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Abstract. As XML technologies have undoubtedly become a standard
for data representation, it is inevitable to provide efficient implemen-
tations of W3C recommendations. A possible optimization of particular
types of techniques can be found in exploitation of similarity of XML data
and/or matching of XML patterns. In this paper we provide an overview
and classification of such techniques from various points of view. We also
briefly describe the best known representatives of particular ideas and we
discuss their key advantages and disadvantages. The text should serve
as a good starting point for proposing an appropriate similarity-based
optimization.

1 Introduction

Without any doubt the eXtensible Markup Language (XML) [8] has become a
standard for data representation and manipulation. Its popularity is probably
given by the fact that the recommendations are well-defined, easy-to-learn, and
at the same time still enough powerful. The popularity naturally invoked a boom
of efficient implementations of the W3C proposals as well as possible improve-
ments of the existing ones. A possible optimization of particular methods can be
found in exploitation of similarity of XML data and mutual matching of XML
patterns. In general it enables to treat similar data in a similar way or to extend
appropriate approaches known for particular data to the whole set of similar
ones.

Under a closer investigation we can see, that the variety of exploitation of
similarity in XML technologies is surprisingly wide. It can be found in various
XML technologies, such as, e.g., document validation, query processing, data
transformation, storage strategies based on clustering, data integration systems,
dissemination-based applications, etc. We can search for similarity among XML
documents, XML schemes, or between the two groups. Furthermore, we can
distinguish several levels of similarity – a structural level (i.e. considering the
structure of the given XML fragments), a semantic level (i.e. taking into account
the meaning of element / attribute names), a constraint level (i.e. taking into
account text value constraints), or their various combinations.



As the number of existing works and approaches is enormous, in a situation
when a certain similarity evaluation is needed it is hard to say whether there
exists an appropriate solution, or a new one should be proposed. Thus in this
paper we provide an overview and classification of these techniques from various
points of view. We briefly describe the best known representatives of particular
ideas and we discuss their key advantages and disadvantages. The text should
serve as a good starting point for proposing an appropriate similarity-based
optimization, no matter if based on an existing approach, its slight modification,
or a brand new one.

The paper is structured as follows: Section 2 contains a brief introduction to
the area of similarity evaluation in connection with XML technologies. Section
3 states several definitions used throughout the paper. Section 4 describes and
analyzes the existing proposals of similarity metrics for XML documents, Section
5 does the same for XML documents and their schemes, and Section 6 describes
the techniques for XML schemes. Section 7, finally, provides brief conclusions.

2 Similarity, Pattern Matching, and XML

The idea of similarity evaluation and/or pattern matching (i.e. searching for
patterns similar to the given ones) in connection with XML can be found in
various areas. Hence neither its classification is not and easy task since there are
various points of view of the problem and thus various ways of classification and
categorization.

Probably the most popular exploitation of pattern matching can be found
in query evaluation, document validation, and document transformation. In the
first case the given query is modeled as a labeled tree representing the structural
and content constraints a document or its part should follow to be considered
as the answer to a query. The second approach has a similar aim but in this
case the schema is regarded as a template a valid document should correspond
to, i.e. no other but the specified elements are allowed. The third approach can
be placed between the two previous ones, since we search for the given pattern
regardless the other possibly existing elements but, on the other hand, the set
of transformation patterns must (usually) cover the whole document. In all the
three cases the conformance to the given patterns has to be 100%, though in case
of query evaluation we can distinguish so-called approximate query evaluation,
which eases the requirement and searches for results similar to the given pattern.
But in this paper we focus on slightly different ways of similarity and/or pattern
matching evaluation, as described in the following text.

An obvious area of exploitation of data similarity (not only for the XML
case) are storage strategies based the idea of clustering XML documents or
XML schemes. It enables to store structurally similar data in a similar way or
“close” to each other to enable fast retrieval and reduces processing of the whole
set of stored data to the relevant ones.

Another large area covers so-called dissemination-based applications (e.g. [1],
[51]), i.e. applications which timely distribute data from the underlying data
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sources to a set of customers according to user-defined profiles. These systems
also use the approximate query evaluation, since the user expects that the data
conform to the profile up to particular similarity threshold.

Last but not least wide area of similarity-based techniques are so-called data
integration systems, or when concerning directly XML schemes schema integra-
tion systems. They enable to provide a user with a uniform view of the data
coming from different sources and thus having different structure, identifiers,
etc. Hence such system must be able to analyze the source data and find corre-
sponding similarities which are expected to appear often.

There are also other possible areas of similarity exploitation [36], such as, e.g.,
data warehousing [34] (which needs to transform the data from source format to
the warehouse format) or e-commerce (where message translation is necessary).
But these are a bit too far from the scope of this paper.

2.1 Classification of Similarity-Evaluation Approaches

There are various points of view for classification similarity evaluation approaches.
Apart from classification according to the above-described purpose of the sim-
ilarity evaluation the key classifications are the type of the source data, the
precision of the similarity, and the depth of similarity.

From the point of view of the source data the evaluation can be done on
several levels:

– at data level, i.e. among XML documents,
– at data type level, i.e. among DTDs [8] or XML Schema definitions (XSDs)

[44] [7], or
– between the two levels, i.e. between XML data and schemes.

The first two sets are obvious and depend on the type of the data a particular
system focuses on. The last mentioned level is, at least at first glance, a bit
surprising since it compares two different types of data. But on the other hand
there are cases when such approach can be very useful, e.g. the situation when
the system is given both schema-conforming and schema-less data.

The second classification can be done on the basis of the required precision
of the similarity. The measure of similarity is usually expressed as a real value
from [0, 1], where 0 represents strong dissimilarity and 1 strong similarity. A
threshold Tsim ∈ [0, 1] expresses the required precision. Thus we can classify
the techniques according to the threshold, though it seems to be advisable to
distinguish Tsim = 1 and Tsim < 1, i.e. precise and approximate similarity.

Conversely, the depth of similarity evaluation expresses the amount of infor-
mation that are taken into account during the search process. The best-known
levels are:

– a structural level,
– a tag name level,
– a constraint level, or
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– their combinations.

In the first case we consider only the structure of the given XML fragments,
regardless the element and attribute names or text values. This way it is possible
to cluster data from different areas, but having the same or similar structure. We
can also further distinguish various sublevels of structural similarity given by,
e.g., disregarding element order, complexity of mixed contents, etc. Conversely,
the second approach takes into account the tag names and in combination with
the first one it can be exploited in the area of processing simple queries that
do not contain value constraints. In this case we can also distinguish several
sublevels, e.g. if we do not search for equal element/atribute names but we
exploit a kind of thesaurus, i.e. similar semantics of element names. The last, and
in combination with the first two, most strict approach takes into account also
various value constraints and thus it is appropriate for complex query processing
and data validation.

3 Definitions and Formalism

Before we begin to describe and classify the methods, we state several basic
terms used in the rest of the text.

An XML document is usually viewed as a directed labelled tree with several
types of nodes whose edges represent relationships among them.

Definition 1. An XML document is a directed labelled tree T = (V, E, ΣE ,
ΣA, Γ, lab, r), where V is a finite set of nodes, E ⊆ V × V is a set of edges,
ΣE is a finite set of element names, ΣA is a finite set of attribute names, Γ
is a finite set of text values, lab : V → ΣE ∪ ΣA ∪ Γ is a surjective function
which assigns a label to each v ∈ V , whereas v is an element if lab(v) ∈ ΣE, an
attribute if lab(v) ∈ ΣA, or a text value if lab(v) ∈ Γ , and r is the root node of
the tree.

A schema of an XML document is usually described using DTD or XML
Schema1. Both the languages use a similar approach and describe the allowed
structure of an element using its content model.

Definition 2. A content model α over a set of element names Σ′
E is a regular

expression defined as α = ε | pcdata | f | (α1, α2, ..., αn) | (α1|α2|...|αn) | β*
| β+ | β?, where ε denotes the empty content model, pcdata denotes the text
content, f ∈ Σ′

E, “,” and “|” stand for concatenation and union (of content
models α1, α2, ..., αn), and “*”, “+”, and “?” stand for zero or more, one or
more, and optional occurrence(s) (of content model β), respectively.

Definition 3. An XML schema S is a four-tuple (Σ′
E , Σ′

A, ∆, s), where Σ′
E is

a finite set of element names, Σ′
A is a finite set of attribute names, ∆ is a finite

set of declarations of the form e → α or e → β, where e ∈ Σ′
E, α is a content

model over Σ′
E, and β ⊆ Σ′

A, and s ∈ Σ′
E is a start symbol.

1 We state the definitions for DTD only for the paper length.
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To simplify processing an XML schema is often transformed into a graph
representation.

Definition 4. A schema graph of a schema S = (Σ′
E , Σ′

A, ∆, s) is a directed,
labelled graph G = (V, E, lab′), where V is a finite set of nodes, E ⊆ V × V is
a set of edges, lab′ : V → Σ′

E ∪Σ′
A ∪ {“|”, “*”, “+”, “?”, “,”} ∪ {pcdata} is a

surjective function which assigns a label to ∀ v ∈ V , and s is the root node of
the graph.

4 Similarity among XML Documents

Currently, there is a huge amount of works focusing on measuring similarity
among XML documents, which is probably caused by the fact that XML docu-
ments can be viewed as directed labeled (un)ordered trees.

We can distinguish two main approaches. On the one hand, there are tech-
niques which express the similarity of two documents D1 and D2 measuring
“how difficult” is to transform D1 into D2. On the other hand, there are tech-
niques which define a reasonable representation of D1 and D2 that enables their
efficient comparison and similarity evaluation.

The core ideas of all the existing approaches also strongly vary from the
natural ones, such as measuring tree edit distance or the size of the set of paths
to obscure ones such as comparing signals of XML documents.

4.1 Tree Edit Distance

A quite natural idea for measuring the difficulty of transforming document D1

into D2 is to represent the documents as trees T1 and T2 and measure so-called
tree edit distance. The idea results from methods for measuring similarity of
strings and computes the amount of edit operations necessary for transforming
tree T1 into T2.

Approach I. One of the first approaches for measuring similarity of XML
documents on the basis of tree edit distance can be found in [33]. There are
also older approaches measuring a general labeled tree edit distance (e.g. [43],
[38], [50], [10], etc.), but they consider only simple edit operations on a single
node. But as two documents created from the same DTD can have radically
different structure (due to repeatable, optional, and alternative elements), they
compute undesirably high distance. On this account authors of paper [33] allow
more complex edit operations, each having its particular non-negative cost, as
follows:

– Insert – a single node n is inserted to the position given by parent node p
and ordinal number expressing its position among subelements of p

– Delete – a leaf node n is deleted
– Relabel – a node n is relabeled
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– InsertTree – a whole subtree T is inserted to the position given by par-
ent node p and ordinal number expressing position of its root node among
subelements of p

– DeleteTree – a whole subtree rooted at node n is deleted

As it is obvious, for given trees T1 and T2 there are usually several possible
transformation sequences for transforming T1 into T2. A natural approach is to
evaluate all the possibilities and to choose the one with the lowest cost. But such
approach can be quite inefficient. Thus the authors define so-called allowable
sequences of edit operations, which significantly reduce the set of possibilities
and, at the same time, speed up their cost evaluation.

Definition 5. A sequence of edit operations is allowable if it satisfies the fol-
lowing two conditions:

1. A tree T may be inserted only if T already occurs in the source tree T1. A
tree T may be deleted only if it occurs in the destination tree T2.

2. A tree that has been inserted via the InsertTree operation may not subse-
quently have additional nodes inserted. A tree that has been deleted via the
DeleteTree operation may not previously have had children nodes deleted.

The first restriction forbids undesirable operations like, e.g., deleting whole
T1 and inserting whole T2, etc., whereas the second one enables to efficiently
compute the costs of the operations.

The evaluating algorithm is based on the idea of determining the minimum
cost of each required insert of every subtree of T2 and delete of every subtree of
T1. They can easily be evaluated using a bottom-up procedure. For example in
case of inserts, for each node n ∈ T2 the cost of inserting whole Tn and the sum
of the cost of inserting node n and costs of inserting its subtrees T ′1, T

′
2, ..., T

′
k are

first evaluated. If the tree Tn rooted at n does not occur in T1 (i.e. we cannot
insert whole Tn), the sum is the demanded result, otherwise minimum of the
two values is the demanded result. With this preprocessing the resulting edit
distance is determined using classical dynamic programming.

Approach II. A slightly different algorithm based on tree edit distance, called
MH-DIFF, can be found in [11] (which extends ideas of [12]). The main difference
is in the set of edit operations:

– Insert – a new node n is inserted to the position given by its parent node p,
whereas child nodes of p become child nodes of n

– Delete – a node n is deleted, while its child nodes become child nodes of its
parent node p

– Update – a node n is relabeled
– Move – a tree T rooted at n is moved to the given position
– Copy – a copy of tree T rooted at n is inserted to the given position
– Glue – a tree T isomorphic to a tree T ′ is deleted
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As it is obvious, the operations differ from the previous case especially in the
Insert and Delete operation. In this case a node can be inserted as an internal
node of the tree, whereas in the previous case the inserted node always becomes
a leaf. A similar situation can be detected in case of deleting a node. Considering
operations on whole trees we can see that the main difference is in the fact that
a tree T can be deleted only if there exists a tree T ′ isomorphic to T . In other
words Glue is an inverse operation to Copy.

The aim of the algorithm is to find a minimal transformation sequence (in
paper [11] called edit script), i.e. the sequence of edit operations, where the sum
of their costs is minimal. The result of the algorithm is not only the degree of
difference of the two documents, but also the corresponding sequence of edit
operations.

The algorithm can be summed up as follows:

1. A complete bipartite labeled graph G1 consisting of nodes of T1 on one
side and nodes of T2 on the other side is created, whereas the edges are
labeled with all INS, DEL, UPD, MOV, CPY, or GLU labels expressing the
corresponding operations.

2. The lower and upper costs are evaluated for each edge e ∈ G1. They can be
computed without the knowledge of which other edges will be in the result.

3. Using a set of conservative pruning rules the unnecessary edges are removed
from G1, resulting in G2. The pruned edges are those which certainly cannot
be part of the minimum cost edit script, e.g. an edge e whose cost is higher
than deleting and inserting the corresponding nodes.

4. Using the lower edge costs a standard technique for bipartite weighted match-
ing problem searching the minimum edge cover is applied.

5. According to the the minimum edge cover the edit script is generated.

Furthermore, the authors mention that the problem of change detection is in
general case NP-hard and thus the proposed algorithm is a heuristic one.

Tree Alignment Paper [21] proposes an algorithm which should serve as a
more efficient version of the tree edit distance algorithms, though in this case
determined for general ordered labeled trees. It is based on the idea of con-
structing an alignment A of the given trees T1 and T2, which is obtained by first
inserting nodes labeled with λ into both T1 and T2 such that the two resulting
trees T ′1 and T ′2 have the same structure (ignoring the node labels) and then
“overlaying” T ′1 on T ′2. A λ-node l can be inserted similarly to the previous case,
i.e. to the position given by parent node p, whereas child nodes of p become child
nodes of l.

The algorithm can be summed up as follows:

1. An alignment A is constructed for trees T1 and T2.
2. Each pair of the “overlaying” labels is assigned a score.
3. The distance of the alignment, i.e. the sum of the scores of its pairs of labels,

is computed.
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Naturally, there exist several alignments for the two given trees depending on
the several possible positions λ-nodes can be inserted to. The algorithm searches
for the optimal one, i.e. the one with minimum alignment distance. It recursively
traverses the nodes of the tree, analyzes all the possible subalignments at each
level, and chooses the least expensive one. The difference between ordered and
unordered case is that in the unordered case all possible orderings are analyzed,
i.e the number of possibilities is much higher.

Furthermore, the authors show that the minimal alignment distance be-
tween two unordered trees can be computed in polynomial time if the trees
have bounded degrees2, otherwise becomes NP-hard.

There are numerous other methods exploiting the idea of tree edit distance or
tree alignment (e.g. [48], [13], [46], [47], etc.). They usually differ in the set of edit
operations, the way their costs are evaluated, and/or the purpose the algorithm
is slightly modified to. Similarly, there is even a wider range of methods which
consider general rooted ordered trees. We do not describe them here for the
paper length and we rather focus on similarity-evaluation strategies based on
different ideas. For more complex description and comparison of the tree-edit or
tree-alignment approaches see, e.g., [5] or [6].

4.2 Path Sets and Root Paths

A recent, surprisingly simple and at the same time efficient technique for sim-
ilarity evaluation between XML documents can be found in [35]. The authors
first define an abstraction of an XML document called a structure tree, which is
quite similar to well-known dataguides [19].

Definition 6. A structure tree of an XML document D is a tree T such that
for every path in D there is a corresponding path in T and vice versa and T is
minimal, meaning that no edges in T can be removed while still preserving the
same relationship.

The approach is based on the idea to compare the respective structure trees
of two XML documents, in particular to compare the set of corresponding root
paths that can be, undoubtedly, gathered more efficiently than the tree edit
sequences.

Definition 7. A root path of an XML document is a path e1e2...en in its re-
spective structure tree, where e1 is the root element and en is a leaf element.

Furthermore, to consider not only identical but also similar paths in XML
documents also the respective sets of all subpaths (i.e. consecutive subsequences
of elements) of root paths are compared.

2 A degree of a tree is the maximum degree of nodes in the tree. A degree of a node
is the number of its child nodes.
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Definition 8. A path set of an XML document is the union of all of its root
paths and all subpaths of the root paths.

And finally, to take into account also paths which appear more frequently, a
frequency of each path is computed.

Having the path sets of two documents together with the corresponding path
frequencies, the problem of similarity evaluation is transformed to the problem
of finding the intersection of the path sets and measuring its size. Note that,
the approach omits order in which elements occur in the documents as well as
particular data values.

4.3 Set, Linear, Cost, and Machine-Learning Metrics

Paper [52] discusses advantages and disadvantages of several metrics for eval-
uating similarity of the given documents D1 and D2, i.e. trees T1 and T2. It
considers the following approaches:

– Set metrics based on comparison of edge or path sets of XML documents:

• sime(T1, T2) = |eT1∩eT2 |
|eT1∪eT2 | , where eTi is a set of edges of tree Ti

• simp(T1, T2) = |pT1∩pT2 |
|pT1∪pT2 | , where pTi is a set of root paths of document Ti

– Linear metric based on Euclidean distance of paths of trees T1 and T2:

simlin(T1, T2) = 1−
√∑m

i=1 |QT1(pi)−QT2(pi)|2

where QT (pi) = tT (e1)/β + tT (e2)/β2 + ... + tT (en)/βn maps a path pi =
e1e2...en to a rational number, where tT (ek) returns an established order
value of name of element ek, β = 2α + 1, and α is the number of element
names in T

– Cost metric based on tree edit distance given by a set of operations:

simcost(T1, T2) =
∑

i,j cost(opi(ej))

where operator opi is applied on element ej . Its cost can be further influenced
by:
• the type of the operator opi,
• the level of element ej ,
• the number of subelements of element ej , or
• the semantics of element ej .

and thus the similarity can be rewritten into:

simcost(T1, T2) = 1
∆ (

∑
i wopicost(opi) +

∑
j wej cost(ej))

where wopi and wej are weights of operators and elements, respectively, and
∆ is a normalization factor.
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– Machine-learning metric exploiting XML querying using a set of training
instances I1, I2, ..., In, i.e. 3-tuples each consisting of a query Qk, its approx-
imate answer Ak, and Lk = +1 if Ak is relevant to Qi or −1 otherwise. The
algorithm in turns adapts weights wopi and wej to particular instances Ik so
that the result of the similarity sum approximates the value of Lk.

4.4 Document Signal

A considerably different approach, which is also trying to avoid expensive eval-
uation of tree edit distance, can be found in [18]. It is based on the idea of
representing an XML document as a time series in which each occurrence of
a (start or end) tag represents an impulse. In other words, each document is
assigned a signal corresponding to occurrences of elements in the depth-first
left-to-right traversal order.

The algorithm for transforming an XML document D into a series of impulses
S = [I1, I2, ..., In] can be summed up as follows: The distinct tag names are
randomly ordered and each start tag ti is assigned its position in the sequence
γ(ti), whereas end tags are assigned symmetric minus values. Each (start or end)
tag occurrence ti in the document is assigned an impulse Ii as follows:

Ii = γ(ti) ∗ (N − 1)Ddepth−lti +
∑

tj∈anc(ti)

γ(tj) ∗ (N − 1)Ddepth−ltj (1)

where N is the number of distinct tag names, Ddepth is the depth of the document
D, lti is the level of tag occurrence ti in document D, and anc(ti) is the set of
ancestors of tag occurrence ti.

As it is obvious, the impulse of an element represents its position in the
document giving higher impulse values to elements appearing at higher levels.

So the problem of similarity of documents D1 and D2 is transformed into the
problem of similarity of their signals S1 = [I1

1 , I1
2 , ..., I1

n] and S2 = [I2
1 , I2

2 , ..., I2
m].

As the signals can have different lengths (depending on the length of the doc-
uments) and intensity (depending on the chosen encoding schemes), the signals
are periodically extended, the Discrete Fourier Transform (DFT) is applied on
them, and the result is linearly interpolated having M = ND1 + ND2 − 1 points,
where NDi is the number of (start and end) tags in document Di. This way we
get new signals S′1 = [J1

1 , J1
2 , ..., J1

M ] and S′2 = [J2
1 , J2

2 , ..., J2
M ] and the resulting

distance of XML documents D1 and D2 is defined as follows:

dist(D1, D2) =

√√√√
M/2∑

k=1

(|J1
k | − |J2

k |) (2)

In other words, the distance of the documents is the approximation of the
difference of magnitudes of the two signals S′1 and S′2.
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5 Similarity among XML Documents and XML Schemes

Another set of similarity-evaluation algorithms focuses on measuring similarity
between an XML document D and an XML schema S. The main exploitation
is again in the area of clustering XML data, where these techniques enable to
cluster together schema-less and schema-conforming XML documents having a
similar structure. Surprisingly, the set of existing approaches is relatively small,
especially in comparison with the previous one.

In this case we cannot transform the problem to measuring similarity of two
ordered labeled trees, since, on the one hand, we have a tree, but we have to
match it with a schema, i.e. a set of regular expressions. Thus the problem is
much complicated.

A natural idea could be to exploit techniques for extracting a schema from a
sample set of XML documents (e.g. [30], [31]) and thus to transform the problem
of similarity of an XML document and a schema to the problem of similarity
of two schemes. But, to our knowledge, there is no such approach yet. The
main question is whether the automatically generated schema would not be too
artificial and, furthermore, for which applications would be such approach useful
as long as it requires a nontrivial set of “training” XML documents.

Among the small set of existing works we can distinguish two types of strate-
gies – techniques which measure the number of elements which appear in D but
not in S and vice versa and techniques which measure the closest distance be-
tween D and all documents valid against S.

5.1 Common, Plus, and Minus Elements

Papers [3] and [4] propose an algorithm for evaluating structural similarity be-
tween XML documents and DTDs. It is based on the fact that while matching
a document against a DTD, some attributes and subelements of an element in
the DTD can be missing from the corresponding element in the document, or
the document can contain some additional attributes and/or subelements. On
this account the authors define three types of elements:3

– common elements, which appear both in the document and the DTD,
– plus elements, which appear only in the document, and
– minus elements, which appear only in the DTD.

Naturally, the lower number of plus and minus elements and higher num-
ber of common elements is, the higher similarity level the corresponding XML
document and DTD has.

The proposed algorithm exploits the idea that elements at higher levels as
well as elements which are more complex have greater impact on the evaluation
of similarity. While the depth of an XML document is the number of nodes
along its longest path, in case of a DTD only nodes not labeled by an operator
3 For the sake of simplicity the approach does not consider attributes, empty elements,

sequences of operators, and cycles.
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(i.e. element nodes) are considered. The complexity of an element depends on
its content, whereas in case of minus elements only the simplest mandatory
structure that can be derived from the given DTD fragment is considered. For
this purpose, the weight of a given (document or DTD) (sub)tree T = (r, C)
(where r is the root node of T and C = {T1, ..., Tn} is set of its subtrees) and
its level lT is defined as follows:

weight(T, lT ) =





lT C = ∅
0 r ∈ {∗, ?}
weight(T1, lT ) r = +∑n

i=1 weight(Ti, lT ) r = ,
minn

i=1 weight(Ti, lT ) r = |∑n
i=1 weight(Ti,

lT
γ ) + lT otherwise

(3)

where γ is level relevance factor which can decrease the weight at each level (e.g.
γ = 2k for k = 0, 1, ... at 0th, 1st, 2nd, ... level of the subtree).

The algorithm matches elements at each level of the document tree Tdoc

with corresponding DTD tree Tdtd. Due to several possible matches (caused by
optional, repeatable, and alternative elements) it evaluates all the possibilities
(using the weight function) a chooses the one, where the number of plus (p)
and minus (m) elements is minimal and the number of common (c) elements is
maximal. The overall evaluation function feval is defined as follows:

feval(p,m, c) =
{

0 (p, m, c) = (0, 0, 0)
c

α∗p+c+β∗m otherwise
(4)

where α and β are relevance factors which influence the impact of plus and minus
elements, respectively.

5.2 Edit Distance

Paper [32] proposes an algorithm for measuring similarity of an XML document
D and a DTD S on the basis of local similarity of elements4 defined using their
edit distance from the corresponding declaration in the DTD. The local similar-
ities are then weighted using the size of the element subtree and aggregated to
the total similarity value.

The edit distance of an element e ∈ D and corresponding element declaration
f ∈ S is defined as diste = min{dist(e, e′) | e′ matches f}, whereas the function
dist(e, e′) is evaluated using a classical tree edit distance algorithm and the
resulting minimum using Thompson’s algorithm for automaton construction [45].

As the edit distances for different elements in the same document may not
be comparable (due to the varying complexity of corresponding element dec-
larations), they are normalized using the maximum edit distance defined as
distmaxe = max(len(e),minlen(f)), where len(e) is the length of string con-
taining e and minlen(f) = min{len(e′) | e′ matches f}.

The algorithm can be summed up as follows:
4 For the sake of clarity the algorithm omits attributes.
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1. The weight we, i.e. the number of descendants of e, is calculated for every
element e ∈ D.

2. The edit distance diste and the maximum edit distance distmaxe is calcu-
lated for every e ∈ D for which a corresponding element declaration f ∈ S
exists.

3. The local similarity sime is evaluated for each element e ∈ D, whereas
sime = 1− diste

distmaxe
if e has a corresponding declaration f ∈ S, or sime = 0

otherwise.

4. The total similarity sim(D,S) =
∑

e∈D
we∗sime∑

e∈D
we

is evaluated.

As we can see, contrary to the previous case the algorithm preserves element
order and it is able to match elements at different levels.

5.3 Regular Hedge Grammar

An idea similar to the previous case can be found in paper [9]. The main dif-
ferences are that the authors analyze similarity of XML documents and XSDs
and instead of regular expressions a grammar, so-called Regular Hedge Grammar
(RHG), is used to express the schema constructs. Similarly to the previous case
the distance of XML document D1 and an RHG G is defined as the minimum
tree edit distance to a document D2 which is valid against G. To compute the
distance a weighted dependency graph is constructed for the grammar rules and
using the Dijkstra’s shortest path the required minimum is found.

6 Similarity among XML Schemes

The last considered set of approaches focuses on measuring similarity among
XML schemes expressed either in DTD or XML Schema. In this case we consider
a problem of similarity comparison of two sets of regular expressions, typically
called a schema matching problem. In comparison with the previous case the
amount of existing techniques is enormous. We again focus on the key represen-
tatives of a particular idea, mentioning the similar methods but omitting their
detailed description for the paper length.

The main exploitation of these techniques is undoubtedly in schema inte-
gration systems, where various subsystems provide a schema of their data (e.g.
XML, SGML, relational, object-oriented, etc.) and the aim of the system is to
provide a uniform schema over which queries are posed or operations are carried
out. A second key exploitation is clustering the data on the basis of similarity
of their schemes.

The general idea of schema matching is to exploit various supplemental
matchers [36], i.e. functions which evaluate similarity of a particular feature
of the given schema fragments, such as, e.g., similarity of leaf nodes, similarity
of root element names, similarity of context, etc. which are combined into the
resulting similarity value. In a significant amount of existing works also the idea
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of machine learning is exploited, though it can be used only in cases when a
large-enough training set is available.

As the variety of approaches is really wide and based on exploitation of var-
ious ideas, techniques, and/or information – such as, e.g., element and attribute
names, data types, structure, dictionaries, thesauri, results of previous match-
ings, etc. – there are also papers, which compare them from various points of
view (e.g. [14], [36]) as well as papers which analyze the matching problem from
theoretic point of view (e.g. [40]). We will mention their key findings too.

6.1 Schema Integration

TranScm One of the first proposals of a schema-matching algorithm can be
found in system called TranScm [27]. Its main aim is integration of data from
various sources which are clustered according to similarity of their schemes. The
given schemes of various types (e.g. SGML, OODB, etc.) are first transformed
into middleware schemes similar to W3C DTDs or XSDs. Starting from the root
nodes for each schema fragment f1 ∈ S1 the system searches the best possible
matching fragment f2 ∈ S2 using a rule-based method. If there is no matching
fragment in the target schema or there are several possibilities, a user interference
is required.

Each rule r in the set of mapping rules R defined over two fragments f1 ∈ S1

and f2 ∈ S2 rooted at r1 and r2, respectively, consists of:

– Priority pr, which enables to order the rules if more than one is possible,
– Matching part, which consists of the following two operations:

1. Match – examines whether r1 and r2 match the rule and
2. Descendants – examines whether the sets of (un)direct child nodes of r1

and r2 match the rule,
and defines the possible common matching, and

– Translation part, which defines how to transform f1 into f2.

An example of a rule can be, e.g., matching ordered and unordered tuple-
like structures, where the Match function simply compares names of r1 and r2

(using a given set of synonyms) and the number of child nodes they have. The
Descendants function similarly compares the sets of child nodes. The Translation
part simply creates a node representing r2 and attaches child nodes to it.

The system contains a set of predefined rules, that can be removed, added,
overridden, or disabled.

Similarity Flooding Another schema integration approach – so called similar-
ity flooding (SF) algorithm – is proposed in paper [26]. Also in this case the input
schemes (relational, XML, or any other) are transformed into common internal
graph representation which enables to process heterogenous data. The key idea
of the matching algorithm is that two elements are similar when their adjacent
elements are similar, i.e. the part of the similarity of two elements propagates
to their neighborhood. The algorithm for two given schemes S1 and S2 works in
the following steps:
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1. The schemes S1 and S2 are translated from their native formats into common
graph representations G1 and G2.

2. Initial similarity mapping between nodes of G1 and G2 is defined using sim-
ilarity of node names (based on analyzing of common prefixes and suffixes).

3. Using the similarity flooding algorithm (see below) the initial similarities
are propagated through the graphs until the fix point is reached, i.e. the
similarity values stabilize.

4. The resulting matching candidates are further filtered using a required thresh-
old.

The similarity flooding algorithm is iterative. At each iteration the similarity
of each map pair of nodes (n1, n2), where n1 ∈ G1 and n2 ∈ G2, is incremented
by similarity values of its neighbors multiplied by predefined propagation coef-
ficients. The coefficients are assigned so that each type of edge has an equal
contribution of 1.0 which is distributed among all its occurrences. The algo-
rithm terminates either if the similarity increment vector is small enough or
after a certain number of iterations.

Cupid Paper [25] proposes a system called Cupid, which also evaluates the
similarity of two XML schemes. The evaluation consists of the following two
phases:

1. Linguistic phase of the algorithm matches individual schema elements based
on their names, data types, domains, etc., resulting in a linguistic similarity
coefficient lsim ∈ [0, 1] for each pair of elements.

2. Structural phase of the algorithm evaluates the element similarity on the ba-
sis of their context and vicinity resulting in a structural similarity coefficient
ssim for each pair of elements.

The total element similarity is the weighted similarity wsim = wstruct ∗
ssim + (1− wstruct) ∗ lsim, where wstruct ∈ [0, 1].

The linguistic phase consists of the following three steps:

1. Normalization – element names are tokenized (i.e. parsed into tokens based
on punctuation, case, etc.), expanded (i.e. abbreviations and acronyms are
identified), and eliminated (i.e. prepositions, articles, etc. are discarded)

2. Categorization – element names are clustered into categories based on their
data types, schema hierarchy, and linguistic content

3. Comparison – similarity of elements is computed by comparing the tokens
using a thesaurus that has synonymy and hypernymy relationships and a
substring matching considering elements that belong to similar categories

The matching algorithm of the structural phase is based on the following
three observations:

1. Leaf elements are similar if they are linguistically and data-type similar and
if their ancestors and siblings are similar.
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2. Two non-leaf elements are similar if they are linguistically similar and the
corresponding subtrees are similar.

3. Two non-leaf schema elements are structurally similar if their leaf sets are
highly similar, even if their immediate children are not.

For each pair of elements ssim is evaluated using a bottom up strategy.
The similarity of two inner nodes is expressed as the number of pairs of so-called
strong-link leaf nodes in the corresponding subtrees, i.e. pairs of leaf nodes whose
weighted similarity exceeds a given threshold.

The resulting set of similarity mapping elements selects pairs of elements
with highest similarity values. Note that the mapping can be 1:n since several
elements can satisfy the condition.

Since the above described algorithm considers schemes being trees whose
nodes are elements, it is further extended to handling shared types (by creating
a copy of each shared element for each sharer), optionality (by decreasing weights
for optional elements), referential constraints (by augmenting the schema using
”view nodes”), etc. On the other hand, it does not consider repetition operators
at all.

SPL Paper [42] proposes an algorithm (in some literature denoted as SPL ac-
cording to authors name) for evaluation similarity among DTDs. It is again in-
tended for a schema-integration system, proposed as a reasonable starting point
for further human correction.

The given DTDs are first preprocesses as follows:

1. The DTDs are simplified leading to a certain loss of information as follows:
– Non-null constraints are “blurred” using rules e? → e and e∗ → e+,
– The content models are flattened using rules such as, e.g., (e1|e2) →

(e1, e2), (e1, e2)+ → (e+
1 , e+

2 ), etc., and
– Sub-elements having the same name in a content model are grouped into

a single one with a corresponding occurrence,
2. The simplified DTDs are modelled as graphs, similar to DTD graphs [39]

with weights assigned to edges expressing the number of occurrences of the
particular element relationship.

3. Cyclic graphs are converted into acyclic by creating a copy of each recursive
element, so-called leaf recursive node, and redirecting all edges to the copy.

The algorithm exploits two key matching criteria:

1. Non-recursive leaf matching – two non-recursive leaf nodes match if both are
element nodes having the same name, or both are attribute nodes having the
same name and type, or the first node is an attribute node, the second one
is an element node having CDATA type and both are having the same name

2. Graph distance – represents the portion of elements in the two graphs that
match and the total number of elements.
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The algorithm is proposed either for searching semantically equivalent or se-
mantically similar schema fragments. In both cases it uses a bottom-up strategy.
In case of semantic equivalence it takes into account the level of each node and
considers two nodes as matching candidates if

1. There is at least one pair of child nodes that match, and
2. The nodes have the same reduced topology, i.e. an ordered list of pairs (l, o),

where l represents the level and o an out-degree of each node in the subtree.

As it is obvious, at each step there can be various possible matching can-
didates resulting in a set of matching plans, i.e. sets of matching pairs. The
algorithm chooses the one having the lowest distance.

In case of semantic similarity, the algorithm is slightly modified. It drops the
condition that the two matching elements must have the same reduced topology
and must occur at the same level. Thus the set of possible matching candidates is
at each step bigger and the authors recommend a greedy strategy which chooses
the best local matching plan at each step.

COMA Paper [15] proposes a system called COMA based on the idea of com-
bining various matchers with user interaction. The processing is iterative, where
each iteration consists of the following phases:

1. An optional user feedback phase, where a user can:
– specify the required match strategy, i.e. the set of matchers and the

strategy of combining the individual match results and
– accept of reject match candidates proposed in the previous iteration.

2. The execution of all allowed matchers which results in a similarity cube
consisting of 3-tuples (fragment f1 ∈ S1, fragment f2 ∈ S2, simj(f1, f2) ∈
[0, 1]) for j-th matcher, and

3. The combination of the individual match results in the cube, i.e.
(a) Aggregation of the results of particular matchers using, e.g., the maxi-

mum / minimum value, the average value, or the weighted sum
(b) Selection of match candidates according to, e.g., the highest similarity

value, the similarity value exceeding a given threshold, or differing at
most by a given tolerance, etc.

(c) Aggregation of the similarities of elements into the total similarity using,
e.g., the average value or the ratio of number of elements which can be
matched and the total number of elements

The set of matchers consists of the following types:

– Simple matchers – analyze the similarity of element name strings or the
similarity of their meaning:
• Affix – analyzes the sets of affixes, i.e. prefixes and suffixes
• n-gram – analyzes the sets of n-grams, i.e. sequences of n characters
• EditDistance – computes the number of edit operations to transform one

string to another one
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• Soundex – computes the phonetic similarity between names from their
corresponding soundex codes

• Synonym – uses relationship-specific similarity values, e.g. 1.0 for a syn-
onymy, 0.8 for a hypernymy relationship, etc.

• DataType – uses a synonym table specifying the degree of compatibility
between a set of predefined generic data types, to which data types of
schema elements are mapped in order to determine their similarity

– Hybrid matchers – use a fixed combination of simple matchers or other hybrid
matchers, combined similarly to the phase 3:
• Name – combines different simple matchers
• NamePath – applies Name matcher to paths of the elements
• TypeName – combines Name and DataType matchers
• Children – combines the similarities of child nodes
• Leaves – combines the similarity of leaf descendant nodes

– Reuse-oriented matchers – all schemes S′i for which there is a previous match
result with both S1 and S2 are identified and all the corresponding pairs of
match results are combined similarly to the phase 3

As we can see, the algorithm has many options (e.g. the ways of combining
the partial results) and situations (e.g. the choice of match candidates), where
the user interaction can be helpful. Otherwise a default strategy is selected.

CMC Paper [49] proposes a system called CMC which focuses on the fact that
the way of combination of the base matchers, in particular their weights, highly
influence the resulting similarity and performs differently on different schema
fragments. For instance, structure matchers are obviously more credible if the
schema fragments have rich structure. Thus the key concern of the approach is
estimation of credibility of particular matchers for each pair of schema fragments
being matched. These credibilities are then used as weights of the base matchers
when being combined.

The base matcher’s credibility prediction is based on the idea that it is corre-
lated with several features of currently given pair of schema fragments (so-called
matching task). For structural matcher, e.g., the number of edges can serve as
such feature, since more edges indicate more structural information leading to
higher matching accuracy. The prediction consists of two steps:

1. Accuracy predicting – determines the accuracy of the matcher as the mean
accuracy of the set of tasks bearing the same features as the current task,
i.e. the mean square error (MSE) of the tasks

2. Converting accuracy to credibility – converts the value of accuracy (MSE) to
credibility according to the expression e−C·MSE , where C is a non-negative
constant determining how fast the credibility falls with the increase of MSE

For simple matchers the MSE value can be determined manually, for more
complex ones machine learning and an appropriate training set is used.
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6.2 Clustering

Paper [23] describes a system called XClust which exploits the idea of clustering
DTDs similar in semantics, content, and context. First, the DTDs are simplified
using both information-preserving rules (e.g. (a|b)∗ ⇔ (a∗, b∗)) having high
priority and information-loss rules (e.g. (a|b)? ⇒ (a?, b?)) having low priority.
The similarity evaluation then consists of the following matchers:

– Basic similarity
BasicSim(e1, e2) = w1 ∗OntSim(e1, e2) + w2 ∗ ConsSim(e1.card, e2.card)
where

• OntSim is an ontology similarity of element names based on a kind of
thesaurus,

• ConsSim is a cardinality similarity defined by cardinality compatibility
table, e.g. ConsSim(∗, ∗) = 1, ConsSim(∗, ?) = 0.7, ConsSim(?, ∅) =
0.8, etc., and

• w1, w2, w1 + w2 = 1 are corresponding weights.

– Path context coefficient PCC(p1, p2) expressing the similarity of paths p1

and p2 applying the following PCC algorithm on the sets of elements in the
paths:
1. Basic similarity BasicSim is determined for each pair of elements of the

two sets.
2. The pairs of elements with the highest similarity are iteratively found

producing a one-to-one mapping.
3. The total PCC similarity is obtained by summing up all the similarities

from the one-to-one mapping normalized (i.e. divided) by the maximum
size of the element sets.

The total element similarity ElementSim of elements e1 and e2 is expressed
as a weighted sum of the following three similarity values:

– Semantic similarity
SemSim(e1, e2) = PCC(e1.pathroot, e2.pathroot) ∗BasicSim(e1, e2)

– Immediate descendant similarity expressing the similarity of the sets of im-
mediate descendants of e1 and e2 sing the PCC algorithm.

– Leaf-context similarity expressing the similarity of the sets of leaf subelement
of e1 and e2 using the PCC algorithm, where LeafSim instead of BasicSim
is considered:
LeafSim(l1, l2) = PCC(l1.pathe1 , l2.pathe2) ∗BasicSim(l1, l2)

Finally, the DTD similarity is evaluated applying the PCC algorithm on the
set of elements of the two DTDs, where ElementSim instead of BasicSim is
considered.
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6.3 Machine Learning

The idea of machine learning can easily be exploited for the schema matching
problem, since it enables to train the system on sample known data and than use
for an arbitrary input. Nevertheless, the key shortcomings are evident. Firstly,
there are cases when such training is not available. And secondly, if a particu-
lar type of schema was not present in the training set, its evaluation could be
misleading.

LSD Paper [16] proposes a schema-integration system called LSD (Learning
Source Descriptions) system, which enables to store and query semantically sim-
ilar but structurally different data from various sources. It provides users with a
mediated schema, to which schemes of the underlying systems are semantically
mapped and over which users pose their queries. The mapping process is semi-
automatical and exploits machine-learning techniques. In the training phase the
systems asks a user to provide similarity mapping between sample schemes. In
the matching phase the training sets are used to match new source schemes.5

The key features of the system were later exploited in system GLUE [17],
which instead of XML schemes focuses on semantic mapping of ontologies.

MKB Paper [24] further enhances the previous work with the idea of deeper ex-
ploitation of experience from previous matching tasks. The key component of the
system – so-called Mapping Knowledge Base (MKB) – captures the previously
gathered knowledge of each element and exploits it in later matches.

Being given two schemes S1 and S2 that have to be matched, the system
carries out the following steps:

1. Each element si ∈ S1 and tj ∈ S2 is compared against all elements ek ∈
MKB by applying partial matchers (see below) and combining their results.

2. The results of the comparisons are formed into a vector Pi = 〈pi1, pi2, ..., pin〉
for each si ∈ S1 and Qj = 〈pj1, pj2, ..., pjn〉 for each tj ∈ S2.

3. The similarity of elements si ∈ S1 and tj ∈ S2 is given by similarity of vec-
tors Pi and Qj measured using an average weighted difference (AWD):

AWD(Pi, Qj) =
∑n

k=1 |pik − pjk| ∗max(pik, pjk)

4. The result of the algorithm is a similarity matrix containing the similarity
values for all pairs of elements in schemes S1 and S2.

The partial matchers for two elements (so-called base learners), which are
combined (using a meta-learner) into the resulting similarity value, involve:

– Name learner – analyzes names of elements, in particular corresponding n-
grams and their frequency,

5 We do not describe the details of the machine learning strategy for different aim of
the paper.
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– Description learner – analyzes descriptions often available with the corre-
sponding schemes,

– Instance learner – analyzes features of data instances (e.g. number of words,
special symbols such as $, %, etc.),

– Data type learner – analyzes the data types of the elements, and
– Structure learner – analyzes other elements that co-occur with the element

in its neighborhood, i.e. parent, child, and sibling elements.

6.4 Matching with Specific Conditions

Besides proposals of general similarity-evaluation algorithms, there are also pa-
pers which either modify the existing approaches to a specific situation or directly
propose a brand new one strategy suitable for it.

Matching Large Schemes Paper [37], which extends the previously mentioned
system COMA [15], focuses on matching very large schemes, in particular XSDs,
and their specific features such as:

– type system, i.e. simple types, complex types, and subclassing,
– components reuse and sharing, i.e. locally and globally defined items, and
– distributed schemes, i.e. the usage of namespaces.

It proposes a fragment-oriented matching approach which enables to decom-
pose the problem into smaller ones and, at the same time, to reuse previous
match results. The algorithm works in the following steps:

1. Schema decomposition – the input schemes are decomposed into fragments,
which can be either subschemes (i.e. schema parts which can be separately
instantiated) or inner fragments (i.e. inner elements or complex types and
their descendants).

2. Identifying fragment-pair candidates – to avoid trying to find correspon-
dences between irrelevant fragments the similarity between fragments is first
determined on the basis of easily-collected fragment statistics (e.g. name of
fragment root, type of fragment root, size and depth of the fragment, etc.).

3. Fragment matching – the candidate pairs from the previous step are fully
matched similarly to the COMA system and with the emphasis on reuse of
previous fragment matches which are stored in the system too.

4. Result combination – the total match result for the two complete schemes is
determined using the match correspondences for the inner fragments using
a bottom-up propagation strategy similarly to the previous case(s).

Matching with Large Number of Schemes Paper [41] proposes an al-
gorithm for efficient matching of a user-defined schema with a large number
of schemes stored in a schema repository in the form of a schema repository
graph, i.e. a forest of schemes. It is proposed as an enhancing of previously men-
tioned techniques. The algorithm exploits the idea of clustering which enables
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to quickly identify regions, i.e. clusters, of schemes which are likely to produce
good matching results. The classical schema matcher is then applied only to the
clusters instead of searching through the whole repository.

The key problem is how to define the clusters. The authors of the paper
propose an adaptation of the classical k-means clustering algorithm. Each cluster
consists of elements involved in any previous matching step (so-called mapping
elements). The algorithm works in the following steps:

1. Initialization of centroids – using a simple heuristic the initial centroids ci

are placed in areas which produce the most matching results
2. Distance computation – for each mapping element ej and each centroid ci

the distance is computed as the length of corresponding path in the schema
repository graph

3. Cluster assignment – each element ej is assigned to the nearest centroid
4. Determining new centroids – for all clusters new centroids are determined,

i.e. elements in the center of weights
5. Reclustering – dynamical change of the number of clusters, i.e. a join is

applied if two centroids are near and a removal is performed if a cluster is
too small, whereas its elements are joined with neighboring clusters

Matching “Opaque” Column Names and Data Types Paper [22] is trying
to solve the situations when the previously described techniques fail. In particular
in focuses on situations when:

1. The names of similar schema items (in particular considering database table
columns) are not similar or

2. The data types of similar schema items are not similar.

The authors denote such column names or data types as “opaque” and de-
fine so-called uninterpreted matching, i.e. matching that does not depend on
data interpretation. The key idea of the algorithm is to exploit other schema
information – the dependency relationships between the data.

The proposed algorithm consists of the following two stages:

1. Construction of dependency graph – pair-wise correlations (see below) are
estimated for all pairs of attributes in a table and structured into an undi-
rected graph, where:
– Each node is labelled with the value of entropy of the corresponding

attribute and
– Each edge is labelled with the value of mutual information of correspond-

ing attributes.
2. Graph matching algorithm – using an appropriate graph matching strategy

(depending on the required mapping, i.e. one-to-one, onto, or partial) the
produced dependency graphs are matched
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The correlation between two attributes is evaluated using mutual information
and entropy. Having two attributes X and Y with alphabets X and Y , a joint
probability distribution p(x, y), and marginal probability distributions p(x) and
p(y) for ∀x ∈ X and ∀y ∈ Y , the mutual information (MI) of X and Y is defined
as:

MI(X, Y ) =
∑

x∈X

∑

y∈Y

p(x, y) · log p(x, y)
p(x) · p(y)

(5)

It can be rewritten using entropies

H(X) = −
∑

x∈X

p(x) · log p(x) ; H(Y ) = −
∑

y∈Y

p(y) · log p(y) (6)

and conditional entropy

H(X|Y ) = −
∑

x∈X

∑

y∈Y

p(x, y) · log p(x|y) (7)

into the form:

MI(X,Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) (8)

As it is obvious MI does not depend on actual values of the attributes but on
probability distributions which form the input of the algorithm. The resulting
value represents the amount of information captured in one attribute about the
other.

Holistic Schema Matching Contrary to the above described approaches, the
authors of paper [20] propose an idea of holistic schema matching, i.e. an ap-
proach which matches several schemes at the same time. Such approach enables
to exploit the context information among the schemes (i.e. information already
known from the other schemes), which cannot be exploited in pair-wise match-
ing approaches. It takes a set of n schemes as an input and outputs a set of all
the matchings among the schemes (so-called semantic model), i.e. not pairs, but
n-tuples of matching objects. The authors propose two approaches – global and
local evaluation.

Global evaluation exhaustively evaluates all possible models and selects the
best one. It is based on the idea that each schema is viewed as an instance gen-
erated from a “hidden” model the approach is trying to find. The system takes
as input a general structure of such models which captures specific target ques-
tions. For instance, if finding synonyms is the target, a model should explicitly
express the grouping of synonyms. Then it generates all models that instantiate
all the given schemes and chooses the best one.

On the contrary, local evaluation assesses every single matching and then
incrementally constructs a model as a set of all matchings. It is based on an ob-
servation that grouping attributes (e.g. fist name and last name are co-present
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often), while synonym attributes are not. Thus the system first builds both the
groups, combines the results and finally, using a greedy strategy, iteratively
chooses the (sub)optimal matching.

6.5 Theoretic Studies and Comparisons

As the amount of similarity-evaluation strategies is really high, there are of
course papers which analyze the problem in general. They either focus on theo-
retical analysis or analyze a subset of the existing works together.

A Theoretic Study Paper [40] studies the problem of semantic XML schema
matching, i.e. identifying semantically similar components within two schemes,
from the theoretic point of view. It specifies the problem formally discovering
that it can be described as a constraint optimization problem (COP) and thus
corresponding existing general algorithms for its solving can be exploited.

The authors describe the given problem as follows: In a matching problem a
template object T is matched against a set of target objects R = {T1, ..., Tk}.
If T is related to Ti through some desired relation, i.e., T ≈ Ti, it is said that
they match and the (T, Ti) pair forms a mapping. The solution of a matching
problem is a list of mappings. In some matching problems, an objective function
∆(T, Ti) can be defined. The objective function evaluates to what extent the
desired relation between the matching objects is met and is used to order the
mappings in the solution.

A semantic matching problem is a matching problem where objects are
matched on the basis of their semantics. As such evaluation can be reliably done
only by humans, the corresponding algorithms compute an approximate semantic
matching. The desired relation can be divided into a semantic predicate func-
tion and the semantic objective function. The template and target objects are
represented by corresponding XML schemes, which are often transformed into
directed labelled graphs, so-called schema graphs. The predicate function can be
expressed as a composition of a number of predicates C(T, Ti) =

∧k
i=1 ci(T, Ti)

and the objective function is approximated as ∆(T, Ti) ∈ R, often normalized
to [0, 1].

The semantic matching problem can be generally described as a COP defined
as follows:

Definition 9. A constraint optimization problem (COP) P is a 4-tuple P =
(X, D, C,∆) where:

– X = (x1, x2, ..., xn) is a list of variables,
– D = (D1, D2, ..., Dn) is a list of finite domains, such that variable xi takes

values from domain Di and D is called the search space for problem P,
– C = {c1, c2, ..., ck} is a set of constraints, where ci : D → {true, false} are

predicates over one or more variables in X, and
– ∆ : D → R is an objective function assigning a numerical quality value to a

solution.
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A complete variable assignment is called valuation Θ. A valuation Θ for
which constraints C(X) = true is called a solution. The quality of a solution is
determined by the value of the objective function, i.e., ∆(Θ).

Taxonomy Paper [36] analyzes (and briefly describes) several existing works
(from the above described LSD [16], TranScm [27], CUPID [25], Similarity Flood-
ing [26] plus few others, bit more off from the focus of this paper). The main
contribution of the paper is taxonomy of the existing approaches and their re-
spective classification.

It focuses on exploitation of similarity evaluation of a special kind: It defines
the match operation as a function that takes two schemes S1 and S2 as an input
and returns a mapping between the two schemes, called the match result. It con-
sists of so-called mapping elements each of which indicates that certain elements
of schema S1 are mapped to certain element of S2. Furthermore, each mapping
element can have a mapping expression which specifies how the corresponding
elements are related.

The proposed classification of schema mapping approaches distinguishes the
criteria for the individual matchers and for their combination. As for the indi-
vidual matchers the criteria are:

1. Instance vs. schema matching – matching can be performed on data or
schema level

2. Element vs. structure matching – matching can be performed on single ele-
ments or their complex combinations

3. Language vs. constraints – matching can use linguistics-based approach (e.g.
element names) or constraints-based approach (e.g. keys or relationships)

4. Matching cardinality – the match result may relate one or more elements
resulting in four matching cardinalities – 1:1, 1:n, n:1, or n:m

5. Auxiliary information – e.g. dictionaries, thesauri, user interaction, previous
results, etc.

As for the combination of the matchers the authors distinguish two cases:

1. Hybrid matcher – a matcher that directly combines several matching ap-
proaches to determine the match candidates (e.g. combining name matching
with data type matching)

2. Composite matcher – a matcher that combines results of several indepen-
dently evaluated matchers

Efficiency Evaluation Last but not least, the authors of paper [14] also an-
alyze and compare existing approaches, but in this case focussing on efficiency
of automatic schema matching. They result from the fact, that all the existing
works were evaluated on diverse methodologies, metrics, and data and thus it
is impossible to compare the systems with each other. But on the other hand,
not all the systems are publicly available to enable simple common testing on
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an appropriate benchmark. Consequently, the authors analyze the existing pub-
lic evaluations of the systems. They introduce several criteria influencing the
effectiveness and discuss them in relation to the particular systems:

1. Input – a kind of input data used:
– Schema language – i.e. relational, XML, etc.,
– Number of schemes and match tasks,
– Schema information – i.e. exploitation of specific facets,
– Schema similarity – i.e. the ratio between the number of matching ele-

ments and number of elements in both schemes, and
– Auxiliary information – e.g. dictionaries, thesauri, etc.

2. Output – information included in the match result:
– Element representation – e.g. mapping between attributes or whole table,

nodes or paths, etc.
– Cardinality – i.e. 1:1, 1:n, n:1, or n:m

3. Quality measures – the match tasks are first solved manually and than com-
pared with the automatic ones exploiting the following two measures:
– Precision = |B|

|B|+|C|
– Recall = |B|

|A|+|B|
and their various combinations, where
– A is the set of false negatives, i.e. matches needed but not automatically

identified,
– B is the set of true positives, i.e. matches identified by both manual and

automatic processing, and
– C is the set of false positives, i.e matches falsely proposed by the auto-

matic processing.
4. Effort – how much savings of manual effort are obtained, whereas it can be

divided to
– Pre-match effort – e.g. training the machine learning-based matchers,

configuration of parameters (e.g. thresholds, weights, etc.), specification
of auxiliary information (e.g. domain synonyms, constraints, etc.)

– Post-match effort – correction of the results

6.6 Summary

As can be seen from the overview, there are several interesting observations and
conclusions that can be made.

Firstly, we can say that the area of similarity evaluation among XML docu-
ments is well analyzed. This is probably caused by the fact that XML documents
can be viewed simply as general trees and thus the problem significantly sim-
plifies. Another reason can bring analyses of real XML data which show that
schemes are not used quite often – a significant portion of real XML documents
(52% [2] of randomly crawled or 7.4% [29] of semi-automatically collected6) have
no schema at all.
6 Data collected with interference of a human operator who removes damaged, artifi-

cial, too simple, or otherwise useless XML data.
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Second obvious finding is that the amount of works for evaluating similarity
between an XML document and an XML scheme is quite low. The question is
whether the task is too complicated or it is not as important as in the other two
cases. And as we have mentioned, another question is whether the corresponding
similarity evaluation algorithm could exploit techniques for automatic schema
generation from a sample set of XML documents.

Another observations can be done for similarity evaluations among XML
schemes. The existing works focus mainly on semantic similarity of elements,
whereas the structural similarity seems to be a marginal part. It is probably
caused by the fact that similarity evaluation on schema level is exploited mainly
in schema-integration systems, where the semantics of the elements is the key
aspect. But especially for various storage strategies would be much reasonable
to focus rather on precise structural similarity of schema fragments. A possible
solution could follow two different ways. On one hand, the similarity metric could
use the idea of partial matchers and their composition, whereas the matchers
will describe the structure of the given fragment as precisely as possible. On the
other hand, it could be interesting to exploit the idea of tree edit distance for
XML documents and define appropriate edit operations and their costs for XML
schemes.

7 Conclusion

The main aim of this paper was to enable readers to become acquainted with the
currently existing works proposing algorithms for evaluating similarity of XML
data. We have described the best known approaches and corresponding repre-
sentatives and pointed out their most striking advantages and/or shortcomings.
For better lucidity the approaches were first classified and described within their
categories. We hope that this paper can serve as a good starting point either for
selecting an appropriate approach or for proposing a brand new one.

Our future work will focus especially on exploitation of similarity of XML
data for enhancing storage techniques based on (object-)relational databases. For
this purpose we will focus especially on the above mentioned problem of struc-
tural similarity within XML schemes which can be widely exploited especially
in so-called schema-driven XML-to-relational mapping methods [39] [28].
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