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Introduction
With the emergence of Big Data and the challenges its processing presented, the
NoSQL databases began to appear in order to find the best solution. The variety
aspect of the data causes that any database model can not handle it effectively on
its own. Instead, several models were developed and combining various database
systems with possibly different models has become a common practice in present
software development.

Today, all the most used database systems are multi-model, meaning that,
to be able to take advantage of this technology fully and effectively, we have to
be able to model the multi-model data first. The next natural step is evolution
management, i.e., the ability to dynamically update the schema while the changes
are automatically propagated to the data. Of other closely related challenges, we
would mention querying over multi-model data and inference of the schema from
the data.

In this thesis, we propose an approach based on category theory that aims to
solve the issues of modeling and evolution management of multi-model data. It
is both general enough to cover all existing data models and easily extensible to
provide a basis for other features, e.g., querying and schema inference.

Thesis Outline
In Chapter 1, we provide a more detailed introduction to the target topic, as well
as definitions of supported data models.

Chapter 2 contains an overview of existing approaches and a comparison of
their features.

Category theory, forming the core of the proposal, is introduced in Chapter 3.
We introduce the necessary mathematical structures and formalism.

In Chapter 4, we present the key concepts the proposed approach is based
on. We describe its architecture, the workflow of data transformations, as well as
important design decisions.

The creation and edition of a multi-model schema are performed using the
so-called schema modification operations. We define them in Chapter 5.

As a proof of concept, we implemented a multi-model data modeling frame-
work MM-cat. Its description forms the content of Chapter 6. MM-evocat, an
extension to the framework enabling evolution management, is already being im-
plemented.

Lastly, in Chapter 7, we present the results of performance experiments with
the operations in order to prove their reliability and linear scalability.
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1. Motivation
A typical application can not function without a place to store its data. The
traditional way is to choose one of the most popular relational DBMSs. However,
cases where this approach fails have recently started to appear. For instance,
some applications need to store so large, varied, and constantly changing data
that the relational databases can not keep up with.

In response to these requirements, new database models (such as the docu-
ment, graph, etc.) were introduced, marking the beginning of the era of NoSQL
databases. Although they solved the big data issues, they brought their own
problems as well. The relational databases are standardized and well researched,
which are the two most significant features that the NoSQL ones lack.

In an attempt to solve one of the so-far neglected drawbacks, this thesis focuses
on the evolution management of the NoSQL databases.

1.1 Requirements on Modern DBMSs
The big data are denoted by several so-called V-characteristics [13], conveniently
starting with the letter “v”:

• volume – the data can be really huge, usually starting in petabytes,

• velocity – the data is generated in a much higher rate than the traditional
data ever was,

• variability – the data come from many different sources, it combines multiple
data formats etc.,

• veracity – the data is likely to contain errors and redundancy or to originate
from doubtful sources.

These properties result in the following requirements for the modern DBMSs:

• horizontal scalability – we have to be able to store and process the data on
multiple server nodes because no physical computer can be vertically scaled
to keep up with the volume and velocity of the data,

• redundancy – the same piece of data needs to be served to multiple users
at the same time, so we need to ensure we have enough copies of it,

• fault tolerance – the system has to be able to recover from failures such as
a node outage or a division of the network (this is partially covered by the
redundancy feature).

These features are not as easy-to-implement as they might seem. The main
problem lies in the CAP theorem [5], which states that at most two of the following
three properties can be achieved at the same time by one database system:

• consistency – a read request to any node returns the value from the node
that was last written to,
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• availability – each request to a non-failing node results in a response in a
finite time,

• partition tolerance – any number of messages sent between the nodes can
be delayed or lost.

The traditional relational databases focus on the first two conditions because they
are run on a single node each, so they can freely ignore the last one. This allows
them to guarantee the ACID properties. With the onset of decentralization in
the NoSQL databases, we have to give up one of the first two conditions.

The most common approach is to keep availability (most of the time) and
replace the (strong) consistency with a much weaker consistency model, usually
the eventual consistency. The new set of guarantees is called BASE. The critical
point is that in most cases, the behavior of the DBMS is not really that different.
The system is available almost always, and the data should be consistent just
a short time after they are written. Of course, this approach is not applicable
in environments that require precision and do not tolerate errors. But the vast
majority of use cases are not that critical.

1.2 Current Solutions
This section overviews the currently used database technologies and how they are
applied to solve the challenges mentioned above.

1.2.1 Database Models
The most common database models can be divided into aggregate-oriented (key-
value, column and document) and aggregate-ignorant (relational and graph).
There are many others (namely RDF or array), but we will not cover them in
this thesis.

Aggregate-Ignorant Models

First, we will mention the relational model since it is the most well-known, and
all others can be explained by how they differ from it. The basic unit of data in
the model is a relation. It is a subset of the Cartesian product of the domains
(the sets of all possible values) of several attributes.

Let us consider an example. We have three attributes, A1, A2, A3. The first
one is an id with possible values from the field of natural numbers. So the domain
of A1 are the natural numbers, i.e., D(A1) = N. The second one is a name whose
values are strings of English letters. The last one is a datetime whose values are
the Unix timestamps. Any tuple with exactly these three values is an element
from the set D(A1) × D(A1) × D(A3). The relation is a set of all the elements
of this kind we have in our database. It can be represented as a table with the
attributes as the columns and the tuples as the rows.

A set of attributes that uniquely identify each tuple of a given relation is
called a superkey. Because the tuples must be unique, a tuple is trivially its
own superkey. On the other hand, a key (primary key, candidate key, identifier)
is a superkey from which no attribute can be removed while still remaining the
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superkey. A database usually has multiple relations. The neat part is that there is
a sophisticated mathematical theory that allows us to join the relations together
to produce new views on the data. For instance, an attribute from one relation
can represent a key from another and can be used to connect the two rows.

Good practices for relational databases include minimizing redundant data
by referencing the data with keys instead of storing it by values. This process is
called normalization. The relational databases support many types of integrity
constraints and usually enforce strict types. They also require a schema to be
specified before the data is inserted – so-called schema-full or schema-on-write
approach.

One of the main advantages of this model is its atomicity. Multiple simple
operations can be grouped into one transaction. They can even span across mul-
tiple rows from various tables. A transaction is guaranteed to execute all or none
of its operations.

The second type of aggregate-ignorant model we cover is a graph database. It
consists of nodes and edges. A node has an identifier, a set of properties (usually
key-value pairs) and a set of labels that allows us to group similar nodes. For
example, some nodes can have the label user while a subset of them will also
have the label admin. An edge is a directed relationship between two nodes. It
has its own identifier, the identifiers of the nodes, a set of properties and a label.

Although the graph model can be simulated by a relational database, its main
advantage is that a dedicated graph engine can run specific queries much more
effectively. The relational databases are best suited for querying many elements
at once while joining only a few tables. On the other hand, graph databases excel
in querying data for one entity through a large number of nodes and edges. They
are usually used for searching patterns – e.g., when we need to find all the friends
of the friends of a selected user that share a specific set of properties.

Aggregate-Oriented Models

Unlike the previous group, these models have a basic unit of data called aggregate.
The atomicity of each transaction is guaranteed only within the chosen aggregate.
They are also not suitable for storing relationships. A common approach is ac-
cepting redundancy and putting all the relevant data into the aggregate together.
For instance, in the document model, it usually does not make much sense to
have one document for a customer and another for the address. Even though
the address might be reused by all of the customers’s orders, the preferred
approach is to copy it everywhere it is needed.

The key-value model is represented as a map of the unique identifiers to the
records, i.e., the aggregates. Although the record can have an internal structure
in some key-value databases, it still has to be only a simple one, for instance,
an atomic value, a tuple, or a collection. There is usually a support for addi-
tional features such as a timer, individual for each record, that deletes it after a
predetermined time.

The column model uses a similar structure as the key-value one. It is a map of
the unique identifiers to the records. The difference here is that the records have
a more complex structure – each one is a map of the column names to the values
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(which can, again, be atomic values, in some systems also tuples or collections).
The column names can be specified in advance (or have to, in some database
systems), which is an example of a schema-mixed approach. So the columnar
database resembles a table from a relational database where all of the columns
are optional and can be created dynamically.

Lastly, the document model uses the same principle again – the key identifies
the record. In this case, the record is a hierarchical document. It usually has
a well-known type, i.e., JSON or XML. Unlike in the previous two models, the
hierarchy can contain any level of nesting. Thanks to this feature, we can query
inside the hierarchy.

As mentioned above, the documents prefer nesting instead of referencing other
documents. Nevertheless, the referencing is definitely possible and, in some cases,
even necessary (i.e., for recursive structures).

1.2.2 Multi-Model Data
The discussed models have their advantages and disadvantages, reflecting the
expected use cases. However, a typical application uses various types of data,
each of which would benefit the most from a different database model. This is,
of course, possible, but such idea is not easy-to-implement. Currently, there exist
two contradictory approaches.

The first option is to use the polyglot persistence. This means that the appli-
cation uses multiple database systems at once. Since the direct usage of different
databases is likely to lead to serious dependency issues, we usually create a me-
diator first. This software lies on top of the databases and provides one unified
API for the application.

The disadvantages of this approach are numerous. We have to deal with many
different database systems, i.e., we have to know their specific query languages,
configurations, etc. In addition, the integration of these systems brings a whole
new set of problems – writing queries for multiple databases at once, synchro-
nization of their data, transactions, optimizations and so on.

The multi-model databases partially solve these issues by allowing multiple
different models (e.g., relational, document, key-value, graph, . . . ) to coexist
within one database engine. There are multiple ways how to combine these
models, for example:

• one model can be embedded in another,

• the entities from one model can reference the entities from another,

• redundancy, i.e., the same data can be stored in multiple models.

Currently, most of the popular database systems are multi-model. However, this
means only that they support at least two database models. Actually, none of
them supports all of the five models at once [12].
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1.3 Challenges of Multi-Model Data Manage-
ment

In the previous section, we discussed the state-of-the-art solutions for the modern
database requirements. Now we will mention some of their most significant draw-
backs. The challenges they represent are all the more difficult because the multi-
model databases combine multiple models with often contradictory features, for
example:

• schema-less vs. schema-full vs. schema-mixed,

• BASE vs. ACID,

• flat data with references vs. nested objects with redundancy, . . .

1.3.1 Standardization
Various multi-model databases implement different sets of database models. Mo-
reover, they often do so in divergent ways. There is neither a common query
language nor a strategy for executing statements. In other words, the multi-
model databases lack standardization.

We can take an example from the relational databases. Although each of the
major relational databases has some specifics, they all are compatible with the
SQL standards [7]. So, it is generally easy to migrate the data from one database
system to another. On top of that, we can apply the knowledge and skill we
learned for one system to another. Unfortunately, most of this is not possible in
the multi-model world [12].

1.3.2 Modeling and Evolution
Now we come to the key issue of this thesis. Although most of the above-discussed
data models are schema-less, the application that uses them has to work with a
concrete schema. Hence, there is a need for a tool capable of modeling a multi-
model schema. The more universal it would be, the better.

This tool would serve as a foundation for many other features. One of them is
evolution management. This means that whenever we edit the schema, the system
would automatically update the data to be compatible with the new schema. In
the relational world, there exist migration software that can detect changes even
in the application code and update the database accordingly. Another promising
feature is schema inference. The tool should be able to find a structure in any
given schema-less data and infer a schema based on it.

Lastly, the modeling tool would allow us to solve the issues mentioned in the
previous section. Queries across multiple models will be naturally supported if
we have one universal schema that encapsulates all the models. Further, data
migration between multiple database systems is just a necessary prerequisite to
evolution management.
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2. Related Work
In this chapter, we describe popular evolution management tools that inspired
our proposed approach. Each of them provides a unique view on the issues of
evolution management. In the last section, there is a comparison of them and a
summary.

2.1 Categorical Approaches
The two following approaches are based on the category theory. However, they
use it at a level of complexity far beyond the scope of this thesis, so we do not
cover them in detail as we would need to introduce a complex theoretical back-
ground first. Instead, we focus on the supported SMOs and overall architecture.

The first one is introduced in paper [19] by Tuijn and Gyssens from 1996. They
propose a data model, represented by a typed graph, called CGOOD (Categorical
Graph-Oriented Object Database Model). Both the model and the data are defined
only by constructs from category theory. All SMOs can then be expressed in the
form of functors.

The authors define single addition, full addition, single deletion and full dele-
tion operations. All of them use pattern matching to find the respective part of
the graph (in the case of the single ones) or all corresponding parts (in the case
of the full ones) and then update them accordingly.

The second approach, proposed by Spivak et al., introduces FQL (Functorial
Query Language) in paper [16] from 2015 and later CQL (Categorical Query
Language) [1]. The approach is still being actively developed, the latest paper [14]
was published in 2022.

In [16], the authors also use functors to define the SMOs: rename, delete,
copy, intersection and union. All of them are available both on the kind1 and the
property2 level.

2.2 Darwin
Darwin is a platform for schema evolution management in various NoSQL data-
bases. It is also capable of migrating data between different databases. However,
it does not support schema evolution of multi-model data.

The platform focuses on versioning. It keeps track of all SMOs, so, thanks to
their reversibility, it is able to jump to an arbitrary version of the schema. The
schema (including its history) can be extracted from the data itself. This way,
the platform can detect changes in the incoming data and automatically produce
the respective SMOs. We also have the option to trigger them manually.

1Kind is the unifying term for the independent, top-level data entities such as tables (in a
relational database), collections (in a document one) and so on.

2Similarly, term property unifies the data entities that depend on a kind. They are usually
called attributes (relational), fields (document), etc.
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The schema-less databases naturally support the coexistence of data with
different schemas. Therefore, Darwin is able to keep different parts of the data
in different versions. However, it can still be queried as a whole thanks to query
rewriting. This allows a variance of migration strategies:

• Eager – the SMOs are executed immediately. An advantage of this strategy
is that all data is always actual, so we can fetch it with the lowest latency
possible. We also do not have to worry about inconsistencies between dif-
ferent versions. On the other hand, performing all SMOs at once might
cause a non-trivial downtime.

• Lazy – the SMOs are not applied until it is needed. For example, whenever
we fetch data of a particular entity, it is automatically updated by execut-
ing all pending SMOs. This approach minimizes the total time we spend
performing SMOs. However, it can lead to a cascading migration, i.e., a
situation when multiple objects depend on each other, so we have to update
all of them at once, causing a spike of latency in the process.

• Hybrid – a strategy that combines both of the previous approaches. The
authors proposed two of them:

– Incremental – most of the time it is the lazy migration. However, once
in a while (for example, after a certain number of SMOs), the whole
data is updated at once.

– Predictive – the most frequently accessed data uses the eager strategy
while the rest is updated according to the lazy one.

In [15], the authors introduce, among other ideas, their version of a declarative
NoSQL schema evolution language that defines the SMO operations used by the
Darwin platform. The first three, add, delete and rename, works on a single
property of a kind or on the kind itself. The other two, copy and move, transfer
on or more properties between two kinds.

2.3 MM-evolver
The authors introduce MM-evolver [6], a prototype of a multi-model data evolu-
tion tool. It is inspired by Darwin in the sense that it uses the same operations
(i.e., add, delete, rename, copy and move). The authors also introduce their
own NoSQL schema evolution language, called MM SEL (Multi-Model Schema
Evolution Language).

However, unlike Darwin, the MM-evolver supports multi-model data. The
operations can transfer kinds, properties and data between different models. The
MM SEL language is executed in the model-independent layer. For each opera-
tion, the engine finds out which models it affects and translates it to their model-
specific languages. All data is then immediately updated, which corresponds to
the eager strategy.

The tool also focuses on reference evolution – whenever a property is deleted,
moved, etc., all references to it are automatically updated accordingly. These
changes also propagated between models. A new operation, called reference, is
introduced for creating the references.
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2.4 Hernández Chillón et al.
In [3], the authors propose a taxonomy of schema change operations (i.e., SMOs),
which are defined on the so-called U-Schema [2]. They also introduce a domain-
specific language, called Orion, that implements them. The taxonomy contains
not only the basic operations mentioned in the previous two sections but also
many others.

For example, the kinds can also be split or merged. Properties can be nested,
unnested, cast (to another type), promoted (added to a key), and so on. There
is also support for the so-called variations, i.e., different versions of the same
kind.3 These database-independent operations are then translated to the database-
specific ones and executed.

Although the U-Schema supports multiple types of NoSQL databases (i.e.,
key/value, columnar, document and graph) and partially the relational ones, it
does not unify them in the sense of multi-model data. It integrates various model-
specific concepts into one schema instead of building an abstract layer above them
that would allow a genuinely unified approach.

2.5 Comparison
Now we compare all the previously described approaches, as well as the tool
MM-evocat, which will be introduced in this thesis. An overview is displayed in
Tables 2.1 and 2.2, which were taken from [8].

The first one compares various features of the approaches described above. As
we can see, each of the approaches introduces both its own schema and a set of
operations to modify it (and, of course, the underlying databases). All of them,
except Darwin, support only eager migration. The same holds for version jumps
and query rewriting, which both follow from the ability to update data lazily.
Both Darwin and Orion can infer the schema from the data. Again, thanks to its
focus on versioning, Darwin can also infer the history of the schema.

Generally, the more recent the approach is, the more different models it sup-
ports. However, the ability to represent multi-model data, which is crucial for
this thesis, is provided only by MM-evolver. The SMOs, depicted in the second
table, follow the same path as the models – the later the tool is, the more of them
it defines.

3Unlike in the Darwin platform, the versions do not capture changes over time. Instead,
they all exist simultaneously. We can view them as different subclasses that can all be assigned
to the variable with the type of their common ancestor.
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Table 2.1: A comparison of features in the selected evolution management approaches.

Tuijn and
Gyssens [19]

Spivak et al. [16] Darwin [17] MM-evolver [6] Hernández Chillón
et al. [3]

MM-evocat [10]

Schema modification Yes Yes Yes Yes Yes Yes

Data migration Eager Eager Eager, lazy, hybrid Eager Eager Eager

Version jumps No No Yes No No No

Propagation to IC No No No Partial Partial Yes

Schema inference No No Tracked, untracked No Untracked No

Query rewriting No No Yes No No No

Benchmarking No No Yes No No No

Self-adaptation No No No No No No

Data models Relational, object,
object-relational

Relational, RDF Graph, key/value,
document, columnar

Relational, graph,
key/value, document,
columnar

Relational, graph,
key/value, document,
columnar

Relational, array,
graph, RDF, key/value,
document, columnar

Multi-model No No No Yes No Yes

Table 2.2: A comparison and classification of supported SMOs in the selected evolution management approaches.

Tuijn and
Gyssens [19]

Spivak et al. [16] Darwin [17] MM-evolver [6] Hernández Chillón
et al. [3]

MM-evocat [10]

Model-level - - - - - add, delete, move, copy

Kind-level add, delete delete, rename, copy,
intersection, union

add, delete, rename add, delete, rename add, delete, extract
(copy), rename, split,
merge

add, delete, rename,
copy, move, group,
ungroup

Property-level add, delete delete, rename, copy,
intersection, union

add, delete, move, copy,
rename

add, delete, move, copy,
rename

add, delete, move,
extract, rename, cast,
nest, unnest

add, delete, rename,
copy, move, group,
ungroup, union, split

Identifier-level - - - - promote, demote add id, drop id

Reference-level - - - reference morph add ref, drop ref

Cardinality-level - - - - mult changeCardinality

Version-level - - - - delvar, adapt, union -
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3. Theoretical Background
The proposed approach is based on category theory (see Section 3.1) which is ab-
stract enough to contain all currently used data models. The necessary theoretical
background is described in paper [9]. A brief summary of the most important
concepts used explicitly in this thesis is provided in this chapter. Note that there
are categorical constructs that we use implicitly. However, for use-friendliness,
we keep the formal background easy to understand.

The generality of the theory allows us to create a category that describes
multiple logical models from different databases at once. Thus, we are able to
model any combination of different logical schemas with one category. This object
is called schema category (see Section 3.2).

The next step is to import data from all the databases to a unified represen-
tation called instance category (see Section 3.3) and to export the data from the
instance category to specific databases.

The advantage of this approach is obvious – we can convert the data from
database A to any other database B (with possibly different data model) simply
by transforming them from A to the instance category and from there to B.
We only need to create a wrapper for each involved database system that would
handle the platform-specific requirements of the given database. Otherwise, we
would have to create a specific converter for each pair of supported database
systems.

Each logical model is mapped to the schema category via its own mapping
(see Section 3.4). This structure defines both the mapping and the logical model
itself.

3.1 A Brief Introduction to Category Theory
A category consists of a set of objects, a set of morphisms and a binary composition
operation over the morphisms. We can view it as a directed multigraph – the
objects are the nodes and the morphisms are the directed edges.

The operation allows us to combine morphisms. If we have morphism f , i.e.,
an edge from object A to object B (which can be written as f : A → B), and
another morphism g : B → C, we can combine them to the morphism

g ◦ f : A → C . (3.1)

The whole category is closed under this operation. Also, it must hold that chain-
ing of these operations is associative, for example,

(h ◦ g) ◦ f = h ◦ (g ◦ f) . (3.2)

Another requirement is that there is an identity morphism iA : A → A for each
object A. The identity law must be satisfied, so

iB ◦ f = f , (3.3)
f ◦ iA = f . (3.4)
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A B C

iA iB iC

f g

g ◦ f

Figure 3.1: An example of a category.

An example of a category is displayed in Figure 3.1.

The direct morphisms (i.e., from one object to a different one) are called base
morphisms. Those created by composition are called composite morphisms. The
category contains all possible composite morphisms. However, this is really inef-
ficient for practical purposes. During the implementation, we decided to create
them lazily only when needed. So whenever we say “create a composite mor-
phism” in this thesis, we mean it purely in the sense of the specific technical
solution instead of category theory.

3.2 Schema Category
Any application needs a way to represent the data. A conceptual schema is a
high-level model of the data from the application’s point of view. It hides the
technical details of physically storing the data from the application and allows
us to concentrate on the concepts essential for the domain we are working with.
In the proposed approach, this model is represented by a schema category. A
similar structure capable of holding concrete data is called the instance category.

On the other hand, a logical model describes how the data should be organized
into tables (for the relational model), documents (for the document model) and
so on. It generally does not depend on any specific database engine. However, it
might be affected by the possibilities of the target type of database systems.

This definition of the conceptual and logical model corresponds to the PIM
and PSM from MDA. We do not consider the CIM because it is beyond the scope
of this thesis. Also, we use the terms model and schema interchangeably.

Our approach is based on the condition that an application should have one
conceptual schema which can be mapped to multiple logical models. The models
can partially or entirely overlap, and each of them can be suited for a different
database system.

A schema category is a category, which means that it is a tuple of objects,
morphisms and a composition operation over the morphisms.

3.2.1 Objects
Each schema object corresponds to a kind or a property from the conceptual
schema. It is a tuple of:
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• key – an internal identifier,

• label – a human-readable identifier,

• superid – a set of data attributes the object is expected to have,

• ids – a set of all identifiers of the object (each one of them is called id, plural
ids).

Each attribute of superid is represented by a morphism that goes from the object
with superid to the object corresponding to the attribute. As will be shown later,
a morphism is identified by its signature. So superid is just a set of signatures.

An identifier is also a set of signatures, this time their morphisms lead to the
objects that together unambiguously identify the given object. Hence, ids is a set
of sets of signatures. It must hold that all the signatures from all the sets in ids
are also contained in superid.

The most simple schema object is an object with only one identifier (the empty
signature ϵ) and a single element superid (also the empty signature). So its ids
and superid are {{ϵ}} and {ϵ} respectively. This means the object represents a
simple property identified by its value. More complex objects are identified by
and contain values of other objects.

3.2.2 Morphisms
A morphism represents a directed edge from one object to another. It is modeled
as a tuple of:

• signature – an internal identifier,

• domain object – an object in which the edge starts,

• codomain object – an object in which the edge ends,

• cardinality – one of the following: 0..1, 1..1, 0..*, 1..*.

For simplicity, the signatures of base morphisms are represented by integers. The
convention is that if a morphism has a signature n, its dual has a signature −n.
The identity morphisms are represented by the empty signature ϵ.

The signatures can be concatenated as strings with a dot as a separator. For
example, consider objects A, B and C with morphisms f : A → B, g : B → C
and corresponding signatures σf = 5, σg = -7. If we combine them to the
morphism g ◦ f : A → C, its signature will be

σg◦f = σg ◦ σf = -7.5 . (3.5)

The domain and codomain objects are represented by their identifiers, i.e., keys.
The current version of the framework requires that for each morphism that is

not an identity morphism, there is an opposite morphism (called dual). For
example, if there is a morphism f : A → B, there must exist a dual mor-
phism f : B → A. Because of it, we can consider the combination of both of
them as one two-way relation. For instance, imagine f : A → B and f : B → A.
If their cardinalities are c a c, we denote the cardinality of the combined relation
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as (c ↔ c). Because each morphism has one of the four cardinalities, there are
16 distinct combinations for the whole relation.

3.2.3 Example
This example is taken from paper [9]. An ER schema is depicted in Figure 3.2.
The color borders define which entities are stored in which type of database:

• green – document,

• red – columnar,

• yellow – key-value,

• purple – relational,

• blue – graph.

Examples of the respective data are in Figure 3.3. A schema category to which
the ER schema is transformed is shown in Figure 3.4. This transformation can
be done automatically [18]. The schema category can also be created directly
without the need for an ER schema by a tool described in Chapter 6.

Address

OrderFriend

Audiobook

Book

Product

Customer

Cart

Items

Orders

Id

Surname

Street PostalCode

City
Quantity Id Price

Name

Pages

Length

Quantity

Number

Contact Type

Value Name

(1,*)

(0,*) (0,*) (0,*)

(0,*)

(1,1)

(0,*)

(0,*)

(0,*)

(0,*)

Tag

Name

PublisherPublishes

Name
(0,*)

(1,1)

Figure 3.2: An example of an ER schema.

street
Letenská

Ke Karlovu
Technická

{ _id : { customer : 1, number : 2}, 
  contact: { 
    cellphone : +420123456789, 
    email : mary@smith.cz }, 
  items: [ 
  { id: B1, name: Pyramids, 
    price: 200, quantity: 2}, 
  { id: A7, name: Sourcery, 
    price: 200, quantity: 1 } ] }

2

3

product: T1, quantity: 2 
product: B4, quantity: 1

product: H1, quantity: 1

product: B3, quantity: 2

table Customer collection Ordercolumn family Orders key/value pairs Cart

1
1

orders

orders

customerId orders

2
customerId

3
customerId

[(1,1), (1,2), ...]

[(2,1), (2,2)]

[(3,1), (3,2), (3,3)]

city
Prague
Prague
Prague

postalCode
11000
11000
16200

id name surname
1 Mary Smith
2 Anne Maxwell
3 John Newlin

tag
13
17
19

graph Friends

1

32

Mary 
Smith

Anne
Maxwell

John
Newlin

friend friend

friend

Figure 3.3: Different database models for various logical models that can be
mapped to the ER schema, which is depicted in Figure 3.2.
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1 18 20
3

9
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14

5

Id 
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Name 
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1917

Tag 
103 6

Street 
106

12
PostalCode 

108

16

11

Address 
105
13

10

15

Surname 
104

8

Figure 3.4: An example of schema category created from the ER schema, which
is depicted in Figure 3.2.

3.3 Instance Category
An instance category is a structure capable of holding actual data. It is orga-
nized in the same way as the schema category, however, its entities have different
contents.

3.3.1 Objects
Consider a schema object A with superid {σf = 3, σg = 6} where f : A → B
and g : A → C reference objects B and C. Let us denote ti as one specific
instance of values of these objects. Then the corresponding instance object can
be considered as a set of all ti in our domain. One ti can be represented as a set
of tuples (σ, v), where σ is one of the signatures and v is a value from the domain
of the object linked to A with morphism with signature σ. So in this case, ti can
be written as

ti = {(σf , bj), (σg, ck)} , (3.6)
where bj is one of the possible values of B and ck is the same for C.

For example, let us consider that we are modeling Middle Earth and object A
represents the characters. They have to have a first name (object B with possible
values Frodo, Bilbo, Samwise) and a last name (object C with possible values
Baggins and Gamgee). With these values available we are able to create the
characters (i.e., instances of A)

t1 = {(3, Frodo), (6, Baggins)} , (3.7)
t2 = {(3, Bilbo), (6, Baggins)} , (3.8)
t3 = {(3, Samwise), (6, Gamgee)} . (3.9)

Because B and C are simple properties, they are identified by the empty signature.
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So the possible instances of C would be

t1 = {(ϵ, Baggins)} , (3.10)
t2 = {(ϵ, Gamgee)} . (3.11)

One ti is called an active domain row. A set of all ti together creates an active
domain (also called instance object) of the schema object A, which is denoted
as I(A).

It is important to note that the objects referenced in ti must be the simple
schema objects with the empty signature as an identifier, such as B or C. A
complex object (e.g., A) can also be referenced, but we have to use one of its
identifiers to do so.

3.3.2 Morphisms
An instance morphism is a set of all relations between the rows from two instance
objects. If f : A → B is a schema morphism with the domain object A and the
codomain object B, we can denote mi to be a specific relation between selected
two rows aj ∈ I(A) and bk ∈ I(B). In other words, mi is an ordered pair mi =
(aj, bk) and is called active mapping row. The instance morphism of f , denoted
as I(f), is then the set of all possible mi.

If we go back to the previous example, all mi ∈ I(f) would look like

m1 = ({(3, Frodo), (6, Baggins)}, {(ϵ, Frodo)}) , (3.12)
m2 = ({(3, Bilbo), (6, Baggins)}, {(ϵ, Bilbo)}) , (3.13)
m3 = ({(3, Samwise), (6, Gamgee)}, {(ϵ, Samwise)}) . (3.14)

3.4 Mapping
Each kind from the conceptual schema needs to be mapped to a logical model
representing data in the selected database system. A mapping uses a JSON-
like structure called access path to both define the logical model of the kind and
specify how it is mapped to the conceptual model.

Mapping also defines in which database the data of the kind is stored. It is a
tuple of:

• database – type and connection credentials,

• name – the name of the kind in the database,

• root – the object from the schema category associated with the root node
of the access path,

• pkey – a (possibly ordered1) collection of signatures of morphisms whose
codomain objects form the primary identifier of the kind,

• ref – a set of references from the kind,

• access path.
1If the logical model requires so.

19



In the original version [9], there was also a root morphism because it was possible
to associate the kind with a morphism in addition to an object. This property
could have been undefined.

3.4.1 Access Path
An access path is a tree. The root node represents the kind of the mapping. Each
other node corresponds to one or no object from the schema category. The nodes
that do not correspond to any object are called auxiliary.

Each edge of the access path corresponds to a morphism between the objects
from the schema category to which the two nodes connected by the edge be-
long. We can represent it by putting the signature of the morphism to the child
node. However, an edge between a regular node and an auxiliary one does not
correspond to any morphism. Therefore, the auxiliary node gets assigned a null
signature.

For example, let us consider objects A and B with morphism f : A → B and
respective nodes nA and nB. Now we create an access path starting with node nA

which has a child node n (an auxiliary node) with a child node nB. Node n will
have a null signature, nB will have the signature of the morphism f , i.e., σf . Now
we can find the signature of morphism from A to B by simply concatenating
signatures from all nodes on the path from nA to nB (including nB). The null
signature acts effectively as an empty one, so we get ϵ ◦ σf = σf .

3.4.2 Names
The last thing a node needs to be able to define a mapping is a name. For a
relational database, this means the name of the column. For a document one, it
is the name of the property etc. We consider three types of names:

• static – a string,

• anonymous – an empty name. It has two use cases:

– the root node of the access path,
– a node that represents complex objects in an array,

• dynamic – the name of the property corresponds to the value of another
object from the schema category.

The last one might be a little confusing, but it is just a way how to represent
a map. For example, consider property contact with multiple subproperties like:
contact: {

email: "example@example.com",
phone: "123456789",

...
}

The data structure is dynamic, meaning that one contact has only email, an-
other has both email and phone while a third one has something entirely different.
But we have no way of knowing what are all the possible names these subprop-
erties have. So we have to map both their values and their names at the same
time.
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3.4.3 Representation
The access path can be represented by a JSON-like structure. For example, let
us consider a kind user:

{
name: 1, // Simple property
address: 3.2 { // Complex property

...
},
contact: 4 {

6.5: 7 // Property with a dynamic name
}

}

The first line defines a simple property with static name name and signature 1.
The second line describes a complex property address with signature 2.3. This
property can contain any number of other properties, for example street, city
and ZIP. Lastly, contact is a complex property that contains subproperties with
dynamic names. Note that those subproperties have to be contained in contact
property because they would not be recognizable from other properties (e.g.,
name) otherwise. The morphism with signature 6.5 defines the name of the
property while 7 determines its value.

Also, be aware that the cardinalities of the properties are not defined explicitly
because they can be derived from the cardinalities of the morphisms instead. So
if morphism 3.2 has cardinality 0..* or 1..*, the property is an array.

3.4.4 Example
We conclude with the example from the previous section. Let us focus on the
schema in Figure 3.5, which is a part of the larger schema category depicted in
Figure 3.4.

The JSON-like structure in the middle of Figure 3.5 represents an access path
of kind Order. Unlike in Figure 3.2, the colors now represent different groups of
schema objects that are mapped to the top-level properties of Order.

Lastly, we can see data of these objects on the left, corresponding to the first
entity of kind Order from Figure 3.3
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{ 
  _id : { 
    customer : 1, 
    number : 2 
  }, 
  contact : { 
    cellphone : +420123456789, 
    email : mary@smith.cz 
  }, 
  items : [ 
    { 
      id : B1, 
      name : Pyramids, 
      price : 200, 
      quantity: 2 
    }, { 
      id : A7, 
      name : Sourcery, 
      price : 200, 
      quantity : 1 
    } 
  ] 
}

collection Order

{
  _id : {
    customer : 1.21.24,
    number : 25
  },
  contact : 27 {
    31.29 : 33
  },
  items : 35 {
    id : 47.39,
    name : 49.39,
    price : 51.39,
    quantity : 37 
  }
}

kind name: Order

Orders 
110

Type 
114

Id 
101
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100

Items 
117

Order 
111

Contact 
113

Quantity 
118

_id

items

contact

Price 
124

Id 
122 Name 

123

Product 
121

Number 
112

Value 
116

Name 
115

23
24

26

25

21

22

1

2

27
28

29
30

31

32

33

34

35

36
38

40

39
37

47

48

49

50

51

52

(0,*)

(1,*)(0,*)

(0,*)(1,*)

(1,1)

(0,*)

(0,*)

(0,*)(0,*)
(0,*)(0,*)

(1,1)(1,1)

(1,1)(1,1)

(0,*)(1,1)

(0,*) (0,*)

(1,*) (1,1)

(0,*) (1,*) (0,*) (1,*) (1,1) (1,1)

Figure 3.5: An example of an access path (middle) which maps kind order (right)
to a document database (left).
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4. The Proposed Approach
As we have shown in Chapter 1, although the multi-model data approach has
great benefits, it also presents many challenges. We aim to contribute to their
solution by utilizing the categorical representations introduced in Chapter 3, es-
pecially regarding data modeling, migration and evolution management. In this
section, we introduce the proposed solution, i.e., a multi-model modeling and
evolution management framework.

4.1 Architecture
As described in Section 3.2, we consider two levels of models, the conceptual and
the logical. It is natural to divide the architecture of our approach into two lay-
ers. The first one contains the conceptual model, which is defined by the schema
category (see Section 3.2) and represents the high-level, platform-independent
structure of the data. On the other hand, the second layer contains multiple
overlapping logical models. Each of them is customized for a specific database
system – it is bound by the system’s limitations. The logical models are defined
by the mappings (see Section 3.4), which also map them to the conceptual model.

The changes appear in both layers. The user might need to change one of
the logical models but keep the conceptual schema intact. An example of this
use case would be when the user wants to transfer the data from one database
system to another of the same type. In order not to edit the conceptual schema,
the mapping between it and the logical ones must be updated.

Another use case is to change only the conceptual schema. Consider, e.g., a
very complicated and mostly obsolete schema mapped to much simpler logical
models. The schema was designed to be robust, but later the user finds out that
this complexity is not needed. So he or she may want to simplify the schema but
keep it corresponding to the models. The mappings must be updated accordingly,
as in the previous example.

The last option is to change both the conceptual and the logical models. An
example would be a simple addition of a new object to the schema followed by
the creation and addition of a corresponding logical model.

4.2 Design Decisions
Here we present an explanation for several decisions we have made during the
design and development of the framework.

4.2.1 Hierarchy of Models
The framework is designed to shield the user from the platform-specific details
of the logical models. The user is expected to focus mostly on the conceptual
schema, so the interactions with the logical models should be limited as much as
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possible. Therefore, most of the SMOs the user has an access to should originate
in the conceptual model.

As shown above, some of these operations have direct consequences on the
logical models, or they require the user to make additional changes to them. In
all cases, the underlying principle is that the logical models are always dependent
on the conceptual model. In our approach, the changes made in the conceptual
model do propagate to the logical models, but the updates of the logical models
do not affect it.1

Therefore, we have to design the SMOs to maximize the automation of their
propagation to the other models. In an ideal world, the user would do only
the operations on the conceptual layer while the system would handle the rest.
On the other hand, we must make them powerful enough to allow the user to
achieve any desired change. However, we should still keep them as simple and
user-friendly as possible.

4.2.2 Lazy vs. Eager Migration
Lazy and eager migration, as well as two hybrid strategies, are discussed in Sec-
tion 2.2. To sum it up, the main issue of eager migration lies in the fact that a
mass update of the whole database might require so much time that the users
might experience downtime. Another disadvantage is the total work needed to
update the schema repeatedly.

On the other hand, the lazy approach (and all the hybrid ones) significantly
increase the system’s complexity. We would have to enable multiple versions of
the same kind to exist simultaneously. We would also have to version everything,
including the individual data entities. Last but not least, such a system would be
much more prone to errors. Considering that the proposed framework should be
a proof concept of the categorical Approach and not an optimized application, we
decided to use the eager strategy. However, the lazy approach will be considered
in future work.

4.3 Workflow
In this section, we describe the general workflow of evolution management. Each
of the following subsections defines one step in this process. First, let us assume
there is a schema category S, a set of all mappings M , and data D.2

The first two steps are (i) editing objects from S and (ii) fixing their corre-
sponding mappings from M . They are supposed to be iterated as many times as
needed – a change of an object might require a change of mapping and for the
user, it is more convenient to gradually edit both. During the first two steps, D
is not being updated. Then (iii) the system collects all SMOs, optimizes them
and applies them to the instance category, i.e., the actual data D.

1More precisely, a change in a logical model might result in the need to edit the conceptual
model. However, it is the user, not the system, who has to initiate the change. Although the
other way (i.e., the logical to conceptual model propagation) is definitely feasible, we leave this
idea to future work.

2Both S and M can be created manually using tools described in Chapter 6. Also, the
schema category can be inferred from the data automatically by the MM-infer tool [11].
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4.3.1 Step (i) – Editing of the Schema Category
Firstly, the user needs to specify the SMOs. An editor (an extension of the tool
described in Chapter 6) will be used for this purpose. The result will be a list
of operations ordered by when they are to be applied and a new version of the
schema category, denoted as S ′.

During this process, it may happen that the schema category gets to an invalid
state.3 That is perfectly fine, provided the schema category will be valid after the
last operation. The user will be allowed to save the changes only if this condition
is met. There are also operations that are required to originate from a valid state,
so the user will not be able to use them otherwise.

4.3.2 Step (ii) – Propagation to the Mappings
Each SMO can affect the mappings in one of the following ways:

• it targets a mapping directly, i.e., it is performed at the logical level,

• it can be automatically propagated to the mappings, for instance, deleting
a property from a kind,

• it can find the mappings it affects, but additional user input is required to
update them, e.g., adding a property to an already mapped kind,

• there are no corresponding mappings, for example, when creating a new
kind.

The user has to manually update and create all the mappings for the last two
options. The result of this is a new version of the mappings M ′.

4.3.3 Step (iii) – Propagation to the Instance Category
When the user is done with the first two steps, the system checks if the data can
be updated directly from the changes in mappings ∆M . For example, renaming
a column in a table from a relational database does not require any knowledge
about the data – we can simply generate the corresponding ALTER TABLE ...
statements. If that is the case, the system creates the data update statements ∆D
and applies them to the data.

In most cases, the actual data needs to be updated, i.e., we need it to gen-
erate ∆D. So the system uses the current versions of S, M and D to create an
instance category I. This part of the process is described in [9] as the Model-To-
Category Transformation and we already implemented it.

Then, the SMOs are applied to the instance category (in the same way as
they were applied on S in the first step – we use the fact that S and I have
the same structure) to transform it into the new version I ′. From it, the update
statements ∆D can be exported using the new mappings M ′. Finally, ∆D are
applied to the data. The last part is, again, described in [9] as Category-To-Model
Transformation and already implemented.

3For example, the user might want to add a kind identified by one of its properties. To
specify the identifier, he or she would have to first create a morphism between both objects.
However, to create a morphism, both its domain and codomain object must already exist.
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4.3.4 Summary
A schema of the whole process is depicted in Figure 4.1. An advantage of this
approach is that while the user can edit the schema and the mappings iteratively,
we still have all the operations available before the data is updated. So we can
analyze them to find possible optimizations and only after that run the potentially
time-consuming transformation on the actual data. For instance, if the user
creates a copy of an object and then deletes the copy later without ever interacting
with it, we can cancel both operations. This concept is called version jumps in
the Darwin framework.

D I I ′SMOs
∆D

S, M S ′, M ′SMOs

∆M

Figure 4.1: A schema of the workflow. First, the user defines the SMOs (red).
Then the system decides if the update statements can be generated directly from
the changes in mappings (blue, ∆M). If not, it has to create the instance category,
apply the SMOs to it and then export the statements from it.

There are, of course, many other opportunities for optimizations. For example,
in the third step, we can locate the affected parts of the schema and load only
them to the instance category. However, as mentioned above, the framework is
meant to be a proof concept, so we leave the possible optimizations for future
work.

26



5. Supported Operations
In this chapter, we describe the particular SMOs we support.

We divide the operations on the conceptual layer into three groups – basic,
composite and complex. Operations from the first group are simple, low-level,
and involve only one object or morphism at a time. They may affect multiple
objects or morphisms (end even use other basic operations to do so) – for example,
deleting an object would result in deleting all its morphisms. However, all the
affected entities can be automatically determined by the system.

Another essential feature of the basic operations is that they may both origi-
nate from and result in an invalid schema category. The general rule is that the
last basic operation we use must transform the schema category to a valid state.
Otherwise, the user will not be allowed to apply any of them.

On the other hand, both the composite and the complex operations transform
the schema from one valid state to another. They involve multiple objects or mor-
phisms and usually require more parameters than the basic ones, too. Although
many of them can be emulated by several basic operations, it is not a universal
rule. For example, the SPLIT/JOIN operation requires a custom user input which
none of the basic ones can provide.

After that, we introduce the operations that affect only the logical models.
Some of them are already implemented, which we will discuss in more detail later.

5.1 Basic Operations
The schema category is composed of two types of entities – the objects and the
morphisms. The objects consist of the label and one or more id-s (elements of
the ids property). There is also the key, i.e., the internal identifier, but it is not
accessible by the user. The morphisms have the domain and codomain objects,
the cardinality and the signature, which is again an internal identifier. Lastly,
the superid property of an object is basically just a sequence of morphisms.

This determines all of the basic operations. Both the objects and the mor-
phisms can be created, deleted and edited. To edit an object means to edit either
its label or its ids (the key is immutable and superid is determined by the ids).
The edition of the superid includes deleting one of them or adding a new one.1 To
edit a morphism means to edit its cardinality – changing its domain or codomain
object would be too complicated and not really useful, so it is not supported, and
the signature is, similarly to the key, immutable.

An important concept of these operations is that the entities are defined by
their identifiers, not by their other properties. So if we decide to delete an object
and later create a new one with all of its properties identical, the result will be
one ADD and one DELETE operation. The system will have no way of knowing
we meant these objects to be identical, so the mapping associated with the old

1An id is defined by its value, i.e., by a set of morphisms, instead of an internal identifier.
Therefore editing id can be simulated by deleting it and creating a new one.

27



object and all the corresponding data will be erased. Hence, the user will also be
required to provide a mapping for the new object.

5.1.1 ADD Object
Operation ADD creates a schema object and adds it to the schema category. The
object’s label has to be specified by the user. Besides that, there is no need for
any user input.

After the operation, the schema category will be invalid because the object
will have empty ids. It will also not be a part of any mapping because the system
does not have the respective information. So this operation does not affect the
logical models.

5.1.2 DELETE Object
This operation deletes an object. All morphisms linked to it are deleted as well
(see the DELETE Morphism operation). This might, in turn, indirectly modify the
current mappings or invalidate the schema category.

5.1.3 EDIT Object Label
A label is just a human-readable description of the object. It can be easily changed
without any potentially problematic side effects.

5.1.4 ADD Id
The user selects an object and a set of morphisms that originate in it. The set
(i.e., the new id) is then added to the object’s ids. After the operation, the
schema category might become valid. The current mappings are not affected in
any way.

There are different rules depending on the type of the newly created id:

• empty, i.e., the object is a simple value property identified by its value –
the set has to contain exactly the identity morphism,

• simple – the set has to contain exactly one non-identity morphism with
cardinality (?..1 ↔ 1..1),

• complex – the set has to contain multiple non-identity morphisms with
cardinalities (?..* ↔ 1..1).

The second rule ensures that the object the morphism refers to is unique. The
third rule prevents any part of the id from being unique enough that it would be
able to create a simple id on its own.

5.1.5 DELETE Id
Deletes the chosen id, i.e., removes the set of signatures from ids (the correspond-
ing morphisms are not affected). However, if it was the last id of its object’s ids,
the schema category would be invalidated.
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5.1.6 ADD Morphism
This operation creates a schema morphism and adds it to the schema category.
The user selects its cardinality from a predetermined set of options. The reason for
this is that some cardinalities are not compatible with each other, i.e., between
any two objects A and B can be more than one morphism (e.g., f : A → B,
g : A → B, etc.) only if they satisfy certain conditions (see Appendix A for full
explanation).

If the newly created morphism completes a cycle, multiple tuples of compos-
ite morphisms will be created between all possible pairs of objects that form the
cycle. So the user is allowed to select only from cardinalities that will not result
in an incompatibility within any of these tuples.

Creating a morphism neither invalidates the schema category nor affects the
mappings.

5.1.7 DELETE Morphism
First, the system deletes the morphism and all id-s that use it (via the DELETE
Id operation). Then, the morphism is removed from all mappings. Because each
access path is a tree, the system removes any subtree that is connected by the
morphism. So this operation might both invalidate the schema category and
change some mappings.

5.1.8 EDIT Cardinality
The cardinality of a morphism bears crucial information about the relation be-
tween the domain and codomain objects of the morphism. Some changes between
cardinalities are straightforward, e.g., (1..1 ↔ 1..1) to (1..1 ↔ 1..*), because
the second one is automatically valid if the first one is valid. We denote them
as trivial. On the other hand, an opposite process is impossible without either
a loss of information (removing some elements from I(B)) or an introduction of
redundancy (adding some elements to I(A)). These are called non-trivial.

There are 16 possible cardinalities with 240 transitions in total. However, it
does not make much sense to change, e.g., cardinality (1..1 ↔ 0..*) directly to
(0..* ↔ 1..1), so we limit ourselves to the transitions where only one of the four
digits changes. This gives us 64 transitions, 32 of which are unique (the other 32
are just mirror images of them, i.e., we can get them by substituting A for B and
vice versa).

In Figure 5.1 we have depicted all the 32 unique transitions between the
cardinalities. The derivation and full explanation of the diagram are depicted
in Appendix A. The non-trivial transformations require a change of data. It is
expected to be either removing some elements from I(A) or I(B) (marked as A−

or B−), adding them (A+ or B+) or removing some active mapping rows between
them (m−).

Some of these changes can be automated (for instance, removing all a ∈ I(A)
elements that do not have any linked b ∈ I(B) during the (1..1 ↔ 0..1) to
(1..1 ↔ 1..1) transition) while the others need user input. It is expected to be
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(1..1 ↔ 1..1)

(1..1 ↔ 1..*) (1..1 ↔ 0..1)

(1..1 ↔ 0..*)

B−, A+ A−

A− B−, A+

(1..* ↔ 1..1)

(1..* ↔ 1..*) (1..* ↔ 0..1)

(1..* ↔ 0..*)

A+ A−

A− B−, A+

(0..1 ↔ 1..1)

(0..1 ↔ 1..*) (0..1 ↔ 0..1)

(0..1 ↔ 0..*)

A−, B−,
m−, A+ A−

A− A−, B−,
m−, A+

(0..* ↔ 1..1)

(0..* ↔ 1..*) (0..* ↔ 0..1)

(0..* ↔ 0..*)

A−, m−,
A+ A−

A− A−, B−,
m−, A+

Figure 5.1: All possible cardinalities and both trivial (green) and non-trivial (red)
transitions between them. For better clarity, half of the possible transitions are
missing. However, they all are just mirror images of those depicted here. See
Appendix A for more details.

a function F : I(A)∗ → I(A) that gets an array of elements2 and chooses which
one to keep.

If the morphism no longer conforms to the cardinality requirements described
in Subsection 5.1.4, we have to delete all affected ids. In that case, the user will
be warned before the operation, and if he or she chooses to continue, the system
will proceed with the DELETE Id operations.

5.2 Composite Operations
These operations bring some quality-of-life improvements over the basic ones.
The goal is to provide operations at the level the user thinks about the data
models. For example, the user almost never needs just to create an object. He
or she usually wants to also connect the object to another one, most likely with
the intention of adding a new property to the existing object. Other examples
include more sophisticated structures like maps, lists, etc.

All composite operations can be created by combining several basic ones. This
fact is essential to ensure they are formally correct. Nevertheless, this does not
mean they have to be implemented this way. Generally, the more complex an
operation is, the more opportunities for optimization there are.

2The expression I(A)∗ is our notation for an array of elements from I(A), i.e., I(A)∗ =
[a1, a2, . . . , an], where a1, a2, . . . , an ∈ I(A).
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Another added value of these operations lies in the automatic propagation
into the logical models. For example, let us consider there is a schema object
that is also a part of a mapping. If the user adds a child property to it, the
system can easily update the mapping accordingly. Or, imagine the user wants
to add a list. The system can check if the database supports lists first. If not, it
warns the user about the potentially unnecessary operation.

5.2.1 ADD Property
This operation creates a schema object and a morphism that connects it to an-
other object specified by the user. He or she also selects ids of the newly created
object (or leaves it empty). The operation can be nested in another one of the
same kind (so the new property can use one of its child properties in the ids).

5.2.2 ADD Reference
This operation creates a morphism with cardinality (1..1 ↔ 1..1) between two
objects (denoted as A and B) and adds a selected identifier of A to B. This
means that B is now identified by one of the identifiers of A.

Optionally, the user can choose not to specify B. If that is the case, a new
object is created first.

5.2.3 ADD Relationship
This operation creates a link between two objects (A and B) that correspond to
a relationship from a relational database. There are two options:

• One-to-many – a morphism f : B → A with cardinality (0..* ↔ 1..1) is
created. A selected id of A is added to ids of B. The structure is depicted
in Figure 5.2(a).

• Many-to-many – an object R is created and connected to A and B by
morphisms a : R → A and b : R → B. Both of them have cardinality
(0..* ↔ 1..1). Object R is identified by an identifier from A combined
with another from B. See Figure 5.2(b).

5.2.4 ADD Set
This operation creates an object B that acts as a set of properties for the selected
object A. The final structure, depicted in Figure 5.2(c), is similar to the many-to-
many case of the ADD Relationship operation (except that the b morphism has
cardinality (1..* ↔ 1..1)). Although some database systems support arrays,
and it would be enough to create only morphism f : B → A with cardinality
(0..* ↔ 1..*) for them, we have chosen the more general approach because it
works for all databases. Also, the morphism f is contained in the structure in
the form of f = a ◦ b so the mentioned databases can just use it while ignoring S.
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B

A

f
0..*

1..*

(a) Two schema objects connected with
a 1:n relationship.

R

A

a

0..*

1..1

B

b

0..*

1..1

(b) Two schema objects connected with
a n:m relationship.

S

A

a

0..*

1..1

B

b

1..*

1..1

(c) Set of properties B associated with
kind A.

M

A

a

0..*

1..1

B

b

1..*

1..1

K

k

1..*

1..1

(d) Map of keys K to properties B as-
sociated with kind A.

Figure 5.2: Various data structures that can be created by the composite opera-
tions.

5.2.5 ADD Map
Unlike the previous operation, Map has to be in all types of databases repre-
sented in the same way. It is a relationship with an additional object that acts
as a key. So for selected object A, this operation creates objects B, M , K
and morphisms a : M → A, b : M → B, k : M → K. The cardinality of a is
(0..* ↔ 1..1), the other two have (1..* ↔ 1..1). The object M is identified
by the combination of A and K. The final structure can be found in Figure 5.2(d).

5.2.6 Notable Exclusions
All the previous operations have in common that they only create new structures
and add them to the schema category and the corresponding mappings. However,
there are none that would delete or edit already existing structures.

The DELETE ones are excluded because they are already covered by the DELETE
Object operation (which subsequently calls DELETE Morphism and so on). When-
ever we want to create a structure, we have to specify it in detail. So it is con-
venient to have available all the different ADD operations for all the expected
structures. On the other hand, deletion is much simpler. The user can just select
all the schema objects and delete them at once.

The EDIT operations are missing for the opposite reason. To update an object
means to update all data of the corresponding instance object. These potentially
really complex operations are therefore left until the next section. The only trivial
one, i.e., renaming, is covered by the EDIT Object Label operation.
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5.3 Complex Operations
Unlike the operations from the previous section, which specialized in creating
and deleting data structures, the complex ones aim to mediate transformations
on already existing parts of the schema category. This means they also modify
the data of the corresponding instance objects and morphisms.

5.3.1 COPY
This operation aims to create an object with the same properties and data as
another object and then move it to a different place in the schema category
graph (i.e., link it to a different object than the original one is linked to). During
it, a change of cardinality might be needed. Although that looks like an easy
task, there are many hidden issues.

First Iteration

Let us first consider the most basic yet non-trivial example, depicted in Figure 5.3.
There are three objects:

• user – each user account is created simultaneously with his or her first
order. However, the user can then make any number of additional orders
(morphism b).

• order – each order is created by exactly one user.

• contact address – a string representing the user’s contact address (mor-
phism a). It is also used as a delivery address for the user’s orders.

Although this schema might look fine for a simple e-shop, there is a slight incon-
venience. The user can not customize the delivery address for each order and has
to use the default one instead. So we want to edit the schema by adding a new
object, called delivery address, which will be linked directly to the order. We
also want to ensure that all currently existing orders have valid addresses, so we
want to copy them from the users.

Note the contact address has (1..1 ↔ 1..*) cardinality to the order while
the new delivery address should have (1..1 ↔ 1..1). Consequently, a change
of cardinality is required. We can do it as follows:

1. We create a new object, delivery address, that is a copy of contact
address.

2. We create a morphism f : order → delivery address by combining the
currently present morphisms a and b to (b ◦ a) and replacing contact
address for delivery address. Its cardinality is (1..* ↔ 1..1).

3. We transform f to f ′ by changing its cardinality to (1..1 ↔ 1..1) by the
B+ process.

We have ended up with redundant data in the form of duplicated addresses. Still,
it is all right because, in the future, the delivery addresses will not be necessarily
identical.
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userorder

contact
address

a

1..1

1..1

b
1..11..*

delivery
address

copy of

f

1..*

1..1

delivery
address

f ′

1..1

1..1

B+

Figure 5.3: An example of the first version of the COPY operation. Object contact
address is copied to delivery address.

Better Algorithm

However, this process has one crucial flaw – the object created in step one does not
have any direct connection to the user. It can not even have because then step
three could not happen. During it, a (1..1 ↔ 1..1) morphism (f ′) is created, and
that one is not compatible with the already existing compound morphism (b ◦ a).
The issue is that the transformation might require additional information from
the other objects. Let us show it in another example.

userorder

delivery
address

c
1..1

1..1

b
1..11..*

contact
address

δ 0..*

1..1

f

1..1

1..*

contact
address

f ′

1..1

1..1

B−

Figure 5.4: An example of the final version of the COPY operation. Object
delivery address is copied to contact address.

Consider a very similar situation, depicted in Figure 5.4. Now each order has
a unique address (morphism c) while the users have none. This is also a bad
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design because we may need a way to contact the users. So we have to create a
contact address object. Naturally, it should be the last one the user used for
delivery, so we just need to order the addresses by their orders’ dates, pick the
last one, and copy the value to the delivery address. But we need to maintain
a connection to the order object since the date is stored there. We can solve it
by this process:

1. We create a new object, contact address, that is a copy of delivery
address. It is linked to the original contact address by a (1..1 ↔ 1..1)
morphism δ : contact address → delivery address.

2. We create a morphism f : user → contact address by combining the
currently present morphisms b, c and δ, i.e., f = δ ◦ c ◦ b. Its cardinality is
(1..1 ↔ 1..*).

3. We change the cardinality of δ to (0..* ↔ 1..1).

4. We transform f to f ′ by changing its cardinality to (1..1 ↔ 1..1) by the
B− process.

5. We delete the δ morphism.

Note that during the transition in step four, we still have full access to the orig-
inal delivery address object and all its linked objects thanks to the 1..1 end
of the δ morphism. So we can easily select the latest contact address for each
user. The change from 1..1 to 0..* in step two is necessary to ensure that
both f and f ′ can coexist along the δ ◦ c ◦ b morphism. Because δ is of the fourth
cardinality type, it is compatible with any other morphism, so this choice of δ is
sufficient for all cases.

More Complex Objects

We managed to decompose the copy operation for a simple value object as a
sequence of basic operations. The next step is to consider a complex object, an
example of which is shown in Figure 5.5. The address has three properties:

• id – a unique identifier of the address,

• value – a string with the city, street and house number.

• note – a set of string notes associated with the address, e.g., “Beware of
the dog”.

Granted, it is not the most efficient address design, but it is just an example. The
question is what to do if we decide to copy the object. Generally, there are two
approaches to copying objects – a shallow or a deep copy. We can do something
in between by deciding individually for each property if we want to copy it as
well or just link it to the new object. The choice depends on its semantics:

• note – this property is specific to each address, so we will copy it.
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• value – multiple addresses share this property, so we probably should not
copy it. However, it is unclear if it can be shared not only by different
addresses but also by different objects, i.e., contact address and delivery
address. If that were not the case, we would have to copy it.

• id – this property is obviously meant to be unique for each address. How-
ever, copying it might not be enough. If we needed to add redundancy, the
uniqueness would be lost.

The example illustrates that there is no general solution. Instead, the user has to
choose which properties to copy manually. This choice has to be made between
the fourth and fifth steps in the above-described algorithm. There is still present
the auxiliary morphism δ, which can be used as a link to the original object.
Then we repeat the algorithm for each property the user wants to copy (and
subsequently for their subproperties, if there are any, and so on). Finally, we can
delete all the auxiliary morphisms.

address

id

value

note

x
1..1

1..1 y

0..*

1..1

z
1..1

0..*

Figure 5.5: An example of a complex object address.

We also have to provide a generator of unique identifiers so that new values
for the id can be created. The user might require a particular format for these
values (e.g., some identifiers are numbers, others are strings of letters, . . . ). If
that is the case, he or she can input a custom generator function.

Lastly, we have to fix ids that might have been invalidated by the operation,
i.e., those that use any morphism originating in the moved object. Although
some of them may be repairable automatically, it generally is not the case. For
example, if delivery address was identified by its order, the user would have
to specify a new identifier (e.g., user).

The most simple solution is to invalidate all the affected ids and then let the
user fix them manually. The development of an algorithm that would allow us to
automatically repair at least some is left to future work.

5.3.2 MOVE
This operation does exactly the same as the previous one with one important
difference. The original object is deleted after the copy is made. The process can
be optimized by keeping the original object and transforming the morphisms.
However, this is just a question of the implementation of the algorithm. From
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the operational point of view, it is much better to take the already proven concept
and extend it a bit.

5.3.3 GROUP
This operation replaces multiple properties with a new object that has them as
its subproperties. The most basic cases can be done by creating the new object
and then moving the other properties to it. However, the more advanced ones
might require additional transformations.

One to One

Consider the situation depicted in Figure 5.6(a). The user object has several
properties (contact, birth number, name) representing the user’s personal in-
formation. We want to ensure this information is well protected, so we decide to
store it together, possibly in another database system. In order to do so, we have
to create a new object, personal info, and move all the properties to it. We
also can not edit the user object, because it might be linked with other properties
(e.g., id, orders, . . . ).

The result is shown in Figure 5.6(b). It is important to note that the personal
info has to be identified by the user so that the f morphism can have the
(1..1 ↔ 1..1) cardinality in all possible cases.

We could have used the ADD Object and MOVE operations instead. However,
the significance of the GROUP operation is that it can internally optimize all the
data transformations. And it also should be much more user-friendly.

user

contact

x

1..1

1..1

birth
number

y

1..1

1..1

name

z

1..1

1..1

(a) Before.

user

personal info

f

1..1

1..1

contact

x′
1..1

1..1

birth
number

y′

1..1

1..1

name

z′
1..1

1..1

(b) After.

Figure 5.6: An example of the GROUP operation with 1:1 cardinality between the
kind and its properties.
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One to Zero

This example illustrates other benefits of this approach. As we can see in Fig-
ure 5.7(a), there is, again, a user object with some properties (street, city,
ZIP). The last two are optional because we were not specific enough, and some
users did not fill in the corresponding fields in a form. All the properties can also
be linked to multiple users as there might be multiple people from the same city
(or street or ZIP zone).

We want to group the properties to one address object. Furthermore, we
would like to fix some of the previous mistakes by eliminating all non-valid ad-
dresses, i.e., those which miss at least one of the three properties. In other words,
we want the whole address to be optional instead of its properties, as shown in
Figure 5.7(b).

This issue can be solved entirely by the previously mentioned operations.
First, we do the same ADD Object and MOVE procedure as in the example from
the One to One case. This creates the (1..1 ↔ 1..1) morphism f while leaving
the x, y and z ones intact. Then we change f to (1..1 ↔ 1..0). Lastly, we
use the A− transformation on y and subsequently on z, meaning we delete the
addresses without a city or a ZIP.

Again, the purpose of the GROUP operation is to streamline the transformation
as much as possible. It should also be general enough to allow us to choose a
different rule for creating addresses. We can simply ask the user for a function
like

G : I(street), I(city)?, I(ZIP)? → {true, false} , (5.1)
where I(A)? is our notation for an optional input of an element from I(A), i.e.,
I(A)? = {a, ∅} where a ∈ I(A). The function takes the values of the objects that
would be used to create the address and decides if to create it or not.
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x

1..*

1..1

city

y

0..*

0..1
ZIP

z

0..*

0..1

(a) Before.

user

address

f

1..1

0..1

street

x′
1..*

1..1

city

y′

0..*

1..1
ZIP

z′
0..*

1..1

(b) After.

Figure 5.7: An example of the GROUP operation with n:1 cardinality between the
kind and its properties.
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One to Many

Even more complex example is depicted in Figure 5.8(a). There is a user with
only two properties, arrays text and time. They represent comments the user has
made – each of them has its content in the text array and time of publication in
the time array. This design was probably sufficient at the beginning when we only
needed to read the comments all at once. Later, we decided to implement more
sophisticated features, i.e., querying individual comments by time or content. So
we would like to transform the schema to the one in Figure 5.8(b).

Unlike in the previous examples, this problem can not be solved by the ba-
sic operations only. We have no choice but to use the GROUP operation. The
function (5.1) can be generalized to

G : I(text)∗, I(time)∗ → I(comment)∗ , (5.2)

where m∗ ⊂ I(text)∗ and n∗ ⊂ I(time)∗ are the arrays of the instance elements
corresponding to the given user element and o∗ ⊂ I(comment)∗ is the output ar-
ray of comments (tuples of type (m∗, n∗)). Of course, there can be multiple such
arguments as m∗ and n∗, this is just an example. The important part is that
because they and the output are arrays, this approach covers all possible cardi-
nalities of the morphisms between the central object and its attributes. Moreover,
the (m, n) tuples would be sufficient in this case, but not generally since the car-
dinalities of the i′ and j′ morhpisms might be arbitrary.

user

text

i

1..1

0..*

time

j
1..1

0..*

(a) Before.

user

comment

f

1..1

0..*

text

i′
1..1

1..1

time

j′
1..1

1..1

(b) After.

Figure 5.8: An example of the GROUP operation with 1:n cardinality between the
kind and its properties.

Finally, we can generalize the function (5.2) even more. The object user is
linked through various morphisms to all specific values of its properties. Therefore
we can write

G : I(U) → I(O)∗ , (5.3)
where I(U) is the instance of the central object (i.e., user). So the GROUP oper-
ation can be understood as a transformation that takes:

• an object U ,
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• a set of objects {Ai}, where each element is linked to the U by a base
morhism xi : U → Ai with cardinality (ci ↔ ci),

• a set of output cardinalities {c′
i},

• an output cardinality c′,

• a function of type (5.3).
Then it:

• creates an object O and a morphism f : U → O with cardinality (1..1 ↔ c′),

• links each Ai with O by a new morphism x′
i : O → Ai with cardinality

(ci ↔ c′
i),

• for each u ∈ I(U) computes the o∗ = (a1∗, a2∗, . . . )∗ = G(u) elements,
where ai ∈ I(Ai), inputs the o to I(O) and links it with u and ai∗ elements
by the f and x′

i morphisms,

• deletes the original xi morphisms.
It is important to remember that the choice of the function G depends on the
selected cardinalities c′ and c′

i. For instance, if c′ = 1..1, then G has to be
from I(U) to I(O) instead of I(O)∗. Or c′ = 0..1 means G : I(U) → I(O)?. On
the other hand, c′

i affects the cardinality of ai in the output tuple o. The arrays
are used here because it is the most general notation (e.g., u is just an array with
length 1 while u? is an array with length ≤ 1) but for practical purposes (i.e.,
during implementation) it is necessary to check if the function submitted by the
user meets the cardinality requirements.

The limitations on the function imposed during the implementation also im-
pact the operation’s effectiveness. If we know, for instance, that the submitted
function uses only two properties of U , we do not have to input the whole u
into it. We can only provide it with the values of these two properties instead.
So we save a lot of time by not having to fetch all the unnecessary data. The
definition of G in (5.3) shows merely what the GROUP is able to do in its most
general sense. There is plenty of room for optimizations, but they are a matter
of implementation.

5.3.4 UNGROUP
This is (in most cases) the inverse operation to GROUP. The exception is when
GROUP is not reversible, i.e., data is lost in the process. Then UNGROUP acts only
as a partial inversion.

An example of that is in the One to Zero case. The schema in its original form,
after GROUP and then after UNGROUP is depicted in Figures 5.7(a), 5.7(b) and 5.9.
Because we wanted to create the address only when all its three components were
present, their values in all other cases were lost. Later, when we decided to trans-
form the schema back, the lost data could not be restored. This is also illustrated
by the fact that the x′′ morphism now has cardinality (1..* ↔ 0..1) instead of
(1..* ↔ 1..1) that its original version x had.

The operation can be defined as follows. It starts with:
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user

street

x′′
1..*

0..1

city

y′′

0..*

0..1
ZIP

z′′
0..*

0..1

Figure 5.9: An example of the UNGROUP operation following on from the previously
executed GROUP operation (depicted in Figure 5.7).

• objects U and O, linked by a morphism f : U → O,

• a set of objects {Ai}, linked to O by the morphisms x′
i : O → Ai,

• no other objects than U and {Ai} are linked to O.

Then it:

• links each Ai with U by a new morphism x′′
i = x′

i ◦ f ,

• deletes the O object and all its morphisms (i.e., f and all x′
i).

Note that the operation is much more straightforward than GROUP and does not
require any user input. It also does not lose any data on its own – it is only
unable to restore the data lost by a previous application of GROUP, although it
might cause a loss of information. For instance, if we used it to reverse the schema
depicted in Figure 5.8(b) to its original form as is in Figure 5.8(a), we would no
longer be able to tell which text belongs to which time.

Moreover, UNGROUP does not have to be used merely as a (partial) inversion of
GROUP because the schema it is applied to does not have to fulfill the cardinality
restrictions of the output of GROUP (i.e., the (1..1 ↔ ?..?) of the f morphism).
To sum it up, this operation is useful for removing a specific object from the
middle of the schema category while preserving the relations between all others.

5.3.5 JOIN/SPLIT
All the previous operations affect only the links between the objects but never
their values. They can delete the data but are not able to create new ones. This
operation aims to do exactly that.

The JOIN is a well-known function in many programming languages. It is
used to join multiple string arguments (or an array) by a string separator. On
the other hand, SPLIT does exactly the opposite – it takes one string, finds all
occurrences of a separator and splits it by them.

JOIN

Let us consider an example depicted in Figure 5.10. We have a user object whose
name is divided into two properties, i.e., first name and last name. This is not
the best design possible because a person can have more than two names. When
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the first such people start to register into our application, we decide to create one
universal object called full name. We have to migrate all current users, and in
order to do so, we have to calculate their full names by joining the first ones with
the last ones.

However, sometimes joining the names with a separator is not enough. Imag-
ine that our application also considers the academic degrees of its users, which
are stored as an array in the degree object. And we want to include them in
the full name as well. The problem is they are separated by a comma and a
space, i.e., the ", " symbol, while names use just the space, i.e., " ". Although
we could join the names first with the spaces and then add the degrees with the
commas, it would still be an incomplete solution. Some degrees should be placed
before the name and the other after it. They also should be listed in a particular
order.

As we can see from the example, a custom transformation function is needed.
In this case, it would look like

J : I(first name), I(last name), I(degree)∗ → I(full name) . (5.4)

user

first
name

x
1..*

1..1

last
name

y

1..*

1..1

degree

z
0..*

0..*

full
name

f
1..1

1..1

nick
name

g
1..1

1..1

Figure 5.10: An example of the JOIN/SPLIT operation. The objects full name
and nick name are created and their values are computed from the values of the
other properties of user.

SPLIT

The SPLIT operation can be understood in a much more general sense, as well
as JOIN is. We can provide more than one separator or even a regexp. The next
step is to, again, provide a custom function. Unlike JOIN, the SPLIT function
should take one argument and produce multiple output values.

All in all, both operations are almost the same. Both select one (or more)
properties of an object and transform them into multiple (or one) new ones. The
only distinction is in the domain and codomain of the user-provided transfor-
mation function. However, that is not a significant difference, as we have seen
in the One to Many case. So we can generalize both operations even more by
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combining them into one that accepts any number of properties and outputs any
number of new ones.

An operation like this has many use cases. Consider, for instance, the previ-
ous example with user names. We might want to transform the three properties
(first name, last name and degree) into two new ones – the already mentioned
full name and a nick name, which is supposed to be a much shorter version for
informal usage. We might start by discarding the degrees and abbreviating the
last name.

Lastly, we can generalize even further by allowing the transformation function
to accept the whole u ∈ I(user) element so it can access all its related objects.
There is actually no need to limit them to only those that are linked to u with a
base morphism. So the function can be defined as

J : I(U) → I(O1) ∗ ×I(O2) ∗ × · · · × I(On)∗ , (5.5)

where U is the central object and Oi are all the new objects created in the process.
The user has to select U , input J and specify all the Oi objects. The JOIN/SPLIT
operation then do the following:

• it creates all output objects Oi and links them with U ,

• for each u ∈ I(U), it computes the value of J(u) and adds its components
to the corresponding I(Oi).

Note the definition does not include the source objects (i.e., whose data are used
to calculate the new values) because they can all be accessed from u. However,
in practice, the user will have to specify them first in order to be able to use
them in the J function. That is, like during the GROUP operation, crucial for the
efficiency of JOIN/SPLIT.

The operation’s name might suggest that the source objects should be deleted
after. We suggest leaving this behavior optional (and ideally individual for each
object) because there are many use cases for both possibilities. In any case, the
objects can be deleted independently after the operation, so it is just a matter of
optimization.

5.4 Operations in the Logical Layer
Lastly, we describe how the user can change the logical models. Because the
models are defined via the mappings, the only way to change a model is to edit
its respective mapping. And a mapping is, in turn, characterized by its access
path, which is a tree of properties. So most of the options available to the user
are tree operations.

Unlike the conceptual model, the logical models are platform-dependent. This
manifests itself in the form of limitations any given access path must conform to.
In other words, each database system allows a slightly different set of structures
the access path can contain. Therefore, it is impossible to define them as strictly
and generally as those acting on the conceptual schema. For each database, they
can differ in complexity, possibilities, or, in some cases, they might not be allowed
at all. Such examples are listed with the specific operations below.
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As a reminder, these operations can not propagate to the conceptual schema.
To change it, an operation that originates there, i.e., one of the previously men-
tioned, is required instead. The mappings are also not related to each other, only
to the conceptual schema. So editing the schema category can affect all of them,
but any operation on a specific mapping does not propagate to any other. This
greatly reduces possible problematic side effects of the operations.

5.4.1 Migration
This operation is rather an abstract concept overreaching the other ones instead
of a specific set of well-defined steps. However, it is incredibly useful because
it solves one of the issues of multi-model databases – transferring the data from
one database system (A) to another (B). In order to do so, the user has to first
define the mappings from A and B to the conceptual schema and then run the
transformation algorithms.

5.4.2 Property Level
There are two types of nodes in the access path – simple and complex. The
first ones are leaves with a simple value (e.g., string). The second ones represent
the inner nodes of the tree. They do not have simple values, but they can have
multiple child properties. Some databases (e.g., most of the relational ones) do
not support nested properties, so they have only one complex property, i.e., the
root of the access path. Further, additional rules might be in place. For instance,
MongoDB requires each kind to have the id property.

With that in mind, we can construct the basic operations:

• ADD – creates a new property and adds it to a specified position in the tree.

• DELETE – deletes a property. If it was a complex one, all its children are
deleted as well.

• RENAME – changes the string identifier associated with the property.

• MOVE, COPY – moves / copies the property to another position in the graph.

In addition, any number of complex, mostly platform-specific operations can be
implemented to make the tool more user-friendly. However, we should be able
to define them as a sequence of the basic ones, so they do not bring anything
particularly new.

What is more interesting are the ways the operations can be processed. For
example, RENAME in a relational or most columnar databases can be done by one
statement that simply renames the corresponding column. But in a document
database, we might need to execute the operation on all data entities separately.
So there are a lot of opportunities for optimization. Overall, the general approach
is to import all data to the instance category, do the transformations, and then
export them back. However, we can implement platform-specific algorithms that
would search for these optimizations and use them whenever possible.
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5.4.3 Kind Level
The options we have on the whole mappings are rather limited. We can CREATE
a new one and DELETE or RENAME an old one. To move a mapping does not make
sense, however, we can COPY it. Unlike any other above-mentioned concept (e.g.,
schema objects, access path properties, etc.), multiple identical mappings might
exist at the same time. We can still differentiate them by an internal identifier,
but their content, i.e., the access path and database, can be the same.

All the operations are completely safe. The only potentially problematic sit-
uation is when the user creates two or more mappings that share both the kind’s
name and the database, which can lead to an attempt to create a table (or a
collection etc.) that already exists. Although it is up to the user to ensure that
both mappings are not used to export data simultaneously, we can at least warn
the user if this situation shall happen.

An interesting and potentially useful operation would be to copy a mapping
while automatically changing its database system. There are still plenty of un-
resolved issues, but they are probably not that challenging, considering that all
access paths generally have a similar structure. If both databases had the same
restrictions, the access path would not have to change at all. If that was not the
case, a transformation would be needed. However, the development of such an
algorithm is not in the scope of this thesis, so we leave it as an open challenge.
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6. Implementation
In paper [9] the authors proposed the usage of category theory as a general
enough approach to represent multi-model data. They also defined all necessary
concepts, derived algorithms for data transformation, and described the idea of
a framework capable of storing multi-model data, transforming them via these
algorithms and ultimately running queries on them.

We implemented these concepts in the form of MM-cat framework within the
research project A Tool for Modelling of Multi-Model Data. We wrote article [10]
that is currently under review at an international conference.1 MM-evocat, the
extension of MM-cat that focuses on evolution management, is also described in
the article. Its implementation is mostly left to future work.

The codebase is hosted on GitLab2. The running demo version can be found
here3. There is also a more detailed documentation.4

6.1 Architecture
First, note that the current implementation is meant to be purely a proof of
concept. Although the computational requirements were taken into account when
deciding what algorithms to use and how to implement them, they were never
considered to be a priority. The primary purpose of the application is to show
that the chosen approach for evolution management of multi-model databases is
viable. The optimizations will be done as a part of future work.

For the same reasons, the application does not use any security policy, meaning
anybody can use it without authorization. The only security mechanism is that
the backend application does not expose passwords of the database accounts it
uses to import data from.

6.1.1 Modules
The overall architecture is depicted in Figure 6.1. The framework is divided into
several modules.

core

This module defines the basic objects and structures the rest of the framework
relies on. It is represented by the yellow boxes, but it is used in all other modules.

transformations

The two blue boxes include algorithms, which form the central part of the module
transformations. Their purpose is to transform data from the databases to the
categorical representation and back.

131th ACM International Conference on Information and Knowledge Management
2https://gitlab.mff.cuni.cz/contosp/evolution-management
3http://nosql.ms.mff.cuni.cz/mmcat/
4http://nosql.ms.mff.cuni.cz/mmcat-docs/
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Figure 6.1: The architecture of the MM-cat framework.

abstractWrappers

Depicted in gray, these classes hide the specific databases and provide a platform-
independent interface used by the algorithms from the transformations module.

wrappers

Each supported database system has its own wrappers which are a concrete imple-
mentation of the abstractWrappers module. These communicate directly with
the drivers of the selected database. Currently, the following database systems
are supported:

• PostgreSQL,5 version 12.11 – primarily a relational database with a support
for the key/value and document (JSON, XML) models.

• MongoDB,6 version 4.4 – a document (JSON) database with support for the
key/value model.

server, example-ui

The red boxes represent all high-level operations the user can do with the frame-
work:

• querying over the categorical representation,

• inference of categorical schema from the actual data,

• migration of data from one database system to another,

• evolution management of the categorical representation.
5https://www.postgresql.org/
6https://www.mongodb.com/
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Although both the querying and schema inference operations are beyond the
scope of this thesis, they are closely related to it [11]. The inference would allow
us to automatically propagate the changes in the data to the schema category, as
in the Darwin framework.

The queries are partially contained in the JOIN/SPLIT operation – it uses
them, albeit in a very limited form, to gather the data from which the new values
are computed. Another exciting topic is the propagation of schema changes to
the queries. However, this is already covered by another thesis in progress [4].

6.2 Backend Application
The backend is based on the Spring Boot framework.7. Its purpose is to make
the data structures and transformation algorithms available. The algorithms are
executed in the form of jobs. They are processed asynchronously (independently
of the other components of the server) but serially (only one at a time) because
the operations are not designed to run concurrently.

6.2.1 Architecture
The application follows a Controller-Service-Repository pattern whose primary
goal is to separate business, presentation and data-storage logic. Although this
concept is similar to the widespread MVC pattern, there are a few differences.

Controller

A controller is responsible for providing a REST API for the client application.
Whenever a request is received, its content is parsed and all actual work is dele-
gated to the Service layer. Later, when the request is processed, the response is
created, converted to JSON and sent back to the client.

There are several sections (schema category, mappings, jobs, etc.), so each
has its own controller class. Most controllers have their own service classes to
delegate the work to, and those, in turn, have their own repository classes.

Service

A service contains all business logic. It is used by a controller to handle requests.
Whenever it needs to fetch or persist data, it delegates this task to a repository.

Repository

A repository communicates with the application’s database and maps high-level
concepts to specific database commands. Currently, we use PostgreSQL.

7https://spring.io/projects/spring-boot
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6.3 Frontend Application
The application is based on the Vue 38 framework with Vite,9 TypeScript and
Options API. Its main purpose is to provide tools for defining and executing
transformation jobs. Because of this, it is a single-page application with client-
side rendering and an internal router.

The most important features of the frontend are the schema category and
the mapping editors. The first one is used to create and edit a schema category.
An example of that is depicted in Figures 7.1 and 7.3. It will be extended to
enable all the conceptual SMOs defined in Chapter 5. The second one allows us
to create mappings, as we can see in Figure 6.2. We plan to extend it to support
the editation of already existing mappings.

6.3.1 Architecture
Vue is based on the Model-View-ViewModel pattern. The whole application is
hierarchically divided into components, each of which is basically a tiny instance
of an MVVM application.

Figure 6.2: Screenshot of the mapping editor of the MM-cat tool. We can see the
creation of the mapping from the example in Figure 3.5.

MVVM

The model consists of data and business logic, and it is the source of truth of
the application. The view-model (also called binder) controls what should be
provided to the view. Whenever it receives an input from the view, it processes
it and updates the model accordingly. The view presents the data to the user. It
also captures user inputs and sends them to the view-model.

8https://vuejs.org/
9https://vitejs.dev/
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Vue

The important part is that the framework does the binding between the view
and the view-model. Vue automatically re-renders the corresponding part of the
displayed view whenever a variable changes. Also, Vue sets the respective variable
to the new value whenever a user changes an input.

This behavior is similar to other popular web frameworks, i.e., React.10 The
difference here is that while React uses immutable data structures and always
re-renders the whole view, Vue reacts to the mutations of the data. Then it finds
out what exactly changed and re-renders only what is necessary.

Components

A component consists of a script, template and optionally CSS styles. The script
defines the state of the component and its methods. The template is an HTML
structure enhanced with conditions, loops and variables that binds to the state in
the script. It can also contain other components (or itself, thanks to recursion).

The information flows from the parent components to their children via the
so-called props. The binding is again handled by the framework. The children
can propagate changes back to their parents through events.

10https://reactjs.org/
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7. Experiments
An important aspect of any technology is if it has any real use case. In this
chapter, we present two examples of using MM-evocat. Although it is not meant
to be optimized (yet), we have conducted several experiments to ensure the used
algorithms have the assumed time complexity. So we do not try to measure
precisely how long each operation takes, instead we focus on how the time scales
with the size of the data.

Figure 7.1: Screenshot of MM-cat with the schema category from the data mi-
gration experiment.

7.1 Cross-Model Data Migration
The schema category of the first example is depicted in Figure 7.1. There are sev-
eral kinds (customer, contact, customer contact, order, order item), which
are mapped to the corresponding tables in a relational database. There is also
kind product stored in a document database. We want to migrate a subset of
the data to a document database via the following mapping:

order: {
address: 12,
note: 11,
customer: 14 {

name: 5,
contact: 6.-7 {

<3>: 2
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}
},
events: {

created: 8,
sent: 9,
paid: 10

},
items: -21 {

amount: 19,
total_price: 18,
name: 16.20

}
}

This example illustrates the key problem – for the given purpose we need data
spread across multiple data sources. The main advantage of the framework is the
ability to unify the view of the data from any combination of logical models to
one schema, from which it can then be exported to any model.

7.1.1 Experiment
In the database, we had randomly generated data1 for each respective input kind.
There were 103 customers and each had on average 2 contacts. There were also 103

distinct products. The number of orders was the variable, describing the size of
the output data, each of which had on average 3 items.

We measured the total time of each import (all kinds were imported sep-
arately) and export. In Figure 7.2, we can see the time of importing orders
depending on the total amount of them. As we can see, the dependency is almost
linear, which is what we would expect. We fitted it with a quadratic function

f : t = a1n + a2n
2 , (7.1)

the coefficients of the fit are

a1 = (14.7 ± 0.3) · 10−5 s , (7.2)
a2 = (1.8 ± 1.0) · 10−10 s , (7.3)

Where the values after ± represent the standard deviations. In the same Fig-
ure, we depicted the measured times of the exports. It is, again, almost linear
dependency, so we fitted it with

g : t = b1n + b2n
2 , (7.4)

with the coefficients

b1 = (7.2 ± 0.3) · 10−5 s , (7.5)
b2 = (0.54 ± 0.15) · 10−10 s . (7.6)

The experiment concludes that over the span of several orders of magnitude, the
time of imports and exports scales linearly with the size of the data. At the end
of the scale, we can see a slight deviation from the linear trend, which is probably
caused by the increasing memory efficiencies.

1https://app.json-generator.com/
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Figure 7.2: Time t to execute n cross-model data migration operations of kind
order from the schema in Figure 7.1. The dependencies are fitted by the
quadratic functions (see Equations (7.1) and (7.4)).

7.2 Complex Evolution Operations
The schema of the second example is depicted in Figure 7.3. The goal was to join
the street with the city to create a full address, which would be then move
to the order object. Because there are more orders than users, the addresses will
be replicated. The point of this simple example is to test the complex operations.
They are not yet implemented in a general way. However, we need to make sure
they are feasible first.

7.2.1 Experiment
The data was generated in the same way as in the experiment from Section 7.1.
The number of users was variable while each had on average 4.5 orders. We
measured separately the time of the JOIN/SPLIT and MOVE operations. The results
are depicted in Figure 7.4. Again, both dependencies look linear, so we fitted them
with functions

f : t = a1n + a2n
2 , (7.7)

g : t = b1n + b2n
2 . (7.8)
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Figure 7.3: Screenshot of MM-cat with the schema category from the experiment
with complex operations.

The fit coefficients are

a1 = (1.8 ± 0.1) · 10−5 s , (7.9)
a2 = (−0.2 ± 0.1) · 10−10 s , (7.10)
b1 = (9.7 ± 0.4) · 10−5 s , (7.11)
b2 = (−1.6 ± 0.4) · 10−10 s . (7.12)
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Figure 7.4: Time t to execute n complex JOIN/SPLIT and MOVE operations of
full address in the schema depicted in Figure 7.3. The dependencies are fitted
by the quadratic functions (see Equations (7.7) and (7.8)).
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Conclusion
This thesis proposes a new approach to the evolution management of multi-model
databases. Let us recapitulate its essential concepts.

Firstly, we reviewed the previous takes on the topic. We decided to base our
proposal on the categorical approach because of its generality and the ability to
cover all existing data models. Unlike most of the other current approaches, we
chose to unify the data models instead of dealing with them separately. This
allows us to model the data in a truly multi-model way.

After a brief introduction to category theory and a definition of basic data
structures, we proceeded by designing the workflow and SMOs of our approach.
We decided on a two-level architecture with a platform-independent conceptual
model (described by a schema category) in the top layer and multiple platform-
specific logical models (defined by their mappings to the schema category) in the
bottom one.

The user primarily edits the conceptual schema, while the system propagates
these changes to the logical models. In order to do so, we designed a set of SMOs,
which we divided into three groups by their complexity and abstractness. We also
considered SMOs in the logical layer. These affect only the logical models and
the mappings.

As a proof of concept, we implemented the MM-cat framework, which allows
us to create the schema category and the mappings, manage various database
systems, and run cross-model data migration jobs. It currently supports the
PostgreSQL and MongoDB database systems. Lastly, we performed two exper-
iments to prove both the data migration and the complex evolution operations
are reliable and linearly scalable.

7.3 Future Work
Both evolution management and data modeling are quite broad research areas
offering bountiful new and exciting topics. We plan to continue working on the
following aspects.

The first step is to expand the framework to fully functional prototype of MM-
evocat by implementing all the proposed SMOs. In addition, we will add support
for a few other database systems. There are also endless opportunities for their
optimization in the form of both improving the efficiency of current algorithms
and developing entirely new ones.

Our approach currently does not consider data types, so everything is a string.
However, because of its generality, it can be easily extended to support all com-
mon data types. Another important feature of modern database systems are the
integrity constraints, which are also subject to evolution. We do consider them
and we also already have available algorithms [9] that would allow us to handle
them. Their implementation is one of our priorities in the future.

Evolution management partially overlaps with schema inference, querying over
the schema and propagation of changes to the queries. New approaches to these
topics, based on category theory, are already being developed. And we can in-
corporate them into the framework.
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A unified metamodel for nosql and relational databases. Information Sys-
tems, 104:101898, 2022.

[3] Alberto Hernández Chillón, Meike Klettke, Diego Sevilla Ruiz, and
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A. Transitions Between
Cardinalites
In this Appendix, we derive the transitions of the cardinalities as depicted in
Figure A.1 which is used in Section 5.1.8. As we mentioned there, we have 16
different cardinalities and 32 unique transitions between them. Whenever we
relax the limits of the cardinalities (i.e., from 1 to 0 for a minimum and from 1
to * for a maximum), the transition can be done automatically, because the new
cardinality always meets the conditions of the original one. This means we have
only 16 non-trivial transitions left.

Let us first show the general thought process on example (1..1 ↔ 1..*) to
(1..1 ↔ 1..1). As a reminder, we are referring to the cardinalities (c ↔ c) of
morphisms f : B → A and f : A → B. We denote the elements from the instance
objects as a ∈ I(A) and b ∈ I(B). For each of them, we define one of these
auxiliary sets

f(a) = {b | b ∈ I(B), (a, b) ∈ I(f)} , (A.1)
f(b) = {a | a ∈ I(A), (a, b) ∈ I(f)} . (A.2)

Now back to the example. Some of the a elements have multiple b elements, while
each b has exactly one a. We have two options:

• B− – for each a ∈ I(A), remove all but one b ∈ f(a),

• A+ – for each a ∈ I(A), for each b ∈ f(a) except the first one, create a
copy of a and link it to b.

The B− solution allows the user to choose which b elements to keep and which to
remove. We can represent it by function β : f(a) → b ∈ f(a) that for each a gets
on the input all the f(a) elements and then returns the one that should stay. On
the other hand, the A+ option is straightforward – we just copy some elements
and link them.

Now we will focus on the actual transitions in general. There are eight of
them with the pattern (0..ν ↔ ζ..η) to (1..ν ↔ ζ..η). That represents the
cases with some b elements without any corresponding a elements. We want to
change it so that each b will have its a. Because the excess b elements are not
linked to any a, we do not know anything about them, so we have no other option
than to delete them.

That leaves us with just eight remaining transitions that share the pattern
(µ..ν ↔ ζ..*) to (µ..ν ↔ ζ..1). An example of this is at the beginning of this
Appendix. We have to determine when B− and A+ solutions are applicable.

First, let us show that A+ has no limitations. We want to prove that, sup-
posing all the original a and b elements satisfied the (µ..ν ↔ ζ..*) conditions,
the new a′ and b′ elements, which are the result of the transformation, meet
the (µ..ν ↔ ζ..1) requirements. All the new b′ elements are the same as the
old b ones, but some changed their links from the original a elements to their
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(1..1 ↔ 1..1)

(1..1 ↔ 1..*) (1..1 ↔ 0..1)

(1..1 ↔ 0..*)

B−, A+ A−

A− B−, A+

(1..* ↔ 1..1)

(1..* ↔ 1..*) (1..* ↔ 0..1)

(1..* ↔ 0..*)

A+ A−

A− B−, A+

(0..1 ↔ 1..1)

(0..1 ↔ 1..*) (0..1 ↔ 0..1)

(0..1 ↔ 0..*)

A−, B−,
m−, A+ A−

A− A−, B−,
m−, A+

(0..* ↔ 1..1)

(0..* ↔ 1..*) (0..* ↔ 0..1)

(0..* ↔ 0..*)

A−, m−,
A+ A−

A− A−, B−,
m−, A+

Figure A.1: All possible cardinalities and both trivial (green) and non-trivial
(red) transitions between them. For better clarity, half of the possible transitions
are missing. However, they all are just mirror images of those depicted here. See
Figure A.2

copies. Those that did not change automatically satisfy the original µ..ν con-
dition. Those that did change now have exactly one a′ linked to them, so they
meet the 1..1 requirement. Because that is the most strict one, they certainly
meet any condition, i.e., also µ..ν.

Some of the a′ elements remained unchanged, except now they have only one b
linked, so they satisfy ζ..1. The other a′, i.e., those that were added, have ex-
actly one linked b′. Now we just use the same argument as for the changed b′

elements and the proof is completed.

The method for the B− solution is similar except for the (µ..* ↔ 1..*) to
(µ..* ↔ 1..1) case. In other words, B− is not applicable when each b can have
multiple a ∈ f(b) elements and each a has at least one b ∈ f(a). The problem is
that when we try to delete b ∈ f(a1) for some a1, if there are multiple elements
in f(b), one of them (let us denote it as a2 ∈ f(b), where a2 ̸= a1) might have only
one b linked to it. Which is of course the b we are currently removing. At the end,
the f(a2) set will be empty, which contradicts the minimum of the 1..1 condition.

In general, there are two more solutions than only B− and A+. We can do:

• A− – for each a, remove it if f(a) set has more than one element,

• m− – for each a, for each b ∈ f(a) except the first one, remove the (a, b)
link from I(f) (but keep both a and b).
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The A− solution is automatic, while the m− one is controlled by the same func-
tion β as the B− one. Both A− and m− are applicable in all cases except those
with the (1..ν ↔ ζ..*) to (1..ν ↔ ζ..1) pattern, i.e., when each b′ has at least
one a′ ∈ f(b′). The reasons are as follows:

• A− – deleting each a that has more than one b1 ∈ f(a) can cause a specific b2
to lose all its linked a elements,

• m− – deleting the links can lead to the same problem.

Finally, all 16 non-trivial transitions are solved, giving us 32 unique transitions
in total. The other 32, i.e., their mirror images, can be obtained by substituting A
with B (and A+ with B1 and so on). Some of them are shown in Figure A.2.

(1..1 ↔ 1..1)

(1..1 ↔ 1..*) (1..1 ↔ 0..1)

(1..1 ↔ 0..*)

(1..* ↔ 1..1)

(1..* ↔ 1..*) (1..* ↔ 0..1)

(1..* ↔ 0..*)

(0..1 ↔ 1..1)

(0..1 ↔ 1..*) (0..1 ↔ 0..1)

(0..1 ↔ 0..*)

(0..* ↔ 1..1)

(0..* ↔ 1..*) (0..* ↔ 0..1)

(0..* ↔ 0..*)

Figure A.2: The original transitions from Figure A.1 (dashed) plus eight of the
additional ones (solid). Note that, for better clarity, only the trivial transitions
are displayed. The non-trivial ones would be exactly the same except in the
opposite direction. Also, the colors of the nodes correspond to how many trivial
transitions originate in them, from blue (four transitions) to red (zero).

A.1 Coexistence of Morphisms
Last but not least, we must find out which morphisms can coexist together. Let us
consider two morphisms between the same objects, i.e., f1 : A → B and f2 : A →
B. If the cardinality of the first one was (1..1 ↔ 1..1), then the second one can
not be, for example, (1..1 ↔ 1..*), because there are not enough b ∈ I(B) so
that at least a ∈ I(A) could have more than one of them.
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As we can see, the reason is that some cardinalities compare the number of
elements in I(A) and I(B). Let us denote these numbers as |I(A)| and |I(B)|.
Then we can divide the cardinalities into the following categories:

• |I(A)| = |I(B)| – (1..1 ↔ 1..1),

• |I(A)| ≤ |I(B)| – (0..1 ↔ 1..1), (1..1 ↔ 1..*), (0..1 ↔ 1..*),

• |I(A)| ≥ |I(B)| – (1..1 ↔ 0..1), (1..* ↔ 1..1), (1..* ↔ 0..1),

• it is impossible to tell – all others.

Let us first focus only on the first three groups. If we put a morphism from one
of them next to a morphism from another, the resulting relation between |I(A)|
and |I(B)| must be an equality.1 But that means both morphisms should have the
(1..1 ↔ 1..1) cardinality instead. So we can conclude that any two morphisms
between the first three groups are not compatible. Morphisms within the same
group are always compatible.

Finally, we will look at the last group. The cardinalities of its morphisms do
not state anything about the relation of |I(A)| and |I(B)|, so they are compatible
with all other morphisms.

1For example, |I(A)| ≤ |I(B)| ∧ |I(A)| ≥ |I(B)| ⇒ |I(A)| = |I(B)|.
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