
Statistical Analysis of Real XML Data
Collections

(Technical Report)

Irena Mlynkova, Kamil Toman, and Jaroslav Pokorny

{irena.mlynkova,kamil.toman,jaroslav.pokorny}@mff.cuni.cz

Charles University
Faculty of Mathematics and Physics
Department of Software Engineering

Malostranske nam. 25
118 00 Prague 1, Czech Republic

Abstract. Recently XML has achieved the leading role among lan-
guages for data representation and thus we can witness a massive boom of
corresponding techniques for managing XML data. Most of the process-
ing techniques however suffer from various bottlenecks worsening their
time and/or space efficiency. We assume that the main reason is they con-
sider XML collections too globally, involving all their possible features,
although real data are often much simpler. Even though some techniques
do restrict the input data, the restrictions are often unnatural.
In this paper we analyze existing XML data, their structure and real
complexity in particular. We have gathered more than 20GB of real XML
collections and implemented a robust automatic analyzer. The analysis
considers existing papers on similar topics, trying to confirm or confute
their observations as well as to bring new findings. It focuses on frequent
but often ignored XML items (such as mixed content or recursion) and
relationship between schemes and their instances.

1 Introduction

It is a well known fact (not only in the scientific world) that XML [39] has un-
doubtedly achieved the leading role among existing standards for data represen-
tation and its popularity is further spreading. Arm in arm with this tendency we
can witness a massive boom of various XML techniques for managing, process-
ing, exchanging, querying, updating, and compressing XML data that mutually
compete in speed, efficiency, and minimum space and/or memory requirements.
But for overwhelming majority of these techniques there can be found certain
bottlenecks that cause quite significant problems resulting in worsening of their
most interesting features, generally speaking effectiveness. But where do these
bottlenecks come from?

Under a closer investigation we can distinguish two situations. On one hand
there is a group of general techniques that take into account all possible features

of input XML data. This idea is obviously correct but the problem is that the
standards were proposed as generally as possible so future users can choose what
suits them most. But the real XML data are usually not as “rich” as they could
be – they are often surprisingly simple – thus the effort spent on every possible
feature is mostly useless. It can even be harmful.

On the other hand there are techniques that somehow do restrict features of
the input XML data. Then it is natural to expect bottlenecks to occur only in
situations when given data do not correspond to these restrictions. The problem
is that such restrictions are often “unnatural”. They do not result from features
of real XML data but from other more down-to-earth reasons, e.g. due to limita-
tions of the basic proposal of a particular technique, complexity of such solution,
irregularities etc.

We can naturally pose two apparent questions:

1. Is it necessary to take into account a feature that will be used minimally or
will not be used at all?

2. If so, what are these features?

The answer for the first question obviously depends on the particular situ-
ation, the answer for the second one is the main topic of this paper. And we
assume that it can be answered through statistical analysis of real XML data
collections.

Our analysis focuses on usual features, structure, and complexity of existing
XML data collected all over the Internet. Primarily we result from existing pa-
pers on similar topics, whose most interesting observations we discuss and either
confirm or confute. The main part of our research consist of detailed analysis
of XML features that seem to be important but are often omitted for the com-
plexity of their processing (e.g. mixed content or recursion), analysis of several
new constructs we have defined (e.g. DNA patterns or relational patterns), and
analysis of relationship between XML documents and XML schemes.

The paper is structured as follows: The first section introduces the consid-
ered problems. The following, second section contains an overview of formalism
used throughout the paper. Section 3 discusses existing related works and their
findings and observations. Section 4 describes and classifies the analyzed data in
general and Section 5 describes the key analyses and the most interesting results.
The last, sixth section provides conclusions and possible future work.1

2 Formal Definitions

For structural analysis of XML data it is natural to view XML documents as
ordered trees and DTDs [39] or XSDs (i.e. XML Schema [41, 53, 37] definitions)
as sets of regular expressions over element names. Attributes are often omitted
1 We will not describe neither the basics of XML, DTD, or XML Schema. We suppose

that XML and DTD have already become almost a common knowledge whereas
description of XML Schema is omitted for the paper length.

2

for simplicity. We use notation and definitions for XML documents and DTDs
from [40] and [36]. (For XSDs are often used the same or similar ones – we omit
them for the paper length.)

Definition 1. An XML document is a finite ordered tree T = (Σ, N, E, r) where
Σ is a finite alphabet, N is a set of nodes of the tree, E is a set of edges of the
tree, and r ∈ N denotes a root element of the tree. Each node n ∈ N is associated
with a type of the node which can be one the following: element, attribute, text,
processing instruction, or comment. Nodes with element or attribute type are
also associated with a node label l ∈ Σ called an element name or an attribute
name respectively.

The tree T is called Σ-tree.

Note 1. For simplicity, we use the terms element and attribute for nodes of the
respective type.

Definition 2. A DTD is a collection of element declarations of the form e → α
where e ∈ Σ is an element name and α is its content model, i.e. regular expres-
sion over Σ. The content model α is defined as α = ε | pcdata | f | (α1, α2, ..., αn)
| (α1|α2|...|αn) | β* | β+ | β?, where ε denotes the empty content model, pcdata
denotes the text content, f denotes a single element name, “,” and “|” stand for
concatenation and union (of content models α1, α2, ..., αn), and “*”, “+”, and
“?” stand for zero or more, one or more, and optional occurrence(s) (of content
model β) respectively.

One of the element names s ∈ Σ is called a start symbol.

Definition 3. A Σ-tree satisfies the DTD if its root is labeled by start symbol
s and for every node n ∈ N and its label e, the sequence e1, e2, ..., ek of labels
of its child nodes matches the regular expression α, where e → α.

Basic analyses of XML data usually focus on the depth of content models
and/or XML documents, the reachability of content models and/or elements,
mixed content, recursion, paths, cycles, fan-ins, fan-outs, and complexity of reg-
ular expressions used. They are usually similar for both XML documents and
XML schemes (regardless the used language).

Definition 4. A depth of a content model α is inductively defined as follows:
depth(ε) = 0;
depth(pcdata) = depth(f) = 1;
depth(α1, α2, ..., αn) = depth(α1|α2|...|αn) = max(depth(αi)) + 1; 1 ≤ i ≤ n
depth(β*) = depth(β+) = depth(β?) = depth(β) + 1.

Definition 5. A distance of elements e1 and e2 is the number of edges in Σ-tree
separating their corresponding nodes.

A level of an element is the distance of its node from the root node. The level
of the root node is 0.

A depth of an XML document is the largest level among all the elements.

3

Definition 6. An element name e′ is reachable from e, denoted by e ⇒ e′, if
either e → α and e′ occurs in α or ∃ e′′ such that e ⇒ e′′ and e′′ ⇒ e′.

An element e′ is a descendant of element e, if l′ is element name of e′, l is
element name of e and l ⇒ l′.

A content model α is derivable, denoted by e ⇒ α, if either e → α or e ⇒ α′,
e′ → α′′, and α = α′[e′/α′′], where α′[e′/α′′] denotes the content model obtained
by substituting α′′ for all occurrences of e′ in α′.

An element name e is reachable if s ⇒ e, where s is the start symbol. Oth-
erwise it is called unreachable.

Definition 7. A content model α is mixed, if
α = (α1|...|αn|pcdata)∗ | (α1|...|αn|pcdata)+ where n ≥ 1 and for ∀i such that
1 ≤ i ≤ n content model αi 6= ε

∧
αi 6= pcdata.

An element e is called mixed-content element if its content model α is mixed.

Definition 8. An element e is recursive if there exists at least one element d in
the same document such that d is a descendant of e and d has the same element
name as e.

The element-descendant association is called an ed-pair.

Definition 9. A simple path (in a non-recursive DTD) is a list of elements e1,
e2, ..., ek, where ei → αi and ei+1 occurs in αi for 1 ≤ i < k. The number of
elements in the list is called a length of a simple path.

A simple cycle is a simple path in the form e1, e2, ..., ek, e1, where e1, e2,
..., ek are distinct element names.

A chain of stars is a simple path of element names e1, e2, ..., ek+1, where ei+1

is in the corresponding αi followed by “*” or “+” for 1 ≤ i ≤ k. The parameter
k is called a length of a chain of stars.

Definition 10. A fan-in of an element e is the cardinality of the set {f | f → α′

and the element name e′ of element e occurs in α′}.
An element with large fan-in value is called a hub.

Definition 11. An element fan-out of an element e is the cardinality of the set
{f | e′ is the element name of element e, e′ → α and the element name f ′ of
element f occurs in α}.

An attribute fan-out of an element e is the number of its attributes.

Definition 12. A base symbol is a regular expression of the form a, a?, or a*,
where a ∈ Σ.

A factor is a regular expression of the form e, e?, or e*, where e is a dis-
junction of base symbols.

A simple regular expression is ε, ∅, or a sequence of factors.

Several existing papers focus on more detailed analysis and classification of
complexity and types of recursion. For this purpose they define new constructs,
e.g. types of recursion, types of its representation, regularity of recursion, or
recursive fan-out.

4

Definition 13. An element e is linearly recursive if it is recursive and for every
α such that e ⇒ α e is the only recursive element that occurs in α and neither
of its occurrences is enclosed by “*” or “+”.

An element is non-linear recursive if it is recursive but it is not linear recur-
sive.

Definition 14. A recursive XML tree is an XML tree that is rooted at a recur-
sive element and whose leaves are descendants of the root node which are also
recursive.

An all-descendants (AD) interpretation of a recursive XML tree involves all
the recursive descendants of the root node.

A closest-descendants (CD) interpretation of a recursive XML tree involves
only the closest descendants of the root.

Definition 15. A regularity of recursion of element e is the average distance
between elements in all ed pairs of the document in CD interpretation.

Definition 16. An AD (CD) recursive fan-out of element e is the number of
its recursive descendants in AD (CD) interpretation.

3 Related Work

Up to now only a few papers have focused on analysis of real XML data. They
analyze either the structure of DTDs, the structure of XSDs, or the structure
of XML documents (regardless their schema). The sample sets of XML data
usually differ.

3.1 DTD Analysis

Probably the first attempt to analyze the structure of XML data (in this par-
ticular case the structure of DTDs) can be found in [51]. The paper is relatively
old (especially with regard to the fast development of XML standards) and it
contains a quantitative analysis of 12 DTDs and a general discussion of how they
are (mis)used.

The analysis involves:

– the size of DTDs, e.g. the number of elements, attributes, or entity references,
– the structure of DTDs, e.g. the number of root elements or depth of content

models, and
– some specific aspects, e.g. the use of mixed contents, ANY, IDs and IDREFs, or

the kind of attribute decorations used (i.e. implied, required, and fixed
attributes).

The discussion of current (mis)using of DTDs brings various conclusions, in-
volving especially shortcomings of DTD. Most of them have already been over-
come in XML Schema – e.g. the necessity to use XML itself for description of

5

the structure of XML data, the missing operator for unordered sequences, insuf-
ficient tools for inheritance and modularity, the requirement for typed IDREFs
(i.e. those which cannot refer to any ID) etc.

There are also observations important for our research, especially the finding
that content models have the depth less than 6 and that IDs and IDREFs are not
used frequently (probably due to the above mentioned problem with typing).
According to the author the most important conclusion is that DTDs are usu-
ally incorrect (both syntactically and semantically) and thus are not a reliable
source of information.

Second related paper [40] also focuses on DTDs, but its analysis is more statis-
tical than in the previous case. It analyzes 60 DTDs further divided according
to their intended future use into three categories:

– app, i.e. DTDs designed for data interchange,
– data, i.e. DTDs for data that can easily be stored in a database, and
– meta, i.e. DTDs for describing the structure of document markup.

The statistics described in the paper focus on graph theoretic properties of
DTDs and can be divided into:

– local, i.e. describing kinds of content models found at individual element
declarations (e.g. the number of mixed-content elements) and

– global, i.e. describing graph structure of the DTD (e.g. the maximum path
length allowed by the DTD).

Local properties focus on four types of features – content model classifica-
tions, syntactic complexity, non-determinism, and ambiguity. The classification
of content models involves pcdata, ε, any, mixed content, “|” only (but not mixed)
content, “,” only content, complex content (i.e. with both “|”s and “,”s), list con-
tent (i.e. the usage of “+” or“*” for one element), and single content (i.e. the
optional usage of “?” for one element); the syntactic complexity is expressed by
the previously defined depth function. The question of both non-determinism
and ambiguity (i.e. a special case of non-determinism) of content models is a bit
controversial since non-deterministic content models are not allowed by the XML
standards. The most important findings for local properties are that the con-
tent model of DTDs is usually not complex (the maximum depth is 9 whereas its
mode is even 3) and that despite the standards, there are both non-deterministic
and ambiguous content models.

Global properties discussed in the paper involve reachability, recursions, sim-
ple paths and cycles, chains of stars and hubs. The most important findings are
listed below.

– Unreachable elements are either root elements or useless whereas the mode
of their number is 1, i.e. the root element is usually stated clearly.

– There are no linear recursive elements whereas the number of non-linear
recursive elements is significant (i.e. they occur in 58% of DTDs of all cate-
gories).

6

– The maximum length of simple path is surprisingly small (mostly less than
8) whereas on the other hand the number of simple paths as well as simple
cycles is either small (less than 100) or large (more than 500).

– The length of the longest chain of stars is usually small (its mode is 3).
– Hubs exist in all categories od DTDs and their number is significant.

The last mentioned paper which focuses on DTD analysis is trying to adapt
software metrics to DTDs [43]. It defines five metrics also based on their graph
representation – i.e. size, complexity, depth, fan-in, and fan-out, whereas all of
them have already been defined and discussed. Regrettably there are just 2 DTD
examples for which the statistics were counted.

3.2 DTD vs. XML Schema

With the arrival of XML Schema as the extension of DTD has arisen a natural
question: Which of the extra constructs of XML Schema not allowed in DTD
are used in practice? Paper [36] is trying to answer it using analysis of 109
DTDs and 93 XSDs. Another aim of the paper is to analyze the real structural
complexity for both the languages, i.e. the degree of sophistication of used regular
expressions.

The former part of the paper focuses on analysis of XML Schema constructs.
The constructs and their resulting percentage are:

– extension2 (27%) and restriction (73%) of simple types,
– extension (37%) and restriction (7%) of complex types,
– final (7%), abstract (12%), and block (2%) attribute of complex type

definitions,
– substitution groups (11%),
– unordered sequences of elements (4%),
– unique (7%) and key/keyref (4%) constructs,
– namespaces (22%), and
– redefinition of types and groups (0%).

It is evident that the most exploited features are restriction of simple types,
extension of complex types, and namespaces. The first one reflects the lack of
types in DTD, the second one confirms the naturalness of object-oriented ap-
proach (i.e. inheritance), whereas the last one probably results from mutual
modular usage of XSDs. The other features are used minimally or are not used
at all. The concluding finding is, that 85% of XSDs define so called local tree
languages [49], i.e. languages that can be defined by DTDs as well, and thus that
the expressiveness beyond local tree grammars is needed rarely.

Second part of the paper focuses on real complexity of both DTDs and XSDs.
Unfortunately only 30 out of the 93 XSDs could be used for these analyses, be-
cause the others did not adhere to W3C specifications. Both the DTDs and
2 Extension of a simple type means adding attributes to the simple type, i.e. creating

a complex type with simple content.

7

XSDs were first preprocessed (i.e. the entities were resolved, conditional sections
were included/excluded, multiplicity constraints were replaced using “?” oper-
ator etc.) and transformed into so-called canonical form, which abstracts away
the actual element names and replaces them with canonical names c1, c2, ... to
preserve the structure related information. For example

<!ELEMENT lib ((book|journal)*)>
is represented by canonical form (c1|c2)*. The resulting number of distinct

canonical forms is 750 among DTDs and 138 among XSDs. The subsequent
analysis focuses on their real complexity and its most interesting findings are
listed below.

– The vast majority of regular expressions (i.e. 92% for DTDs and 97% of
XSDs) are simple regular expressions.

– There are no significant differences between expressions used in DTDs and
XSDs. The most striking ones are that XSDs have:
• 14% more simpleType content models and
• 18% less expressions of the form a or (a1|a2|...|an)*, where a, a1, a2, ...,

an ∈ Σ.

The paper also focuses on chains of stars and ambiguity. The results are
similar to the previous cases.

3.3 XML Schema Analysis

Paper [36] mentioned in the previous section analyzed the properties of DTDs
and XSDs together. Nevertheless its first part focused only on statistical analysis
of real usage of new XML Schema constructs. Paper [47] has a similar aim – it
defines 11 metrics of XSDs and two formulae that use the metrics to compute
complexity and quality indices of XSDs. The metrics are:

– the number of (both globally and locally defined) complex type declarations,
which can be further divided into text-only, element-only, and mixed-content,

– the number of simple type declarations,
– the number of annotations,
– the number of derived complex types,
– the average number of attributes per complex type declaration,
– the number of global (both simple and complex) type declarations,
– the number of global type references,
– the number of unbounded elements,
– the average bounded element multiplicity size, where multiplicity size is de-

fined as (maxOccurs - minOccurs + 1),
– the average number of restrictions per simple type declaration,
– element fanning, i.e. the average fan-in/fan-out.

On the basis of the experience in analyzing many XSDs the authors define
two indices for expressing their quality and complexity.

8

Definition 17. Quality Index = (Ratio of simple to complex type declarations)
* 5 + (Percentage of annotations over total number of elements) * 4 + (Average
restrictions per simple type declarations) * 4 + (Percentage of derived complex
type declarations over total number of complex type declarations) * 3 - (Average
bounded element multiplicity size) * 2 - (Average attributes per complex type
declaration) * 2

Complexity Index = (Number of unbounded elements) * 5 + (Element fan-
ning) * 3 + (Number of complex type declarations) + (Number of simple type
declarations) + (Number of attributes per complex type declaration)

Unfortunately, there is just 1 XSD example for which the statistics were
counted.

3.4 XML Document Analysis

Previously mentioned analyses focused on descriptions of the allowed structure
of XML documents. By contrast paper [48] (and its extension [34]) analyzes di-
rectly the structure of their instances, i.e. XML documents, regardless eventually
existing DTDs or XSDs.3 It analyzes about 200 000 XML documents publicly
available on the Internet, whereas the statistics are divided into two groups –
statistics about the XML web and statistics about the XML documents.

The XML web statistics involve:

– clustering of the source web sites by zones consisting of Internet domains
(e.g. .com, .edu, .net etc.) and geographical regions (e.g. Asia, EU etc.),

– the number and volume (i.e. the sum of sizes) of documents per zone,
– the number of DTD (48%) and XSD (0.09%) references,
– the number of namespace references (40%),
– distribution of files by extension (e.g. .rdf, .rss, .wml, .xml etc.), and
– distribution of document out-degree (i.e. the number of href, xmlhref, and

xlink:href attributes).

Obviously most of them describe the structure of the XML Web and cat-
egories of the source XML documents. Nevertheless, more important for our
research are statistics about the XML documents which involve:

– the size of XML documents (in bytes),
– the amount of markup (i.e. the amount of element and attribute nodes versus

the amount of text nodes and the size of text content versus the size of the
structural part),

– the amount of mixed-content elements,
– the depth of XML documents and the distribution of node types (i.e. element,

attribute, or text nodes) per level,
– element and attribute fan-out

3 The paper just considers whether the document does or does not reference a DTD
or an XSD.

9

– the number of distinct strings, and
– recursion.

The most interesting findings of the research are as follows:

– The size of documents varies from 10B to 500kB; the average size is 4,6kB.
– For documents up to 4kB the number of element nodes is about 50%, the

number of attribute nodes about 30%. Surprisingly, for larger documents
the number of attribute nodes rises to 50% whereas the number of element
nodes declines to 38%. The structural information still dominates the size of
documents.

– Although there are only 5% of all elements with mixed content, they were
found in 72% of documents.

– Documents are relatively shallow – 99% of documents have fewer than 8
levels whereas the average depth is 4.

– The average element fan-out for the first three levels is 9, 6, and 0.2; the
average attribute fan-out for the first four levels is 0.09, 1, 1.5, and 0.5.
Surprisingly, 18% of all elements have no attributes at all.

A great attention is given to recursion which seems to be an important aspect
of XML data. The authors mention the following findings:

– 15% of all XML documents contain recursive elements.
– Only 260 distinct recursive elements were found. In 98% of recursive docu-

ments there is only one recursive element used.
– 95% of recursive documents do not refer to any DTD or XSD.
– Most elements in ed pairs have the distance up to 5.
– The regularity of most XML documents is 1. More than 97% of recursive

documents are highly regular.
– The most common average fan-outs are 1 (60%) and 2 (37%), the average

recursive fan-out is 2.2.

The last mentioned paper [44] that focuses on analysis of XML documents con-
sists of two parts – a discussion of different techniques for XML processing and
an analysis of real XML documents. The sample data consists of 601 XHTML
web pages, 3 documents in DocBook format4, an XML version of Shakespeare’s
plays5 (i.e. 37 XML documents with the same simple DTD) and documents
from XML Data repository project6. The analyzed properties are the maximum
depth, the average depth, the number of simple paths, and the number of unique
simple paths; the results are similar to previous cases.

4 http://www.docbook.org/
5 http://www.ibiblio.org/xml/examples/shakespeare/
6 http://www.cs.washington.edu/research/xmldatasets/

10

3.5 Conclusions

The previous overview of existing analyses of XML data brings various inter-
esting information. In general, we can observe that the real complexity of both
XML documents and their schemes is amazingly low.

Probably the most surprising findings are that recursive and mixed-content
elements are not as unimportant as they are usually considered to be. Their pro-
portional representation is more than significant. Unfortunately, effective pro-
cessing of both the aspects is often omitted with reference to their irrelevancy.
Apparently, the reasoning is false whereas the truth is probably related to diffi-
culties connected with their processing.

Another important discovery is that the usual depth of XML documents
is small, the average number is always less than 10. This observation is already
widely exploited in techniques which represent XML documents as a set of points
in multidimensional space and store them in corresponding data structures, e.g.
R-trees, UB-trees or BUB-trees [45, 46]. The effectiveness of these techniques is
closely related to the maximum depth of XML documents or maximum number
of their simple paths. Both of the values should be of course as small as possible.

Next considerable fact is that the usage of schemes for expressing structure
of XML documents is not as frequent as it is expected to be. The situation
is particularly wrong for XSDs which seem to appear sporadically. And even
if they are used, their expressive power does not exceed the power of DTDs.
The question is what is the reason for this tendency and if we can really blame
purely the complexity of XML Schema. Generally, the frequent absence of a
schema is of course a big problem for methods which are based on its existence,
e.g. schema-driven database mapping methods [52].

Last but not least, we must mention the problem of both syntactic and se-
mantic incorrectness of analyzed XML documents, DTDs, and XSDs. Authors
of almost all previously mentioned papers complain of huge percentage of useless
sample data – an aspect which unpleasantly complicates the analyses. A conse-
quent question is whether we can include non-determinism and ambiguity into
this set of errors or if it expresses a demand for extension of XML recommenda-
tions.

3.6 Aims

In this paper we take up work initiated in the previously mentioned existing
articles. We focus on analysis of XML data aspects, which are (in our opinion)
important for effective data processing and querying. In contrast to existing pa-
pers we omit e.g. the geographical or Internet source of XML data collections or
secondary XML items such as namespace references, document out-degree, usage
of include and import elements in XSDs etc. Generally speaking, our analysis
focuses on aspects which influence the structural complexity of XML data or
carry additional important information while it ignores items that are rather
relevant to semantic web [31] or items that can be even qualified as “syntactic
sugar”.

11

First of all, we repeat the most interesting analyses on our sample data and
compare the results with the existing ones. The reason is that our analyzed data
differ from the previously used ones – they are larger and often even much more
natural. The main part of our research focuses on new types of analyses, with
emphasis on previously determined frequent aspects such as mixed content and
recursion. Last but not least we compare the the results for XML documents
with corresponding results for their schemes where it is possible.

4 Sample XML Data Collections

We have collected a huge amount of XML documents and their DTDs/XSDs.
In contrast to existing papers the XML collections were not only collected au-
tomatically using a crawler but also manually from sources offering their data
natively in XML format (government sites, open document repositories, web site
XML exports etc), Internet catalogues and semantic web resources. The respec-
tive schemes for data sets were often searched out later in separate because they
had been missing in the original sources. Then the collections were categorized
and the duplicate documents identified by a simple hashing algorithm (disre-
garding white spaces) and subsequently removed. Also computer-generated or
random-content XML files were eliminated.

The reason for using more reliable and/or categorized sources is that auto-
matic crawling of XML documents generates a set of documents that are “un-
natural” and often contain only trivial data which cause misleading results. For
example paper [48] mentions that the set of sample data (which were crawled
automatically) contains almost 2000 of documents with depth 0, i.e. documents
containing a single element with empty or text content.

Our purpose was to collect a representative set of currently used XML col-
lections from various spheres of human activities. We have included data which
are typically used for testing XML processing methods (e.g. Shakespeare’s plays
[1], XMark [2], Inex [3], The Bible in XML [4, 5]), representatives of standard
XML schemes (e.g. XHTML [32], SVG [33], RDF [35], DocBook [29]), sample
database exports (e.g. FreeDB [6], IMDb [7]), well-known types of documents
(e.g. OpenOffice documents [30]), randomly crawled XML data (Medical Subject
Headings [8], novels in XML [9], RNAdb [10]) etc.

4.1 Preprocessing

As it was previously mentioned, authors of most existing papers complain of a
large number of errors in the collected sample data. Unfortunately we can only
confirm the claim. The overwhelming majority of the collected data contained
various types of serious errors. XML documents were not even well-formed and
more than a half of the well-formed ones contained invalid data. Similar problems
were found in case of DTDs and XSDs.

Contrary to previous papers we have not decided to discard the data. Most
of the errors (e.g. bad encoding, missing end tags, missing elements, unescaped

12

special characters, wrong usage of namespaces etc.) were detected using Xerces
Java Parser [50] or our own auxiliary analyzers and semi-automatically corrected.
Most of the corrections had to be done manually though.

4.2 Accessibility of the Data

Unfortunately, we cannot release the resulting set of corrected XML data collec-
tions for download since some of them are not free or underlie to Copyright Act.
Nevertheless, the Appendix contains an overview of the data and their sources.
Understandably, we also cannot be responsible for their current validity.

4.3 General Statistics and Classifications

First of all, we have computed statistics that describe the sample XML data in
general. The overview of these statistics is listed in Table 1. A detailed list of
XML collections involving their source, size in Bytes, number of documents per
collection and DTD/XSD existence flag can be found in the Appendix.

Statistics Results

Number
Number of XML documents 16,534
Number of XML collections 133

Size

Total size of documents (MB) 20,756
Minimum size of a document (B) 61
Maximum size of a document (MB) 1,971
Average size of a document (MB) 1.3
Median size of a document (kB) 10
Sample variation (MB) 433.84

Schema
Documents with DTD (%) 74.6
Documents with XSD (%) 38.2
Documents without DTD/XSD (%) 7.4

Table 1. General statistics for XML data

As it is obvious, the sizes of XML documents vary strongly (from 61B to
1,971MB), nevertheless both the average size (1.3MB) and median size (10kB)
seems to be “natural”. Another (not surprising) finding is that a considerable
percentage of documents (7.4%) still does not have any schema (although the
ratio is better than in existing works) and if so, the XML Schema language is
for this purpose used even less (only for 38.2% of documents).7 The positive
results may be influenced by the fact, that the gathered data were collected
semi-automatically, not randomly.

To avoid averaging the features of the whole data set where the documents
have nothing in common but having an XML format we have categorized the

7 Some documents have both DTD and XSD, thus the sum is not 100%.

13

data by the original sources and further grouped according to similar structure,
contents or approach used to describe the data. This way we have obtained a finer
look into various types of XML data not neglecting the interesting differences
among the selected categories whereas we have avoided the extensive amount of
similar results.

We distinguish six logical categories of XML documents for which the fol-
lowing statistics are computed. The categories are as follows:

– data-centric documents (dat), i.e. documents designed for database process-
ing (e.g. database exports, lists of employees, lists of IMDb movies and actors
etc.),

– document-centric documents (doc), i.e. documents which were designed for
human reading (e.g. Shakespeare’s plays, XHTML [32] documents, novels in
XML, DocBook [29] documents etc.),

– documents for data exchange (ex) (e.g. medical information on patients and
illnesses etc.),

– reports (rep), i.e. overviews or summaries of data (usually of database type),
– research documents (res), i.e. documents which contain special (scientific

or technical) structures (e.g. protein sequences, DNA/RNA structures etc.),
and

– semantic web documents (sem), i.e. RDF [35] documents.

As it is obvious, the categories are not disjunctive as well as in case of the well-
known data-centric a document-centric ones, nevertheless no XML document has
been inserted into more than one category.

To get a more detailed notion of the sample data we have computed the
general statistics also for each category. The overview of the results is listed in
Table 2. Assignment of XML collections into particular categories can be found
in the Appendix.

Statistics dat doc ex rep res sem

Number
Number of XML documents 3,412 6,691 218 2,983 2,451 779
Number of XML collections 38 22 25 2 16 30

Size

Total size of documents (MB) 2,237 1,187 371 11,371 1,697 3,892
Minimum size of document (B) 447 61 2,433 1,925 2,016 356
Maximum size of document (MB) 1,242 16 134 96 684 1,971
Average size of document (kB) 672 182 1,744 3,903 709 5,116
Median size of document (kB) 3.8 13.4 5.7 1,574 6.9 45.0
Sample variation (MB) 510.66 0.54 154.40 61.84 352.32 5534.50

Schema
Documents with DTD (%) 99.7 93.7 100 0 99.8 0
Documents with XSD (%) 0 57.8 0 100 99.6 0
Documents without DTD/XSD (%) 0.3 6.3 0 0 0.2 100

Table 2. General statistics per category

Considering the sizes of individual XML files, the most homogenous category
is the doc one. Surprisingly it is also the one with the least document size

14

(61B). Apparently this is because most of these XML documents are written by
hand or with the aid of an XML editor. The other extreme is the sem category
which, despite the similar structure of documents, contains some very large files
(including the largest one with 1,971MB) as well as collections split into very
small documents, depending heavily on the used tool and conventions.

Apparently the most striking information is the percentage of using DTDs
or XSDs which is either almost 0% or almost 100% depending on the category.
The reason probably comes from the higher reliability of the used sources and
the chosen categorization. On the other hand, though a considerable portion of
all documents used some kind of a standard schema (e.g. XHTML, DocBook
etc.), they were not 100% valid against it. Thus the schema could be used as a
guide for human processing but it would not be usable for computer validation.

The number and size of files per each category is for better clarity depicted
using pie charts in Figure 1. In addition histograms in Figure 2 depict the fre-
quency and distribution of document sizes per each category.

Database, 20.64%
Document, 40.47%

Exchange, 1.32%

Report, 18.04%

Research, 14.82%

Semantic Web, 4.71%

Number of Files in Collections

Database, 10.78%

Document, 5.72%
Exchange, 1.79%

Report, 54.78%

Research, 8.17%

Semantic Web, 18.75%

Total Sizes of Collections

Fig. 1. Number and size of files per category

We can see that although most documents (40.47%) belong to doc category
their total size portion is quite small (5.72%) whereas the greatest portion be-
longs to rep documents (54.78%). Another finding is that the document sizes
tend to be distributed “naturally”.

The document sizes usually show lognormal distribution in each collection
resulting in composite distribution with multiple peaks. This can be nicely seen
on rep documents with two main peaks one for each collection within the given
category.

5 Analyses and Results

There are two main parts of our observations. Firstly, we carry out analyzes sim-
ilar to previous studies and compare the results with the original ones. Secondly
we focus on new XML features with emphasis on frequently disregarded ones,
their complexity and corresponding classification.

15

Database Files

log(filesize)

F
re

qu
en

cy

1kB 100kB 10MB 1GB

0
20

0
50

0

Document Files

log(filesize)

F
re

qu
en

cy

100b 1kB 10kB 1MB 10MB

0
10

0
25

0

Exchange Files

log(filesize)

F
re

qu
en

cy

10kB 100kB 1MB 10MB

0
20

40

Report Files

log(filesize)

F
re

qu
en

cy
10kB 100kB 1MB 10MB

0
10

0
25

0

Research Files

log(filesize)

F
re

qu
en

cy

10kB 1MB 10MB 1GB

0
20

0
40

0

Semantic Web Files

log(filesize)

F
re

qu
en

cy

1kB 100kB 10MB 1GB

0
40

80

Fig. 2. Distribution of document sizes per category

5.1 New Constructs

On the basis of our experience and manual preprocessing of the analyzed data
we have defined several new constructs which describe XML documents and
schemes with higher degree of detail. The constructs involve two types of mixed
contents, four types of recursion, two special types of elements called relational
and DNA patterns, and two types of element fan-out. Particularly for scheme
analyses we further distinguish another two types of element fan-out.

We have focused especially on simple patterns within the general XML con-
structs which can usually be represented by “ordinary” relational tables or, in
case of recursion and mixed contents, which can be processed and stored simply
without the usual generalization.

16

Definition 18. An element is trivial if it has an arbitrary amount of attributes
and its content model α = ε | pcdata.

A mixed-content element is simple if each of its subelements is trivial. A
mixed-content element that is not simple is called complex.

Definition 19. An element e is trivially recursive if it is recursive and for
every α such that e ⇒ α e is the only element that occurs in α and neither of
its occurrences is enclosed by “*” or “+”.

An element e is linearly recursive if it is recursive and for every α such
that e ⇒ α e is the only recursive element that occurs in α and neither of its
occurrences is enclosed by “*” or “+”.

An element e is purely recursive if it is recursive and for every α such that
e ⇒ α e is the only recursive element that occurs in α.

An element that is recursive but not purely recursive is called a generally
recursive element.

Note 2. For better lucidity we have repeated the definition of linear recursion.

Note 3. Note that trivial recursion is a proper subset of linear recursion and
linear recursion is a proper subset of pure recursion.

Definition 20. A nonrecursive element e is called a DNA pattern if it is not
mixed and its content model α consists of a nonzero amount of trivial elements
and one nontrivial and nonrecursive element whose occurrence is not enclosed
by “*” or “+”. The nontrivial subelement is called a degenerated branch.

A depth of a DNA pattern e is the maximum depth of its degenerated branch.

Definition 21. A nonrecursive element e is called a relational pattern if it has
an arbitrary amount of attributes, it is not mixed, and its content model α =
(e1, e2, ..., en)∗ | (e1, e2, ..., en)+ | (e1|e2|...|en)∗ | (e1|e2|...|en)+, where e1, e2,
..., en are trivial elements.

A nonrecursive element e is called a shallow relational pattern if it has an
arbitrary amount of attributes, it is not mixed, and its content model α = f∗ |
f+, where f is a trivial element.

Definition 22. An element fan-out of element e is the number of distinct ele-
ments in its content model α.

A simple element fan-out of element e is the number of distinct trivial ele-
ments in its content model α.

Definition 23. A minimum element fan-out of element e is the minimum num-
ber of elements allowed by its content model α.

A maximum element fan-out of element e is the maximum number of ele-
ments allowed by content model α.

17

5.2 Statistics and Results

In this section we describe and discuss all the computed statistics, their results,
reasons, and consequences. For better lucidity they are divided into 10 logical
categories – global, depth, level, fan-out, fan-in, recursive, mixed-content, DNA,
relational, and schema statistics.

We have computed number of statistical parameters for particular features,
i.e. number of occurrences or percentage, size or length, minimum and maximum
value, average and mean value, variance, quantiles, etc. Due to the enormous
amount of information the paper involves only the most interesting ones. If
possible we also compare the analyses of XML documents with corresponding
analyses of their XML schemes.8 There are of course no schema results for sem
documents since this category has no schema at all.

Global Statistics The first set of statistics, called global, considers overall
properties of XML data such as number of elements of various types (i.e. empty,
text, mixed, recursive etc.), number of attributes, paths, depths and portion
of text in documents. In case of DTDs/XSDs the depths are counted for each
global element used in the sample XML documents as a root element, for recur-
sive elements we take into account their lowest level(s) and an infinite level for
expressing the recursion.

Probably the most relevant results are listed in Table 3 that contains values
for 95% of all documents. In other words each column contains the overall results
of all documents disregarding exactly 5% of those ones with the most extreme
values. This way we can get the notion of a typical document for each category
regardless misleading extremes. For the sake of completeness, the extreme values
are listed in Table 4 (minimums) and Table 5 (maximums). In this case the tables
also contain meaningful values for XML schemes.

It is apparent that most of the documents are constructed quite simply using
only a very reasonable number of distinct element and attribute names (usually
less than 150) which influences a similar number of distinct paths within each
category. And even though the maximum number of elements in an XML tree
is often huge, the number of distinct paths still remains several orders lower.
This naturally corresponds with the average and maximum depths of XML doc-
uments which are very low (all under 13 disregarding the 5% of extreme values).
Nevertheless, note that this is not the case for XML schemes which naturally
allow much richer structures.

In all documents the maximum depth exceeded 20 only for some specific,
often heavily recursive instances. It is arguable whether it is their inherent feature
or if it is a result of a lack of a good structure design. The maximum depth of
corresponding schemes is higher but it also tops around 80 (disregarding possible
recursion, i.e. infinite depth).

8 In such case there are Doc. and Sch. abbreviations on the left-hand side of a table
which identify the results.

18

Besides that, the recursion is also remarkably trivial. Mostly, the number
of distinct element names with recursive occurrences is up to 3 and even the
most complex documents do not have more than 12 possible recursive elements
present at the same time. We will further deal with this finding in recursive
statistics.

Statistics dat doc ex rep res sem

Max. number of elements 402 4,085 37,502 309,379 427 112,942

Max. number of attributes 9 1,675 5,182 37,815 129 37,996

Max. number of empty elements 3 361 123 16,348 6 23,635

Max. number of mixed elements 0 302 21 0 1 0

Max. number of distinct el. names 81 48 58 388 44 144

Max. number of rec. elements 0 3 2 0 0 0

Max. number of distinct paths 79 96 67 312 30 143

Depth of document
Avg. 5 7 5 5 5 5
Max. 5 13 9 6 7 6

Table 3. Global statistics for 95% XML documents

Statistics dat doc ex rep res sem

D
o
c
.

Number of elements 8 1 4 26 44 1
Number of attributes 0 0 0 23 0 0
Number of distinct el. names 5 1 4 23 10 1
Number of distinct paths 3 1 1 13 8 1
Depth of document 3 1 3 4 3 1

S
ch

. Number of distinct el. names 7 5 5 109 28 -
Number of distinct paths 5 1 3 97 26 -
Depth of schema 2 4 2 3 5 -

Table 4. Minimum values of global statistics

Table 6 further contains the exploitation rate of global properties, i.e. percent-
age of documents/schemes with at least one occurrence of a particular property.
Note that the results differ substantially for categories where the XML docu-
ments are expected to be read or written by humans and for data-oriented ones.
The database oriented XML files are designed to be more regular to ensure fur-
ther simple computer processing while “human-oriented” data are much more
terse and also a richer syntax is used to emphasize the semantics and to im-
prove readability. For example, it is only a matter of taste whether an attribute
or simple element is used to represent the same information in the document.
Similar statements hold for mixed-content or empty elements.

However, as the table shows, the most common features are spread through-
out all categories and thus should not be ignored by the XML processors. The

19

Statistics dat doc ex rep res sem

D
o
c
.

Number of elements 23,132,565 267,632 2,911,059 1,957,637 21,305,818 25,548,388
Number of attributes 33,660,779 102,945 857,691 208,265 2,189,859 10,228,483
Number of distinct el.
names

81 134 146 461 210 1,410

Number of distinct
paths

434 2,086 144 373 426 2,534

Depth of document 12 459 14 6 19 11

S
ch

.

Number of distinct el.
names

76 377 523 3,213 250 -

Number of distinct
paths

115 11,994 1,665 3,137 568 -

Depth of schema 12 81 79 5 15 -
Table 5. Maximum values of global statistics

only exception are mixed-content elements which are used sparsely especially
outside the doc category.

Node type dat doc ex rep res sem

D
o
c
.

Attribute 31.7 96.2 92.2 100.0 99.9 99.9
Empty element 26.8 69.2 89.9 100.0 86.7 92.7
Mixed element 0.2 76.5 8.7 0.0 10.1 2.4
Recursive element 0.1 43.3 63.8 0.0 0.7 3.3

S
ch

.

Attribute 50.0 94.1 52.6 100.0 85.7 -
Empty element 37.5 94.1 47.4 25.0 71.4 -
Mixed element 37.5 100.0 50.0 0.0 57.1 -
Recursive element 12.5 88.2 18.4 0.0 28.6 -

Table 6. Exploitation rate of global properties (%)

Finally Table 7 contains the portion of text in all XML documents of a partic-
ular category. In this case we can observe that except for the doc category (with
81.6% of text) the tagging often dominates the size of documents. This indicates
that the structure of the data is not only a matter of lucidity or orderliness but
it carries important information.

Statistics dat doc ex rep res sem

Percentage of text 43.8 81.6 36.3 6.2 33.1 54.9

Table 7. Portion of text in XML documents (%)

Last fact to be observed is that XML features used in schemes and document
instances usually match, i.e. the schemes are quite well designed in this matter.

20

Depth Statistics From previous set of statistics we already know the maximum
and average depth of a typical document per each category as well as the general
extreme values. Nevertheless the depths, especially in case of XML documents,
can be further analyzed using so-called depth statistics.

Figure 3 depicts the distribution of depths per each category. As we can see
the typical depth is always less than 10 which confirms the results of previ-
ous works and encourages proposals of techniques whose effectiveness is closely
related to maximum depth of XML data.

Unfortunately we cannot get similar results for corresponding XML schemes,
because they are too much influenced by recursion. We can analyze the percent-
age of such infinite XML schemes and/or XML elements but due to properties
of XML Schema language they correspond to recursive XML schemes and/or
elements which were already discussed.

Level Statistics As it is expectable level statistics focus on distribution of
elements, attributes, text nodes, and mixed contents per each level of XML
documents. Figure 4 depicts the distributions of individual constructs for the
whole sample set of documents. Figures for each of the individual categories
were omitted since they do not show any substantial differences from the overall
distribution. (Unfortunately XML schemes were usually specified too generally
to generate any meaningful statistic data.)

The graphs show that the highest amounts of analyzed nodes are always
at first levels (except for level 0) and then the number of occurrences rapidly
decreases. The steep exponential decrease ends around level 20 and then the
drop is much slower and shows more fluctuations. This correlates closely with
fan-out statistics in Figure 5 – see below.

Note that unlike attributes or mixed contents the text nodes occurrences
copy the curve of element frequencies almost perfectly. This denotes that the
text content is spread evenly trough all levels of XML documents.

Fan-out Statistics Fan-out statistics describe the overall distribution of XML
data. Figures 5 and 6 depict the results of element fan-out for XML documents
and XML schemes. Figures 7 and 8 depict the results of simple element fan-out
for XML documents and XML schemes. In all four cases we have used 3D graphs
where the axes correspond to level, value of fan-out, and number of occurrences
of a particular fan-out value at a particular level. Each level is for better lucidity
identified with a different color.

In case of XML documents we can observe that the characteristics of the
graph are similar at each level but with the growing depth it gets thinner. Simi-
larly to level statistics the highest values are at first levels and soon they radically
decrease. A surprising finding is that graphs for simple element fan-out are simi-
lar, just thinner. This denotes, that the distribution of trivial elements is almost
same as the general distribution of elements. Thus we can say that their occur-
rence is not only frequent (as we already know from previous statistics) but also
regular for each level of document.

21

1 2 3 4 5 6 7 8 9 20−29 50−99

Database - Depth Frequency

0
10

00
00

00
20

00
00

00
30

00
00

00
40

00
00

00

1 2 3 4 5 6 7 8 9 20−29 50−99

Document - Depth Frequency

0
50

00
00

10
00

00
0

15
00

00
0

20
00

00
0

1 2 3 4 5 6 7 8 9 20−29 50−99

Exchange - Depth Frequency

0
50

00
00

10
00

00
0

15
00

00
0

1 2 3 4 5 6 7 8 9 20−29 50−99

Report - Depth Frequency

0
50

00
00

00
10

00
00

00
0

20
00

00
00

0

1 2 3 4 5 6 7 8 9 20−29 50−99

Research - Depth Frequency

0
10

00
00

0
30

00
00

0
50

00
00

0
70

00
00

0

1 2 3 4 5 6 7 8 9 20−29 50−99

Semantic Web - Depth Frequency

0
50

00
00

0
15

00
00

00
25

00
00

00

Fig. 3. Distribution of depths of XML documents per category

22

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●●

●
●
●●●
●
●
●
●●●
●●
●●●●●●●●●●●●●

●●
●●●●●●

●●
●
●●●

●

●
●
●
●
●●●
●
●●
●●●
●

●
●

●●●●●●
●
●●●
●

●
●●●●

●●●●
●●●
●●
●●●●

●
●●●●●

●●●●
●●●
●
●
●●●●

●

●
●
●

●
●
●
●

●
●
●
●
●●
●

●●●
●
●
●

●●●●

●
●
●●●●

●●●●●
●

●
●●
●
●●

●

●●
●●
●●●●●

●●●
●●
●

●●
●
●
●●
●

●

●●
●●●●●●●●

●●
●●●

●

●
●
●
●
●
●●
●
●●
●●●●●●●●●●

●
●
●●●●●●●●●

●

●
●●
●●●
●

●

●●●
●●●

●

●●
●●
●●
●
●●●●
●
●●
●●
●
●

●●●
●●
●
●●●●●

●
●●
●
●
●●
●
●●
●
●
●
●
●
●

●●
●

●●●●●
●
●●●●●●●●●●●●

●
●●

●●●
●
●●
●
●●●●

●●
●
●
●
●●●●

●
●●●
●●●●

●●●●
●●
●●

●
●

●●●
●●●
●●●●

●●●●

●
●

●
●●
●●●

●

●

●

●●

●

●

●

●
●

●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●

●●

●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●

0 100 200 300 400

1
10

0
10

00
0

10
00

00
0

10
00

00
00

0

Element Frequencies

Levels

N
um

be
r

of
 E

le
m

en
ts

●

●

●

●

●

●

●
●

●
●
●

●

●

●
●●
●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●●●
●
●●

●

●
●●

●●

●

●
●
●
●
●

●
●●

●

●●

●●●

●

●
●●
●
●●
●●●

●

●

●

●

●

●●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●●●

●●
●

●

●

●●

●●
●

●

●

●
●
●
●●●●●

●

●●

●

●●

●
●
●

●

●

●

●
●●

●

●
●
●
●
●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●●
●
●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●●

●
●

●

●
●
●

●
●

●

●
●

●
●
●

●

●

●●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●●

●

●●●

●

●

●

●●

●

●

●

●●

●●●●●

●

●

●●●●

●●

●●●●

●

●

●

●●●

●

●● ●

0 100 200 300 400

1
10

0
10

00
0

10
00

00
0

10
00

00
00

0 Attribute Frequencies

Levels

N
um

be
r

of
 A

ttr
ib

ut
es

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●●
●

●

●

●●

●●

●●●●
●
●
●●●
●●
●●●●●

●
●●●
●●
●●
●●
●●●●●●

●●●●●●

●

●
●
●
●
●●●
●
●●
●●●
●
●
●

●
●
●
●
●●
●
●●●●

●

●

●
●●

●
●●●

●●●

●●

●●
●
●●●●●●

●
●
●●
●●●●

●
●
●●
●●
●

●
●
●

●
●●
●

●
●●
●

●●
●

●●●
●

●
●

●●●
●

●
●
●●●
●●●●
●●
●

●
●
●●

●●

●

●●

●●●●●●●
●
●●

●●
●

●●
●
●●●

●

●

●●
●●●●●●●●

●
●●●●

●

●

●

●
●●

●
●

●

●●●●
●●●
●●
●
●●
●
●●●●●●

●
●●

●

●

●
●●
●●
●

●

●

●●
●●●●

●

●

●

●●
●●

●

●●
●
●
●●●
●●
●
●

●●●

●
●●

●
●
●
●
●
●
●●
●
●●
●
●●
●

●

●●
●●
●

●●
●

●
●
●●
●●●●

●

●●●●●●

●●
●●
●

●

●●●

●

●
●

●●
●●●

●

●

●
●
●
●
●

●

●

●
●●
●●

●●●●●
●
●
●●
●
●

●

●

●
●

●

●
●
●
●●●
●
●
●

●

●

●
●

●●●●

●●

●

●

●

●

●

●

●

●
●

●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●

0 100 200 300 400

1
10

0
10

00
0

10
00

00
0

10
00

00
00

0

Text Node Frequencies

Levels

N
um

be
r

of
 T

ex
t N

od
es

●

●

●
●●

●
●

●

●

●

●

●

●

●
●
●

●●

●
●

●

●
●
●

●

●

●

●

●
●●

●

●●

●●

●
●●●●

●
●
●●●●●

●●
●●

●

●●
●
●
●●

●
●
●●●

●

●

●●

●

●

●●
●
●

●
●
●
●

●
●●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●●
●
●

●

●

●

●●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●●●●

●●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●●●●●●

●●

●●●

●

●

●●

●

●

●●●

●●

●●

●●

●●●

●

●

●

●

●

●●

●●●

●●

●

●●

●

●●

●●

●

●

●●●●

●●

●

●●●

●●●●●●●●

●●●●●

●

●●

●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●● ●●●●●●●●●●●● ● ● ●

0 100 200 300 400

1
10

0
10

00
0

Mixed Element Frequencies

Levels

N
um

be
r

of
 M

ix
ed

 E
le

m
en

ts

Fig. 4. Distribution of elements, attributes, text nodes, and mixed contents in XML
documents per level

The graphs for XML schemes have less interesting characteristics, again
caused by recursion and possible infinite depth.

Fan-in Statistics In case of XML schemes we can also analyze “inverse” fan-out
characteristic called fan-in. The results are depicted in Table 8.

Statistics dat doc ex rep res sem

Fan-in
Avg. 1.6 179.5 5.0 1.0 1.5 -
Max. 13 3,176 177 12 14 -

Table 8. Fan-in statistics per category

23

Log10 Fanout

0
1

2
3

4
5

6

Level

0
2

4
6

8
10

Log10 N
um

ber of O
ccurences 0

1

2

3

4

5

Database − FanOut Distribution

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●●●●●

●

●

●

●●

●

●●●●●●●●●●●●

●

●●●●●

●

●

●

●●

●

●

●●●

●

●

●

●●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●●●

●●

●

●

●

●●
●
●
●●

●

●●
●
●
●●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●●●●

●●

●●●●

●

●

●

●●●

●

●●●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●●

●

●●●

●

●●●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●
●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●

●

●●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●●●●●

●

●

●

●●

●●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

● ●

●

●● ●
●

●
●

●●
●

Log10 Fanout

0
1

2
3 Level

0
100

200
300

400

Log10 N
um

ber of O
ccurences

0

1

2

3

4

5

Document − FanOut Distribution

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●● ●●●●●●●●●● ●● ●●●● ●●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●●
●
●
●
●

●

●●●

●

●

●

●

●
●

●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●

●●

●
●●

●
●
●

●

●
●●

●●

●
●
●

●●

●

●

●

●●●

●

●

●●

●

●●

●
●

●

●

●●

●
●

●

●

●
●

●●

●

●●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●
●

●●●

●●

●

●●

●

●

●

●●

●●
●

●
●

●

●
●

●
●

●

●

●● ●

●●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●●

● ●●

●●

●

●

●
●●

●

●

●●

●
●●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●● ●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●● ●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●
●
●●

●

●

●●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●●●

●●●

●●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●●

●

●

●●

●

●

●●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●●

●

●

●

●

●● ●●

●

●●

●

●●

●

●

●

●

●

●

●

●
●●
●

● ●

●

●

●●

●
●

●

●●

●

●

●

●

●

● ●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●●●

●

●●

●

●●

●

● ●

●

●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●

●●●

●
●

●● ●● ●●●

●●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●●●

●

●

●

●●● ●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●●●

●

● ●●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●● ●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●● ●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●
●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●●

●● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●
●

●

●●

●●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●● ●●●

●

●

●

●

●

●●● ●●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●● ●●

●

●

●● ●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●

●●

●

●
●

●

●

● ●●

●

●

●●●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●●● ● ●

●

●● ●

●

● ●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●

●

●●

●

●

●

● ●

●

● ●

●

●

●●

●

●

●

●●●●●

●

●

●

●
●●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

● ●

●

●
●

●

●

●●

●

●

●● ●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●●●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●●●

●

●●●●●

●

●●

●

●

●●

●

●●●●

●
●

●●●●●●●●●●●

●

●

●●

●●●●●●●●●

●

●●●

●

●●●

●

●●

●

●●●●●●●●●●●●

●●

●●●●

●

●●●●

●

●●●●●●●●●●

●

●●●●●●●

●

●●●●●●

●

●●●●●

●

●●●●●●●●●●●

●

●●●●●●●

●

●●

●●

●●●●●●●●●

●

●●

●

●●●
●

Log10 Fanout

0
1

2
3

4
Level

0
2

4
6

8
10

12

Log10 N
um

ber of O
ccurences 0

1

2

3

4

5

Exchange − FanOut Distribution

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●●● ●●●●●●●● ●●

●

●● ●●

●

●

●

●

●

●●●● ●●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●●●●

●

●●●

●
●

●● ●

●

● ●

●

●

●

●

●● ●

●

●●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●●
●

●

●●●●

●

●●●

●●
●●

●

●

●

●●●

●

●

●●

●●●

●

●

●●

●

●●

● ●●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●● ●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●●

●

●●

●●●

●

●●

●●● ●

●

●

●●

●

●

●

●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●●

●●

●

●

●

●

●●●

●

●●●●

●

●

●●●

●

●●● ●●●● ●●

●
●

●●
●●●●●● ●●●●●●●

● ●●●
● Log10 Fanout

0
1

2
3

4
5

Level

0

1

2
3

4

Log10 N
um

ber of O
ccurences 0

2

4

6

Report − FanOut Distribution

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●●●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●
●

●

●

●

●

●
●
●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●●●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●●

●●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●●●

●

●

●●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●●●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●●

●

●

●

●●

●●

●

●
●

●

●

●●

●

●
●

●

●

●●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●●●

●

●
●

●●

●
●

●●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●
●

●

●
●

●
●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●●●

●

●
●

●

●

●
●

●●

●
●

●

●●

●

●

●
●

●●

●

●●●

●

●

●

●●

●
●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●●●

●

●

●●●

●

●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●
●

●

●

●

●

●●●●

●

●●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●●●●

●●

●

●●●

●●
●

●●●●

●

●

●

●●●

●●

●

●

●

●

●

●●●●●

●

●●●

●

●

●●

●

●

●

●●

●

●

●●

●●●

●

●●

●

●

●

●●

●

●●●

●

●

●

●●

●

●

●●

●

●

●

●

●●●●●●

●
●

●

●

●

●●●

●
●

●●

●

●

●●●

●

●

●●

●●

●

●●●●●●●

●

●●

●

●●●●

●

●

●

●●●

●

●●

●●

●●

●
●

●●●

●

●●●●

●

●●

●

●

●

●●●●●●

●

●●●

●

●●

●

●

●

●●

●

●

●

●

●●●●

●

●●●●

●

●

●

●

●

●●●

●

●

●●●●●●●●●●●

●

●

●

●●●●●

●

●●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●●

●

●●●

●

●●●

●

●●

●

●●

●

●

●

●●●

●

●●●●●●●●●●●●

●

●●●

●

●●●●●●●

●

●

●

●

●●

●

●

●

●

●●

●

●●●●●●●●●●●●

●

●●●●●●●

●

●●

●

●

●●

●●●●●●●●●●●

●

●

●

●●●

●

●

●

●

●

●●

●

●●●●●●

●

●●●●●

●

●●

●

●●

●

●●●●

●

●●

●

●

●

●●●

●●

●●

●

●●

●●

●●

●

●●●●●

●

●

●

●●

●

●

●

●●

●

●●●●●

●

●●●●●●

●

●

●

●●●●●●●●

●

●●●●

●

●

●

●●●●●●

●

●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●

●●
●

●●●●●

●

●

●

●

●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●●

●●

●

●

●●●●●

●

●●●

●

●●●●●

●

●

●

●●●●●

●

●●●●●●

●

●●●●●

●

●

●

●●●●

●
●

●●●●●●●●●●●●●●●●●●

●

●●

●

●●

●

●●●●●

●

●●

●

●●●●●●●●●●●●●●●

●

●●

●

●●●●●

●

●●●

●

●●●●●

●

●●

●
●

●

●

●

●

●

●

●

●●●●●●●●●●●

●
●

●●●

●

●●●●●

●

●●●

●

●●●●●●●●●

●

●●●●

●

●●●●●

●

●

●●

●●●●

●

●●●●

●

●●●●●●●●●●●

●

●

●

●●●●●

●

●●●●●●●

●

●●●●●

●●

●●

●●

●●●●●●●●●●●●●

●●

●

●

●

●●●

●

●

●

●●●●

●●●

●●●

●

●●

●

●●

●

●●

●

●●●

●

●●●●

●

●

●

●

●●●

●

●

●

●●●

●

●●●●●●●●●●●●

●

●●

●

●●●●●●●●

●

●●

●

●●●●●

●

●●

●

●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●

●

●●

●

●●●

●

●●●●●●●●●

●

●●

●●

●●●

●

●●

●

●

●

●

●

●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●

●

●●

●
●

●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●
●

●●●●●●

●

●●●●●●●

●

●●

●

●●

●

●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●

●

●●

●

●●●●●●●●●●●●●●●

●

●

●

●●●

●

●●●●●●●●

●

●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●

●

●●●

●

●●●●

●●●

●●●●●●●●●

●

●●

●

●●●●

●

●●●●●●●

●

●●●●

●

●●●●●

●

●●●●●

●

●●●●●●●

●

●●●●●●●●●●

●

●●●●●

●

●●●●●●

●

●●●●●

●

●

●

●●●●

●

●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

Log10 Fanout

0
1

2
3

4
5

Level

0

5

10

15

Log10 N
um

ber of O
ccurences

0

1

2

3

4

5

6

Research − FanOut Distribution

●●

●
●

●●

● ●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●
●

●●●●●●

●

●

●

●

●

●●

●

●●●

●

●●●

●

●

●

●●
●
●

●●

●

●

●●
●●
●

●

●

●

●

●

●
●

●●
●
●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●●●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●●

●

●

●

●

●

●●

●

●

● ●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●

●

● ●●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●●
●●

●
●

●
●●●
●●

●

●

●

●

●

●

●●● ●

●●
●●

●

Log10 Fanout

0
2

4

6
Level

0
2

4
6

8

Log10 N
um

ber of O
ccurences

0

2

4

6

Semantic Web − FanOut Distribution

●●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●●●

●

●●●

●

●●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●●

●●

●

●●●●●

●●

● ●●

●

●●●●●

●

●● ●●●●●●●

●

●●●●

●

●●●●● ●

●

●● ●●

●

●●

●

●●●●●

●

● ●●●

●
●

●●●●

●

●●●●●

●

●●

● ●

●● ●●●●

●
●

● ●●●●●●

●

●

●

●

●

●● ●●●●●

●

●●●●●

●
●

●●

●

●●● ●

●

●

●

●●

●

●●●

●
●

●● ●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●●

●

●

●

●

●●●

●

●

●● ●

●

●

●

●

●

●

●●

●
●

●●●●●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●
●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●●●

●

●

●

●

●●
●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●●

●
●

●●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●
●
●

●●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●
●
●

●

●

●
●

●

●●

●
●

●

●

●
●

●
●
●

●

●
●
●

●

●

●

●

●

●
●

●
●

●

●
●

●
●●

●

●

●

●

●●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●●●
●●●

●

●

●

●
●●

●

●

●

●
●●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●
●

●●●●

●
●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●●●
●

●

●● ●●

●

●●

●

●

●

●

●

●●

●

●
●●●●●●●
●

●

●
●

●
●

●

●

●

●●●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●●●●
●

●

●
●●
●●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●●●●

●

●
●●●

●

●

●

●●

●

●●●

●

●●

●

●

●

●●●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●●●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●●●

●

●

●●●

●

●

●

●●

●
●

●

●●

●

●

●

●●●●

●

●

●

●●●

●

●

●

●

●

●●

●●

●●●●

●

●●●●●

●

●

●●●●●●●●

●

● ●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●

●

●

●

●●●●

●

●●●●

●

●
●

●
●

●
●

●

Fig. 5. Element fan-out of XML documents per category

24

Log10 FanOut

0.0
0.5

1.0

1.5
Level

0
2

4
6

8
10

Log10 N
um

ber of O
ccurences

0.0

0.2

0.4

0.6

0.8

Database − Schema − FanOut Distribution

●
●

●●
●●●

● ●●●●
●●●●

●

●●

●●●●●●●● ●

●

●

●●●

●

●●●● ●●●●●●●●●●●● ●●●●●●●●● ●●

●

●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●● ●●●

●

●●●

●● ● ●

●

●●●●

●

●●●●●●● ●

●

●●●●●●●●●

●●● ● ●●●●●●●

●

●

●

●

●● ● ●●

●

●

●

●●●● ●

●

● ● ●●●●●●●● ●

●●

●

● ●●●●●●

●●

● ●

●

●●●

●

●●● ●

●

●
●

● ●

●●

Log10 FanOut

0.0
0.5

1.0
1.5

2.0
Level

0

20

40
60

80

Log10 N
um

ber of O
ccurences

0.0

0.5

1.0

1.5

Document − Schema − FanOut Distribution

●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●● ●●●●●●● ●●●

●●●

●●●●●●●●●●●●●●● ●

●

●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●

●●●●●●●●●●

● ●●●●●●●●●●●● ●●●

●●●●●●●●●●

●●● ● ●●●●●●●●●●●●●●●

●●●

●

●

●●●●●●●●●●●●●●●● ●

●●●●

●●

●●●●● ● ●●●●

●

●●

●●●●●● ●●●●●●●●●●●●

●●●●●●●●●●

●

●●

●●●● ●●●●●●●●●●

●

●

●●●●●●●●●●

●●

●● ● ●●●● ●●●●●●●●●●

● ●●●

●●●●●●●●●●

●●

●●●● ●●● ●●●●●●●●●●●

●●●●●●●●●●●

●●●

●●

● ● ●●●

● ●●●●●●●●●●

●●● ●●●●●●●●●●

●●

●●● ●●●● ●

●●●●●●●●●●●●●●

●●●●●●●●●●

●●

● ●● ●●●●●●●●●●

● ●●●

● ●●●

●

●●● ● ● ●

● ●●●●

●●●● ●

●●●●●●●●●●

●●●● ● ●●●●

●●

●●●●●●●●●●

●●●●●●●●●● ●●●●●●●●●●

●

●●●● ●●●

● ●

●

●●●●●●●●●● ●

●●●

●●

●●●●●●●●●●●●●● ●●● ●

●

●●●

●

●●●●●●●●●●●●● ●●●

●●●●●●●●●●● ●●●●●●●●●●

●●

●●●●●●●●●●●● ●● ●●●●●●●●●●●

●

●●● ●●●●●●●●●● ●

●●●●●●●●●●

●●

●●●

●●●●●●●●●●

●●● ●

●

●

● ●●●●

●●●●● ●●●

●●

●●●●●●● ●●● ●●●●●●●●●● ●●●●●●●●●●

●

●

●●●● ●

●●●● ●

●●

●●●

●●● ● ●

●

● ●

●●●●●●●●●●●

●●

●●●●●●● ●● ●●● ●●●

●

●●●●●●●●●● ●●

● ●

●●

●●●●●●● ●● ● ●

●

●

●●●●

●●

●●

●●●● ●● ●

●●●●●●●●●●

●●●

●●

●●●●●●●●●●●●●●●● ●●● ● ●

●●●

●●

●

●●

●●●●●●●●● ●●

● ●

●●●

● ●●

●●●●●●●●●●● ●●

● ●●

●●

●

●●

●●

●

●●●● ●●

● ●

●

● ●●

●

●●●●●●●●●●●●●● ●●● ●●●●●●●●●●

●

●

●

●●●●●●●●●●

● ●●

●●●●●●●● ●●●●●●●●●●●●● ●

●

●

●

●●●●●●●● ●●● ●●●

●

●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●● ● ●

●

●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●

●●

●

●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●

●●●●●● ●●●●●●●●●●

●

●

●

●

●●●●●●●●●●● ●●●●●●●●●●

●●●●●●●●●●

●●●●● ●

●

●●●●●●●●●●●●●●●●●●● ●● ● ●●●

●● ●

●

●

●●● ● ●●●●●●●●●●●

●●

●●●●●●●●●●●● ●●●●●●●●●●●●● ●

●●●● ●●●●

●

●

●●

●●●● ●●●

●●●

●●●●●●●●●●●● ●

●

●●●●●●●●●●●●●●●●●●●●●●● ●●● ● ●●●●●●●●●●

● ●

●

●

●●●●●●●●●●● ●

●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●

● ●

● ● ● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●

● ●●

●

●●●● ● ●

●

●

●●●●●●●

●

●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●

●

●

●●●●●●●●●●● ●●●●●●●●●●

●

●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●

● ●

●●●●●●●●●●

●●●●●●●●●●●●●●

●

●●●●●●●●●● ●●

●

●●●● ●●●●●●●●●●●●●●● ●●● ● ●●

●

●●●●

●

● ●●● ●●

●

●●●●● ●●●●●●●●●●● ●●●●

●

●●●

●

●

●

●

●●●

●●●●●●●●●●

●●●●●●●●●●●●● ●●●●●● ●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●

● ● ●●●●●●●●●●

●●

●●●●●●●●●●

●●●●●●●●●● ●●●●

● ●

●

●

●

●

● ●●●

●●●●●●●●●●

●

●

●●●●●●●● ●●●●

●●●●●●●●●●

●

●

●●●

●

●

●●●

●●●●●●●●●●●●●●●●●●●●

● ●●●

●

●

●

●●●●●●●●●●

●

●

●

●●●●●●●●●●●

●●●

●●●●●●● ●●● ●

●● ●

●

●

● ●

●

●●●●●●●●●● ●●●●●●●●●●●●●

●

●

●

●●●●●●●● ●●

●●●

●●

●

●

●●●●●●●●●●●●●●● ●●●

●

●

●

●●●

●

●

●

●

●

●●●●●●●●● ●●●

●

●

● ●●● ●●●●●●●●●●

●●●●●●●●●●

● ●

● ●

●●●●●●●●●●●

●●●●●●●●●●

●●●

●

●●● ●●●●●●●●●●

●

●

●

●

●●●●●●●●●● ●●● ●

●●

●●● ●

●

●

●

● ● ●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●

●

●●

●●

●

●●●●●●●●●●●●

●

●●●●

●●●

● ● ● ●●●●●●●●●●

● ●

●●●●

●●●

● ● ●●●

●

● ●●●●●●●●● ●●●●●●●● ●●

●●

●●

●●

●

●

●●● ●●●

●

●

●

●

●●

●

●

● ●●●●●●●●●● ●● ●●

●●

●●

●

●●●

●

●●● ● ● ●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●● ● ●●●●●●●●●●

●

●

●●●●●●●●●●●● ●● ●

●

●●●●●●●●●●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●● ●●●●●● ●●●● ●

●

●

●

●●

●

●●●●● ●●●

●

●

●●●

●

●● ●●●

●

●●

●

●●● ●●● ●

●●●

●

●●●●●●●● ● ●●

●

●

●●●●●●●●●●

●●●●●●●●●●

●

● ● ●

●

●●●●●●●●●●

●

● ●● ●●●●●●●●●●●●● ●●● ● ●

●

●●

●● ●●●●●●●●●●●●●●●● ●

●

●●

●●

●●●●●● ●●

●

●

●●

●●

●

●

●●●●●● ● ●●

●●●

●●●●●●●●●●●●●●● ● ●

●●

●●●

●●

● ●●●●●●●●●●● ●●●●●●● ●●

●

●

●

●●

●●●●●

●

●●●●●

●

● ●●●●

●●●●●●●●●●

●

●●

●

●

● ●●●●●● ● ●

●

●●●●●●

●●●●●●●●●●

● ●● ●●●● ● ●

●

●

●

●

●●●● ●

●●●

●

●

●

●●

●

●●●●● ●

●

●

●● ●●● ●

●●●

●

●

●●

● ●●

●●

●

●●●●●●● ●

●●●●●●●●

●

●

●●

●

●

●

●●●●●●● ●

●●●

●

●

●●●●

●●●●●●●●●●

●●● ● ● ●

●

● ●●●●●●●●●●

● ●●

●●●●● ●●●●●●● ● ●●

●●●●●●●●

●

● ●

●●

●

●

●● ●

●

●

●

●● ●

●

● ●

●

● ●●

●●●●●●●●●● ●● ●● ●●●●●●●●●●●

●●

●●

●●

●●●●●

●

●

●

●

●●

●

●

●●●●●●●●●●●●●

●

●● ●

●

●●

●●●●●●●●●●

●●●

●● ●●

● ●● ●●●●●●● ●●● ●● ●●●●●●●●●●●

●●●

●●●

●

● ●●●●●●●●●●

●

●

●

●

●

●●●

● ●●●●●●●●●●

●

●

●● ●

●● ●●

● ●●● ●●●●●●●●●● ●● ●● ●●●●●●●●●●●●●●

●●●●●

●

●●●●●●●● ●

●●

●●

●

●

●

●●●●

●

●●●●

●●●

● ●●

●●●●● ●● ●●●●

● ●●●●●●

●●

●

●●● ● ●●●

●●

●●

●

● ●●●●●

●● ●●●

●●

●

●●●

●

●●●

●

● ●●

● ●●● ● ●● ●● ●●●●●

● ●●●●●●

●

●

●●●

●

●● ●● ●●●●●●●●●● ●

●

●●●

● ●

● ●●●●●

●

●●● ●

●

● ●●

●

●

●●● ●● ●●

●

● ● ●●●●●●●●●●●●

● ●●●●●●

●

●

●

●

● ●●●

●

●●●●

●

●

●

●●●●

●

●●

●

●

●●

●●

●

●●

● ● ●●●●●● ●●● ●● ● ●●●●●●●●●●●●

● ●●●●● ●

●●●●●●●●●●●

●● ●

●●●●●● ●●●●

●●

●●●

● ●

●

●●●

●●●

● ●●

●●

●●

●●●●●● ●●●●● ●●● ●● ●●●●

●●●● ●●●

●

●● ●●

●●●●● ●

●

●●●

●

●

●●

●●●●●

●●● ●

●●

●●

●●●●●● ●●●●●●● ●●● ●● ●●●●

●●● ●●

●

●

●●●

●

●

● ●●

●●●●●● ●●

●●

●●●

●

●

●

●●●●●●

●● ●●●●●●●●●●●

●●

●

● ●●

●●●● ●●●●●●●● ●●● ●

●●●

●

●

●●●●●●●●●●●● ●

●●●●● ●

●●●●●●

●

●

●

●●●●●●●

●●●

●

● ●

●●

●●●

●●● ●●

●● ●●●●●● ●●●●●●●●● ●●●● ●● ●

●●●

●

●●

●

●

●●●● ●●●●●●●●● ●

●

●●●●●●●●●●

● ●

●

●●●

●●●

●●●

●●●●

●●

●● ●●

●●●● ●●●●●●●●●● ●●●●● ●

●●●●

●

●● ●

●●●●

●

●

●●●

●●●

●●●●●●●●●

●

●

●●●

●●●●

●●

●

●●

●●● ●●●●● ●●●●●●●●●● ●● ●●●

●●●●

●● ●

●● ●●● ●●● ●●●●●●

●

●●●●●●

● ●●

●

●●●

●●●●

●●●●●●●●●●● ●

●

●●●

●●

●●●

●● ●●●●●●●●● ●●●

●●●●●●

●

● ●●

●

● ●●●● ● ● ●●●

●

●

●●●

●●●●

●●●

●●

●●●

●●

●●●●● ●●●●●●●●● ●●● ●●

●●●●●●●

●

●● ●●

●

●

●

●

● ●●●●●●● ●

●●

●

●●

●●

●●●●

●●●● ●

●●

●●●●

●●

●●●●●●●●● ●● ● ●●

●●●

●

● ●

●

●●●●●●●● ●●●●●●●● ●●●●

●●

●●

●●

●

●●

●●

●

●●●

●● ●

●●●

●●●●●●

●●

●●●●●●● ●●● ●● ●●●

●

●

●

● ●●

●●●●●●●●●●● ●

●●

●● ●●●●●●●●●●● ●●●●●

●●●

●●

●

●

●●●

●

●●●● ●●

●●

●●●

● ●

●

●

●●●● ●●●●● ●●●

●

●

●

● ●●●

●

●●

●●●●●●●●●●●●● ●●●●●●●●

●●●●●●●

●

●

●●● ●●● ●●● ●

●●

●●●

● ●●

●

●

●

●●●● ●●

●

● ●●●●● ●● ●●●●●●●●●●

●

●●

●●●●●

●●●●

●●●

●

● ● ●●●●

●●●

●

●●●

●

●●●●● ●

●

●●

●●●

● ●●●

●

●

●

●● ●●

●●

●●●●●●●●●● ●●●●●●● ●● ●

●

●●

●●●●●●

●

●

● ●●●●

●

●●

●●

●

●●●●

●

●●

●●●●●●● ●

● ●●

●●●

●●● ●●●●●

●●●

●●

●●●●● ●●

●● ●

●●●●●●●●●● ●●●

●

●

●●●●●●

●

●

●

● ●

●

●●●●●

●●●●

●●

●●●●

●●●

●●

●●●

●●●●●●●● ●

● ●●

●

●●●

●●●●●●

●●●●●

●●

●●●●●●●●●●●● ●●

●●

●●●●●●●●●●●● ●●● ●

●

●

●●●●●●

●●●

●●

●

●●●● ●●●●

●●

●

●●●

●

●●●

●●●

●●●●●

● ●●●●●●●●● ●

● ●●

●●

●●●

●●●●●●

●●●●●●●

●●

●●●●●●●●● ●●

●●●

●●●●●●●●●●●●●● ●●● ●●●

●

●●

●●●●●

●

● ●● ●

●

●● ●●●●●●●

●● ●

●●●●●

●●

●

●

●●●

●●●●●

●●●●●●

●●●●●●●●●● ●

●● ●●

●●●

●●●●

●●●●●●

●●●●●●●●●●●

●

●● ●● ●

●●●●●●

●●

●●●●●●●●●●●● ●●● ●

●

●●●

●●

●●●● ●●●●●●●

●● ●

●●●●●●●

●●●

●●

●●●

● ●●●●●●●

●●●●●●●

●●●●●●●●●● ●

●●

●

●●

●●●●●

●●●●●

●●●●●

● ●●●●●●●●●●●●●●●

●●●●●

●●

●●●●●●●

●●

●●●●●●●●●●●● ●●●

●

●●●●●●

●●

●●●

●● ●●

●●●●●●

●● ●●●●●● ●●●

●●●●●●● ●

●●●●●●●●

●●●●●

●●●

●

●●●

●● ●●●●●●●●

●●●●

●●●●●●●●●● ●

●●

●● ●

●●

●●●●●●●

●●●●●●

●●●

● ●●●●●●●●●●●●●●●●●

●●●

●● ●

●●●●●●●●

●●

●●●●●●●●●●●●●● ●●●

●●●

●

●●●●●

●● ●

●

●

●

●●●●●●●●●●●●

● ●

●●●●●●●●●

●●●●●●

●●●●●

●●●

●●●●●●●●●● ●●●●●●●●●

●●●●●●●●●●●● ●●●●● ●

●●

●●●●●●●

● ●●●●●●●●

●●

●● ●●●●●●●●●●●●●●●●●●●

●

●●● ●

●●●●●●●●●●

●●●●●●●●●●●● ●●●

●

●●●●●●●

●●●●

●●

●

●

●

●

●● ●

●●●●●●●●●●

●●●●●●

●●●

●●●

●●●●●●●● ●●●●●●●●●

●●●●●●●●●●●●● ● ●●●

●

●●●●● ●

●●

●●●●●●●

●●●●●●●●●●

●

●● ●●●●●●●●●●●●●●●●●●●●●

●

●● ●

●●●●●●●●●

●●●●●●●●●●●● ●●●

●●

●●●

●●●●●●●●

●●

●

●●●● ●

● ●●

●●

●

●● ●

●●●●●●●●●●

●●●●●●

●●●●●●●●

●

●●● ●●●●●●●●●●

●●●●●●●●

●

●●●●●●●●●●●●● ●● ●●●●

●

●●●●●●● ●

●●

●●●●●●●

● ●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●● ● ●

●

●● ●

●

●●●●●●●●●● ●●

●●●

●●●●●●●●●

●

●● ●●

●●●●●●●●●●

●● ●●●

●●

●

●

●●●●●●●●●●

●●●

●●●●●

●●●●●●●●●

●●● ●●●●●●●●●●

●● ●●

●●●●●●●●●●●●● ●● ●●●●●●

●●

●●●●●●●●

●●●●

●●

●●●●●

● ●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●

●

●

●

● ●●

●

●●●●●

●●●●●●●●●

●● ●

●●●

● ●●●●●

●●

●●●●●●●●

●

●●●●●●●●●

●●●

●●●●●●●●●

●●●

●●● ●●●

●●●●●●●●●● ●●● ●●●●●●●●

●● ●

●●●●●●●●● ●

●●

●●●

●● ●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●

●

●●● ●●●

●●

●●●●●●

●

●

●●●●●●●●●●●

●

●

●●●●●

●●●

●●● ●●●●●●●

●

●

●●●●●●●●●

●

●●

●●●●●●●

●●● ●●●●●●●●●●●

●●●●●●●●●●●●● ●●●●●

● ● ●●●●●●●●● ●

●● ●

●●●●●●●●●●

●●●●●●●●

●●

●●

●

●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●

●

●●●

●

●

●

●●●●●●

●

●

●●●

●

●●●●●●●

●

●●●●●●●●

●

●

●

●●

●

●●●●●●●

●●●● ●●●●●●●●●●●●●●

●

●●●●●●●

●●●●●●●●●● ●●

●● ●

●●●●●●●●●●

●

●●

●

●

● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●

●●

●● ●●●

●

●●

●

●●●●●●

●

●●●●●

●● ●

●

●●●●●●●●

●●●●●●●●●

●

●

●●

●

●●●●●

●●●● ●●●●●●●●●●●●●●

● ●

●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●●

●●● ●

●●●●●●●●●●

●●●

●●

●

● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●

●●

●● ●●●●●

●●

●●●

●●●

●●●●●

●● ●

●

●●●●●●●●●

●●●●●●●●●●

●

●

●●●

●

●●●

●●

●

● ●●●●●●●●●●●●

●

●●●●●●●●●

●●●●●●●●●●● ●●●●●

●● ●

●●●●●●●●●●●

●●●●

●●

●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●● ●●●●●●

●●●●●

●●

●●●

●● ●●

●

●●●●●●●●●●

●●●●

●●●●●●●●●●

●●

●

●

●

●●●●●●●●

●●

●●

●●

●

● ●●

●●

●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●

●●

●●●●●●●●●●●●

●●●●●●●

●●

●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●

●

●

●

●●

●

●●●●●●●

●●●●●●

●●

●●

●

●●

●

●●●●●●●●

●●●●●●●●●●

●●

●●●●●●●

●●

●●

●● ●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●● ●●●●●●●●● ●

●●

●

●

●●●●●●●●●●●●●● ●

●●●●●●●●●

●●

●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●

●

● ●●●

●

●

●●●●●●

●●●●●●

●

●

●

●●●

●

●●●●●●●●●●●

●

●●●

●●●

●●

●●

●

●●●●●●●●●●

●●●●●●●●●●

●

●●●●●●●●●●●●● ●●●●●●

●

●●●●●●●● ●

●●●●●●●●●●

●●

●●●●●●●●

●

●●● ●●●●●●●●●● ●●●●●●●●

●

●● ●●●●●●●●●●●

●●●●●●

●

●

●

●●●●

●

●●●●●●●●●●●●

●

●

●

●●●

●

●●●●●●●

●●●●●●●●●●

●

●●●●●●●●●●●●● ●●●●●●●●●●● ●●

●

●●●●●●●●●●●

●●

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●

●

●●●●●●●

●

●●●●●●●

●●●●●

●●

●●●

●

●

●●●●●●●●●●●●●●

●

●

●●●

●●● ●

●●●●●●●●●

●

●

●●●●●●●● ●●●●●●●●●

●

●● ●●●●

●●

●●●●●●●●●●●●●

●●

●●●●●●●●●●

●

●●●●●●●●●●●● ●●●●●●

●●

●●●●●●●●●●●●●●

●●●

●

●●

●●●●●●●●●●●

●●

●

●

●
●

●

●●●● ●●●●●

●

●

●●●●●●●●●●

●●

●●●●●●●

●●

●●●●●●●●●●

●●

●

●●●●●●●●●● ●●●●●●●●●●●●●● ●●●

●

●●

●

●●●●●●●●●●●●●

●●

●

●

●●●

●●●

●●

●
●

●●●● ●●●●

●

●●●●●●●●●●●

●●●

●●●●●●●

●●

●

●

●● ●●●●●●●●●● ●●●●●●●●●●●●●● ●●

●
●

●

●

●●●●●●●●●●●●●●● ●●

●

●

●

●

●

●

●●●●

●●

●●

●

●
●●

●●●● ●

●

●

●●

●●

●●●●●●●●●●●●

●●●●

●

●●

●

●

●●●●●●●●●●● ●●●●●●●●●●●●●● ●

●
●●

●

●●●●●●●●●●●●●

●

●

●●●

●

●●●

●

●

●●

●

●●

●●●● ●●●●●

●

●

●

●

●●

●●●●●●●●●●●●●

●●●

●

●

●●

●●●●●●●●●●●●

●

●●●

●

●
●●●

●

●

●●●●●●●●●●●● ●

●

●●

●

●●

●●

●●●●●●●●●●

●●

●●

●●

●

●

●●●● ●

●

●●●

●●●●

●●●●●●●●●●●●●

●●

●

●●

●

●●●●●●●●●●●●●

●

●●●●

●

●●●●●

●

●

●●●●●●●●●●●●●● ●

●●

●●

●

●●●

●●

●●●●●●●●● ●

●●●

●●●

●●

●

●●●●● ●●

●●

●●●●●●●●●●●●●●

●

●

●●●●●●●●

●

●●●●

●●

●

●

●

●●●●●●●● ●●●●●●●

●

●●●●●●●

●

●

●

●●●●●●●●●●●●

●

●●●

●

●●●●●

●

● ●

●

●●●●●

●●●●●

●

●

● ●●●

●●

●

●

●●●●●●●●●●●●●●

●

●

●

●

●●●●●●●●●

●●

●●●●●●●●

●

●●●●●●●●●●

●●●●●

●

●●

●●●●●●●●●●

●●

●●●●●●●

●●●●●●●

●

●

●●●

●

●

●●

●

●●●

●

●●

●

●●

●●●●●●●●

●●

●●●●●●●●●

●●●●●●●●●●

●

●●●●●●●

●●●

●●

●●●●●●●●●

●●●

●●●●●●●●

●●●●●●●●

●●

●●

●

●●

●●

●

●

●●

●

●

●●

●

●

●●

●●

●●

●●●

●

●

●

●●●●●●●●●

●●●●●●●●●●

●

●

●●●●●●●●

●

●●●●●

●●

●●●●●●●●●

●

●●

●●●●

●●●●●●●●

●●●●●●●●●

●●●

●●

●

●●

●

●

●

●

●

●

●●●●●●

●

●●

●

●●●

●

●●

●●●●●●●

●●●●●●●●●●●

●●●

●●●●●●●●●

●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●

●●●●●●●●

●●●●●●●●●●

●●●●●

●●

●

●

●●

●

●

●●

●●●●●●●●●●●●●●●●

●

●

●●●●●

●

●

●

●

●●●●●●●●●●●●

●●●●

●●●●●●●●●●

●●●●●●●●

●

●●●●●●●●●●

●●●●●

●●●●●●●●●●

●●●●●●●

●●

●●

●

●●

● ●●

●●

●●●

●●

●

●●●●●●●●

●●●●●●●

●

●

●●●

●●

●

●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●

●

●●●●●●●●●

●●●●●●●●●●

●●●●

●●●●●●●●●

●●●●●●●●

●●

●

●●

●●

●

●●●

●●●●●

●

●●●●●●●●

●

●

●

●●●

●●●

●●●●●●

●●●●●●●●

●●●●●●●●

●●●●●●

●

●●●●●●●●●●

●●●●●●●●●●●

●●●

●●●●●●●●●

●●●●●●●●●

●●

●●

●

●

●

●●●●●

●●●●●●●

●

●●●●●●●●●

●

●

●

●●●●●

●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●●●●●●●●●●●●

●●

●

●●●●●●●●●●

●●

●●●

●

●

●

●●

●●●●●●●

●●●●●●●●

●

●

●●●●●●●●●●

●

●●●●●●●●●● ●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●

●●

●

●

●●●●●●●●●●

●●

●●●●●

●

●●

●

●●●●●●●●

●●●●●●●●●

●●

●

●

●●●●●●●●●

●

●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●

●●●

●●●●●●●●●●

●●

●●●●●●●

●●

●

●●●●●●●●●

●●●●●●●●●●

●●●●●●●●

●●●●●●●●

●

●●

●●●●●●●●●

●●

●●●

●●●●●●●●●●●●

●●

●●●●●●●●●●

●●

●●●●●●●●

●

●●

●

●●●●●●●●●

●
●●●●●●●●●●

●

●

●

●

●●●●●●●●●●

●

●

●●●●●●●●●●●●●

●●●●●●●●●

●

●●●●●●●●●●

●●

●●●●●●●●●

●●●●

●●

●●●●●●●

●●●
●●●●●●●●●

●

●

●

●

●

●

●●●●●●●●●●

●●

●

●

●●●●●●●●

●●●●●●●●●●

●●

●●●●●●●●●●

●●●●

●●

●●●●●●●●

●●

●

●

●

●

●●●●●●●●●●

●

●

●

●

●●●●●●●●●●

●●

●●●●●●●●●●

●

●●
●

●●

●

●●

●●●●●●●●●●●

●●●

●

●●●●●●●●●●

●●

●●●●●●●●●●

●●
●

●

●

●

●●

●●●●●●●●●●●●

●
●

●●●●●●●●●●

●●

●●●●●●●●●●●

●

●

●●●●

●●
●

●

●●

●

●●●●●●●●●●●●●

●
●●

●●●●●●●●●●

●●

●●●●●●●●●●●●

●●

●

●●
●●

●●

●

●

●●●●●●●●

●
●

●●●

●●

●

●●

●●●●●●●●●●●●●

●●●

●

●

●●

●

●●

●●●●

●
●●

●●●●

●

●●●

●●

●●

●●●●●●●●

●●●●

●●

●●
●

●●

●

●●●●●

●
●●●

●

●●●

●●

●●●

●●

●●●●●

●●

●

●●

●

●

●

●

●

●

●
●●●

●●

●

●●●●●●●●

●

●●●●●

●●

●

●●●●●

●

●●
●

●

●●

●
●●

●

●

●

●

●●●●●●●

●●

●●●●

●

●

●●

●●

●

●●

●●●●●●●●

●●

●●●

●

●●

●

●●
●●

●

●●●●●●●●●

●●

●●

●●
●●

●

●●

●●●●●●●●●

●●

●●

●●
●

●●●

●●●●●●●

●●

●●

●●

●

●

●

●

●

●●●●

●●

●●

●●

●

●

●●

●●

●●

●●

●●

●●

●

●

●●

●●

●

●

●●●●

●●●●●

●

●●

●●●●

●●●●●●●

●

●●
●

●●●●●

●

●●

●●●
●●●●●●

●●

●●

●●●
●●●●●●●●

●●

●●
●●●●●●●

●●●●●●

Log10 FanOut

0.0
0.5

1.0
1.5

2.0
Level

0

20

40
60

Log10 N
um

ber of O
ccurences 0.0

0.5

1.0

Exchange − Schema − FanOut Distribution

●●●
● ●● ●●

●

●●● ● ●●● ●● ●

●

●

●

● ●

●

● ● ●● ●

●

●

●

●

●

●

●

● ●●

●

● ●●●

● ●

●

● ●

● ●

●

●● ● ●

●

●● ● ●●● ● ● ●●

●

●●● ●● ●●

●●

●● ●●●

●

● ● ● ●● ●● ●●● ● ●● ●●●● ● ●●● ●

●

●

●

●

●

●

●

●

●●● ●●●● ●

●

●

●●●●●

●

● ●●

●

●

●●●●● ●● ●● ●● ●

●

●●

●

●

●

●●● ●

●

●●

●

●●●●●●● ●

●

●

●●

●●●●●●●●● ●

●

●● ● ●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

● ●

● ●

●●

●

●● ●

●

●●

●●

●

●

●●●●

●

●● ● ●

●

●

●●●● ●●

●

●●● ● ●

● ●

●

●

●●

●●●●

●

●

●●●

●

●●●●

●

●

●

●

●

●

●●

●

●●

●

●●●● ●●

●

●●

●

●

●

●●●

● ●●●●● ●●

●

●

●

● ●●

●

●●

●

●●●●●●●

●

● ●

●

●●

●

●●

●

●●●●●

●

●

●

●●

●

●

●●●●●

●

●

●●

● ●

● ● ●

●

●

●

●●

●●●● ●

●●

● ● ●●●●●●

●●

●●●●●● ●

●

●●

●●

●●● ●●●●●●●

●●

●● ●

●

●●●

●

●

●

●●●● ●

●●●

●

●

●

●

●

●

●

●●●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●● ●●●

●●

●

●●

●

●●

●

●●

●

●

●

●●●●

●

●

●

●

●

●●●●●

●

●

●

●●●

●

●

●●●

●

●●

●●●●

●●

●● ●●

●

●●●

●

●

●

●●

●

●●●

●

●

●

●●

●●

●●

● ●

●

●●

●

●

● ●

●

●●

●●●

●

●

●●●●●

●

●

●●●

●

●●

● ●● ●

●

●

●●●

●

●●

●

●●

●●

●
●

● ●●●

●

●

●●

●

●

●

●●

●●● ●

●

●

●●●

●●

●●●●●●

●

●

●

●

●

●

●●●

●●●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●●

●

●

●●

●

●

●●●

●

●

●●

●●

●

●●

●

●

●●●●●●●●

●
●

●

●

● ● ●

●

● ●●●

●

●

●

● ●●

●

●● ●

●

●

● ● ●●

●

●

●●

●

●●● ●

● ●

●

●

●

●

●

●

●

●●●●● ● ●●

●

●

●

●●●

●●

●

●

●

●●

●

●

●●

● ●

●

●●●

●

●●

●●

●● ● ●

●●●

●●

●●●

●●● ●

●●●

●

●●●

●● ●● ●●●

●

●

Log10 FanOut

0.0
0.5

1.0
1.5

2.0
Level

0

1

2
3

4

Log10 N
um

ber of O
ccurences 0.0

0.5

1.0

1.5

2.0

Report − Schema − FanOut Distribution

●●●

●●

●

●●●

●●●

●

●●●

●●

●

●●●●

●

●●● ●

● ●●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●●● ● ●

●

●

Log10 FanOut

0.0
0.5

1.0

1.5 Level

0

5

10

Log10 N
um

ber of O
ccurences 0.0

0.2

0.4

0.6

0.8

1.0

Research − Schema − FanOut Distribution

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ●

●

●

●●●● ●

● ●

●●● ●● ●

●

●

●

●

●

●

●

●●

●

●●● ●

●

●

●

●

●

●

●●

●

●●● ●

●

●●●● ●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

●

●●●●

●

●

●

●

●

●●

●● ●

●●

●●

●

●

●●● ●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●●●●

●●

●

●●

● ●●

●●

●●●

●

● ●●●

●

●

Fig. 6. Element fan-out of XML schemes per category

25

Log10 Fanout

0.0
0.5

1.0
1.5

2.0
2.5

3.0

Level

0
2

4
6

8
10

Log10 N
um

ber of O
ccurences 0

1

2

3

4

5

Database − Trivial FanOut Distribution

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●●●●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

Log10 Fanout

0
1

2
3 Level

0
100

200
300

400

Log10 N
um

ber of O
ccurences

0

1

2

3

4

5

Document − Trivial FanOut Distribution

●●●● ●●●●●●●●●●●●

●

●●●● ●● ●●●● ● ●

●

●

●

●

●

●●

●

●● ●●

●

●

●

●●●●●

●

● ●●●

●

●●●● ●

●

●

●

●●

●

●●●

●

●

●

●●●

●

●

●

● ●● ●●

●

●● ●●●●

●

●

●

●

●

●● ●

●

●●

●

● ●

●

●●● ●● ●●

●

●

●●

● ●●

●

● ●

●

●

●
●

●

●

●

●
●
●

●

●●
●●

●

●

●● ●●

●

●●

●

●

●●

●●

●

●

●
●

● ●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●●

●

●

●

●●

●

●

●

●

●

● ●

●●

●

●

●

● ●●

●

●

● ●

●

●

●

●

●

●

●

●

●●

● ●

●

●
●

●● ●●●

●

●

●

●

●●

●

●

●

●

●
●

●

● ●

●

●

●●

●

●●
●

●● ●●●●

●
●

● ●●

●

●

●

●

●

●●

●
●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

● ●●

●

● ●

●

●
●

●

●● ●

● ●

●

●

● ●

●

● ●●● ●

●
●

●●

●

●

●

●

●●● ●

●

●● ●● ● ● ●●●

●

● ●●●●

●

●●

●●● ●●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●●

●

● ●● ●●● ●

●

●● ●

●
●

●●●●● ●

●

●

●●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●●

●

●

●●

● ●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●●

●●●

●●

●
●

●

●

●●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●
●

● ●●

●

●

●●

●●

●●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●
●

●● ●

●

●●
●

●

● ●

●

●

●
●

●

●●

●

●●

●

●

●

●●●

●
●

●●

●
●

●●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●●

●●● ●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●●

●

● ●

●

●● ●

● ●●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●●

●●

●●

●

●

●

● ●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

● ●

●

● ●

●●

●

●

●

●

●●

●

●●

●

●

●●

●

●● ●●

●

●

●● ●

●

●

●

● ●●

●
●

●

●● ●

●●

●

●

●

●

●

●●

●
●

●

●●

●● ●

●

●
●

●●

●●

●

●

●

●

● ●●

●

●●

●
●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

● ●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●●●

●

●

●

●●

●

●●●

●

●●

●

●●●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●
●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●

●

●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●

●

●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●

●

●●●●●●

●

●●

●

●●
●

Log10 Fanout

0.0
0.5

1.0
1.5

2.0
2.5

3.0

Level

0
2

4
6

8
10

12

Log10 N
um

ber of O
ccurences 0

1

2

3

4

5

Exchange − Trivial FanOut Distribution

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●

●

●

●

●

●●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●● ●

●

● ●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

● ●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

● ●●

●

●

●●

●

●

● ●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●
●

●
●

●

●
●

●

●
●

●

●

●●●●●●●●●●●●●●●●●

●

●●

●●

●●●●●●●●●

●

●

●

●●●

●

●●

●

●●

●

●●●●●●●●

●

●

●

●●●●

●

●●

●

●

●

●

●●●

●

●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●

Log10 Fanout

0
1

2

3
Level

1.0
1.5

2.0
2.5

3.0
3.5

4.0

Log10 N
um

ber of O
ccurences 0

2

4

6

Report − Trivial FanOut Distribution

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●
●
●●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●
●

●

●

●
●
●

●
●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●●●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●
●
●

●
●

●

●

●

●●

●

●●

●●
●
●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●
●●●

●●

●

●

●

●

●●●●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●●●●●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●
●
●
●

●

●

●●

●

●

●

●
●
●●

●

●

●

●
●●

●

●

●

●●

●●
●

●

●

●●

●

●

●
●

●●

●

●●●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●
●

●

●

●

●●●

●

●

●●
●

●

●

●●

●
●

●

●

●●●●●●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

Log10 Fanout

0.0
0.5

1.0
1.5

2.0
2.5

Level

0

5

10

15

Log10 N
um

ber of O
ccurences

0

1

2

3

4

5

6

Research − Trivial FanOut Distribution

●

●● ●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●●

●
●

●
●

●

●
●●

●
●

●

●

Log10 Fanout

0
1

2
3

4 Level

0
2

4
6

8

Log10 N
um

ber of O
ccurences

0

2

4

6

Semantic Web − Trivial FanOut Distribution

●

●

●

● ●

●

●
●

●●

●
●

●

●

●

●●

●

●
●

●

●

●

●●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●●●●●●

●

●

●

●●● ●●

●

●●●●● ●●●●●

●

●●●●●

●

●●●●●

●

●●

●

●●●

●

●

●

●

●

●●●

●

●●

●

●●●

●

●

●

●●

●

●●●●

●

●●● ●

●
●●

●

●

●

●

●●●●

●●
●

●●

●

●

●●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●
●

●●●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●●●

●

●

●

●
●

●

●

●

●
●●●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●●●●●●●●●●●

●

●●●●

●

●●●●●

●

●●●●●
●

●

●

●

Fig. 7. Trivial element fan-out of XML documents per category

26

Log10 FanOut

0.0

0.5

1.0

1.5

Level

2
4

6
8

10

Log10 N
um

ber of O
ccurences 0.0

0.2

0.4

0.6

Database − Schema − Trivial FanOut Distribution

●
●

●●
●●●●

●●●
●●

●

●●
●

●

●●●●●●●●●●●●
●●●●●●

●

●

●

●

●●●●●●

●●●●●●●

●●●●

●

●●

●

●

●

●

Log10 FanOut

0.0
0.2

0.4
0.6 Level

20

40
60

Log10 N
um

ber of O
ccurences

0.0

0.2

0.4

0.6

0.8

Document − Schema − Trivial FanOut Distributio

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●

●

●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●●

●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●

●●●●● ●●●●●●●●●

●

●

●●●●●●●●●●

●●

●

●●●●●●●●●

●

●●

●

●●●●●●●●●

●●

●●

●●●●●●●●

●

●●

●●●●●●●●

●●

●

●●●●●●●

●

●●

●●●●●●●●

●●

●

●●●●●●●●

●

●●

●

●●●●●●●●

●

●

●

●●●●●●●●

●

●

●●●●●●●

●●

●●●●●●●●

●

●●

●●●●●●●

●●

●●●●●●●

●

●●

●●●●●●●

●

●●

●●●●●●●●

●

●●

●●●●●●●●

●

●●

●●●●●●●●●

●

●●

●●●●●●●●●

●

●●

●●●●●●●●

●

●●

●●●●●●●●

●●

●●

●●●●●●●●●●

●●

●●

●●●●●●●●●●●●●●●

●●

●●

●

●●●

●●

●●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●

●

●●

●●

●●●

●●

●●●

●●●

●●

●●●●●

●●●

●●

●●●●●●●

●●●●●●●●●

●●

●●●●●●●●

●●

●●●●●●●●●

●●

●●●●●●●●●●

●●

●●●●●●●●●●

●●

●●●●●●●●●●

●

●●

●●●●●●●●●●●●

●

●●

●●●●●●●●●●●●●

●

●●

●●●●●●●●

●

●●

●

●●

●

●●

●

●● ●

●

●● ●

●

●●

●

●● ●●●

●

●●●●●●●●●● ●●● ●

●

●●●●

●

●●

●

●

●●

●

●●●●●●●●●●

●

●●

●

●

●●

●

●●●●●●●●

●

●●●●●●●●●●

●

●

●

●

Log10 FanOut

0.0
0.5

1.0
1.5

2.0

Level
20

40

60

Log10 N
um

ber of O
ccurences 0.0

0.2

0.4

0.6

0.8

1.0

Exchange − Schema − Trivial FanOut Distribution

●●

●●●

●●●●●

●

● ●●●● ●●●

●●

●

●●●●●●●●●●

●●

●●●●

●

●●

● ●

●

●●●

●

●●

●●●●●●●●●●●●

●●

●●●●●

●

●

●

●●●

●●● ●●●●●

●

●●●●●

●

●

●●●●

●●

●

●

●●●

●

●●

●

●

●●●●●●●●

●

●●●●●●

●

●●

●

●

●

●

●●● ●●●●● ●●●●●●●

●●●●●

●

●●●● ● ●

●

●

●

●

●●

●●

●●●●

●

●

●

●

●

●

●

●

●●●●●

● ●●●● ●

●

●●●●

●

●

●

●●●

●

●●●

●

●●

●●●●●

●

●●●

●●●●

●

●

●

●

●

●

●

●

●

● ●●●●●●

●

●

●●

●●●●

●

●

●●

●

●

●

●●●

●●●

●

●

Log10 FanOut

0.0
0.5

1.0
1.5

2.0

Level

1.0
1.5

2.0
2.5

3.0
3.5

4.0

Log10 N
um

ber of O
ccurences

0.0

0.5

1.0

1.5

Report − Schema − Trivial FanOut Distribution

●●●

●●

●●●

●

●●●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●
●

Log10 FanOut

0.0

0.5

1.0
Level

5

10

Log10 N
um

ber of O
ccurences

0.0

0.2

0.4

0.6

0.8

1.0

Research − Schema − Trivial FanOut Distribution

●
●

●●
●●

●●

●

●

●

●

●

●

●

●

●

●
●●●

●

●●

●

●

●

●●●

●●

●

●

●● ●●

● ●

●● ●

●

●●●

●

● ●

●

●

●

●●

●

●●●

●

●

●

●

●

● ●

●

●

●
●●

●

●

●

●

●●

● ●●●

● ●

●

●●

●

●

●

Fig. 8. Trivial element fan-out of XML schemes per category

27

As we can see the highest values of fan-in naturally occur in the doc and ex
categories which generally show far more complicated schema definitions than
the rest. In other cases the values are usually rather low on average and moderate
on maximum values (usually around 13 different input elements). According to
our experience such high values are caused by complete subgraphs that occur
especially in doc schemes and can consist of up to 10 nodes. For instance HTML-
like tags p, b, u, and i can occur within each other in arbitrary order and thus
form a complete subgraph of 4 nodes. Such subgraphs can dramatically and
uselessly complicate the processing especially if we know that the real data are
simple.

Recursive Statistics Next set of statistics, called recursive, deals with types
and complexity of recursion. As we already know there are no recursive elements
in the rep category.

Table 9 contains an overview of exploitation rates of the four previously
defined types of recursion, i.e. trivial, linear, pure, and general. Table 10 contains
their percentage representation per each category. In both cases we consider
both XML documents and XML schemes for comparison. Table 11 contains
the number of recursive descendants and the width of recursive branching in
recursive trees. In other words it describes the size and “shape” of recursion.
The former statistic is computed only for trivial, linear, and pure recursion since
these can contain only a single type of recursive element. The latter statistic is
computed only for pure recursion since both trivial and linear recursion cannot
branch out. Complexity of particular types of recursion is also depicted in Figures
9 – 13 that display graphs of distribution of their depths and Table 12 that
contains the overview of distances of closest and furthest ed-pairs. In all the
mentioned cases we consider only the results for XML documents since XML
schemes cannot be used or the results are not interesting. And for the sake of
completeness Table 13 finally contains the most common recursive elements per
each category. 9

It is probably not surprising that the recursion is mostly used in the doc and
ex categories while in other categories the importance of recursion seems to be
only marginal (see Table 9). Contrary to usual expectations according to Table 10
the most common type of recursion is not the general recursion but the linear
recursion which consists of a single recursive element that does not branch out.
The second most used type of recursion is pure recursion – still containing only
one single recursive element name in the whole recursive subtree. The general
recursion comprises only a lesser part of all recursion types. The trivial recursion,
though occasionally present in the data, is not of any special importance. Note
that these findings contradict to results of other existing papers that claim that
linear recursion is not a frequent feature and thus insignificant.

If we further compare the schema part of both the tables with the part
containing results for their instances we can see that XML schemes are probably
9 In all the tables T stands for trivial recursion, L stands for linear recursion, P stands

for pure recursion, and G stands for general recursion.

28

dat doc ex rep res sem

D
o
c
.

T 0.06 2.38 3.67 - 0 0.27
L 0.06 19.92 32.57 - 0.65 2.52
P 0.03 18.76 22.48 - 0 1.46
G 0.06 16.20 7.80 - 0.04 0

S
ch

.

T 0 0 0 - 0 -
L 0 0 0 - 14.29 -
P 0 2.94 7.89 - 28.57 -
G 12.50 85.29 13.16 - 28.57 -

Table 9. Exploitation rate of types of re-
cursions (%)

dat doc ex rep res sem

D
o
c
.

T 0.2 5.0 6.4 - 0 1.0
L 0.5 65.3 45.7 - 66.7 92.6
P 0.7 12.7 26.9 - 0 6.4
G 98.5 17.0 21.0 - 33.3 0

S
ch

.

T 0 0 0 - 0 -
L 0 0 0 - 2.9 -
P 0 0.1 1.0 - 20.6 -
G 100.0 99.9 99.0 - 76.5 -

Table 10. Percentage representation of
types of recursion (%)

Statistics dat doc ex rep res sem

T Number of descendants
Avg. 1.0 1.1 1.1 - - 1.0
Max. 1 26 2 - - 1

L Number of descendants
Avg. 1.0 3.7 3.7 - 1.0 1.0
Max. 1 922 70 - 1 3

P
Number of descendants

Avg. 2.4 19.8 5.8 - - 3.1
Max. 6 496 47 - - 6

Width of branching
Avg. 2.3 9.8 3.5 - - 2.9
Max. 6 263 11 - - 6

Table 11. Number of descendants and width of branching in recursive trees of XML
documents

too broad. Not only they define recursive elements when there is clearly no reason
to do so but also they almost do not specify anything but the most general type
of recursion. Generally not only single documents but even whole collections do
not exploit the full generality allowed by corresponding schema definitions. We
have already claimed that XML schemes are a reliable source of information,
but now we can see that they cannot be taken as the only source and it is always
necessary to analyze the sample data too.

Statistics dat doc ex rep res sem

Distance of closest ed-pairs
Avg. 1.9 1.5 1.6 - 2.4 1.9
Max. 3 162 6 - 9 2

Distance of furthest ed-pairs
Avg. 1.9 3.2 2.3 - 3.6 1.9
Max. 3 450 6 - 12 4

Table 12. Average and maximum distance of closest and furthest ed-pairs in XML
documents

Considering the remaining statistics which focus on size, shape, and com-
plexity of recursion or its particular types (see Table 11) we can observe that it
is usually quite simple and regular (e.g. the average number of recursive descen-

29

dants mostly does not exceeds 6), although there can be found some surprisingly
high extreme values (e.g. the total maximum 922). An expectable exception is
the doc category, which contains the highest portion of recursive elements and
for which we can expect more complex structures. Nevertheless also in this case
the average values are still quite low (lower than 20), though higher than in other
cases.

The simplicity of commonly used recursion types in data instances is also
apparent from Table 12. The average distance of the closest two recursive ele-
ments is always less than 2.5 while the average distance of the furthest pairs is
between 1.9 and 3.6. The maximum values tend to be quite extreme but they
only occur in very specific documents – usually the same ones that had shown
similarly peculiar features regarding the maximum depth and other statistics.

Category Elements

dat parlist, ul, sup, sub, table

doc para, span, div, table, index-entry, p

ex g, p, svg, list, span, table

rep -

res para, S, NP, ADJP, VP

sem Class, Description, component, value, example
Table 13. The most common recursive elements in XML documents

Mixed-content Statistics From global statistics we already know the number
of mixed-content elements in a typical XML document and their exploitation
rate. Mixed-content statistics further analyze the structure and complexity of
mixed contents more deeply. They focus on average and maximum depth of
mixed content and the percentage of simple mixed-content elements. There is
of course no point in analyzing the depth of simple mixed contents since it is
always equal to 1.

The results of the statistics are listed in Table 14. As an illustration Ta-
ble 15 contains the overview of most common mixed-content elements per each
category. 10

Statistics dat doc ex rep res sem

Depth
Avg. 1.8 4.1 1.0 - 1.9 1.2
Max. 6 448 5 - 2 3

Simple mixed contents (%) 55.9 79.4 99.6 - 1.9 78.4
Table 14. Mixed-content statistics for XML documents per category

10 Remember that there are no mixed-content elements in the rep category in both
XML documents and XML schemes.

30

Trivial Recursion

Depth

F
re

qu
en

cy

1 2 3 4 5 6 7 8
0

2
4

6
8

12

Linear Recursion

Depth

F
re

qu
en

cy

1 2 3 4 5 6 7 8

0
5

10
20

30

Pure Recursion

Depth

F
re

qu
en

cy

1 2 3 4 5 6 7 8

0
10

20
30

40

General Recursion

Depth

F
re

qu
en

cy

1 2 3 4 5 6 7 8
0

20
00

40
00

60
00

Fig. 9. Distribution of depths of recursions for dat category in XML documents

Trivial Recursion

Depth

F
re

qu
en

cy

2 4 6 8 10 12

0
40

0
80

0

Linear Recursion

Depth

F
re

qu
en

cy

2 4 6 8 10 12

0
20

00
60

00

Pure Recursion

Depth

F
re

qu
en

cy

2 4 6 8 10

0
50

0
15

00
25

00

General Recursion

Depth

F
re

qu
en

cy

2 4 6 8

0
10

00
20

00
30

00

Fig. 10. Distribution of depths of recursions for doc category in XML documents

31

Trivial Recursion

Depth

F
re

qu
en

cy

1 2 3 4 5 6 7 8
0

1
2

3
4

5
6

7

Linear Recursion

Depth

F
re

qu
en

cy

1 2 3 4 5 6 7 8

0
20

40
60

Pure Recursion

Depth

F
re

qu
en

cy

1 2 3 4 5 6 7 8

0
10

20
30

40

General Recursion

Depth

F
re

qu
en

cy

1 2 3 4 5 6 7 8
0

5
10

20
30

Fig. 11. Distribution of depths of recursions for ex category in XML documents

Trivial Recursion

Depth

F
re

qu
en

cy

1 2 3 4 5 6 7 8

−
1.

0
0.

0
0.

5
1.

0

Linear Recursion

Depth

F
re

qu
en

cy

1 2 3 4 5 6 7 8

0
5

10
15

20

Pure Recursion

Depth

F
re

qu
en

cy

1 2 3 4 5 6 7 8

−
1.

0
0.

0
0.

5
1.

0

General Recursion

Depth

F
re

qu
en

cy

1 2 3 4 5 6 7 8

0
5

10
15

Fig. 12. Distribution of depths of recursions for res category in XML documents

32

Trivial Recursion

Depth

F
re

qu
en

cy

1 2 3 4 5 6 7 8

0.
0

1.
0

2.
0

3.
0

Linear Recursion

Depth

F
re

qu
en

cy

1 2 3 4 5 6 7 8

0
50

15
0

25
0

Pure Recursion

Depth

F
re

qu
en

cy

1 2 3 4 5 6 7 8

0
5

10
15

General Recursion

Depth

F
re

qu
en

cy

1 2 3 4 5 6 7 8

−
1.

0
0.

0
0.

5
1.

0

Fig. 13. Distribution of depths of recursions for sem category in XML documents

33

Category Elements

dat bht, text, h1, li, title, bold

doc p, ip1, para, div, td, st

ex DOC, h, p, Paragraph, span, text

rep -

res related

sem div, p, Description, li, description
Table 15. The most common mixed-content elements in XML documents

Again we can observe that the structure of mixed-content elements is not
complex. The average depth is low (less than 5) and most of them (e.g. 55.9% for
dat, 79.4% for doc, or even 99.6% for ex category) are even of the simplest types
which consist only of trivial subelements. In this light most of the currently used
techniques for dealing with arbitrary mixed content seem to be unnecessarily
general. It would probably be beneficial to handle the trivial cases separately.

DNA Statistics A brand new construct we have defined is called DNA pat-
tern and we analyze it through DNA statistics. The name of this pattern is
given by the first XML document in which it has been detected – a document
describing the structure of DNA. Generally speaking a DNA pattern contains
an arbitrary amount if trivial subelements and just one complex subelement,
so-called degenerated branch.

The analysis summarizes the occurrences of such patterns and their (average
and maximum) widths and depths per each category; the results are listed in
Table 16. Furthermore, Table 17 contains an overview of most common DNA
patterns in XML documents per each category.

Statistics dat doc ex rep res sem

D
o
c
.

Elements involved (%) 1.19 10.66 8.08 0.00 8.64 0.61
Number of occurrences 91,571 296,880 179,556 3 551,806 40,017

Width
Avg. 5.5 4.1 2.6 2.0 4.9 7.2
Max. 57 1398 150 2 105 47

Depth
Avg. 3.1 2.7 2.5 3.0 2.6 2.9
Max. 9 361 8 3 17 9

S
ch

. Width
Avg. 4.3 - 1.8 7.3 2.4 -
Max. 11 - 10 26 6 -

Depth
Avg. 3.1 - 2.3 2.0 2.4 -
Max. 6 - 3 2 3 -
Table 16. DNA pattern statistics per category

The statistics show that although the pattern seems to be rather artificial, it
occurs relatively often, especially in doc (10.66% of elements), res (8.64%) and
ex (8.08%) categories. Structure of the pattern is quite simple seeing that the

34

Category Elements

dat annotation, mail, person, closed auction, item

doc fig, item, glossentry, row, tr, refsect1

ex JournalIssue, Journal, serial, deletion, DataBank

rep tests

res accinfo, refinfo, genetics, DOMAIN, field, GENE-ONTOLOGY

sem Politician, HouseBill, SenateBill, term, HouseSimpleResolution
Table 17. The most common DNA patterns in XML documents

high maximum widths (e.g. the highest 1398) correspond to number of trivial
subelements, whereas the highest maximum depths (e.g. the highest 361) seem
to be rather exceptional. The average widths and depths are still quite low –
lower than 10 and 3 respectively.

We believe that the pattern could be handled separately and thus more effec-
tively knowing that except for the exactly one degenerated branch its structure
is simple.

Relational Statistics Another newly defined type of element, so-called rela-
tional pattern, is analyzed using a set of relational statistics. These patterns can
easily be processed in relational databases (as simple tables) or using relational
approaches since they are often a product of various database export routines.
As such they are definitely worth analyzing. We further distinguish two types of
relational patterns – relational and shallow relational – and also the statistics are
computed for both separately. We analyze their number of occurrences, (average
and maximum) widths, and for relational patterns also (average and maximum)
fan-out of subelements, everything per each category. (In this case we do not
take in results for schemes, since they are biased due to recursion.)

Tables 18 and 19 contain the results of general analyses of representation
and complexity of both patterns, i.e. number of occurrences, repetition count of
the pattern (i.e. number of rows of the corresponding table), and in case of rela-
tional pattern also element fan-out (i.e. number of columns of the corresponding
table). The number of occurrences indicates how often we can match the regular
relational pattern in the source data set while the number of elements involved
in the relational pattern is the total number of all elements which could be rep-
resented using a simple tabular relationship. Finally Tables 20 and 21 contains
an overview of most common relational and shallow relational patterns per each
category.

Similarly to previous case we can see that both the patterns are quite frequent
(e.g. 29.23% in dat, 41.56% in sem and even 94.29% in rep category), though the
shallow relational pattern does not have that many elements involved (except for
res category with 17.12% always less than 5%). Remarkably, both the patterns
are found in all categories and even though most occurrences cover only a small
number of elements there are some instances that are very large, consisting of
thousands or even hundreds of thousands simple elements. Since their simple

35

Statistics dat doc ex rep res sem

Elements involved (%) 29.23 6.23 29.53 94.29 22.66 41.56

Number of occurrences 170,744 154,133 185,358 40,276 619,272 716,038

Repetition
Avg. 10.5 3.3 5.8 322.7 5.1 8.8
Max. 600,572 1,254 615 102,601 15,814 16,500

Fan-out
Avg. 3.6 1.5 2.2 6.2 2.3 3.5
Max. 33 10 18 26 51 113

Table 18. Relational pattern statistics for XML documents per category

Statistics dat doc ex rep res sem

Elements involved (%) 0.2 4.38 3.41 0.23 17.12 3.33

Number of occurrences 16,025 82,255 44,403 11,957 418,342 117,834

Repetition
Avg. 4.9 6.6 5.2 44.6 14.4 14.3
Max. 1,000 3,331 1,000 2,166 151 1,669

Table 19. Shallow relational pattern statistics for XML documents per category

Category Elements

dat li, inproceedings, article, bidder, listitem, option

doc au, entry, li, math, a, methodparam

ex MeshHeading, Author, Chemical, Grant, TitleOther

rep atom site, audit conform, chem comp, pdbx poly seq scheme

res xref, DOMAIN MOTIF, EXON-CDNA, EXON-GENOME

sem ExternalPage, Topic, Alias, Description, Restaurant
Table 20. The most common relational patterns in XML documents

Category Elements

dat watches, authors, abstract, Genres, generalTerms, ul

doc row, tr, verse, context, ul, qmethod

ex KeywordList, PublicationTypeList, subject headings, p

rep database 2Category, entity poly seqCategory, atom typeCategory

res authors, keywords, classification, footnote, VARIANT, CHAIN

sem Description, Noun, AdjectiveSatellite, Verb, Adjective
Table 21. The most common shallow relational patterns in XML documents

structure can easily be captured it is probably again a good idea to handle them
separately to ensure effective processing.

Schema Statistics For the sake of completeness we have also analyzed XML
Schema specific constructs and their real exploitation. Table 22 contains the
percentage of schemes that contain a particular construct per each category.

The results are probably biased by the fact that unlike DTDs the percentage
of XML Schema schemes is extremely low. Thus the XML Schema constructs
seem to be exploited minimally. A special case is the rep category whose doc-

36

Schema construct dat doc ex rep res sem

Unordered sequence 21.9 94.1 71.1 100.0 57.2 -

fixed 0.0 0.0 0.0 0.0 0.0 -

default 21.9 85.3 39.5 75.0 57.2 -

any 3.1 5.9 2.6 0.0 0.0 -

anyAttribute 0.0 0.0 2.6 75.0 0.0 -

ID 12.5 88.2 13.2 0.0 57.2 -

IDREF(S) 3.1 88.2 5.3 0.0 28.6 -

unique 0.0 0.0 0.0 25.0 0.0 -

key 0.0 0.0 0.0 100.0 0.0 -

keyref 0.0 0.0 0.0 100.0 0.0 -
Table 22. Exploitation rate of schema specific constructs per category

uments have their schema expressed in both DTD and XML Schema language
and thus the results are strikingly different and seem to be even unnatural (often
up to 100%).

On the other hand we can observe several important facts. Firstly we can see
a significant percentage of occurrence of unordered sequences, disregarding their
type, i.e. XML Schema all element or DTD expression of unbounded choice of
elements. The lowest value is 21.9% for dat documents whereas in other cases
it always exceeds 50%. This finding seems to complicate the processing but on
the other hand together with the previous results it confirms the hypothesis that
XML schemes are too general and the XML documents often do not fully exploit
the allowed generality.

Secondly we can observe that the default values are used frequently (even
in 85.3% of XSDs for doc and 75.0% of XSDs for rep categories). This is a
good news for XML processing since this enable to predict a typical value of a
particular element or attribute.

Finally we can see that both IDs and IDREF(S) are also used quite frequently,
especially in doc and res documents. As in the previous case they offer valuable
“hints” on the real data.

6 Conclusion and Future Work

The main goal of this paper was to analyze, describe, and classify real XML data
collections. The analyses come out of existing papers on similar topics with the
aim to confirm or confute and especially extend their results and conclusions. We
have defined several new constructs for describing the structure of XML data
in more detail and enhanced the existing ones. If possible the statistics were
computed and compared for both XML documents and XML schemes.

We have found out that the real data show lots of pattern usages and are not
as complex as they are often expected to be. Thus there exists plenty of space
for improvements in XML processing resulting from these findings.

37

One of the ways of exploiting the findings is inspired by so-called flexible
schema-driven database mapping methods [38, 42], i.e. methods which take into
account a given sample set of XML data and XML queries and adapt the re-
sulting database schema to their structure and features. It is not surprising that
such techniques have better results than the general ones, though only in case
the real data and queries correspond to the given sample.

Another possible direction of corresponding research is to focus on an auto-
configurable XML processing system, i.e. a system that is able to adapt and
process XML data according to their known characteristics more effectively.
The features of the real data sample could be used as a good “default setting”.
Such system could be further enhanced to detect various kinds of regularities
and patterns automatically and to use the best possible storage method for the
particular portion of the data (e.g. the relational back-end for the data covered
by relational or DNA patterns). The next stage would probably be a system
that is able to change the storage strategies dynamically according to the recent
history of incoming data and the corresponding queries.

The knowledge of real XML data could also be useful in the area of bench-
marking. General results of a particular benchmark could be further evaluated
according to the real exploitation of each tested feature and thus give more
realistic information.

Generally we believe that approaches which are able to exploit statistically
important data patterns will be more effective than techniques based only on
general features defined by XML standards.

Acknowledgement

This work was supported in part by the National Programme of Research (In-
formation Society Project 1ET100300419).

38

References

1. Available at: http://www.ibiblio.org/bosak/.

2. Available at: http://monetdb.cwi.nl/xml/index.html.

3. Available at: http://inex.is.informatik.uni-duisburg.de:2004/.

4. Available at: http://www.assortedthoughts.com/downloads.php.

5. Available at: http://softcorporation.com/products/xmllight/.

6. Available at: http://www.freedb.org/.

7. Available at: http://www.cs.wisc.edu/niagara/data.html.

8. Available at: http://www.nlm.nih.gov/mesh/meshhome.html.

9. Available at: http://arthursclassicnovels.com/.

10. Available at: http://research.imb.uq.edu.au/rnadb/xmldownloads/default.

aspx.

11. Available at: http://www.jbirc.aist.go.jp/hinv/.

12. Available at: http://www.debian.org/doc/ddp.

13. Available at: http://developer.gnome.org/doc/.

14. Available at: http://www.tldp.org/.

15. Available at: http://docs.kde.org/.

16. Available at: http://www.php.net/docs.php.

17. Available at: http://sf.net/project/showfiles.php?group_id=21935.

18. Available at: http://xerces.apache.org/.

19. Available at: http://www.ibiblio.org/.

20. Available at: http://oval.mitre.org/oval/download/datafiles.html.

21. Available at: http://www.rcsb.org/pdb/uniformity/.

22. Available at: http://rdf.dmoz.org/.

23. Available at: http://www.govtrack.us/source.xpd.

24. Available at: http://rdfdata.org/data.html.

25. Available at: http://www.w3.org/Graphics/SVG/Test/.

26. Available at: http://www.cs.washington.edu/research/xmldatasets/.

27. Available at: http://www.w3.org/.

28. Available at: http://cgsc.biology.yale.edu/xlocus.html.

29. DocBook Technical Committee Document Repository. OASIS. http://www.

oasis-open.org/docbook/.

30. OpenOffice.org Project. Sun Microsystems. http://www.openoffice.org/.

31. The Semantic Web Homepage. W3C. www.w3.org/2001/sw/.

32. The Extensible HyperText Markup Language (Second Edition). W3C Recommen-
dation, August 2002. http://www.w3.org/TR/xhtml1/.

33. Scalable Vector Graphics (SVG) 1.1 Specification. W3C Recommendation, January
2003. http://www.w3.org/TR/SVG/.

34. D. Barbosa, L. Mignet, and P. Veltri. Studying the XML Web: Gathering Statistics
from an XML Sample. In World Wide Web, pages 413–438, Hingham, MA, USA,
2005. Kluwer Academic Publishers.

35. D. Beckett. RDF/XML Syntax Specification (Revised). W3C Recommendation,
February 2004. http://www.w3.org/TR/rdf-syntax-grammar/.

36. G. J. Bex, F. Neven, and J. Van den Bussche. DTDs versus XML Schema: a
Practical Study. In WebDB ’04, Proceedings of the 7th International Workshop on
the Web and Databases, pages 79–84, New York, NY, USA, 2004. ACM Press.

37. P. V. Biron and A. Malhotra. XML Schema Part 2: Datatypes Second Edition.
W3C Recommendation, October 2004. www.w3.org/TR/xmlschema-2/.

39

38. P. Bohannon, J. Freire, P. Roy, and J. Simeon. From XML Schema to Relations:
A Cost-based Approach to XML Storage. In ICDE ’02: Proceedings of the 18th
International Conference on Data Engineering, page 64, Washington, DC, USA,
2002. IEEE Computer Society.

39. T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensible
Markup Language (XML) 1.0 (Third Edition). W3C Recommendation, February
2004. http://www.w3.org/TR/REC-xml/.

40. B. Choi. What are real DTDs like? In WebDB ’02, Proceedings of the 5th Inter-
national Workshop on the Web and Databases, pages 43–48, Madison, Wisconsin,
USA, 2002. ACM Press.

41. D. C. Fallside and P. Walmsley. XML Schema Part 0: Primer Second Edition.
W3C Recommendation, October 2004. www.w3.org/TR/xmlschema-0/.

42. M. Klettke and H. Meyer. XML and Object-Relational Database Systems – En-
hancing Structural Mappings Based on Statistics. In Lecture Notes in Computer
Science, volume 1997, pages 151–170, 2000.

43. M. Klettke, L. Schneider, and A. Heuer. Metrics for XML Document Collections.
In XMLDM Workshop, pages 162–176, Prague, Czech Republic, 2002.

44. J. Kosek, M. Kratky, and V. Snasel. Struktura realnych XML dokumentu a metody
indexovani. In ITAT 2003 Workshop on Information Technologies Applications
and Theory, High Tatras, Slovakia, 2003. (in Czech).

45. M. Kratky, J. Pokorny, and V. Snasel. Indexing XML data with UB-trees. In
Proceedings of ADBIS’02, Advances in Databases and Information Systems, pages
155–164, Bratislava, Slovakia, 2002.

46. M. Kratky, J. Pokorny, and V. Snasel. Implementation of XPath Axes in the Multi-
dimensional Approach to Indexing XML Data. In Proceedings of Current Trends
in Database Technology - EDBT 2004 Workshops, pages 46–60, Heraklion, Crete,
Greece, 2004. Springer.

47. A. McDowell, C. Schmidt, and K. Yue. Analysis and Metrics of XML Schema. In
SERP ’04, Proceedings of the International Conference on Software Engineering
Research and Practice, pages 538–544. CSREA Press, 2004.

48. L. Mignet, D. Barbosa, and P. Veltri. The XML Web: a First Study. In WWW
’03, Proceedings of the 12th international conference on World Wide Web, Volume
2, pages 500–510, New York, NY, USA, 2003. ACM Press.

49. M. Murata, D. Lee, and M. Mani. Taxonomy of XML Schema Languages using
Formal Language Theory. In Extreme Markup Languages, Montreal, Canada, 2001.

50. The Apache XML Project. Xerces Java Parser. OASIS. http://xerces.apache.
org/xerces-j/.

51. A. Sahuguet. Everything You Ever Wanted to Know About DTDs, But Were
Afraid to Ask (Extended Abstract). In Selected papers from the 3rd International
Workshop WebDB 2000 on The World Wide Web and Databases, pages 171–183,
London, UK, 2001. Springer-Verlag.

52. J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt, and J. F.
Naughton. Relational Databases for Querying XML Documents: Limitations and
Opportunities. In VLDB’99, Proceedings of 25th International Conference on Very
Large Data Bases, pages 302–314, Edinburgh, Scotland, UK, 1999. Morgan Kauf-
mann.

53. H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema Part
1: Structures Second Edition. W3C Recommendation, October 2004. www.w3.org/
TR/xmlschema-1/.

40

Appendix: XML Data Collections

Tables 23 – 25 contain a detailed list of the analyzed real XML data collections.
It involves name and source of each collection, its total size in bytes (rounded to
kB, MB, or GB), the number of XML documents in the collection, flag of DTD
or XSD existence, and category of the document. For DTD/XSD flags

– Y stands for existence of user-defined DTD/XSD and
– y stands for standard DTD/XSD.

Some XML collections have both DTD and XSD.

Name Size # DTD XSD Cat

Arthur’s Classic Novels in XML [9] – classicbook 104.8M 285 Y doc

Arthur’s Classic Novels in XML – bookfrag 1.9M 8 Y doc

Arthur’s Classic Novels in XML – gutbook 1.4M 5 Y doc

Arthur’s Classic Novels in XML – gutplay 779.7k 3 Y doc

Arthur’s Classic Novels in XML – gutpoems 83.9k 1 Y doc

The Bible in XML – ver. 1 [4] 5M 1 doc

The Bible in XML – ver. 2 [5] 3.3M 1 Y doc

DNA – Human Gene Database [11] 579.4M 1 Y res

DocBook samples – Debian Documentation Project
[12]

3.3M 121 y y doc

DocBook samples – GNOME Developer Documen-
tation [13]

13.1M 862 y y doc

DocBook samples – LDP Documentation [14] 36.9M 900 y y doc

DocBook samples – LDP Documentation guide 44k 1 y y doc

DocBook samples – LDP Documentation howto 1.5M 32 y y doc

DocBook samples – KDE Documentation [15] 14.6M 1725 y y doc

DocBook samples – PHP documentation [16] 34.7M 60 y y doc

DocBook samples – test documents [17] 193.1k 122 y y doc

DocBook samples – Xerces [18] 901.8k 46 y y doc

FreeDB [6] 1.2G 1 dat

Ibiblio [19] – baseball statistics 599.8k 1 Y dat

Ibiblio – periodic table 110.5k 1 res

Inex [3] 494.3M 125 Y doc

Jon Bosak [1] – religious texts 6.7M 4 Y doc

Jon Bosak – Shakespeare’s plays 7.5M 37 Y doc

Medical Subject Headings [8] – archival 3.4M 1 Y ex

Medical Subject Headings – biosis 667.3k 1 Y ex

Medical Subject Headings – catplus2004 15.8M 2 Y ex

Medical Subject Headings – catplus2005 19M 4 Y ex

Medical Subject Headings – ccris 2.8M 1 Y ex

Medical Subject Headings – chemid 458.4k 1 Y res

Medical Subject Headings – cis 498.1 1 Y ex

Table 23. Overview of analyzed data – part 1

41

Name Size # DTD XSD Cat

Medical Subject Headings – crisp 1.7M 1 Y ex

Medical Subject Headings – dart 2.8M 1 Y ex

Medical Subject Headings – desc2005 13.6k 1 Y res

Medical Subject Headings – dirline 2.2M 1 Y ex

Medical Subject Headings – emic 2M 1 Y ex

Medical Subject Headings – emicback 1.3M 1 Y ex

Medical Subject Headings – eticback 1.2M 1 Y ex

Medical Subject Headings – fedrip 1.2M 1 Y ex

Medical Subject Headings – genetox 1.1M 1 Y ex

Medical Subject Headings – hsdb 11.6M 1 Y ex

Medical Subject Headings – ipa 2.1M 1 Y ex

Medical Subject Headings – journal 1.6M 1 Y ex

Medical Subject Headings – medline 292.6M 3 Y ex

Medical Subject Headings – riskline 948.1k 1 Y ex

Medical Subject Headings – tscats 634.5k 1 Y ex

NIAGARA Experimental Data [7] – bibliography 77.5k 16 Y dat

NIAGARA – cars 18.8M 1286 Y dat

NIAGARA – clubs 79.5k 12 Y dat

NIAGARA – departments 1.3M 19 Y dat

NIAGARA – line documents 29.3M 421 doc

NIAGARA – IMDb actors 1.9M 481 Y dat

NIAGARA – IMDb movies 1M 490 Y dat

NIAGARA – NASA data 22.3M 2436 Y Y res

NIAGARA – personnel information 28k 20 Y dat

NIAGARA – company profiles 2.4M 11 Y dat

NIAGARA – stock quotes 2.6M 17 Y dat

NIAGARA – TCP-H (customer) 5.1M 1 dat

NIAGARA – TCP-H (line item) 316.5M 1 dat

NIAGARA – TCP-H (nation) 4.8k 1 dat

NIAGARA – TCP-H (orders) 52.3M 1 dat

NIAGARA – TCP-H (part) 6M 1 dat

NIAGARA – TCP-H (part - supplier) 22.5M 1 dat

NIAGARA – TCP-H (region) 905 1 dat

NIAGARA – TCP-H (supplier) 300.7k 1 dat

OpenOffice samples – draft of text book XML Tech-
nologies (in Czech)

5M 11 y ex

Oval XML files [20] 4.6M 985 Y rep

Protein Data Bank [21] 11.1G 1998 Y rep

RDF samples – 30 collections from various sources
([22], [23], [24])

3.8G 779 sem

RNAdb [10] – overlaps 2.7M 1 res

RNAdb – overlapseqs 2.5M 1 Y res

RNAdb – CombinedLit 3M 1 Y res

RNAdb – fantom 2 47.8M 1 Y res

RNAdb – H-INV 5M 1 Y res

Table 24. Overview of analyzed data – part 2

42

Name Size # DTD XSD Cat

RNAdb – Chr7 956.2k 1 Y res

SVG samples – W3C SVG Test Suite [25] 114.3k 15 y ex

SVG samples – W3C SVG basic 571.8k 87 y ex

SVG samples – W3C SVG svg 1.0 4.9k 1 y ex

SVG samples – W3C SVG tiny 461.8k 78 y ex

XDR (XML data repository) [26] – auction data
(321gone)

23.9k 1 Y dat

XDR – auction data (ebay) 34.7k 1 Y dat

XDR – auction data (ubid) 19.8k 1 Y dat

XDR – auction data (yahoo) 24.8k 1 Y dat

XDR – university courses 4.1M 3 Y dat

XDR – DBLP 258.2M 1 Y dat

XDR – DBLP (bht) 53.2M 1 Y dat

XDR – DBLP (2005) 131.2M 1 Y dat

XDR – Mondial 1.7M 1 Y dat

XDR – Nasa datasets 23.9M 1 res

XDR – Protein Sequence Database 683.6M 1 Y res

XDR – Sigmod Record articles (home page 00) 22.2k 1 Y dat

XDR – Sigmod Record articles (home page 99) 13.1k 1 Y dat

XDR – Sigmod Record articles (index terms page
00)

2M 920 Y dat

XDR – Sigmod Record articles (ordinary issue page
00)

270.3k 51 Y dat

XDR – Sigmod Record articles (ordinary issue page
99)

353.9k 30 Y dat

XDR – Sigmod Record articles (proceedings page
00)

592.7k 17 Y dat

XDR – Sigmod Record articles (proceedings page
99)

719k 16 Y dat

XDR – Sigmod Record articles (Sigmod Record 00) 483k 1 Y dat

XDR – Sigmod Record articles (Sigmod Record 99) 479.7k 1 Y dat

XDR – Swiss Prot 109.5M 1 res

XDR – TreeBank 36.3k 1 res

XHTML samples – Arthur’s Classic Novels 331M 834 y doc

XHTML samples – W3C [27] 95.9M 1097 y doc

XLocus [28] 215.4M 1 res

XMark [2] 111.1M 1 Y dat

Table 25. Overview of analyzed data – part 3

43

