM-quecat’s multi-model capa-
bilities. As implemented, MM-quecat supports two models - relational in the
form of PostgreSQL, and document in the form of MongoDB. The reason for
this is relatively straightforward, as both databases are among the most pop-
ular in their class, and together they represent a significant market share of
the database space. In addition, MM-evocat currently only supports these two
databases, which means that MM-quecat cannot support additional databases
without their corresponding implementation in MM-evocat. Among other limi-
tations, MM-evocat only supports string values, meaning the data type of every-
thing in MM-evocat is a string. For this reason, MM-quecat is also constrained
to only supporting strings, even though MMQL also supports other data types.

With the solution architecture out of the way, we will describe specific parts
of MM-quecat and their implementation, loosely following the solution structure
proposed in Section 5.1.

6.2 Parsing
The first step in implementing any language, be it a query or programming lan-
guage, is to implement a parser for this language. This is because it is not feasible
to work with a language based on its raw text alone, but rather it is more practi-
cal to operate on language-level constructs which are parsed from the raw text by
a parser. While the parser for MMQL could be manually implemented, a smarter
solution exists in the form of parser generators. These tools generally accept
some sort of formal grammar as input, and in return generate a parser for the
language represented by the grammar. As it happens, we had been planning to
formally specify the grammar of MMQL anyway, which made using the grammar
to generate a parser a natural step. The grammar used to generate the parser for
MM-quecat is included in Attachment A.1.

This was accomplished using the ANTLR5 library, which is a parser generator
for reading, processing, executing, or translating structured text or binary files.
ANTLR was used to generate the parser classes in Python, at which point we
implemented an abstract syntax tree (AST) visitor, which walks the AST created
by the generated parser, and converts it into a suitable form for further processing
in the query execution process. This form consists of translating the input graph
patterns into sets of triples, coupled with additional constructs such as FILTER
expressions or other query features.

6.3 Creating Query Plans
As described in Chapter 5, we need to divide the query up into query parts to
form query plans. First, queries are preprocessed to transform triples containing
compound morphisms into multiple triples, each containing a base morphism. For
each point where a compound morphism was split, a temporary internal variable

5https://www.antlr.org/
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is inserted into the query. As discussed in Section 5.2.1, this greatly simplifies
query processing as a whole, but introduces issues when it comes to performance
and recursive paths. The performance consideration is not an issue for MM-
quecat, as achieving high performance is not within the scope of its proof-of-
concept nature (and within the scope of this thesis in general). The consideration
of recursive morphisms, while unpleasant, is also not key to demonstrating the
viability of MMQL and MM-quecat as a whole. The implementation of recursive
morphisms would also be rather complex, which is why they are not supported
in the implementation, giving us space to focus on the main focus points of this
thesis.

Aside from the preprocessing, the implementation of query plan creation
largely copies the algorithm outlined in Section 5.2.2, which is why we will not
discuss it here further.

6.4 Query Translation
The query translation algorithm is a simplified, limited version of the algorithm
presented in Section 5.2.5, supporting simple queries with both base and com-
pound morphisms. However, the scope of the implementation of this algorithm is
not limited only by the implementation effort required. As we mentioned earlier
in this chapter, MM-evocat is still undergoing active development by its author,
and as a consequence, some of its features are not quite finished yet. For exam-
ple, there is an issue where if MM-quecat generates queries requiring database
joins on multiple kinds (like multiple tables in the relational model or multiple
collections in the document model), MM-evocat will not correctly process these
queries when translating their results into the categorical representation, yield-
ing an incorrect instance category. For this reason, MM-quecat cannot support
queries with multiple kinds in a single query part at this time. While this is
bothersome in terms of the completeness of the implementation, it is not an issue
in the scope of a proof-of-concept implementation, as we can demonstrate the
multi-model capabilities of MM-quecat on multi-model queries which do not re-
quire the use of multiple kinds from the same database. One such query is later
shown in Figure 8.10 while evaluating the weaknesses of MM-quecat.

6.5 Selecting the Best Query Plan
In Section 5.2.4, we discussed the difficulties which come with multi-model query
planning, and the lack of related work on the subject, with most sources only
considering single-model query planning within the context of a single database.
For that reason, in Section 5.2.4 we left the selection of the best query plan as
an open point which is beyond the scope of this thesis, which already breaches
the vast and complex area of multi-model querying with little related work to use
as a base. Therefore in MM-quecat, the implementation of best plan selection
is purposefully very basic - an arbitrary query plan is selected if multiple plans
are present due to data redundancy. The implementation of a more sophisticated
selection process first necessitates additional research on possible approaches to
this problem.
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6.6 Query Execution
As discussed earlier in this chapter, MM-evocat has the ability to execute native
database queries in PostgreSQL and MongoDB, and then transform their results
into the categorical representation. It also has the ability to merge the results
of multiple such queries over the same schema category into a single instance
category, using the objects’ identifiers to determine the proper way to join the
data. However, MM-evocat does not have the ability to execute arbitrary queries
as required by MM-quecat, and its capability is limited to trivial projection-only
queries that exactly copy the structure of the defined mappings. This is an issue,
because MM-quecat generates various queries, which then need to be executed
against the databases.

Because MM-evocat is in active development, waiting for MM-evocat to sup-
port this arbitrary query execution was not realistic within the context of this
thesis. This is why MM-quecat is actually using a modified instance of MM-
evocat6, which was forked from the main implementation, in which the author of
this thesis has made the modifications necessary for MM-quecat to fully function.
The modifications include, but are not limited to:

• Modifying the API to allow execution of arbitrary database queries;

• Modifying the database wrappers for PostgreSQL and MongoDB to execute
the provided queries, including the ability for the MongoDB wrapper to
execute aggregation pipelines instead of simple find queries;

• Modifying the API to allow the retrieval of instance morphisms, in addition
to the retrieval of instance objects, which was already implemented; and

• Addition of Docker7 configuration files to easily run MM-evocat, since its
setup is not very straightforward and includes multiple components.

For this reason, MM-quecat only functions with the modified version of MM-
evocat. However, in the future, when MM-evocat is modified by its author to fully
support the features required by MM-quecat, these temporary modifications will
become obsolete, and MM-quecat will use the main, up-to-date MM-evocat.

Aside from the necessity for these modifications, the query execution algo-
rithm operates mostly as described in Chapter 5. MM-quecat uses the API
provided by MM-evocat to create a copy of the queried schema category, and
to define the mappings which are needed by the query parts in the query. These
mappings define the shape of the results of each individual native database query,
effectively telling MM-evocat how to transform the result of this query into the
categorical representation. The queries generated by MM-quecat are executed
within MM-evocat, including joining of their results into a single instance cate-
gory. This instance category is then retrieved from MM-evocat using the modified
API, and the remaining steps are executed as described in Chapter 5, project-
ing the instance category to the final instance category, along with creating the
schema category defining this result instance category. The final instance cate-
gory is then returned as the result of the query.

6https://github.com/yawnston/evolution-management
7https://www.docker.com/
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Note that in our description of the proposed approach in Section 5.1, we also
mentioned the need to transform the query result into a more usable representa-
tion, such as JSON. We discussed this in greater detail in Section 5.2.8, where we
mentioned the fact that we can use an existing algorithm for category-to-model
transformation [6].

This is another limitation where MM-evocat is not quite ready, as this func-
tionality is not yet fully implemented as required by MM-quecat8. However, when
the required functionality is complete on the side of MM-evocat, MM-quecat will
take the schema category corresponding to the query result, define the required
mappings to transform the result into a JSON representation, and send both over
to MM-evocat to perform the actual transformation.

As a whole, the implementation of MM-quecat in this form is sufficient to
verify the validity of our proposed approach, as we later demonstrate in Chapter 8
with concrete queries processed by MM-quecat. However, as can be seen from the
solution architecture, there is certainly room for performance optimization, since
there is quite a bit of network communication overhead between MM-quecat and
MM-evocat, along with the proposed algorithms being optimized for readability
and simplicity, not performance. These considerations will also be discussed
in Chapter 8.

8In particular, the algorithm for category-to-model transformation itself is implemented, but
not the relevant functionality for the transformation to a format like JSON or RDF.
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7. Querying Tools
In the previous chapter, we discussed the proof-of-concept implementation of
MM-quecat, which exists in the form of a Python library. However, despite its
interface being easy to use, it does not fully leverage the power of MMQL with
respect to the end user experience. Recall that in Section 2.6, we articulated
the requirements that MMQL be expressive and readable, and that it be intuitive
and familiar to users of existing query languages. While we believe that MMQL
meets these design goals as proposed, and that one of its greatest strengths lies
in being graphically expressive, meaning users can define graph patterns which
visually resemble the actual structures being defined. Therefore, in this chapter,
we present the prototype of a user interface (UI) application for MM-quecat1,
which allows the user to visually construct queries.

The presented prototype is not one of the main products of this thesis, but we
present it regardless, as it should give the reader an idea of how the language may
be used from an end-user perspective. The prototype of the UI for MM-quecat
was created by the author of this thesis while working on a not-yet-published
demo paper [32], co-authored with Pavel Koupil and Irena Holubová. Therefore
its implementation will be completed as the paper nears its publishing date, and
in this chapter, we present it as it exists in its current form.

The querying tool is a web application built with React2 and Next.js3, utiliz-
ing the Cytoscape.js4 library for graph visualization and MUI5 as a component
library.

7.1 Requirements
Before we introduce our design, we first need to formalize the requirements for
such an application. The application should primarily serve as a querying tool,
meaning it should be possible for the user to construct a query using the schema
category as a visual aid. The user should have the ability to directly execute
the query, and retrieve the results in the chosen representation (like JSON for
example).

Aside from this primary use case, the user should also have the ability to view
all of the possible query plans created by MM-quecat for the execution of the
query. Each query plan should be able to be examined further, displaying the
native database queries generated by MM-quecat for this specific query plan, as
well as visualizing the query plan in a subset of the full schema category.

As a whole, the query tool should heavily leverage the graphical nature of
MMQL, nicely visualizing the query in the schema category and possibly even
providing semantic syntax highlighting in the query itself, with colors correspond-
ing to the concepts visualized in the schema category.

1https://github.com/yawnston/quecat-frontend
2https://reactjs.org/
3https://nextjs.org/
4https://js.cytoscape.org/
5https://mui.com/
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7.2 User Interface
Now that we have formalized the requirements for a MMQL query tool, we will
showcase our prototype. The main query screen can be seen in Figure 7.1, where
on the right side, the user may construct an MMQL query, and on the right side,
a visual aid in the form of the schema category is present. To help the user
understand the query that they are writing, the schema category display also
contains a visualization of various query features.

Figure 7.1: MM-quecat querying UI, showing the query on the right, and the
schema category with the visualized query on the left.

For example, the Order schema object is colored blue, as it lies on the query
path, but is not a part of the projection. The Contact object is colored gray
since it is not part of the query at all, and the Name object corresponding to a
Product is colored purple, since it is part of the query projection. Lastly, we can
see that the Name object corresponding to a Customer is colored purple with an
orange outline, meaning that it is part of the projection, and there exists a filter
on this schema object.

If the application user clicks on the ”EXPLAIN” button in the bottom part
of the screen, they will be taken to the screen shown in Figure 7.2. There they
can see a list of all possible query plans, coupled with their plan cost and the
databases used in the plan.

The user may further examine individual query plans, leading to the screen
shown in Figure 7.3. This screen, similarly to the screen shown in Figure 7.1,
shows the schema category on the left side, however in this instance, the schema
category is restricted to the databases and schema objects which are part of
this specific query plan. On the right side, the user can see the native database
queries which were generated for this plan by MM-quecat. The user can use this
information to verify that the queries generated by MM-quecat are, for instance,
using the correct indexes in the corresponding databases.
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Figure 7.2: A table displaying all query plans generated by MM-quecat and their
details.

Figure 7.3: Detailed view of a specific query plan, showing the native database
queries generated by MM-quecat.
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8. Evaluation
Now that we have discussed the goals and scope of the proof-of-concept implemen-
tation of MM-quecat, recall that in Chapter 6, we mentioned query performance
as one of the main open points of our approach. In Section 2.6, we mentioned
that a suitable multi-model query language should ”have the capability of being
nearly as performant as native queries where possible”. To that end, we discussed
optimization options in Chapter 5 while discussing the proposed algorithms. How-
ever, in order to properly understand the performance of the proposed approach,
and to be able to constructively suggest effective optimizations for the future, it
would be useful to experimentally evaluate the performance of MM-quecat. This
chapter is therefore dedicated to such an evaluation.

Specifically, we have four main goals in mind for the experiments in this
chapter, which is to:

1. Understand the overhead introduced by our approach compared to native
database queries in a single-model scenario;

2. Understand the overhead in the context of merging data in a multi-model,
multi-database scenario;

3. Locate the main performance bottlenecks in MM-quecat; and

4. Establish a performance baseline for future optimizations.

The motivations for the first goal should be quite clear, as our approach intro-
duces overhead in the form of converting data into a categorical representation
and network communication overhead. Therefore to properly fulfill the first goal
of this chapter, we will need to prepare simple, single-model scenarios which we
can use to isolate the amount of overhead introduced in this fashion.

As for the second goal, recall that in Chapter 5, we mentioned the need to
merge together data retrieved from different query parts. While the merging itself
is not performed directly by MM-quecat, but rather by MM-evocat [22], it is still
crucial to understand the impact of this step on the whole approach. To this end,
we will naturally need to include a multi-model scenario in our evaluation.

Lastly, a simple observation motivates the third goal - in practice, it is best to
avoid premature optimization, and rather use benchmarking to identify specific
performance bottlenecks. Because the problem domain of multi-model querying
is very complex, naturally the approaches we designed are as well. This means
that avoiding premature optimization is even more important, as we want to
preserve the simplicity and comprehensibility of our approach where possible. To
this end, during the writing of this chapter, two key tools were utilized to aid us
in locating performance bottlenecks: Python’s cProfile1 module which allows us
to collect performance statistics about Python programs, and SnakeViz2, which
is a tool for the visualization of cProfile’s output.

Before we begin with the evaluation itself, it is also worth mentioning that
the use cases designed for evaluation purposes also serve as use cases for the

1https://docs.python.org/3/library/profile.html
2https://jiffyclub.github.io/snakeviz/
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verification of the implementation of MM-quecat. Specifically, the multi-model
use case presented in Section 8.3 also presents the main use case of MM-quecat
(and this thesis in general), which is the unified querying of multi-model data. By
including this use case in the evaluation, we also verify that MM-quecat fulfills
its intended primary purpose.

8.1 Evaluation Framework

Figure 8.1: Schema category used for all evaluations.

For the purposes of the aforementioned evaluations, we propose a model sce-
nario used for both single-model and multi-model evaluations. The schema cat-
egory for this scenario is shown in Figure 8.1. The corresponding mappings are
then shown in Figure 8.2. The customers along with their properties are stored
in a PostgreSQL table, and the orders are stored in a MongoDB collection. Using
this schema, we are able to easily test the multi-model functionality of MM-
quecat while keeping the example simple and understandable. Note that the
customer id stored for each order in MongoDB refers to a customer stored in
PostgreSQL, allowing the joining of the data.

For each evaluation scenario, the given MMQL query is executed, timed, and
its execution time is compared to the execution time of a native database query
(or two native queries in the case of the multi-model scenario). Each scenario was
repeated 100 times, and the presented results are the average of all repetitions.

The choice of databases for this example scenario is also not random - MM-
evocat [22] supports only PostgreSQL and MongoDB, and therefore MM-quecat
does as well. Therefore the only reasonable option is to use both the supported
databases if we want to examine the multi-model behavior.

Every proper test needs a well-defined set of input data, and it is no different
for our case. The data was generated using the Faker3 library, using a random

3https://faker.readthedocs.io/en/master/
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Customer<PostgreSQL>

{
id: 1,
name: 2,
surname: 3,
address: 4

}

Order<MongoDB>

{
_id: 6,
total_price: 7,
status: 8,
customer_id: 1.5

}

Figure 8.2: Mappings corresponding to the schema category in Figure 8.1.

seed for reproducibility. As for the size of the data, a set of 2000 customers and
6000 orders was used, with each customer being assigned 3 orders.

The evaluations were performed on a laptop with an 11th generation Intel i7
CPU, 32 gigabytes of operating memory and an SSD. Both databases as well as
the MM-evocat instance were running locally on the same machine, using Docker4

for virtualization.
It is also worth reminding that even though there is a single multi-model

schema for all evaluations, we are able to use specific parts of it for the single-
model evaluations.

All evaluations described in this chapter are part of the MM-quecat source
code5 as executable Python scripts in the src/experiments folder.

8.2 Single-Model Evaluation
As mentioned in the introduction of this chapter, the purpose of single-model
evaluation is to isolate the overhead introduced by our approach compared to
native database queries. In a single-model scenario, we do not need to consider
the overhead of merging together data from multiple different databases, and we
can focus on only the base overhead. A separate evaluation was carried out for
both currently supported databases - PostgreSQL and MongoDB.

8.2.1 PostgreSQL
In the PostgreSQL evaluation, let us consider a query which simply selects all
customers along with their properties, using the schema shown in Figure 8.1.
Such a MMQL query is shown in Figure 8.3.

We also consider an equivalent PostgreSQL query shown in Figure 8.4, which
was used as the benchmarking query. When compared to the query shown
in Figure 8.5, which was internally generated by MM-quecat for the given MMQL
query, we can see that they are functionally identical.

The results of this evaluation scenario can be seen in Table 8.1, with the
first row showing the raw elapsed query time in milliseconds, and the second row
showing slowdown relative to the native query. We can see that on average, the

4https://www.docker.com/
5https://github.com/yawnston/querycat
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SELECT {
?customer id ?id ;

name ?name ;
surname ?surname ;
address ?address .

}
WHERE {

?customer 1 ?id ;
2 ?name ;
3 ?surname ;
4 ?address .

}

Figure 8.3: MMQL query used for PostgreSQL single-model evaluation.

SELECT id, name, surname, address
FROM experiments_customers

Figure 8.4: PostgreSQL query used for benchmarking performance.

MMQL query took a little over 1 second to execute, compared to just 4ms for
the native query, giving us a slowdown of roughly 288 times.

Native Query MM-evocat

Elapsed Time 4ms 1153ms
Slowdown 1x 288x

Table 8.1: Average query time measurements for the single-model PostgreSQL
scenario.

This degree of slowdown was within the realm of expectation, because we
need to consider the overhead of communication with the MM-evocat instance,
as well as the overhead of transforming the data into a categorical representation.
However, what is more interesting is to take a look at where the majority of
the slowdown is coming from. Looking at Figure 8.6, we can see performance
measurement data collected by cProfile and visualized by SnakeViz6. This data
shows a visualization of the total execution time spent in given function calls,
starting at the top and decomposing the function calls further as we go down in
the image.

Some function names are omitted from the image due to the available space,
but examining the data contained within reveals the main takeaway of this evalu-
ation scenario: the majority of the time was spent on network communication
with MM-evocat. This network communication necessarily includes the transfer
of all retrieved data from MM-evocat to MM-quecat. In other words, the amount
of time spent otherwise manipulating the data was trivial. This gives us a good

6The profiler run was done separately from the performance measurement runs shown
in Table 8.1 in order to eliminate any possible performance effect of the profiler itself.
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SELECT
experiments_customers.id AS experiments_customers_id,
experiments_customers.name AS experiments_customers_name,
experiments_customers.surname AS experiments_customers_surname,
experiments_customers.address AS experiments_customers_address

FROM
experiments_customers

Figure 8.5: PostgreSQL query generated by MM-quecat from the query shown
in Figure 8.3.

Figure 8.6: Profiler data for the single-model PostgreSQL scenario.

baseline idea of the performance of MM-quecat, as we can expect that execution
times for arbitrary queries will likely not go too far below 1 second.

The only feasible way of reducing this overhead further would be to revise
the architecture of the ecosystem including MM-evocat and MM-quecat, and
to merge them together into a single tool. However, that would be far from
trivial, considering the relevant tools were developed independently as part of
different theses using different languages. Such an endeavor may not be worth
the performance benefits at this point of the tools’ lifecycle. Perhaps if in the
future a highly performant variant of both MM-evocat and MM-quecat is desired,
a new, unified tool can be built from scratch using the knowledge gained from
the design and implementation of both tools.

8.2.2 MongoDB
Similarly to Section 8.2.1, this evaluation scenario evaluates MM-quecat in the
context of a single data model within a single database. The evaluated MMQL
query for this scenario is shown in Figure 8.7, the benchmark MongoDB query
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is shown in Figure 8.8. The query generated by MM-quecat is identical to the
query shown in Figure 8.8, therefore it is not shown in a separate figure.

SELECT {
?order id ?orderId ;

totalPrice ?totalPrice ;
status ?status ;
customerId ?customerId .

}
WHERE {

?order 6 ?orderId ;
7 ?totalPrice ;
8 ?status ;
5/1 ?customerId .

}

Figure 8.7: MMQL query used for MongoDB single-model evaluation.

db.experiments_orders.aggregate([
{

"$project": {
"_id": 1,
"total_price": 1,
"status": 1,
"customer_id": 1

}
}

])

Figure 8.8: MongoDB query used for benchmarking performance, identical to the
query generated by MM-quecat.

The results of this evaluation scenario can be seen in Table 8.2. We can see
that the average execution time for the native MongoDB query was 16ms, while
the average for MM-evocat was 5458ms. This gives us an approximate slowdown
of 341x.

Native Query MM-evocat

Elapsed Time 16ms 5458ms
Slowdown 1x 341x

Table 8.2: Average query time measurements for the single-model MongoDB
scenario.

The measurements show an increase in the overhead incurred by MM-evocat,
and the reason for this becomes apparent when examining Figure 8.9. As we can
see, network communication between MM-evocat and MM-quecat now only takes
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up approximately 30% of the total query execution time. The remaining 70% is
taken up by work being done in the QueryProjector class, specifically by the
method contract morphisms.

Recall that in Section 5.2.7, we discussed the projection algorithm, including
the need for so-called morphism contractions. A morphism contraction is an
operation on the instance category, where we may need to contract multiple
instance morphisms into a single one because of the required projection in the
query. This is an operation which for m morphisms with data size n effectively
requires m−1 joins between instance morphism domain rows, where each instance
morphism may contain up to n domain rows. These joins are implemented using
a linear number of operations and a hash table in MM-quecat, however there may
be room for optimization here. Perhaps a more efficient contraction algorithm
could be designed, eliminating the need for hashing by clever usage of memory
layout for the data being joined. Similarly, the representation of the instance
category is not optimized for performance, therefore there may be some room for
improvement here as well. In any case, the instance morphism contractions form
a major performance bottleneck in MM-quecat, along with the serialization and
deserialization of the instance category also having room for optimization.

Figure 8.9: Profiler data for the single-model MongoDB scenario.

The reader may be wondering why we did not see this effect of the contrac-
tions in Section 8.2.1. The reason for this can be seen in the structure of the
MMQL query itself - the query in this scenario contains the triple ?order 5/1
?customerId, but this compound morphism is contracted into a single base mor-
phism in the SELECT clause. For that reason, the contractions are needed in
this instance, whereas in Section 8.2.1, no such operation was needed due to the
structure of the query.
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8.3 Multi-Model Evaluation
In the previous section, we examined the characteristics of MM-quecat in the
context of querying a single database at a time. However, one of the main benefits
of MM-quecat and MMQL is the ability to uniformly query data from multiple
databases at a time. Also, recall that one of the goals for this chapter was to
understand the overhead in the context of merging data in a multi-model, which
we have not yet done. This is why this last evaluation scenario is focused on
MM-quecat in a multi-model context.

SELECT {
?order id ?orderId ;

totalPrice ?totalPrice ;
status ?status ;
customerName ?customerName ;
customerSurname ?customerSurname ;
address ?customerAddress .

}
WHERE {

?order 6 ?orderId ;
7 ?totalPrice ;
8 ?status ;
5 ?customer .

?customer 2 ?customerName ;
3 ?customerSurname ;
4 ?customerAddress .

}

Figure 8.10: MMQL query used for multi-model evaluation.

Recall Figure 8.1, which shows the schema category used in these evaluations.
In this scenario, we will finally be using the entire schema category. The MMQL
query in Figure 8.10 selects data for each order from MongoDB, while also select-
ing customer data from PostgreSQL and joining the data based on the customer
ID stored with the orders.

As this is a multi-model scenario, we will be running queries in both Post-
greSQL and MongoDB, and their combined elapsed time form the performance
baseline. These baseline queries are the same as in the previous section (i.e.
Figure 8.4 and Figure 8.8), we will just be using both of them at the same time.
We will also not be showing the queries generated by MMQL in this instance, as
they are virtually identical to the generated queries in the previous scenarios.

Native Queries MM-evocat

Elapsed Time 46ms 19209ms
Slowdown 1x 417x

Table 8.3: Average query time measurements for the multi-model scenario.
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The results for this final scenario are shown in Table 8.3. We can see that the
native queries combined took approximately 46 milliseconds on average, whereas
MM-evocat finished its work in around 19 seconds.

Figure 8.11: Profiler data for the multi-model scenario.

Examining the profiler data shown in Figure 8.11, we can see a similar im-
age as in Section 8.2.2. Again, the vast majority of the query execution time is
spent on instance morphism contraction, this time over 80%. In this instance,
the fraction of time spent on contractions is higher, because the query itself also
has more contractions to perform. While the customer ID is not being retrieved
this time, all other customer properties are, leading to additional contractions
needing to be done. This, along with the combined volume of data from both
databases, explains the increase in query execution time. Again, as discussed
in Section 8.2.2, perhaps there exist more optimized ways of doing the instance
morphism contractions, which would improve the overall query performance dra-
matically.

In addition, we can see that the merging process between the two models does
not take a significant amount of time, at least compared to the effort required to
perform morphism contractions. This makes sense, as the merging process does
not need to process that much data if the joining object has a simple enough iden-
tifier, which is used for the join. Therefore future efforts in improving the querying
performance should not focus on the merging algorithm, but rather on the con-
traction process (and the projection in general). In other words, for queries whose
projection is trivial, performance improvements are likely to be most effective in
the network communication between MM-evocat and MM-quecat, whereas for
queries with non-trivial projection, improvements to the morphism contraction
will yield the most benefit.
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Conclusion
Multi-model data is a very complex domain with many unsolved problems and
much additional research needed, as the reader is surely aware after reading this
thesis. This is especially true for the problem of unified querying of multi-model
data, for which no widely usable proposals exist at the time of writing of this
thesis, with the vast majority of existing multi-model querying solutions neces-
sitating the knowledge of the specifics of each model involved. Despite these
challenges, in this thesis we worked towards creating one of the first proposals
for a unified multi-model querying approach, as we believe that enabling the
formation of multi-model queries in a model-agnostic way has massive potential
upsides.

To this end, we first introduced the unified multi-model data representa-
tion [5][6] which we based our efforts on. Following this, we examined the existing
field of graph query languages, as a category may be thought of as a directed
multigraph, and selected SPARQL as the prime candidate for adaption to a cat-
egorical domain. We then proposed MMQL, a categorical multi-model query
language which given the aforementioned unified categorical data representation,
allows users to query across multiple models and databases in a unified, model-
and database-agnostic fashion. In addition to introducing all MMQL concepts
together with concrete query examples, we also provided a full formal grammar
for this proposed query language. The main characteristics of MMQL include
strong expressiveness in terms of matching graph patterns, familiarity thanks to
structural similarities to SPARQL, and leveraging the power of the categorical
representation to form elegant graph traversals.

A query language is nothing without the supporting algorithms necessary
for its implementation. For this reason, following the design of MMQL, we
also proposed an approach for the implementation of MMQL for multi-model,
multi-database scenarios potentially involving data redundancy. The main ac-
complishment of our proposed approach is the fact that it can be decomposed
into clear, well-defined steps, whose composition forms the whole implementation
algorithm. Since this is the first such approach designed, we focused our design
on comprehensibility and simplicity, discussing additional complexities along the
way. During our presentation of our proposed approach for implementing MMQL,
we made a special effort to point out any flaws or limitations of our approach, as
this will allow further work on this subject to iterate upon our solution.

Following the lengthy design chapters about MMQL and its supporting al-
gorithms, we put our designs to the test by creating a proof-of-concept imple-
mentation of MMQL called MM-quecat. This implementation is limited in scope
by the amount of time and work required to propose the entire approach, as
well as by constraints placed upon it due to the dependence on another piece
of software called MM-evocat, which is in active development, and not all of its
required features are finished. Despite this, MM-quecat serves its purpose as a
verification of the validity of our process, functioning as a unified query solution
for a subset of MMQL for the PostgreSQL and MongoDB databases. Although
we present MM-quecat in this thesis as it exists in its current state, its feature
set will continue to evolve in the future, as the author of this thesis is the co-
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author of a not-yet-published demo paper showcasing MM-quecat and its unified
multi-model querying capabilities, which we are excited to share with the wider
multi-model data community. Related to this, we also presented our proposal
for how a graphical query tool for MMQL may look like as part of MM-quecat,
demonstrating the final product we will be striving for with our future academic
endeavors.

In order to properly evaluate the weaknesses and limitations of our approach,
we also performed a handful of experimental evaluations of MM-quecat in an
experiment involving PostgreSQL and MongoDB. We acknowledge that perfor-
mance is key in the world of multi-model data, but achieving near-native perfor-
mance is simply too ambitious for an approach with little to no previous related
work to support it. For this reason, we collected query execution time data as
well as profiler data during the experiments, and we discussed their implications
for our approach.

Overall, we feel that we accomplished all goals which we outlined in the intro-
duction of this thesis, having proposed an innovative approach for unified multi-
model querying complete with our own query language called MMQL, laying the
groundwork for future research.
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Future Work
While presenting MMQL, we provided a full formal grammar, discussed its fea-
tures, and we showed a comparison of its feature set to existing single-model query
languages. However, we believe that a more formal analysis and verification of
the language may be desirable, in order to formally express the capabilities and
limitations of MMQL. Similarly, MMQL may be further extended with features
like more aggregation or filtering options, together with additional data types.

When it comes to our proposed MMQL implementation approach, we men-
tioned a number of open problems in the world of multi-model data which require
further study. More work is needed in the area of multi-model query planning,
as there are limited academic resources on this matter, and existing multi-model
query planners within polystores do not fit neatly into our problem domain, as
they do not take into considerations many variables relevant to our approach.
Together with multi-model query planning, we also mentioned the problem of
multi-model join ordering, which also lacks robust and general solutions.

When it comes to the MMQL implementation approach proposed in this the-
sis, we acknowledge that it has many limitations and weaknesses, which we dis-
cussed at great length in various chapters. Perhaps the largest one of them all is
performance, and with performance and scalability often being the driving force
behind using multiple data models to begin with, we recognize the need for more
optimal versions of algorithms we proposed, possibly using some or all of the
optimizations we discussed along the way. There is room for optimization in al-
most all areas of the proposed approach, from ensuring that the generated native
queries are as optimal as possible, to optimizing the manipulation of categorical
data in order to minimize the overhead introduced. In general, the goal for unified
multi-model querying in the future should be to achieve near-native performance
when compared to individual database systems while preserving the benefits of
unified querying.

Lastly, our MMQL implementation called MM-quecat is purely experimental
in nature, and it does not contain all MMQL features for various reasons outlined
in this thesis. In order to bring MM-quecat closer to real-world applicability, we
will continue to improve and enhance its implementation as part of our future
research efforts. Coupled with this, we believe that a graphical query tool would
be highly beneficial for the end user experience, which is why we are also working
on the user interface part of MM-quecat, which we hope to demonstrate to the
academic community in the coming months.
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for multi-model schema inference. Journal of Big Data, 9, 08 2022.

[17] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Harizopou-
los, Nabil Hachem, and Pat Helland. The end of an architectural era: (it’s
time for a complete rewrite). In Proceedings of the 33rd International Con-
ference on Very Large Data Bases, VLDB ’07, page 1150–1160. VLDB En-
dowment, 2007.

[18] Andrew Pavlo and Matthew Aslett. What’s really new with newsql? SIG-
MOD Rec., 45(2):45–55, sep 2016.

[19] Omji Mishra, Pooja Lodhi, and Shikha Mehta. Document Oriented NoSQL
Databases: An Empirical Study, pages 126–136. 10 2018.

[20] Jing Fan, Adalbert Gerald Soosai Raj, and Jignesh M. Patel. The case
against specialized graph analytics engines. In Conference on Innovative
Data Systems Research, 2015.

[21] Tom Leinster. Basic category theory, volume 143. Cambridge University
Press, 2014. pages 1-26.

[22] Pavel Koupil, Jáchym Bárt́ık, and Irena Holubová. Mm-evocat: A tool for
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for multi-model data. In Proceedings of the 25th International Conference
on Model Driven Engineering Languages and Systems, MODELS ’22, page
13–23, New York, NY, USA, 2022. Association for Computing Machinery.

[24] SPARQL Query Language for RDF [online]. https://www.w3.org/TR/
rdf-sparql-query/. Accessed: 2022-07-12.

[25] openCypher [online]. https://opencypher.org/. Accessed: 2022-07-12.

[26] Gremlin [online]. https://tinkerpop.apache.org/gremlin.html. Ac-
cessed: 2022-07-15.

[27] Property Graph Query Language [online]. https://pgql-lang.org/. Ac-
cessed: 2022-12-17.

[28] Renzo Angles, Marcelo Arenas, Pablo Barceló, Peter Boncz, George H. L.
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unified querying of multi-model data [not yet published].

[33] SPARQL 1.1 Property Paths [online]. https://www.w3.org/TR/
sparql11-property-paths/. Accessed: 2022-12-18.

[34] Erich Gamma, Richard Helm, and Ralph E. Johnson. Design Patterns.
Elements of Reusable Object-Oriented Software. Addison-Wesley Longman,
Amsterdam, 1st ed., reprint. edition, 1994.

[35] Jin Chen, Guanyu Ye, Yan Zhao, Shuncheng Liu, Liwei Deng, Xu Chen,
Rui Zhou, and Kai Zheng. Efficient join order selection learning with graph-
based representation. In Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, KDD ’22, page 97–107, New
York, NY, USA, 2022. Association for Computing Machinery.

[36] Matthias Jarke and Jurgen Koch. Query optimization in database systems.
ACM Comput. Surv., 16(2):111–152, jun 1984.

[37] David I. Spivak and Ryan Wisnesky. Relational foundations for functorial
data migration. In Proceedings of the 15th Symposium on Database Pro-
gramming Languages, DBPL 2015, page 21–28, New York, NY, USA, 2015.
Association for Computing Machinery.
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A. Attachments

A.1 MMQL Grammar
This attachment contains a full formal grammar of MMQL, which was used to
generate a parser for the query language. The grammar is in the G4 format.

grammar MMQL;

query: selectQuery EOF;

selectQuery: selectClause fromClause? whereClause solutionModifier;

subSelect: selectQuery;

selectClause: ’SELECT’ selectGraphPattern;

selectGraphPattern: ’{’ selectTriples? ’}’;

fromClause: ’FROM’ SCHEMA_IDENTIFIER;

whereClause: ’WHERE’? groupGraphPattern;

solutionModifier: orderClause? limitOffsetClauses?;

limitOffsetClauses: (
limitClause offsetClause?
| offsetClause limitClause?

);

orderClause: ’ORDER’ ’BY’ orderCondition+;

orderCondition: (( ’ASC’ | ’DESC’) brackettedExpression)
| ( constraint | var_);

limitClause: ’LIMIT’ INTEGER;

offsetClause: ’OFFSET’ INTEGER;

groupGraphPattern:
’{’ (subSelect | (triplesBlock? (

(graphPatternNotTriples | filter_) ’.’? triplesBlock?
)*)) ’}’;

triplesBlock: triplesSameSubject ( ’.’ triplesBlock?)?;

graphPatternNotTriples:
optionalGraphPattern
| groupOrUnionGraphPattern
| inlineData;
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optionalGraphPattern: ’OPTIONAL’ groupGraphPattern;

groupOrUnionGraphPattern:
groupGraphPattern ((’UNION’ | ’MINUS’) groupGraphPattern)*;

inlineData: ’VALUES’ dataBlock;

dataBlock: var_ ’{’ dataBlockValue* ’}’;

dataBlockValue: numericLiteral
| booleanLiteral
| string_;

filter_: ’FILTER’ constraint;

constraint: brackettedExpression;

selectTriples: triplesSameSubject ( ’.’ selectTriples?)?;

triplesSameSubject: varOrTerm propertyListNotEmpty;

propertyListNotEmpty: verb objectList ( ’;’ ( verb objectList)?)*;

propertyList: propertyListNotEmpty?;

objectList: object_ ( ’,’ object_)*;

object_: graphNode;

verb: schemaMorphismOrPath;

schemaMorphismOrPath: pathAlternative;

pathAlternative: pathSequence ( ’|’ pathSequence )*;

pathSequence: pathWithMod ( ’/’ pathWithMod )*;

pathWithMod: pathPrimary pathMod?;

pathMod: ’?’ | ’*’ | ’+’;

pathPrimary: schemaMorphism | ( ’(’ schemaMorphismOrPath ’)’ ) ;

schemaMorphism: primaryMorphism | dualMorphism;

primaryMorphism: SCHEMA_MORPHISM;

dualMorphism: ’-’ primaryMorphism;

graphNode: varOrTerm ( ’AS’ var_)?;
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varOrTerm: var_ | constantTerm | aggregationTerm;

var_: VAR1 | VAR2;

constantTerm:
numericLiteral
| booleanLiteral
| string_
| blankNode
| NIL;

aggregationTerm:
aggregationFunc ’(’ (distinctModifier)? var_ ’)’;

distinctModifier:
’DISTINCT’;

aggregationFunc:
’COUNT’
| ’SUM’
| ’AVG’
| ’MIN’
| ’MAX’;

expression: conditionalOrExpression;

conditionalOrExpression:
conditionalAndExpression (’||’ conditionalAndExpression)*;

conditionalAndExpression: valueLogical ( ’&&’ valueLogical)*;

valueLogical: relationalExpression;

relationalExpression:
expressionPart (

’=’ expressionPart
| ’!=’ expressionPart
| ’<’ expressionPart
| ’>’ expressionPart
| ’<=’ expressionPart
| ’>=’ expressionPart

)?;

expressionPart: primaryExpression;

primaryExpression:
brackettedExpression
| numericLiteral
| booleanLiteral
| string_
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| varOrTerm;

brackettedExpression: ’(’ expression ’)’;

numericLiteral:
numericLiteralUnsigned
| numericLiteralPositive
| numericLiteralNegative;

numericLiteralUnsigned: INTEGER | DECIMAL | DOUBLE;

numericLiteralPositive:
INTEGER_POSITIVE
| DECIMAL_POSITIVE
| DOUBLE_POSITIVE;

numericLiteralNegative:
INTEGER_NEGATIVE
| DECIMAL_NEGATIVE
| DOUBLE_NEGATIVE;

booleanLiteral: ’true’ | ’false’;

string_:
STRING_LITERAL1
| STRING_LITERAL2;

blankNode: BLANK_NODE_LABEL | ANON;

// LEXER RULES

SCHEMA_MORPHISM: (PN_CHARS)+;

SCHEMA_IDENTIFIER: (PN_CHARS)+;

BLANK_NODE_LABEL: ’_:’ PN_LOCAL;

VAR1: ’?’ VARNAME;

VAR2: ’$’ VARNAME;

INTEGER: DIGIT+;

DECIMAL: DIGIT+ ’.’ DIGIT* | ’.’ DIGIT+;

DOUBLE:
DIGIT+ ’.’ DIGIT* EXPONENT
| ’.’ DIGIT+ EXPONENT
| DIGIT+ EXPONENT;

INTEGER_POSITIVE: ’+’ INTEGER;
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DECIMAL_POSITIVE: ’+’ DECIMAL;

DOUBLE_POSITIVE: ’+’ DOUBLE;

INTEGER_NEGATIVE: ’-’ INTEGER;

DECIMAL_NEGATIVE: ’-’ DECIMAL;

DOUBLE_NEGATIVE: ’-’ DOUBLE;

EXPONENT: (’e’ | ’E’) (’+’ | ’-’)? DIGIT+;

STRING_LITERAL1:
’\’’ (

˜(’\u0027’ | ’\u005C’ | ’\u000A’ | ’\u000D’) | ECHAR
)* ’\’’;

STRING_LITERAL2:
’"’ (

˜(’\u0022’ | ’\u005C’ | ’\u000A’ | ’\u000D’) | ECHAR
)* ’"’;

STRING_LITERAL_LONG1:
’\’\’\’’ (

( ’\’’ | ’\’\’’)? (˜(’\’’ | ’\\’) | ECHAR)
)* ’\’\’\’’;

STRING_LITERAL_LONG2:
’"""’ (

( ’"’ | ’""’)? ( ˜(’\’’ | ’\\’) | ECHAR)
)* ’"""’;

ECHAR: ’\\’ (’t’ | ’b’ | ’n’ | ’r’ | ’f’ | ’"’ | ’\’’);

NIL: ’(’ WS* ’)’;

ANON: ’[’ WS* ’]’;

PN_CHARS_U: PN_CHARS_BASE | ’_’;

VARNAME: (PN_CHARS_U | DIGIT) (
PN_CHARS_U
| DIGIT
| ’\u00B7’
| (’\u0300’ ..’\u036F’)
| (’\u203F’ ..’\u2040’)

)*;

fragment PN_CHARS:
PN_CHARS_U
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| ’-’
| DIGIT;

PN_PREFIX: PN_CHARS_BASE ((PN_CHARS | ’.’)* PN_CHARS)?;

PN_LOCAL: ( PN_CHARS_U | DIGIT) ((PN_CHARS | ’.’)* PN_CHARS)?;

fragment PN_CHARS_BASE:
’A’ ..’Z’
| ’a’ ..’z’
| ’\u00C0’ ..’\u00D6’
| ’\u00D8’ ..’\u00F6’
| ’\u00F8’ ..’\u02FF’
| ’\u0370’ ..’\u037D’
| ’\u037F’ ..’\u1FFF’
| ’\u200C’ ..’\u200D’
| ’\u2070’ ..’\u218F’
| ’\u2C00’ ..’\u2FEF’
| ’\u3001’ ..’\uD7FF’
| ’\uF900’ ..’\uFDCF’
| ’\uFDF0’ ..’\uFFFD’;

fragment DIGIT: ’0’ ..’9’;

WS: (’ ’ | ’\t’ | ’\n’ | ’\r’)+ -> skip;
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A.2 Query Planner Information in PostgreSQL
Below, we can see the query planner information exposed by the EXPLAIN state-
ment in PostgreSQL for a simple query selecting all theaters whose primary iden-
tifier is greater than a constant number. We can see that the set of information
returned contains a full description of the winning query plan, complete with es-
timated costs for each step of the plan, and the information about which indexes
the query is using.

EXPLAIN (FORMAT YAML) SELECT * FROM theaters WHERE id > 1010;

QUERY PLAN
-------------------------------
- Plan:

Node Type: "Bitmap Heap Scan"
Parallel Aware: false
Async Capable: false
Relation Name: "theaters"
Alias: "theaters"
Startup Cost: 6.34
Total Cost: 19.88
Plan Rows: 283
Plan Width: 68
Recheck Cond: "(id > 1010)"
Plans:

- Node Type: "Bitmap Index Scan"
Parent Relationship: "Outer"
Parallel Aware: false
Async Capable: false
Index Name: "theaters_pkey"
Startup Cost: 0.00
Total Cost: 6.27
Plan Rows: 283
Plan Width: 0
Index Cond: "(id > 1010)"

(1 row)
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A.3 Query Planner Information in MongoDB
Below, we can see two sets of query planner information returned by Mon-
goDB. The first output shown calls the explain() function with the default
queryPlanner mode, which does not execute the query, but also does not in-
clude cost or the approximate result size.

The second output uses the executionStats mode, which executes the query,
and subsequently returns query plan information including cost information (rep-
resented in the form of the works property signifying units of work required).

db.theaters.explain().find({ theaterId: { $gt: 1020 } });
{

"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "sample_mflix.theaters",
"indexFilterSet" : false,
"parsedQuery" : {

"theaterId" : {
"$gt" : 1020

}
},
"winningPlan" : {

"stage" : "FETCH",
"inputStage" : {

"stage" : "IXSCAN",
"keyPattern" : {

"theaterId" : 1
},
"indexName" : "theaterId_1",
"isMultiKey" : false,
"multiKeyPaths" : {

"theaterId" : [ ]
},
"isUnique" : true,
"isSparse" : false,
"isPartial" : false,
"indexVersion" : 2,
"direction" : "forward",
"indexBounds" : {

"theaterId" : [
"(1020.0, inf.0]"

]
}

}
},
"rejectedPlans" : [ ]

}
}
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db.theaters.explain({verbosity: "executionStats"}).find(
{theaterId: {$gt: 1020}}

);
{

"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "sample_mflix.theaters",
"indexFilterSet" : false,
"parsedQuery" : {

"theaterId" : {
"$gt" : 1020

}
},
"winningPlan" : {

"stage" : "FETCH",
"inputStage" : {

"stage" : "IXSCAN",
"keyPattern" : {

"theaterId" : 1
},
"indexName" : "theaterId_1",
"isMultiKey" : false,
"multiKeyPaths" : {

"theaterId" : [ ]
},
"isUnique" : true,
"isSparse" : false,
"isPartial" : false,
"indexVersion" : 2,
"direction" : "forward",
"indexBounds" : {

"theaterId" : [
"(1020.0, inf.0]"

]
}

}
},
"rejectedPlans" : [ ]

},
"executionStats" : {

"executionSuccess" : true,
"nReturned" : 861,
"executionTimeMillis" : 1,
"totalKeysExamined" : 861,
"totalDocsExamined" : 861,
"executionStages" : {

"stage" : "FETCH",
"nReturned" : 861,
"executionTimeMillisEstimate" : 0,
"works" : 862,
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"advanced" : 861,
"needTime" : 0,
"needYield" : 0,
"saveState" : 6,
"restoreState" : 6,
"isEOF" : 1,
"invalidates" : 0,
"docsExamined" : 861,
"alreadyHasObj" : 0,
"inputStage" : {

"stage" : "IXSCAN",
"nReturned" : 861,
"executionTimeMillisEstimate" : 0,
"works" : 862,
"advanced" : 861,
"needTime" : 0,
"needYield" : 0,
"saveState" : 6,
"restoreState" : 6,
"isEOF" : 1,
"invalidates" : 0,
"keyPattern" : {

"theaterId" : 1
},
"indexName" : "theaterId_1",
"isMultiKey" : false,
"multiKeyPaths" : {

"theaterId" : [ ]
},
"isUnique" : true,
"isSparse" : false,
"isPartial" : false,
"indexVersion" : 2,
"direction" : "forward",
"indexBounds" : {

"theaterId" : [
"(1020.0, inf.0]"

]
},
"keysExamined" : 861,
"seeks" : 1,
"dupsTested" : 0,
"dupsDropped" : 0,
"seenInvalidated" : 0

}
},
"allPlansExecution" : [ ]

}
}
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A.4 Query Planner Information in Neo4j
Below, we can see the query planner information exposed by the EXPLAIN state-
ment in Neo4j for a simple query matching nodes with the name property set to
“Tom Hanks”. For each stage in the query plan, the estimated number of rows is
returned.

{
"query": {

"text": "EXPLAIN MATCH (tom {name: \"Tom Hanks\"}) RETURN tom",
"parameters": {}

},
"queryType": "r",
"counters": {

"_stats": {
"nodesCreated": 0,
"nodesDeleted": 0,
"relationshipsCreated": 0,
"relationshipsDeleted": 0,
"propertiesSet": 0,
"labelsAdded": 0,
"labelsRemoved": 0,
"indexesAdded": 0,
"indexesRemoved": 0,
"constraintsAdded": 0,
"constraintsRemoved": 0

},
"_systemUpdates": 0

},
"updateStatistics": {

"_stats": {
"nodesCreated": 0,
"nodesDeleted": 0,
"relationshipsCreated": 0,
"relationshipsDeleted": 0,
"propertiesSet": 0,
"labelsAdded": 0,
"labelsRemoved": 0,
"indexesAdded": 0,
"indexesRemoved": 0,
"constraintsAdded": 0,
"constraintsRemoved": 0

},
"_systemUpdates": 0

},
"plan": {

"operatorType": "ProduceResults@neo4j",
"identifiers": [

"tom"
],
"arguments": {

"planner-impl": "IDP",
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"Details": "tom",
"PipelineInfo": "Fused in Pipeline 0",
"planner-version": "4.4",
"runtime-version": "4.4",
"runtime": "PIPELINED",
"runtime-impl": "PIPELINED",
"version": "CYPHER 4.4",
"EstimatedRows": 17,
"planner": "COST"

},
"children": [

{
"operatorType": "Filter@neo4j",
"identifiers": [

"tom"
],
"arguments": {

"Details": "tom.name = $autostring_0",
"EstimatedRows": 17,
"PipelineInfo": "Fused in Pipeline 0"

},
"children": [

{
"operatorType": "AllNodesScan@neo4j",
"identifiers": [

"tom"
],
"arguments": {

"Details": "tom",
"EstimatedRows": 340,
"PipelineInfo": "Fused in Pipeline 0"

},
"children": []

}
]

}
]

},
"profile": false,
"notifications": [],
"server": {

"address": "localhost:7687",
"version": "Neo4j/4.4.5",
"agent": "Neo4j/4.4.5",
"protocolVersion": 4.4

},
"resultConsumedAfter": {

"low": 0,
"high": 0

},
"resultAvailableAfter": {
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"low": 0,
"high": 0

},
"database": {

"name": "neo4j"
}

}
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