
Charles University in Prague

Faculty of Mathematics and Physics

HABILITATION THESIS

RNDr. Irena Holubová, Ph.D.

Evolution and Adaptability

of Complex XML Applications

Prague, November 2012

Evolution and Adaptability of Complex XML Applications

Habilitation thesis

Irena Holubová (Mlýnková)
November, 2012

holubova@ksi.mff.cuni.cz

http://www.ksi.mff.cuni.cz/∼holubova/index.html

Charles University in Prague
Faculty of Mathematics and Physics
Department of Software Engineering
Malostranské nám. 25
118 00, Prague 1
Czech Republic

This thesis contains copyrighted material. The copyright holders are:

c©Springer-Verlag
c©Elsevier B.V.
c©Oxford University Press
c©IOS Press

i

ii

Acknowledgments

Since the very nature of scientific work is cooperation, I would like to thank
especially to all my colleagues and co-authors. In the first place my thanks
go to members and Ph.D. students of the XML and Web Engineering Re-
search Group (XRG), namely to Martin Nečaský, Jaroslav Pokorný, Karel
Richta, Jakub Kĺımek, Tomáš Knap, Jakub Malý, Jakub Stárka, and Martin
Svoboda, as well as all the excellent students whose Master theses and SW
projects form significant parts of our research results. Secondly, I am very
grateful for the opportunity to visit during my research stay Dr. Eric Pard-
ede from the La Trobe University, Melbourne and Dr. Sherif Sakr from the
NICTA, Sydney and to get acquainted with their inspiring work and research
topics. For helpful comments, suggestions, and ideas that enabled to improve
our results I must undoubtedly express my gratitude to all the anonymous
reviewers of our papers, audience at our presentations, and all the scientists
I had the pleasure to meet and talk to. And, last but not least, I am very
thankful to my family whose support and understanding enables me to do
the job I like.

iii

iv

Contents

1 Commentary 1
1.1 Five-Level Evolution Management Framework 6

1.1.1 XML View . 10
1.2 Adaptation of XML Data . 12
1.3 Reverse Engineering: Inference of XML Schemas 15
1.4 Reverse Engineering: Mapping between Schemas 18
1.5 Analysis of Real-World Data 19
1.6 Author’s Contributions . 21

2 Evolution and Change Management of XML-Based Systems 23

3 Efficient Adaptation of XML Data Using a Conceptual Model 51

4 Heuristic Methods for Inference of XML Schemas: Lessons
Learned and Open Issues 87

5 Structural and Semantic Aspects of Similarity of Document
Type Definitions and XML Schemas 129

6 Analyzer: A Complex System for Data Analysis 151

7 Conclusion 179
7.1 Current and Future Research 180

v

vi

Preface

The proposed thesis presents selected results of the author’s research in the
area of evolution of XML applications. The research has been carried out at
the Faculty of Mathematics and Physics of the Charles University in Prague
in years 2007–2012, mainly within the XML and Web Engineering Research
Group (XRG)1 lead by Prof. RNDr. Jaroslav Pokorný, CSc.

The results are presented as a collection of five selected papers. Four of
them [24, 30, 34, 45] fit into a single framework, whereas each focuses on a
particular subproblem. The last included paper [41] describes a separate,
but closely related topic. The papers are presented in separate chapters (2–
6) in their camera-ready forms (of the International Journal of Systems and
Software, the International Journal on Information Systems Frontiers, Infor-
matica – the International Journal, the International Journal on Information
Sciences, and the Computer Journal), whereas the unifying commentary is
provided in Chapter 1. Prior to summarizing the papers, the commentary
provides a motivation and briefly surveys related state-of-the-art results. In
order to provide a quick navigation, the references to the author’s original
contributions are marked with a star (see on the right). In Chapter 7 we
conclude and outline directions of our current and future research.

The research included in the selected papers has been supported by sev-
eral grants, namely Information Society 1ET100300419, GAČR 201/06/0756,
GAČR 201/09/0990, GAČR 201/09/P364, GAČR P202/10/0573, and TAČR
TA02010182.

Prague, November 2012

Irena Holubová

1http://www.ksi.mff.cuni.cz/xrg/

vii

viii

Chapter 1

Commentary

The most common application of the today’s information-technology (IT)
world are information systems. They can be characterized as a network of
software and hardware components that enable people and companies to cre-
ate, collect, distribute and process data. There exist various types of informa-
tion systems, such as, e.g., decision-support systems, database-management
systems, or office-information systems. Currently a very popular kind of in-
formation system are distributed information systems. For instance, such
an information system can be based on the Service Oriented Architecture
(SOA) [1] and its most common implementation – Web Services [8].

An information system often involves a huge set of data resources and
a set of sub-applications, each being responsible for a particular logical ex-
ecution part (we speak about a system of applications). A data resource
consists of the particular pieces of information (i.e., data instances), in-
tegrity constraints over the data instances, and selected interpretations of
the data. For instance, an information system for storing and analysis of sci-
entific publications of academic institutions involves records of publications
of a particular university, i.e., articles, books, SW prototypes, etc. Over the
records we can identify various integrity constraints, such as, e.g., that “each
book must be assigned with a unique ISBN” or that “a publication cannot
have two authors with the same name”. Finally, for the purpose of presenta-
tion of the results at web sites of the institutions, the data may be exported
in XML [7] or HTML [2], described in WSDL [6], exchanged using SOAP [4]
messages, etc.

The life cycle of a complex system of applications is similar to a life cycle
of a single application; however, the complexity is much higher. First of all,

1

Figure 1.1: Sample XML documents from the same problem domain

we need to design numerous data structures, i.e., schemas, which are usually
mutually related or overlayed. In other words, each application of the system
utilizes several views of a common problem domain. Hence, they cannot be
designed separately. In addition, sooner or later the user requirements of the
applications change and, hence, the data structures they process must be
modified respectively – we speak about the problem of evolution. Due to the
relations and overlays, such a modification can influence multiple parts of the
system and we need to maintain them during the whole life cycle to be able
to propagate the changes completely, correctly and efficiently. The ability of
an information system to adapt to the changes is called adaptability.

Simple Motivating Example Let us consider a company that receives
purchase orders and let us focus on the part of the system that processes
purchases. Let the messages used in the system be XML messages formatted
according to a family of different XML formats. Consider the two sample
XML documents in Figure 1.1. The former one is formatted according to an
XML format for a list of customers. The latter one is formatted according
to a different XML format for purchase requests. As we can see, the concept
of customer is represented in each of our sample XML formats in a differ-
ent way (i.e., viewed from different perspectives). In the first one, different
kinds of customers are distinguished (private and corporate customers). For
private customers, elements name, address and phone are present. For cor-
porate customers, elements name, different addresses (hq, i.e., headquarters,
storage and secretary), and phone are present. In the second XML doc-

2

Figure 1.2: OpenTravel.org schema changes in 2003–2010

ument, we do not distinguish different types of customers. We have only
element cust with child elements name, code, ship-to and bill-to. The
last two represent addresses. However, this is different representation than
in the previous sample. We need a unified representation of shipping and
billing addresses in purchase requests for all kinds of customers.

Let us now consider a new user requirement that an address should no
longer be represented as a simple string. Instead, it should be divided into
elements street, city, zip, etc. Apparently, in a complex system compris-
ing tens or even hundreds of XML formats, this is a difficult and error-prone
task. Even identifying the affected parts is not an easy and straightforward
process. For example, we may need to make the modification only for ad-
dresses that represent a place where to ship the goods (i.e., elements address
and storage in the XML format instantiated in the first schema and element
ship-to in the second schema), whereas we do not want to modify addresses
that represent headquarters, etc.

Real-World Motivating Example A possible solution to the problem
of evolution adopted mainly by standardization bodies is so-called back-
ward compatibility, i.e., preferring changes that do not influence the existing
data. For example, the open XML standard OpenTravel.org1 currently offers
319 XML schemas which standardize communication in the travel industry.
OpenTravel.org is changed twice a year and the changes are published in
the form of a new version of the XML schemas and a documentation of the
changes in a human-readable document. This requires tremendous manual

1http://www.opentravel.org

3

effort of designers to adapt their transformation scripts and potentially their
database, their own XML formats and their program code as well. Thus,
OpenTravel.org tries to preserve the backward compatibility as much as pos-
sible. The amount of backward-incompatible changes is very small – 7,5% on
average within years 2003–2010 (see Figure 1.2). However, this approach re-
sults in artificial data structures with plenty of optional items, obsolete data
structures, etc. In addition, backward-compatible changes cannot be done in
all the cases, so this approach can be used only partly, in specific cases and
only until the data structures remain readable and understandable.

Related Problems A natural and real-world solution of the evolution
problem is to rely on an IT expert who knows the information system well
and is able to denote the part of the system which is modified and

(P1) to make the required change easily and correctly,

(P2) to identify all affected parts of the system

that need to adapt too, and

(P3) to make the respective changes of the affected parts se-
mantically correctly.

But, in a complex information system involving hundreds of schemas it is
impossible for a single person to consider and cover all the components and
aspects. In addition, since the system may involve multiple formats, the IT
expert must know all of them and be able

(P4) to express the changes also syntactically correctly regard-
ing the selected format.

And, last but not least, the system may naturally grow, e.g., new schemas
may come or be required and, hence, the IT expert must be able

(P5) to integrate new schemas and discover relations to the
current ones.

4

Proposed Solution To help to solve the indicated problems P1–P5, in
Section 1.1 we describe the idea of a five-level evolution management frame-
work we have first proposed in its full generality, i.e., for any kind of data
format. Using several levels of abstraction it enables to model all parts of
the system regardless technical details of a selected format. Preserved re-
lations between the levels enable to propagate the changes correctly among
multiple related and overlapping schemas. In the first part of our research as
well as in this thesis we focussed on its first part – so-called XML view, i.e.,
evolution of a set of XML schemas. Hence, in Section 1.1 we also describe
the framework from this perspective. In Section 1.2 we focus on the problem
of revalidation of XML documents, i.e., instances of evolving XML schemas.
We show that having the described levels and preserved relationships among
them, the evolution process can be done easily and correctly. Consequently,
we solve problems P1–P4.

As we have mentioned, an important question which may arise is how to
integrate other XML schemas, i.e., how to deal with the problem of reverse
engineering. In this case we need to build the system in the bottom-up di-
rection starting from data towards more abstract levels. In Section 1.3 we
describe the problem of inference of an XML schema from a set of XML
documents and in Section 1.4 we deal with the problem of similarity evalu-
ation which is an important part of the process of mutual mapping of XML
schemas. In other words, in these sections we also solve problem P5.

Even though there currently exist several evolution management systems,
none of them focusses on the described issues from such a general point of
view, with a formal background and covering also other related problems
such as the reverse engineering steps. Hence, despite we base our proposal
on several verified strategies and technologies, we show that such a system can
be designed and implemented as a robust and general tool. Our idea has been
first implemented as a project called XCase (http://xcase.codeplex.com/)
and later re-engineered into a system called eXolutio (http://exolutio.
com/). Currently, there exists also a more general implementation of the idea
called DaemonX (http://daemonx.codeplex.com/). All the three systems
were created as student SW projects and later improved within Master/Ph.D.
theses, all under supervision of members of XRG.

The last but not least separate but related research topic we want to cover
in this thesis is the knowledge of real-world data. Such information is impor-
tant in general; in our case we exploited it for the purpose of proposal of edit
operations, change management and similarity matching. In Section 1.5 we

5

describe a general system called Analyzer which eases the analytical process
using a set of crawlers, data correctors, analyzers, result visualizations, etc.

1.1 Five-Level Evolution Management Frame-

work

The core of our research forms the five-level evolution management frame-
work described with all technical details in [34] (see Chapter 2). The full
architecture of the framework is depicted in Figure 1.3 (see page 7). As we
can see, the framework can be partitioned both horizontally and vertically;
in both cases its components are closely related and interconnected.

If we consider the vertical partitioning, we can identify multiple views of
the system. We have depicted the three most common and representative
views. The blue (leftmost) part covers an XML view of the data processed
and exchanged in the system. The green (middle) part represents the storage
view of the system, e.g., a relational view of the processed data which need
to be persistently stored. Finally, the yellow (rightmost) part represents a
processing view of the data, e.g., processing by sequences of Web Services
described, e.g., using BPEL scripts [5].

If we consider the horizontal partitioning, we can identify five levels, each
representing a different view of the system and its evolution. The low-
est level, called extensional level, represents the particular instances that
form the implemented system such as, e.g., XML documents, relational ta-
bles or Web Services that are components of particular business processes.
Its parent level, called operational level, represents operations over the in-
stances, e.g., XML queries over the XML data expressed in XQuery [9] or
SQL/XML [3] queries over relations. The level above, called schema level,
represents schemas that describe the structure of the instances, e.g., XML
schemas or SQL/XML Data Definition Language (DDL).

Even these three levels indicate problems related to evolution. For in-
stance, when the structure of an XML schema changes, its instances, i.e.,
XML documents, and related queries must be adapted accordingly so that
their validity and correctness is preserved respectively. In addition, if we
want to preserve optimal query evaluation over the stored data, the storage
model also needs to adapt respectively. What is more, as we have mentioned,
in practice there are usually multiple XML schemas (or schemas in other for-

6

Figure 1.3: Five-level evolution management framework

7

mats) applied in a single system, i.e., multiple views of the common problem
domain. In general, a change at one level can trigger a cascade of changes at
other levels.

Considering only the three levels leads to evolution of each affected schema
separately. However, this is a highly time-consuming and error-prone solu-
tion since we need the IT expert who is able to identify all the affected
schemas and propagate the changes, i.e., who knows the mutual relations
among the schemas. Therefore, we introduce two additional levels, which
follow the model driven architecture (MDA) [28] principle, i.e., modeling
of a problem domain at different levels of abstraction. The topmost one
is the platform-independent level which comprises a schema in a platform-
independent model (PIM schema). The PIM schema is a conceptual schema
of the problem domain. It is independent of any particular data (e.g., XML
or relational) or business process (e.g., Web Services) model. The level below,
called platform-specific level, represents mappings of the selected parts of the
PIM schema to particular data or business process models. For each model it
comprises schemas in a platform-specific model (PSM schemas) such as, e.g.,
XSEM [33] schemas which model hierarchical data structures implemented
using a selected XML schema language or ER [11] schemas which are typi-
cally implemented using relational schemas. Each PSM schema can be then
automatically translated into a particular language used at the schema level
(e.g., XML Schema [42] or SQL DDL [17]) and vice versa.

Now, having a hierarchy of models which interconnect all the applications
and views of the data domain using the common PIM level, change propa-
gation can be done semi-automatically and much easily. We do not need to
provide a mapping from every PSM to all other PSMs, but only from every
PSM to the PIM. Hence, the change propagation is realized using this com-
mon point. For instance, if a change occurs in a selected XML document, it
is first propagated to the respective XML schema, PSM schema and, finally,
PIM schema. We speak about upwards propagation, in Figure 1.3 represented
by the white arrows. It enables one to identify the part of the problem do-
main that was affected. Then, we can invoke the downwards propagation and
propagate the change of the problem domain to all the related parts of the
system. In Figure 1.3 it is denoted by the grey arrows.

Related Work Naturally, the idea of evolution management and change
propagation is not new. Regarding the related work, we can find a significant

8

Figure 1.4: Current evolution management approaches

9

amount of papers that focus on change management and propagation, model
transformation, evolution, versioning, etc. The current approaches towards
evolution management can be classified according to distinct aspects [15,
25]. The changes and transformations can be expressed [10, 35] as well as
divided [14] variously too. However, to our knowledge there exists no general
framework comparable to our proposal depicted in Figure 1.3. Particular
cases and views of the problem have previously only been solved separately,
superficially or mostly imprecisely without any theoretical or formal basis.
Their graphical overview is depicted in Figure 1.4 (see page 9), where sections
(a)–(j) represent groups of papers that focus on the particular part of the
problem in the context of our proposal. A detailed analysis of the related
work can be found in paper [34] (see Chapter 2), Section 8.

1.1.1 XML View

As we have mentioned, in the first step of our research as well as in this thesis
we focus on the blue part of the system, i.e., the XML view. As depicted in
Figure 1.5 (see page 11), even considering only this area, we need to solve
several related issues that ensure that the system works correctly.

First of all, we need to define the PIM and PSM levels and the related
mapping to neighboring levels, i.e., the PIM-to-PSM mapping and the PSM-
to-schema mapping as depicted in Figure 1.5 (a) with the red color. Regard-
less the choice of the subproblem, the schema in PIM still models real-world
concepts and the relationships between them without any details of their
representation in a specific data model. Hence, as a PIM we use the clas-
sical model of UML class diagrams [36, 37]. For simplicity, we use only its
basic constructs: classes, attributes and binary associations. A schema in
PSM describes how a part of the reality modeled by the PIM schema is rep-
resented with a particular XML schema. For each aimed XML schema a
separate PSM schema is created. As a PSM we use UML class diagrams
extended for the purposes of XML modeling. The extension is necessary be-
cause of several specifics of XML (such as hierarchical structure or distinction
between XML elements and attributes) which cannot be modeled by stan-
dard UML constructs. The definition is a modified and for the purpose of
clearer explanation of further concepts also simplified version of the XSEM
model [33] proposed by Martin Načaský. An example of a PIM schema, two
PSM schemas and respective XML schemas is depicted in Figure 1.6 (see
page 13). The arrows among levels indicate the mapping.

10

Figure 1.5: Building the XML view of the five-level evolution management
framework

11

Other levels of the XML view, i.e., schema, operational and extensional
are defined by the W3C specifications; hence, we can focus on the two con-
ceptual levels (PIM and PSM) and their relations to other levels. From
the conceptual perspective, a PSM schema is mapped to a PIM schema and
models the same part of the reality. From the grammatical perspective, a
PSM schema models an XML schema, i.e., a regular tree grammar [32]. The
mappings are crucial for correct evolution of the XML formats. Whenever
a change made to any part of the framework is performed by a user, it is
propagated to all other affected parts. The need for change propagation is
invoked by the mappings. The propagation ensures that the affected parts
are adapted so that their consistency with the initial changed part as well as
with each other is preserved.

In the second step, we need to specify the operations at the PIM and
PSM levels and their respective propagation (as denoted in Figure 1.5 (b)
on page 11 with the red color). As for the operations, we have chosen the
approach similar to many other papers. We define a set of atomic operations
and the way how more complex, so-called composite operations can be cre-
ated from them. To ensure correct propagation mechanism, we also need to
define a set of pre- and post-conditions that must be fulfilled with regard to
all related components of the framework. The atomic operations at both the
PIM and PSM level naturally involve operations create, delete and update for
all constructs of the model. However, contrary to the related work, having
not only the currently edited model, but also the mapping to other models,
we need also other types of operations. That is why we also define operation
synchronization which specifies that two (sets of) components are semanti-
cally equivalent. This operation ensures correct propagation for instance in
the simple motivating example (see page 2) when the element address should
be divided into elements street, city, zip, etc. Simple replacing of the old
element with the new ones would cause loss of information (data instances),
whereas synchronization ensures that the data are correctly “transformed”
between the elements and the transformation is correctly propagated to the
rest of the system.

1.2 Adaptation of XML Data

Having described the conceptual levels (PIM and PSM), their mutual rela-
tions and the relation to the schema level, the set of respective operations

12

Figure 1.6: Sample PIM schema, two PSM schemas and respective XML
schemas

13

and their propagation, we can now express changes at any of the three levels
and be sure that they are correctly propagated to all affected parts at all the
three remaining levels.

In paper [24] (see Chapter 3) we incorporate the extensional level and
we focus on the problem of adaptation of schema instances, i.e., XML doc-
uments, with regard to changes specified at schema level (denoted in Fig-
ure 1.5 (c) on page 11 with the red color). Using the previous results, we can
consider that the particular XML format represented by the changed schema
is changed at the PSM level, i.e., we can abstract from technical details of
a particular XML schema language and the user is provided with a more
user-friendly tool. However, our aim is more general. We want:

1. to allow the user both to evolve existing schemas and to create new
versions schemas, and

2. to let the user work with all versions of the schema.

In other words, each version must be independent of the others and the
old version should not be lost and replaced by a new version. The user
can choose any existing version v of the whole model and via the branch
operation, create a new version ṽ as a copy of v. Then, (s)he can evolve ṽ to
a desired state, but also go back to work with v or any other version existing
in the system.

When designing an adaptation algorithm, it is possible to take one of
two distinct approaches: either (1) recording the changes as they are con-
ducted during the schema evolution phase or (2) comparing two versions of
the schema. A system that records changes usually provides a kind of a com-
mand that initiates the recording and after issuing this command all opera-
tions carried out by a user over the schema are recorded. When the recording
is finished, the system can normalize the sequence, e.g., by eliminating oper-
ations that cancel each other. An alternative approach is to compare the two
versions of the schema. The user can work with both schemas independently
until (s)he is satisfied with them. The change detection algorithm then takes
the schemas as an input and compares them. The result of the comparison
is a list of differences between the schemas. In general, schema comparison
has many advantages, such as no need to look for redundancies in sequences
of operations, simple handling of reverse operations, ability of integration of
a schema edited outside the system, etc. But it must solve the problem of

14

ambiguities. For example, we may not be able to decide whether a partic-
ular construct was renamed (and slightly changed), or an old construct was
deleted and a new one (with highly similar structure) was created. Or, a
similar problem may occur if we consider operation move versus operations
add and delete. If we do not want to settle for heuristics, the only correct
solution is to find all possible interpretations of a particular change and then
let the user select the correct one.

In our approach, we decided to solve this issue by adding another type
of concepts into the model – so-called version links. Version links connect
constructs (i.e., classes, attributes, etc.) that represent the same real-word
concept in different versions of the model. They work as a mapping between
different versions of the schema. However, the difference between relying
upon the user to specify the mapping where ambiguities exists and using ver-
sion links is crucial. Version links are (most of the time) kept and managed
automatically at the background. Each time the user performs the branch
operation, version links are created between all the concepts and their new
versions. After that, they are maintained until a concept is deleted. Since
each construct in the model is correctly connected with its counterpart con-
structs in all other versions where it exists, we can avoid ambiguities when
detecting changes. One can regard version links as an adoption from the
change recording approaches and the approach can thus be considered as a
combination of schema comparison and change recording.

The approach then outputs an XSLT [19] script that adapts the modi-
fied XML documents with regard to the new version of a schema, whereas
the adapted document preserves semantical meaning of the constructs with
regard to a given PIM.

1.3 Reverse Engineering: Inference of XML

Schemas

To ensure correct propagation of changes to all the affected parts of the
system, we need to correctly build the whole five-level evolution management
framework including the mappings. For this purpose the user can select from
two strategies. When the user wants to design a new XML format, (s)he
proceeds in the top-down direction from the PIM level to the schema level
and we therefore call the methodology forward engineering. The result of

15

the process are (eventual extensions to) the PIM schema, the derived PSM
schema and the respective XML schema, together with mappings between
them. Nevertheless, the user can also integrate existing XML schemas into
his/her solution in the bottom-up direction which we call reverse engineering.
Such XML schema might be a legacy XML schema or an XML schema given
by a standardization organization we want to use in our system (e.g., a subset
of the OpenTravel.org schemas – see the real-world example on page 3).

A quite common situation is when we are provided only with a set of XML
documents that represent a particular view of the problem domain, i.e., the
extensional level. The documents conform to an XML schema; however,
it is not provided. In fact, according to statistical analyses of real-world
XML data, a significant portion of real-world XML documents (52% [26]
of randomly crawled or 7.4% [31] of semi-automatically collected2) have no
schema at all. So, first we need to infer the respective XML schema, i.e.,
a general description of the structure of the data that are supposed to be
integrated. In other words we need to build the schema level (as denoted in
Figure 1.5 (e) on page 11 with the red color).

The problem of automatic inference of an XML schema for a set of XML
documents can be viewed as a problem of construction of a grammar for a
set of words. But, since according to Gold’s theorem [16] regular languages
(in our case XML schemas) are not identifiable from positive examples only
(in our case sample XML documents which should conform to the resulting
schema), the existing methods either infer an identifiable subclass of regular
languages or exploit a kind of a heuristic. Since the problem of the former
approaches is which subclass should be inferred, most of the current ones
rather focus on a heuristic strategy. We cannot specify particular features of
the resulting set of languages; however for most real-world applications it is
not necessary.

The basic inference process (used in both types of strategies) works as
follows: Consider two sample XML documents in Figure 1.7. First, the input
documents are transformed to a set of prefix tree automata (see step 1), each
for a specific element name. Then, using a set of heuristic rules the states
of the automaton are merged to provide a more realistic and general result.
An example of such a rule may be that “we can merge states with the same
suffix of length ≥ k” (see step 2) or “if there are more than n consequent
occurrences of a label e, it is probable that it can occur an arbitrary number

2Data collected with the interference of a human operator.

16

Figure 1.7: An example of the inference process

of times” (see step 3). And, finally, the merged automaton is transformed to
an expression in the respective schema language (see step 4, where DTD [7]
is used due to space limitations).

For our purpose we also do not need a specific class of languages, but
a realistic and precise XML schema that describes the given data. Most of
the current approaches [29] focus on inference of DTDs and especially the
respective regular expressions. However, our PSM model is richer and thus we
have focused on XML Schema definitions (XSDs) [42] and especially on two
targets – more precise and realistic results and optimization of the inference
process. In paper [30] (see Chapter 4) we provide an overview of existing
approaches to XML schema inference and, especially, several improvements
of the classical inference process, such as:

• inference of specific XML Schema constructs such as, e.g., unordered
sequences, elements with the same name, but different context, or ele-
ments with different names but the same content,

• exploitation of user interaction which significantly optimizes the infer-
ence process (when used appropriately),

17

• exploitation of analysis of both structural and semantic similarity of the
data to detect more precisely whether a particular part of a schema
should be described using inheritance of complex types, shared ele-
ment/attribute groups or separate schema particles, or

• inference of integrity constraints, in particular XSD keys and foreign
keys utilizing an approach originally proposed for relational data.

1.4 Reverse Engineering: Mapping between

Schemas

Having a newly coming XML schema, either provided by the user or inferred
from sample XML documents, its integration to an existing system is a two-
step process. First, we need to acquire its PSM diagram. In this case, the
translation between an XML schema and a PSM schema is a straightforward
process given by the definition of the model [33]. Second, we need to map
the PSM diagram to the existing PIM diagram, i.e., we need to construct the
mapping of PSM to PIM (denoted in Figure 1.5 (f) on page 11 with the red
color). In this case the situation is much more complex than in case of the
top-down direction when the user directly provides the mapping denoting
parts of PIM to be interpreted in PSM.

We dealt with the mapping process, e.g., in [22, 40]. The algorithm is
based on suggestions of likely candidates for correct interpretation to the
user. These suggestions are sorted according to a similarity value computed
using well-known similarity techniques combined with our structural similar-
ity technique which exploits the knowledge of correct mappings of parts of
the PSM. The strategies result from our older and more general paper [45]
(see Chapter 5) which studies various aspects of similarity of XML schemas.
We deal with similarity of XML schema fragments expressed in DTD or
XML Schema. In particular, we focus on quantitative measure which is cur-
rently used in a huge number of applications such as clustering of XML data,
dissemination-based applications, schema integration systems or other less
obvious areas, such as, e.g., e-commerce or semantic and approximate query
processing. The problem we are facing is that the key emphasis is currently
put on semantic similarity. However, since for our application of similar-
ity evaluation the structure of schema fragments is an important aspect, we
focus on more precise structural analysis. On the other hand, since the se-

18

mantics of the data can also be an important information, we still preserve
the exploitation of semantic similarity as well.

To fulfill both the aims, we combine and adapt to DTD constructs two
verified approaches – tree edit distance and semantics of element/attribute
names. We show how a well-known and verified methodology of edit distance
can be utilized for DTDs, that can involve several types of nodes and form
general graphs, and even extended with exploitation of semantic similarity.
Using a set of experiments we show the impact of these extensions on simi-
larity evaluation. And, last but not least, we show how this approach can be
extended for XSDs, which involve more complex structures than DTDs and,
in particular, plenty of “syntactic sugar”, i.e., constructs that are structurally
or semantically equivalent.

1.5 Analysis of Real-World Data

In many aspects related to specification of the five-level evolution manage-
ment framework, such as schema structures, edit operations, change manage-
ment or similarity matching, we had to study real-world XML applications,
i.e., the data and operations they typically use. However, working with real-
world data is not simple, since they can often change, are not precise, or even
involve a number of errors. Firstly, we need to gather a reasonably large and
representative set of real-world data. Currently there exists a huge number
of crawlers, however we usually require data having a particular format or
structure, so a range of filters must be supported as well. Secondly, since
the data are usually human-written, they contain a number of errors. In this
case we can either discard the incorrect data, and, hence, loose a significant
portion of them, or provide a kind of data corrector. In the next step we
want to make the analyses themselves. In this case we have to cope with
the fact that the data can change, and, hence, the analytical phase must be
repeatable and extensible. And, finally, having obtained the results of the
statistics, we need to be able to visualize and analyze the huge amount of
information efficiently and mutually compare the results.

Since the analysis of real-world data is an important, but at the same
time demanding task, as a “side” research direction we have focussed also
on this area. In paper [41] (see Chapter 6) we describe the result of our
effort – a general framework called Analyzer that aims to cope with all the
previously named requirements. It provides all the essential functionality for

19

easy management of files to be analyzed, configuration and execution of se-
lected analyses and an advanced graphical user interface (GUI) for browsing
generated reports. The key advantage of Analyzer is extensibility. Analyzer
provides a general environment, whereas all analytical computations them-
selves are defined solely within implementation of plug-ins. Hence, we have
created a unique and universal tool that can be used in many research areas
for various optimization purposes. A screenshot of the tool is provided in
Figure 1.8.

Figure 1.8: A screenshot of Analyzer

For our purposes, we have primarily focussed mainly on four related as-
pects – XML data crawling, XML data correction, structural analysis of
XML data, and query analysis of XML queries. In the former three cases
we provide significant extensions to the current approaches, in the latter
case we provide a unique approach which has not been considered in the

20

current papers so far. However, despite our original motivations related to
XML technologies, we have created a general application that is completely
capable of performing analyses over documents of whatever types.

1.6 Author’s Contributions

As mentioned before, the five-level evolution management framework is com-
plex, the idea can be further extended and generalized and, hence, the related
problems cannot be solved by a single person. On the other hand, a single
person cannot deal with all the related issues and problems. The core of
the framework is a common work of members of XRG, mainly co-authors of
the respective papers that form Chapters 2 and 3. Most parts of the system
were also solved within Master theses and student SW projects under super-
vision of members of XRG, where the contribution of particular students is
of different kind, but indisputable and valuable. Similarly, the consecutive
Chapters 4, 5, and 6 are a common work of multiple co-authors.

The author of this thesis cooperated on the common core of the five-level
evolution management framework, i.e., proposal of the levels, edit opera-
tions and propagation of changes within the XML view, on aspects related
to reverse engineering, i.e., XML schema inference, XML schema matching
and mapping, and on analysis of real-world XML data and operations. Nat-
urally, there are also other related aspects that result from or are related
to the same common idea of the five-level evolution management framework,
that are beyond the scope of this thesis, or even beyond research topics of the
author of this thesis. They are/will be described in Ph.D. and Habilitation
theses of the co-authors of the core idea, key contributors of the extensions.
The most important topics of this kind involve implementation of the evo-
lution management framework, formal background of the conceptual levels,
respective operations, and propagation mechanism, preservation of integrity
constraints at all the levels, advanced mapping algorithms, technical details
of data analyses involving their correction, analysis of operations, etc. Note
that some of these topics are partly covered in papers that form this thesis.
However, they do not form the key contributions of its author.

21

22

Chapter 2

Evolution and Change
Management of XML-Based
Systems

Martin Nečaský
Jakub Kĺımek
Jakub Malý
Irena Mlýnková

Published in the International Journal of Systems and Software, volume 85,
issue 3, pages 683–707. Elsevier, February 2012. ISSN 0164-1212.

Impact Factor: 0.836
5-Year Impact Factor: 1.117

23

24

The Journal of Systems and Software 85 (2012) 683– 707

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

jo u rn al hom epage: www.elsev ier .com/ locate / j ss

Evolution and change management of XML-based systems

Martin Nečaský ∗, Jakub Klímek, Jakub Malý, Irena Mlýnková
Department of Software Engineering, Faculty of Mathematics and Physics, Charles University in Prague, Malostranské nám. 25, 118 00 Praha 1, Czech Republic

a r t i c l e i n f o

Article history:
Received 25 February 2011
Received in revised form 20 July 2011
Accepted 18 September 2011
Available online 29 September 2011

Keywords:
XML data modeling
Model driven architecture
XML schema evolution
Propagation of changes

a b s t r a c t

XML is de-facto a standard language for data exchange. Structure of XML documents exchanged among
different components of a system (e.g. services in a Service-Oriented Architecture) is usually described
with XML schemas. It is a common practice that there is not only one but a whole family of XML schemas
each applied in a particular logical execution part of the system. In such systems, the design and later
maintenance of the XML schemas is not a simple task.

In this paper we aim at a part of this problem – evolution of the family of the XML schemas. A single
change in user requirements or surrounding environment of the system may influence more XML schemas
in the family. A designer needs to identify the XML schemas affected by a change and ensure that they
are evolved coherently with each other to meet the new requirement. Doing this manually is very time
consuming and error prone. In this paper we show that much of the manual work can be automated.
For this, we introduce a technique based on the principles of Model-Driven Development. A designer is
required to make a change only once in a conceptual schema of the problem domain and our technique
ensures semi-automatic coherent propagation to all affected XML schemas (and vice versa). We provide
a formal model of possible evolution changes and their propagation mechanism. We also evaluate the
approach on a real-world evolution scenario.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The eXtensible Markup Language (XML) (Bray et al., 2008) is
used by many software systems today to represent and exchange
data in a form of XML documents. One of the crucial parts of such
systems are XML schemas which describe structure of the XML doc-
uments. Usually, a system does not use only a single XML schema,
but a set of different XML schemas, each in a particular logical exe-
cution part. We can, therefore, speak about a family of XML schemas.

Having a system which exploits a family of XML schemas, we
face to the problem of XML schema evolution. The XML schemas
may need to be evolved whenever user requirements or surround-
ing environment changes. A single change may influence zero
or more XML schemas. Without a proper technique, we have to
identify the XML schemas affected by the change manually and
ensure that they are evolved coherently with each other. When
the XML schemas have already been deployed, in the run-time
environment there are also XML documents which might became
invalid and need to be, therefore, modified appropriately.

In this paper we focus only on a part of the problem described
– coherent evolution of XML schemas according to changing

∗ Corresponding author.
E-mail addresses: necasky@ksi.mff.cuni.cz (M. Nečaský), klimek@ksi.mff.cuni.cz

(J. Klímek), maly@ksi.mff.cuni.cz (J. Malý), mlynkova@ksi.mff.cuni.cz (I. Mlýnková).

requirements (see our recent work (Malý et al., 2011) where we
discuss the other part of the problem – adaptation of underlying
XML documents when their XML schemas evolve). We propose
a technique based on the Model-Driven Development (MDD)
(Miller and Mukerji, 2003) methodology. We consider modeling
the XML schemas at two MDD levels – platform-independent
and platform-specific. First, the whole application data domain
is modeled independently of the XML schemas in the form of a
platform-independent schema. Then, each XML schema in the
family is designed in the form of a platform-specific schema which
is mapped to the platform-independent schema. It may be then
automatically translated to an expression in a selected XML schema
language, e.g. XSD (XML Schema Definition) (Thompson et al.,
2004) or RELAX NG (Murata, 2002). The mappings of platform-
specific schemas to platform-independent schema naturally
support evolution management. A change is explicitly expressed
as a change to the platform-independent schema or one of the
platform-specific schemas. The mappings allow us to propagate
the change between platform-independent and platform-specific
levels semi-automatically and evolve the whole family of XML
schemas coherently.

Contributions. The key contributions of this paper are as follows:

• formal models for designing XML schemas at platform-
independent and platform-specific MDD levels and a set of atomic
operations for their evolution,

0164-1212/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2011.09.038

684 M. Nečaský et al. / The Journal of Systems and Software 85 (2012) 683– 707

• proof of minimality and correctness of the set,
• mechanism for propagating changes invoked by the atomic oper-

ations between the MDD levels,
• specification of operations composed of the atomic ones and their

propagation between the MDD levels,
• implementation of the proposed framework called eXolutio

(Klímek et al., 2011), and
• experimental demonstration of the completeness of the set of

atomic operations and correctness of the propagation mechanism
by applying eXolutio in a real-world case study.

Although there is other existing work in the area of schema evo-
lution (as we will show in Section 8), the evolution problem has not
yet been adequately solved (Hartung et al., 2011). We will show that
the current approaches omit some important kinds of operations
and provide an insufficient solution to the problem of the prop-
agation of changes. And, last but not least, they do not introduce
operations as a formal set of simple atomic operations which would
allow authors of tools for schema evolution to build various more-
user friendly operations as compositions of the atomic operations.
In this work, we introduce such formalism. Its main advantage is
that it enables one to specify a new operation as a sequence of the
atomic operations without the details of how the new operation
is propagated to the other parts of the system. Our propagation
mechanism ensures its correct propagation automatically.

In this paper we combine and, in particular, extend our previ-
ous work in this area. Our technique for designing XML schemas
at platform-independent and platform-specific levels was firstly
proposed in Nečaský (2009) and later generalized in Nečaský
and Mlýnková (2010). A basic implementation of a modeling tool
based on the models was introduced in Nečaský et al. (2008). In
this text we describe it in detail including its evolution exten-
sion and show its usage in real-world use cases. In Nečaský and
Mlýnková (2009a,b) we proposed a five-level XML evolution frame-
work which presents a general overview of the problem of XML
schema evolution in the context of a whole software system con-
sisting of various parts. In this paper we lay the theoretical basis of
our approach. We provide a formal and detailed description of evo-
lution operations and their propagation, prove minimality and the
correctness of our approach and extend it with explanatory exam-
ples. In general, this paper expands on the results of our recent
research with an emphasis on formal specification.

In Yu and Popa (2005) the authors discussed two kinds of evo-
lution approaches – incremental and change-based approaches. An
incremental approach enables a clear formal basis which ensures
correctness and allows for simple evolutionary steps made by a

designer. A change-based approach is suitable for cases when we
are provided with two versions of the schema without the incre-
mental evolutionary steps and we need to manage evolution of the
data efficiently. In this work, we introduce an incremental approach
based on a set of atomic operations. A designer incrementally per-
forms particular atomic operations or operations comprising the
atomic ones. Our technique continuously propagates the changes
to affected schemas.

Outline. The rest of the paper is structured as follows: In Section
2 we provide a motivating and running example. In Section 3 we
describe the problem of XML schema evolution in the context of a
whole software system and specify the selected part of the problem
solved in this paper. In Section 4 we provide a formal specifica-
tion of platform-independent and platform-specific levels for XML
schema modeling. In Section 5 we extend the levels with a set of
atomic operations. In Section 6 we describe the propagation mech-
anism of the atomic operations between the levels and show that
the atomic operations together with the propagation mechanism
form a minimal and correct evolution formalism. In Section 7 we
show how the atomic operations form realistic composite opera-
tions. In Section 8 we compare our proposal with current related
works. In Section 9 we introduce the implementation of the intro-
duced evolution formalism called eXolutio and its application in a
real-world case study. We also evaluate our approach on the basis
of this case study. Finally, in Section 10 we conclude and outline
possible future work.

2. Motivating and running example

As a demonstration of the problem of evolution management
of XML schemas, let us consider a company that receives purchase
orders and let us focus on a part of the system that processes
purchases. Let the messages used in the system be XML messages
formatted according to a family of different XML schemas. Consider
the two sample XML documents in Fig. 1. The former one is for-
matted according to an XML schema specifying a list of customers.
The latter one is formatted according to a different XML schema
specifying purchase requests. There are also other XML schemas
in the family (e.g. customer details, purchase responses, purchase
transport details, etc.). All the XML schemas share the same data
domain (purchasing goods). On the other hand, the same part
of the domain may be represented in different XML schemas in
different ways. For example, the concept of customer is represented
in each of our sample XML schemas in a different way. On the right
hand side, elements name and email are present for a customer.
On the left hand side, kinds of customers are distinguished (private

<custList version="1.3">
 <cust>
 <name>Martin Necasky</name>

 <address>Vaclavske nam. 123, Prague</add ress>
 <phone>123 456 789</phone>
 </cust>
 <cust>
 <name>Department of Software Engineeri ng,
 Charles University</ name>
 <hq>Malostranske nam. 25, Prague</ hq>
 <storage>Ke Karlovu 3, Prague</sto rage>
 <secretary>Ke Karlo vu 5, Prague</secreta ry>

 <phone>111 222 333</pho ne>
 </cust>
</custList>

<purchaseRQ version="1.0">
 <bill-to>Malostranske nam. 25, Prague</bill-to>
 <ship-to>Ke Karlovu 3, Prague</ship-to>
 <cust>
 <name>Department of Software Engineering ,
 Charles University</name >

<email>ksi@mff.cuni.cz</email>
 </cust>
 <items>
 <item>

<code>P045</code>
</item>

 <item>
<code>P332</code>

</item>
 </items>
</purchaseRQ>

Fig. 1. Sample XML documents represented in a single XML system.

M. Nečaský et al. / The Journal of Systems and Software 85 (2012) 683– 707 685

and corporate customers). For private customers, elements name,
address and phone are present. For corporate customers, ele-
ments name, different addresses (headquarters, storage and
secretary), and phone are present.

Let us consider a new user requirement that an address should
no longer be represented as a simple string. Instead, it should be
divided into elements street, city, zip, etc. Such a situation
would require a skilled domain expert to identify all the schemas
in the system which involve an address and correct them respec-
tively. Apparently, in a complex system comprising tens or even
hundreds of schemas, this is a difficult and error-prone task. Even
identifying the affected parts of the schema is not an easy and
straightforward process. For example, we may need to make the
modification only for addresses that represent a place to ship the
goods (which are the elements address and storage in the XML
schema instantiated on the left-hand side of the figure and ele-
ment ship-to on the right-hand side). We do not want to modify
addresses that represent headquarters, etc. In the following text
we show in detail that evolution management is a complex pro-
cess that can be solved semi-automatically and, hence, efficiently
and precisely if we provide a rigorous theoretical background and
preserve nontrivial relations and meta-data.

3. XML evolution framework

In our previous work (Nečaský and Mlýnková, 2009a), we intro-
duced a framework for managing evolution of a software system
which exploits XML technologies at different levels. An extended
version of the framework is depicted in Fig. 2. As we can see, the
framework can be partitioned both horizontally and vertically; in
both cases its components are closely related and interconnected.
The relations form the key concept of the evolution management,
since they invoke the needs for change propagation.

If we consider the vertical partitioning, we can identify multiple
views of the system. In the framework we have depicted the three
most common and representative views. The blue (leftmost) part
covers an XML view of the data processed and exchanged in the
system. The green (middle) part represents the storage view of the
system, e.g. a relational view of the processed data which need to be
persistently stored. Finally, the yellow (rightmost) part represents
a processing view of the data, e.g. processing by sequences of Web
Services described using BPEL scripts (WSBPEL, 2007) or various
proprietary formats (e.g. Park and Park, 2008).

If we consider the horizontal partitioning, we can identify five
levels, each representing a different view of an XML system and
its evolution. The lowest level, called extensional level, represents
the particular instances that form the implemented system such
as, e.g., XML documents, relational tables or Web Services that are

components of particular business processes. Its parent level, called
operational level, represents operations over the instances, e.g. XML
queries over the XML data expressed in XQuery (Boag et al., 2007)
or SQL/XML (ISO/IEC, 2006) queries over relations. The level above,
called schema level, represents schemas that describe the struc-
ture of the instances, e.g. XML schemas or SQL/XML Data Definition
Language (DDL).

Even these three levels indicate problems related to XML evolu-
tion. For instance, when the structure of an XML schema changes,
its instances, i.e. XML documents, and related queries must be
adapted accordingly so that their validity and correctness is pre-
served respectively. In addition, if we want to preserve optimal
query evaluation over the stored data, the storage model also needs
to adapt respectively. What is more, as we have mentioned, in
practice there are usually multiple XML schemas (families of XML
schemas) applied in a single system, e.g. XML schemas for pur-
chases, invoices, product catalogues, etc., i.e. multiple views of
the common problem domain. Hence, such a change can influence
multiple XML schemas, XML documents and queries. In general, a
change at one level can trigger a cascade of changes at other levels.
We call such sequences of adaptations change propagation.

Considering only the three levels leads to evolution of each
affected schema separately. However, this is a highly time-
consuming and error-prone solution since we need a domain expert
who is able to identify all the affected schemas and propagate the
changes. Therefore, we introduce two additional levels, which fol-
low the MDD (Miller and Mukerji, 2003) principle, i.e. modeling
of a problem domain at different levels of abstraction. As we have
mentioned, the topmost one is the platform-independent level which
comprises a schema in a platform-independent model (PIM schema).
The PIM schema is a conceptual schema of the problem domain.
It is independent of any particular data (e.g. XML or relational) or
business process (e.g. Web Services) model. The level below, called
platform-specific level, represents mappings of the selected parts
of the PIM schema to particular data or business process models.
For each model it comprises schemas in a platform-specific model
(PSM schemas) such as, e.g., XSEM schemas (Nečaský, 2009) which
model XML schemas, ER (Chen, 2002) schemas which model rela-
tional schemas, etc. Each PSM schema can be then automatically
translated to a particular language used at the schema level and
vice versa. Note that the latter direction allows for integration of
incoming formats/applications into the given evolution framework.

As we can see in Fig. 2, there are not only vertical relations
between the levels, but the components of the system can also
be horizontally related across the vertical partitions. A few exam-
ples are denoted by the red dashed arrows. For instance, there is
a relation between an XML schema and its respective storage in a
relational database. Similarly, an XML query can be evaluated by

Fig. 2. Five-level XML evolution architecture.

686 M. Nečaský et al. / The Journal of Systems and Software 85 (2012) 683– 707

translation into an SQL query. And, last but not least, a BPEL script
can specify how an input SOAP message, i.e. an XML schema, is
processed.

In all the three cases a change in one of the ends of the rela-
tion influences the other. So, since we are considering completely
different formats involving different constructs which do not have
to correspond mutually using one-to-one relationship, the change
propagation becomes a complex problem. But, having a hierarchy
of models which interconnect all the applications and views of the
data domain using the common PIM level, it can be done semi-
automatically and much more easily. We do not need to provide a
mapping from every PSM to all other PSMs, but only from every
PSM to the PIM which is, in addition, quite natural. Hence, the
vertical change propagation is realized using this common point.
For instance, if a change occurs in a selected XML document, it is
first propagated to the respective XML schema, PSM and, finally,
PIM. We speak about an upwards propagation, in Fig. 2 represented
by white arrows. It enables one to identify the part of the prob-
lem domain that was affected. Then, we can invoke the downwards
propagation. It enables one to propagate the change of the problem
domain to all the related parts of the system. In Fig. 2 it is denoted
by grey arrows.

3.1. Selected part of the problem

Apparently, the change propagation problem is not an easy task
and cannot be covered in a single paper. In this paper we aim at one
particular problem – XML schema evolution. As we have shown in
the motivating example, there is usually a whole family of XML
schemas which are conceptually related to the problem domain
of the system. When a designer needs to make a change in one
of the XML schemas, the other XML schemas may be affected as
well. We introduce an approach which is based on modeling the
changes at PIM and PSM XML levels as highlighted in Fig. 3. It
ensures that whenever a change is performed in a PIM schema,
it is correctly propagated to the PSM schemas and vice versa. So it
ensures consistency between the schemas when they are changed.

In practice, this problem appears in two scenarios. The first sce-
nario is when a designer creates new XML schemas which have
not been deployed in a run-time environment yet. There are nei-
ther XML documents formatted according to the XML schemas, nor
other developers or applications which would somehow use the
XML schemas. In other words, there is no extensional level and
no operational level. Because of the complexity of the task, the
designer does not create XML schemas in a single linear process.
Instead, (s)he iterates in several cycles before an acceptable version
of the XML schemas is prepared to be deployed. (S)he starts each
iteration with a selected part of the requirements and incorporates

them into the XML schemas. For that, (s)he needs a mechanism
which shows an impact of a next change to the unfinished XML
schemas and which helps to adapt the XML schemas according to
this change. No propagation to extensional or operational levels is
necessary at this stage.

The most frequent modifications to the XML schemas in this sce-
nario will be, intuitively, creating new parts of the XML schemas.
However, updating existing parts with their more detailed and
elaborate variants will be frequent as well. This is because the
designer will cover some of the requirements only briefly in the
XML schemas in early iterations and will return to them in later
iterations to finish them. In simpler cases, updating means chang-
ing properties of existing XML schema components (e.g. data type).
In more complex cases, updating means removing old parts and
replacing them with new but semantically equivalent and more
elaborate parts. No backward compatibility of the new version
needs to be preserved since there is neither extensional, nor oper-
ational level.

The second scenario is adapting existing XML schemas which have
already been deployed in a run-time environment. In this scenario
it is necessary to consider the extensional and operational level as
well, because there exist XML documents and applications which
use the XML schemas. Such scenario usually occurs when new or
changed requirements need to be implemented in the system (e.g.
a legislative change). Due to backward compatibility the designer
will probably not remove the existing parts of the XML schemas. If
some part needs to be detailed (or, conversely, simplified), it will
be extended with a new version, not replaced.

The approach we introduce in the following sections is fully suf-
ficient for the first scenario and partly also for the second scenario.
For the second scenario, propagation to the extensional and opera-
tional level is also necessary. We described the propagation to the
extensional level in Malý et al. (2011). The technique introduced
generates an XSLT script which transforms XML documents from
the old version of each affected XML schema to the new version.
The propagation to the operational level is the matter of our future
work.

A careful reader might notice that we omitted the schema level
in the above paragraphs. Our approach allows the designer to work
only at the PIM and PSM levels and not to consider the schema
level. This is because our introduced PSM level is equivalent to the
schema level from the syntactical point of view. The PSM level has
two purposes in addition to the schema level – it provides a more
user-friendly presentation of the XML schemas to the designer and
extends the XML schemas with mappings to the conceptual schema
at the PIM level. In Nečaský and Mlýnková (2010), we proved the
equivalence formally. We also showed how a PSM schema may be
automatically translated to an XML schema expressed in some XML

Fig. 3. Five-level XML evolution architecture – data representation.

M. Nečaský et al. / The Journal of Systems and Software 85 (2012) 683– 707 687

schema language and vice versa via the formalism of regular tree
grammars. However, this is beyond the scope of this paper. We will
just keep this fact in mind. We exploit this theoretical result in
Malý et al. (2011), where we do not generate XSLT scripts on the
basis of differences between XML schemas but PSM schemas. We
will similarly use it in this paper as well. We will present a set of
operations for changing PSM schemas. Because of the equivalence, a
change operation at the PSM level unambiguously and correspond-
ingly describes a change in the modeled XML schema and it is not,
therefore, necessary to explicitly convert it to a change specific for
an XML schema expressed in some XML schema language.

4. Modeling for XML evolution

As we have outlined, our framework enables one to manage
evolution of a family of XML schemas by introducing platform-
independent and platform-specific levels. In this section, we
introduce both levels formally.

4.1. Platform-independent model

A schema in the platform-independent model (PIM) models
real-world concepts and the relationships between them without
any details of their representation in a specific data model (XML
in our case). As a PIM, we use the classical model of UML class
diagrams (Object Management Group, 2007a,b). For simplicity, we
use only its basic constructs: classes, attributes and binary associ-
ations. UML is widely supported by the majority of tools for data
engineering and the XMI (XMI, 2009) standard is used for exchang-
ing diagrams between them; it is, therefore, natural to use UML in
our approach as well.

Definition 4.1. A platform-independent schema (PIM schema) is a
triple S = (Sc, Sa, Sr) of disjoint sets of classes, attributes, and asso-
ciations, respectively.

• Class C ∈ Sc has a name assigned by function name.
• Attribute A ∈ Sa has a name, data type and cardinality assigned

by functions name, type, and card, respectively. Moreover, A is
associated with a class from Sc by function class.

• Association R ∈ Sr is a set R = {E1, E2}, where E1 and E2 are called
association ends of R. R has a name assigned by function name.
Both E1 and E2 have a cardinality assigned by function card and
are associated with a class from Sc by function participant. We will
call participant(E1) and participant(E2) participants of R. name(R)
may be undefined, denoted by name(R) = �.

For a class C ∈ Sc , we will use attributes (C) to denote the set of all
attributes of C, i.e. attributes (C) = {A ∈ Sa : class(A) = C}. Similarly,
associations (C) will denote the set of all associations with C as a
participant, i.e. associations (C) = {R ∈ Sr : (∃E ∈ R)(participant(E) =
C)}.

PIM schema components have usual semantics: a class models
a real-world concept, an attribute of that class models a property
of the concept, and, an association models a kind of relationships
between two concepts modeled by the connected classes. A sample
PIM schema modeling our sample domain of products being sold is
depicted in Fig. 4. We display PIM schemas as UML class diagrams.
We omit displaying data types of class attributes. When a cardinal-
ity of a class attribute or association endpoint is not displayed, it is
1..1 by default.

4.2. Platform-specific model

A schema in the platform-specific model (PSM) describes how
a part of the reality modeled by the PIM schema is represented
with a particular XML schema. For each aimed XML schema a
separate PSM schema is created. As a PSM we use UML class dia-
grams extended for the purposes of XML modeling. The extension
is necessary because of several specifics of XML (such as hierarchi-
cal structure or distinction between XML elements and attributes)
which cannot be modeled by standard UML constructs.

Definition 4.2. A platform-specific schema (PSM schema) is a
5-tuple S ′ = (S ′

c, S ′
a, S ′

r , S ′
m, C ′

S ′) of disjoint sets of classes, attributes,
associations, and content models, respectively, and one specific class
C ′

S ′ ∈ S ′
c called schema class.

• Class C ′ ∈ S ′
c has a name assigned by function name.

• Attribute A ′ ∈ S ′
a has a name, data type, cardinality and XML form

assigned by functions name, type, card and xform, respectively.
xform(A ′) ∈ {e, a}. Moreover, it is associated with a class from S ′

c
by function class and has a position assigned by function position
within the all attributes associated with class(A ′).

• Association R ′ ∈ S ′
r is a pair R ′ = (E ′

1, E ′
2), where E ′

1 and E ′
2 are called

association ends of R ′. Both E ′
1 and E ′

2 have a cardinality assigned
by function card and each is associated with a class from S ′

c or
content model from S ′

m assigned by function participant, respec-
tively. We will call participant(E ′

1) and participant(E ′
2) parent and

child and will denote them by parent(R ′) and child(R ′), respec-
tively. Moreover, R ′ has a name assigned by function name and
has a position assigned by function position within the all asso-
ciations with the same parent(R ′). name(R ′) may be undefined,
denoted by name(R ′) = �.

Fig. 4. PIM schema modeling the domain of selling products.

688 M. Nečaský et al. / The Journal of Systems and Software 85 (2012) 683– 707

Fig. 5. PSM schema modeling (a) XML format for purchase requests received from customers, (b) XML format for purchase responses sent to customers, (c) components
shared by other PSM schemas.

Table 1
XML attributes and XML elements modeled by PSM constructs.

PSM construct Modeled XML construct

C ′ ∈ S ′
c Complex content which is a sequence of XML attributes and XML elements

modeled by attributes in attributes (C ′) followed by XML attributes and XML
elements modeled by associations in content (C ′)

A ′ ∈ S ′
a , where xform(A ′) = a XML attribute with name name(A ′), data type type(A ′) and cardinality card(A ′)

A ′ ∈ S ′
a , where xform(A ′) = e XML element with name name(A ′), simple content with data type type(A ′) and

cardinality card(A ′)
R ′ ∈ S ′

r , where name(R ′) /= � XML element with name name(R ′), complex content modeled by child(R ′) and
cardinality card(R ′). If R ′ ∈ content (C ′

S ′), R ′ models a root XML element
R ′ ∈ S ′

r , where name(R ′) = � Complex content modeled by child(R ′)
M ′ ∈ S ′

m and cmtype(M ′) =
sequence (or choice or set)

Complex content which is a sequence (or choice or set, respectively) of XML
attributes and XML elements modeled by associations in content (C ′)

• Content model M ′ ∈ S ′
m has a content model type assigned by

function cmtype. cmtype(M ′) ∈ {sequence, choice, set}.

The graph (S ′
c ∪ S ′

m, S ′
r) must be a forest1 of rooted trees with

one of its trees rooted in C ′
S ′ . For C ′ ∈ S ′

c , attributes (C ′) will
denote the sequence of all attributes of C ′ ordered by position,
i.e. attributes (C ′) = (A ′

i
∈ S ′

a : class(A ′
i
) = C ′ ∧ i = position(A ′

i
)). Sim-

ilarly, content (C ′) will denote the sequence of all associations
with C ′ as a parent ordered by position, i.e. content (C ′) = (R ′

i
∈ S ′

r :
parent(R ′

i
) = C ′ ∧ i = position(R ′

i
)). We will call content (C ′) content

of C ′. With anc(X ′) we will denote the set of all ancestor classes of
a component X ′ in S ′.

To distinguish PIM components from PSM components, we
strictly use a notation without the ’ symbol for PIM components
(e.g. class Purchase) and notation with the ’ symbol for PSM
components (e.g. class Purchase’). Before showing sample PSM
schemas, we explain the semantics of the PSM constructs. We
view a PSM schema S ′ from two perspectives: grammatical and
conceptual. From each perspective, the constructs have a different
semantics.

1 Note that since S ′ is a forest, we could model R ′ directly as a pair of connected
components. However, we use association ends to unify the formalism of PSM with
the formalism of PIM.

From the conceptual perspective, S ′ is mapped to a PIM schema
S and models the same part of the reality as S. More precisely,
some classes, attributes and associations of S ′ are mapped to
some classes, attributes, and associations of S, respectively. These
mapped components of S ′ model exactly the same part of the real-
ity as do their corresponding counterparts in S. The rest of S ′ has
no semantics from the conceptual perspective.

From the grammatical perspective, S ′ models an XML schema.
Its components model XML attributes and XML elements, and their
structure. We summarize XML constructs modeled by PSM con-
structs in Table 1. Formally, S ′ unambiguously models a regular
tree language which can be specified by a regular tree grammar
(Murata et al., 2005). However, this formalism is not a part of this
paper. For the details on the modeled regular tree language and for-
mal proofs of unambiguity we refer to our previous work (Nečaský
and Mlýnková, 2010), where we proved that our PSM is equivalent
to regular tree grammars. In other words, it can be equivalently
used as an XML schema language. We showed how a PSM schema
can be unambiguously translated to an expression in a selected XML
schema language and vice versa. The important consequence of our
previous results for this paper is that we can abstract our evolution
mechanism from particular XML schema languages and work only
at the PSM level.

If we put both perspectives together, the PSM schema S ′ speci-
fies how the corresponding part of the PIM schema S is represented
in the XML schema. In other words, it specifies how a part of the

M. Nečaský et al. / The Journal of Systems and Software 85 (2012) 683– 707 689

<purchaseRQ version="1.0">
<cust partner-code="PA1">
<name>Martin Necasky</name>
<email>necasky@...</email><address>Malostranske nam. 25, Praha, Czech Republic</address>
</cust>
<items>
<item tester="true"><code>P001</code><title>Sample for testing</title></item>
<item><code>P002</code><title>Umbrella</title><price>100</price><amount>2</amount></item>
</items>
</purchaseRQ>

Fig. 6. Sample purchase request represented in the XML format modeled by the PSM schema depicted in Fig. 5(a).

real world modeled by S is represented in XML documents valid
against the XML schema. Conversely, it specifies the semantics of
the XML schema in terms of S, i.e. the semantics of a particular XML
document in terms of the PIM schema.

Three sample PSM schemas are depicted in Fig. 5. We display
PSM schemas as UML class diagrams with some extended notation.
First, they are displayed in a tree layout; attributes and associations
are sorted in the order given by position. Second, attributes with
XML form a are displayed with the @ symbol. Third, sequence,
choice and set content models are displayed as rounded boxes
with an inner symbol . . ., | or {}, respectively.

From the conceptual perspective, our sample PSM schemas are
mapped to a part of the PIM schema in Fig. 4. We display the
components mapped to the PIM schema in the sea shell color.
The mapping is intuitive2 and we do not display it explicitly. The
components which are not mapped are displayed in grey. For exam-
ple, the PSM class Purchase’ in Fig. 5(a) is mapped to the PIM
class Purchase. In other words, the semantics of Purchase’ is the
same as the semantics of Purchase which models purchases. Sim-
ilarly, attribute name’ of class Customer’ is mapped to name of
class Customer. Association cust’ connecting classes Purchase’
and Customer’ is mapped to association makes connecting classes
Purchase and Customer. On the other hand, PSM class Contact’
is not mapped to the PIM schema. In other words, it has no seman-
tics from the conceptual point of view. Similarly, the association
with Contact’ as child is not mapped. And, attribute version’ of
Purchase’ is not mapped as well. These non-mapped components
have no semantic meaning from the conceptual point of view.

From the grammatical perspective, the PSM schema depicted
in Fig. 5(a) models an XML schema for purchase requests sent
by customers to our system. A sample XML document formatted
according to this XML schema is depicted in Fig. 6. The hierarchi-
cal structure of the XML schema is modeled by the associations of
the PSM schema. As can be seen from the example, each named
association models an XML element whose cardinality is given by
the child cardinality of the association. For example, association
items’ which connects classes Purchase’ and Items’ models
XML element items with cardinality 1..1. Association item’
which connects classes Items’ and Item’ models XML element
item with cardinality 1..*. Moreover, when such association is
in the content of the schema class, it models root XML elements.
In our case, association purchaseRQ’ models XML elements pur-
chaseRQ which are root XML elements of the modeled XML format.
An association without a name models only the nesting of XML
content. For example, association ItemProduct’ which connects
classes Item’ and Product’ does not model any XML element. It
specifies that the XML content modeled by its child is a part of the
XML content modeled by its parent. An attribute models an XML
element or XML attribute depending on its XML form. An attribute

2 The reader may deduce it from their names which intuitively suggest the map-
ping.

with XML form = a models XML attribute and is depicted by the
additional symbol @. An attribute with XML form = e models XML
element and is depicted without any additional symbol. Again, car-
dinality is given by the attribute cardinality. For example, attribute
version’ of class Purchase’ models a mandatory XML attribute
version. Attribute name’ of class Customer’ models a mandatory
XML element name which can be repeated.

Sometimes, classes in one or more PSM schemas may share
the same attributes and/or part of their content. Instead of repeat-
ing them at several places, we introduce structural representatives
which allow for attribute and content reuse. If a class C ′ in a PSM
schema is a structural representative of another class D ′ from the
same or another PSM schema, C ′ “inherits” the attributes and con-
tent of D ′. From the grammatical perspective, C ′ models the same
XML attributes as D ′ followed by its own modeled XML attributes
followed by XML elements modeled by D ′ and, finally, followed by
its own modeled XML elements.

Definition 4.3. Let S ′ = (S ′
c, S ′

a, S ′
r , S ′

m, C ′
S ′) be a PSM schema and

C ′ be a class from S ′
c . C ′ may be a structural representative of another

class D ′ in S ′
c which is assigned to C ′ by function repr (repr(C ′) = D ′).

If repr(C ′) is undefined, denoted by repr(C ′) = �, we say that C ′ is
not a structural representative of any class. Let repr*(�) = {} and
repr*(C ′) = {repr(C ′)} ∪ repr*(repr(C ′)) where C ′ /= �. It must hold
that C ′ /= repr*(C ′).

A structural representative C ′ of repr(C ′) is displayed as a
class with a blue background and the name of repr(C ′) above its
own name. For example, class Product’ from Fig. 5(a) and class
Product’ from Fig. 5(b) are both structural representatives of class
ProductBase from the PSM schema depicted in Fig. 5(c). From the
grammatical perspective they both model the same XML fragment
as the latter one. Note that the PSM schema in Fig. 5(c) does not
model any XML documents (because it does not have any named
association going from the schema class and, therefore, does not
model any root XML elements). It acts as an auxiliary PSM schema
which contains components shared by other PSM schemas via the
mechanism of structural representatives.

In the rest of this section we further formalize the conceptual
perspective. A formal model of the grammatical perspective is pro-
vided in Nečaský and Mlýnková (2010) and we omit it in this paper.

4.3. Formal model of conceptual perspective

Formally, the conceptual perspective of a PSM schema is
expressed as a mapping of the PSM schema to the PIM schema.
Before we introduce the mapping, we introduce an auxiliary notion
of a directed image of an association from a PIM schema which we
use in the following definitions.

Definition 4.4. Let R = {E1, E2} be an association in a PSM schema
S. The directed images of R are RE1 = (E1, E2) and RE2 = (E2, E1). We will
denote the set of all directed images of S as �Sr , i.e. �Sr = {RE1 , RE2 :
R = {E1, E2} ∈ Sr}.

690 M. Nečaský et al. / The Journal of Systems and Software 85 (2012) 683– 707

Now, we are ready to introduce the formalism of mappings. We
call the mapping of the PSM schema to the PIM schema interpreta-
tion of the PSM schema against the PIM schema.

Definition 4.5. An interpretation of a PSM schema S ′ against a
PIM schema S is a partial function I : (S ′

c ∪ S ′
a ∪ S ′

r) → (Sc ∪ Sa ∪ �Sr)
which maps a class, attribute or association from S ′ to a class,
attribute or directed image of an association from S, respectively.
For X ′ ∈ (S ′

c ∪ S ′
a ∪ S ′

r), we call I(X ′) interpretation of X ′. I(X ′) = �
denotes that X ′ does not have an interpretation. In that case we
will also say that X ′ has an empty interpretation.

An arbitrary interpretation of a PSM component would lead
to inconsistencies between the semantics of the PIM schema and
the semantics of the PSM schema given by the interpretation. This
would result in ambiguities in the semantics of PSM schemas. For
example, suppose the class Product’ and its attribute code’ from
our sample PSM schema depicted in Fig. 5(a). Let the interpretation
of Product’ be the PIM class Product. Therefore, code’, from the
conceptual perspective, belongs to Product. On the other hand,
suppose that code’ is mapped to the PIM attribute code of PIM
class Purchase. From this, code’ belongs to Purchase which is
in contradiction with the previous conclusion. We, therefore, need
the interpretation to meet certain rules which prevent these ambi-
guities.

Before we introduce the rules, let us define the notion of inter-
preted context of a PSM component.

Definition 4.6. Let X ′ be a component of a PSM schema S ′. Let I
be an interpretation of S ′ against a PIM schema S. The interpreted
context of X ′ with respect to I is denoted intcontext(X ′) and

• intcontext(X ′) = X ′ when X ′ ∈ S ′
c and I(X ′) /= �

• intcontext(X ′) = C ′ when X ′ /∈ S ′
c or I(X ′) = �, where C ′ is the closest

ancestor class to X ′ s.t. I(C ′) /= �.

As the definition shows, the interpreted context of each
PSM component X ′ is X ′ itself if it is a class with an inter-
pretation. In other cases, it is the closest ancestor class to
X ′. Let us demonstrate the notion of interpreted context on
our sample PSM schema depicted in Fig. 5(a). The inter-
preted context of class Customer ′ is class Customer ′ itself
(intcontext(Customer ′) = Customer ′), because I(Customer ′) /= �.
The interpreted context of attribute name ′ of class Customer ′

is class Customer ′ as well (intcontext(name ′) = Customer ′),
because Customer ′ is the closest ancestor class to name ′ which
has an interpretation. And, for the same reason, the inter-
preted context of association connecting classes Customer ′ and
Partner ′ is class Customer ′. On the other hand, class Contact ′

does not have an interpretation (I(Contact ′) = �). The clos-
est ancestor class with an interpretation is class Customer ′.
Therefore, intcontext(Contact ′) = Customer ′. Similarly,
intcontext(ItemTester ′) = intcontext(ItemPricing ′) = Item ′. And
the same is for attributes, for example intcontext(tester ′) = Item ′.

Note that intcontext(X ′) may be empty, i.e. intcontext(X ′) = �. In
that case we will say that X ′ does not have an interpreted context.
Thus, having the notion of interpreted context, we are ready to
introduce the rules.

We now define the notion of consistent interpretation of a
PSM schema against a PIM schema. Consistency ensures that the
semantics of the PSM schema determined by the interpretation is
consistent with the semantics modeled by the PIM schema.

Definition 4.7. Let I be an interpretation of a PSM schema S ′

against a PIM schema S. We say that I is consistent if the following
rules are satisifed:

(∀C ′ ∈ S ′
c s.t. repr(C ′) /= � ∧ I(C ′) /= �)(I(C ′) = I(repr(C ′))) (1)

(∀A ′ ∈ S ′
a s.t. I(A ′) /= �)(intcontext(A ′) /= � ∧ I(A ′)

∈ attributes(I(intcontext(A ′)))) (2)

(∀R ′ ∈ S ′
r s.t. I(child(R ′)) = � ∨ I(intcontext(R ′)) = �)(I(R ′) = �) (3)

(∀R ′ ∈ S ′
r s.t. I(child(R ′)) /= � ∧ intcontext(R ′) /= �) (4)

(I(R ′) = (E1, E2) s.t. participant(E1)

= I(intcontext(R ′)) ∧ participant(E2) = I(child(R ′)))

Condition (1) requires that a structural representative C ′ of
a class repr(C ′) has the same interpretation as repr(C ′). This is
because C ′ acquires the attributes and content of repr ′(C ′). To
ensure consistency, the attributes and associations in the content
must semantically remain with C.

Condition (2) requires that when an interpreted attribute A ′ has
an interpreted context C ′, then I(A ′) must be an attribute of I(C ′). In
other words, A ′ must semantically belong to the interpretation of
its interpreted context.

Conditions (3) and (4) ensure consistency of associations. Con-
dition (3) requires that only an association with an interpreted
child and interpreted context may have an interpretation. This is
because the semantics of an association specifies how instances of
the child of the association are connected to their interpreted con-
text. For associations with interpretation, condition (4) is applied. It
is similar to (2). If an association R ′ has an interpreted context with
interpretation C and its child has an interpretation D, the interpre-
tation of R ′ must be an ordered image of an association connecting
C and D.

Let us demonstrate conditions (2)–(4) on the PSM schema
depicted in Fig. 5(a). First, suppose attribute tester ′. Its inter-
preted context is class Item ′ with I(Item ′) = Item. Condition (2)
requires that I(tester ′) ∈ attributes (Item). This is satisfied in our
case because I(tester ′) = tester. Second, suppose the association
connecting classes Customer ′ and Contact ′. Since I(Contact ′) = �,
condition (3) requires that the association does not have an inter-
pretation. This is natural, because both Contact ′ represents a part
of class Customer from the conceptual perspective and, therefore,
it is meaningless to specify the semantics of the association. On
the other hand, the association connecting classes Customer ′ and
Partner ′ must have an interpretation, because both classes have
an interpretation and it is necessary to specify the semantics of the
connection between them. The interpretation must be an associa-
tion connecting Customer and Partner according to condition (3).
In our case it is the association responsibility which is correct.

The following lemma shows that Definition 4.7 is correct.

Lemma 4.1. Let I be a consistent interpretation of a PSM schema
S ′ against a PIM schema S. The semantics of each component of S ′

specified by I is unambiguous.

Proof. We will show that the semantics of each PSM class,
attribute or association in S ′ is specified unambiguously by I. With-
out loss of generality, we will consider components of S ′ which are
semantically related to a PIM class C ∈ Sc .

First, let C ′ ∈ S ′
c s.t. I(C ′) = C. The semantics of C ′ is specified by

I unambiguously from Definition 4.5. There is no way to use I to
deduce that the semantics of C ′ is a class C0 /= C.

Second, let A ′ ∈ S ′
a s.t. I(A ′) /= �. Let C ′

a ∈ S ′
c s.t. C ′

a = class(A ′) or
repr(C ′

a) = class(A ′). Let I(intcontext(C ′
a)) = C. If I(A ′) /∈ attributes (C),

the semantics of A ′ is ambiguous. From the conceptual perspec-
tive, A ′ semantically belongs to C on one hand and it does not on
the other. However, I(A ′) /∈ attributes (C) cannot happen because of
conditions (1) and (2).

Third, let R ′ ∈ S ′
r s.t. I(R ′) /= � is a directed image of an associ-

ation R ∈ Sr . Let C ′
r ∈ S ′

c s.t. C ′
r = parent(R ′) or repr(C ′

r) = parent(R ′)

M. Nečaský et al. / The Journal of Systems and Software 85 (2012) 683– 707 691

or C ′
r = child(R ′) (in this last case, condition (4) ensures that

I(C ′
r) /= � and, therefore, intcontext(C ′

r) = C ′
r). Let I(intcontext(C ′

r)) =
C. If R /∈ associations (C), the semantics of R ′ is ambiguous. From the
conceptual perspective, R ′ is an association connected to C on one
hand and it is not on the other. However, R /∈ associations (C) cannot
happen because of conditions (1) and (3). �

In the rest of this paper, each interpretation considered will be
consistent; we do not consider inconsistent interpretations. In the
following section, we introduce atomic operations which allow for
modifications of PIM and PSM schemas. It is clear that the consis-
tency of an interpretation may be corrupted when the PIM or PSM
schema is changed. For example, removing an attribute in the PIM
schema may break condition (2) of Definition 4.7 and reconnecting
an association in the PSM schema may break conditions (3) and (4).
Our aim is to introduce a mechanism which propagates performed
changes from the PIM schema to the PSM schema and vice versa so
that the consistency of the interpretation is ensured.

5. Atomic operations

In this section, we introduce atomic operations for editing PIM
and PSM schemas. They are not intended to be used directly by
the designer, because they are too primitive and using them would
be too laborious and clumsy for the designer. However, they will
serve us as a formal basis for describing more user-friendly oper-
ations composed of these atomic operations. In Section 7 we will
describe composite operations. In Section 6 we will describe how
operations are propagated between PIM and PSM levels to ensure
the consistency of corrupted interpretations.

Formally, we suppose a PIM schema S = (Sc, Sa, Sr) and a set of
PSM schemas PSM = {S ′

1, . . ., S ′
n}, where each S ′

i has an interpre-
tation Ii against S. We also consider one specific PSM schema S ′ =
(S ′

c, S ′
a, S ′

r , S ′
m, C ′

S ′) from this set with an interpretation I against S.
For each atomic operation, we specify its input parameters together
with a precondition and postcondition. If a precondition is not
satisfied, the operation cannot be performed. The postcondition
describes the effect of the operation. When an operation is executed
on S or S ′, we say that the schema evolved to a new version. This is
denoted S+ or S ′+, respectively. The new version of the interpre-
tation will be denoted I+. Initially, we suppose a single empty PIM
schema and empty PSM. The PIM schema cannot be removed. On

the other hand, a new PSM schema with an interpretation against
the PIM schema may be created and later removed.

We classify atomic operations into 4 categories: creation
(denoted by the Greek letter ˛), update (denoted by the Greek
letter �), removal (denoted by the Greek letter ı) and synchro-
nization (denoted by the Greek letter �). While the creation,
update and removal operations are common in the literature, the
synchronization operations have not been considered and are
novel in our approach. They are crucial for the evolution.

A synchronization operation allows for the specification that
two sets of components are semantically equivalent. Consider a
simple scenario with a class Customer which models a concept of
customer. Customer’s address is modeled with attribute address.
Later, users require a more precise specification of address includ-
ing street, street number and city. Therefore, the designer needs to
replace address with new attributes street, streetno and city. Accord-
ing to existing approaches, this means creating the new attributes
and removing the old one. However, this leads to loosing the infor-
mation that the old attribute is semantically equivalent to the new
set. Without this information, the performed change cannot be cor-
rectly propagated as we will show later. This is the reason why we
propose synchronization operations. We use them to specify that
address is semantically equivalent to the set {street, streetno, city}.

Definition 5.1. Let X1 and X2 be two sets of components from the
same PIM or PSM schema. We use predicate equiv(X1, X2) to denote
that X1 and X2 are semantically equivalent. It means that X1 models
the same information as X2.

5.1. Atomic operations for PIM schema evolution

We start with atomic operations for evolution of PIM schemas.
The operations for creating new components are summarized in
Table 2: their semantics is clear and so we provide no further
description. Let us just note that the name, data type, and cardi-
nality of created components are set to default values configured
by the schema designer.

The operations for updating components are summarized in
Table 3. There are two update operations which merit a more
detailed explanation – moving an attribute A from its current class
to another class (�class

a) and reconnecting an association end E from
its current class to another class (�class

r). The preconditions of both

Table 2
Atomic operations for creating new PIM components.

Notation Description Precondition Postcondition

C = ˛c() Create class C with default name lc true C ∈ (S+
c \ Sc) ∧ name+(C) = lc

A = ˛a(C) Create attribute A with default name,
type and cardinality la , lt , and lc

C ∈ Sc
A ∈ (S+

a \ Sa) ∧ class+(A) = C ∧ name+(A) = la
∧type+(A) = ta ∧ card+(A) = ca

R = ˛r(C1, C2) Create association R with default name
and cardinalities lr and cr

C1, C2 ∈ Sc

R = {E1, E2} ∈ (S+
r \ Sr) ∧ name+(R) = lr

∧participant+(E1) = C1 ∧ participant+(E2) = C2

∧card+(E1) = cr ∧ card+(E2) = cr

Table 3
Atomic operations for updating PIM components.

Notation Description Precondition Postcondition

�name
c (C, v) Update name of class to v C ∈ Sc name+(C) = v

�name|type|card
a (A, v) Update name, type, or

cardinality of attribute to v
A ∈ Sa

name+(A) = v, type+(A) = v
or card+(A) = v

�class
a (A, C) Move attribute to class C

A ∈ Sa ∧ C ∈ Sc∧
associations(class(A), C) /= ∅ class+(A) = C

�name
r (R, v) Update name of association to v R ∈ Sr name+(R) = v

�class
r (E, C) Reconnect association end to

class C

C ∈ Sc ∧ (∃R ∈ Sr)(E ∈ R)∧
associations(participant(E), C) /= ∅ participant+(E) = C

�card
r (E, v) Update cardinality of

association end to v
(∃R ∈ Sr)(E ∈ R) card+(E) = v

692 M. Nečaský et al. / The Journal of Systems and Software 85 (2012) 683– 707

Fig. 7. Evolution of a sample PIM schema demonstrating the introduced creation, update, removal and synchronization atomic operations.

Table 4
Atomic operations for removing PIM components.

Notation Description Precondition Postcondition

ıc(C) Remove class C C ∈ Sc ∧ attributes(C) = ∅ ∧ associations(C) = ∅ C /∈ S+

ıa(A) Remove attribute A A ∈ Sa A /∈ S+

ır(R) Remove association R R ∈ Sr R /∈ S+
c

operations require that the current and new class are connected
by an association (associations(C1, C2) denotes all associations con-
necting classes C1 and C2). Therefore, it is not possible to move an
attribute or reconnect an association end between classes which
are only connected by a path of associations or are not connected
at all. However, it is possible to create a composite operation from
the atomic operations which allows for moving the attributes and
reconnecting association ends freely. It can perform atomic moves
or reconnections in case where there is a connecting path. And, it
can create a temporary association connecting the classes in case
there is no connection at all.

The operations for removing components are summarized in
Table 4; however, the class removal operation (ıc) requires the
removed class to have no attributes and connected associations,
so all attributes and associations connected to the class must be
removed before removing the class itself.

And, finally, the operations for synchronizing components are
summarized in Table 5. We introduce two operations – synchro-
nization of two sets of attributes and synchronization of two sets of
associations. The precondition of the former synchronization oper-
ation requires the attributes from both sets to belong to the same
class. It is not restrictive. It is possible to have two synchronized sets
of attributes, where each attribute is in a different class. However,
we need to perform a sequence of atomic operations – this consists
of moving the attributes to the same class, synchronization and

moving them back to their original classes. Similarly, the precon-
dition of the other operation needs the associations to connect the
same two classes. Again, it is not restrictive, because other cases
may be achieved by performing a sequence of atomic operations.

The reader might notice that we do not provide an operation for
synchronizing classes. An operation for synchronizing a mixture
of classes, attributes and associations is missing as well. Our pre-
liminary case studies (one of the provided in Section 9) show that
class synchronization is not necessary as classes do not model data
but only encapsulate them. Synchronization of a mixture of com-
ponents would be, theoretically, necessary, but too complex and
unnatural for common designers. Therefore, in the current version
of our technique we try to manage the evolution without these
advanced synchronization operations. We leave this scientifically
interesting issue to our future work.

A sample evolution is depicted in Fig. 7. Fig. 7(a) shows a start-
ing PIM schema. It is a fragment of the PIM schema depicted in
Fig. 4. It contains two classes Customer and Partner which model
customers and partners, respectively. Partners are responsible for
customers which is modeled by the relationship responsibility.
First, there is a requirement to not further consider partners. There-
fore, class Partner needs to be deleted by operation ıc(Customer).
It is necessary to perform ıa(code) and ır(responsibility), which
delete the attribute code and association responsibility, prior
to ıc(Customer). The result is depicted in Fig. 7(b).

Table 5
Atomic operations for synchronization of PIM components.

Notation Description Precondition Postcondition

�a(X1, X2) Synchronize set of attributes X2

with set of attributes X2

X1 ⊆ Sa ∧ X2 ⊆ Sa

∧(∃C ∈ Sc)(X1, X2 ⊆ attributes(C))
equiv+(X1, X2)

�r (X1, X2) Synchronize set of associations X2

with set of associations X2

X1 ⊆ Sr ∧ X2 ⊆ Sr

∧(∃C1, C2 ∈ Sc)(X1, X2 ⊆ associations(C1, C2))
equiv+(X1, X2)

M. Nečaský et al. / The Journal of Systems and Software 85 (2012) 683– 707 693

Table 6
Atomic operations for creating PSM schemas and their components.

Notation Description Precondition Postcondition

(S ′, I) = ˛ ′
s(S) Create new PSM schema S ′

with interpretation I against S
true

S ′ = ({C ′
S ′ }, ∅, ∅, ∅, C ′

S ′)∧
S ′ ∈ (PSM+ \ PSM) ∧ I = {(C ′

S ′ , �)}

C ′ = ˛ ′
c() Create new class C ′ with

default name lc
true

C ′ ∈ (S ′
c
+ \ S ′

c) ∧ I+(C ′) = �
∧name+(C ′) = lc

A ′ = ˛ ′
a(C ′) Create new attribute A ′ with

default name, type, XML form
and cardinality la , ta , xa , and ca

C ′ ∈ S ′
c

A ′ ∈ (S ′
a
+ \ S ′

a) ∧ class+(A ′) = C ′

∧I+(A ′) = � ∧ name ′+(A ′) = la
∧type+(A ′) = ta ∧ xform+(A ′) = x ′

a

∧card+(A ′) = ca

R ′ = ˛ ′
r (X ′

1, X ′
2) Create new association R ′ with

default name and cardinalities
lr and cr

X ′
1 ∈ (S ′

c ∪ S ′
m)

∧X ′
2 ∈ (S ′

c ∪ S ′
m) \ {C ′

S ′ }
∧(�R ′

0)(child(R ′
0) = X ′

2)

R ′ ∈ (S ′
r
+ \ S ′

r) ∧ parent(R ′) = X ′
1

∧child(R ′) = X ′
2 ∧ I+(R ′) = �

∧name+(R ′) = lr ∧ card+(R ′) = cr

∧position(R ′)+ = |content (C ′)|

M ′ = ˛ ′
m() Creates new sequence content

model M ′
true

M ′ ∈ (S ′
m

+ \ S ′
m)∧

cmtype(M ′) = sequence

Second, there is a requirement to consider customer’s addresses
in more detail. Currently, it is modeled by attribute address of
class Customer. The aim is to model addresses as depicted in
Fig. 7(h). The evolution is iterative. Particular iterations are depicted
in Fig. 7(c)–(g). The designer starts with modeling addresses with
three separate attributes street, city and country instead of the
original attribute address. For this, (s)he creates the attributes
(street = ˛a(Customer), . . .), changes the default values of their
names and data types when necessary (�name

a (street, “street”), . . .),
synchronizes them with the original attribute (�a({address},
{street, city, country})) and, finally, removes the original
attribute (ıa(address)). The synchronization is important. It spec-
ifies that the new attributes are semantically equivalent with the
old one. The whole sequence of performed atomic operations can
be viewed as splitting the original attribute into the three new
ones. Note that the precondition for synchronization is satisfied (all
attributes are in the same class). The result is depicted in Fig. 7(c).

Later, the designer notices that (s)he forgot to include GPS infor-
mation. (S)he needs to extend the three attributes street, city
and country with a new attribute gps. For this, (s)he creates the
new attribute and synchronizes the original set of attributes mod-
eling address with the new set which is the original set extended
with gps (�a({street, city, country}, {street, city, country,
gps})). The result is depicted in Fig. 7(d).

Now, class Customer contains too much information and
the designer wants to make it more transparent. Therefore,
(s)he decides to move attributes street, city and coun-
try to a separate class Address. The class is not present
and (s)he, therefore, needs to create it and update its name
(Address = ˛c(), �name

c (Address, “Address”)). (S)he also needs to con-
nect it with Customer by creating a new association address
(address = ˛r(Customer, Address), . . .). Then, (s)he can move the
attributes to the new class (�class

a (street, Address), . . .). The old
and new class are connected by an association and, therefore, the
precondition for moving the attributes is satisfied. The result is
depicted in Fig. 7(e). (S)he also needs to detail gps to latitude
and longitude and move them to a separate class GPS. Therefore,
she performs a similar sequence of operations as for the former
address attribute. And, finally, (s)he needs to extend customers to
have one or two addresses instead of one. (S)he, therefore, changes
the cardinality of association address to 1..2 (�card

r (address2,
1..2)), where address2 is the endpoint associated with Address.
The result is depicted in Fig. 7(f).

In the following step, the designer gets a requirement to
explicitly distinguish the semantics of the two addresses to a
mandatory shipping address and optional billing address. There-
fore, (s)he splits the association address to two new associations
shipto and billto. As with the splitting of attributes, this

Table 7
Atomic operations for updating PSM components.

Notation Description Precondition Postcondition

� ′name
c (C ′, v) Update name of class C ′ to v C ′ ∈ S ′

c name+(C ′) = v

� ′repr
c (C ′, C ′

r) Set class C ′ as structural representative
of C ′

r

C ′ ∈ S ′
c \ {C ′

S ′ } ∧ (C ′
r = � ∨ (C ′

r ∈ S ′
c \ {C ′

S ′ }
∧I(C ′) = I(C ′

r) ∧ C ′ /∈ repr∗(C ′
r)))

repr+(C ′) = C ′
r

� ′cmtype
m (M ′, t) Update type of content model M ′ M ′ ∈ S ′

m ∧ t ∈ {sequence, choice, set} cmtype+(M ′) = t

� ′name|type
a (A ′, v) Updates name, type, cardinality, or

XML form of attribute to v
A ′ ∈ S ′

a

name+(A ′) = v,
type+(A ′) = v,

� ′card|xform
a (A ′, v)

card+(A ′) = v or
xform+(A ′) = v

� ′pos
a (A ′) Changes position of attribute A ′ by −1 position(A ′) > 1

� ′class
a (A ′, C ′) Move attribute A ′ to class C ′

A ′ ∈ S ′
a ∧ C ′ ∈ S ′

c∧
(repr(class(A ′)) = C ′ ∨ class(A ′) = repr(C ′)∨
class(A ′) = parentclass(C ′)∨

C ′ = parentclass(class(A ′)))

class+(A ′) = C ′

� ′name|card
r (R ′, v) Update name or cardinality of

association R ′ to v
R ′ ∈ S ′

r
name+(R ′) = v or
card+(R ′) = v

� ′pos
r (R ′) Change position of association R ′ by −1 position(R ′) > 1

position+(R ′) =
position(R ′) − 1

� ′class
r (R ′, P ′) Reconnect parent association end of

association R ′ to new parent P ′

R ′ ∈ S ′
r ∧ P ′ ∈ S ′

c ∪ S ′
m∧

(repr(parent(R ′)) = P ′ ∨ parent(R ′) = repr(P ′)∨
∃R ′

p ∈ S ′
r which connects parent(R ′) and P ′)

parent+(R ′) = P ′

694 M. Nečaský et al. / The Journal of Systems and Software 85 (2012) 683– 707

Table 8
Atomic operations for updating interpretations.

Notation Description Precondition Post...

� ′ int
c (C ′, C) Update interpretation

of class C ′ to class C

C ′ ∈ S ′
c \ {C ′

S ′ } ∧ (C = � ∨ C ∈ Sc)∧
(∀A ′ ∈ Sa s.t. intcontext(A ′) = intcontext(C ′) ∧ C ′ ∈ anc(A ′))(I(A ′) = �)∧
(∀R ′ ∈ S ′

r s.t. (intcontext(R ′) = intcontext(C ′) ∧ C ′ ∈ anc(R ′)) ∨ child(R ′) = C ′)
(I(R ′) = �)∧

(∀C ′
0 ∈ S ′

c)(repr(C ′
0) /= C ′) ∧ repr(C ′) = ∅

I+(C ′) = C

� ′ int
a (A ′, A) Update interpretation

of attribute A ′ to
attribute A

A ′ ∈ S ′
a ∧ (A = � ∨ (A ∈ Sa ∧ class(A) = I(intcontext(A ′)))) I+(A ′) = A

� ′ int
r (R ′, O) Update interpretation

of association R ′ to
directed image O of
association R

R ′ ∈ S ′
r ∧ child ′(R ′) ∈ S ′

c ∧ (
O = � ∨ (O = (E1, E2)∧
participant(E1) = I(intcontext(R ′)) ∧ participant(E2) = I(child(R ′))

))

I+(R ′) = O

entails creating two new associations (shipto = ˛r(Customer,
Address), . . .), changing their default names and cardinalities
(�name

r (shipto, “shipto”), . . .), synchronizing the old association with
the new ones (�r({address}, {shipto, billto})), and removing
the old association (ır(address)). Note that the synchronized asso-
ciations connect the same classes and, therefore, preconditions for
the synchronization are satisfied. The result is depicted in Fig. 7(g).

Finally, there appears a requirement to record GPS information
for each address instead of a customer. For this, the designer recon-
nects the association gps from class Customer to class Address
(�class

r (gps1, Address)), where gps1 is the endpoint associated
with Customer. Again, the precondition for the reconnection is
satisfied, because the classes are connected by an association. The
result is depicted in Fig. 7(h).

5.2. Atomic operations for PSM schema evolution

In this section, we introduce atomic operations for evolution
of PSM schemas. The operations for creating new components are
summarized in Table 6: there is also an operation for creating PSM
schemas themselves. Again, names, data types, XML forms and car-
dinalities of new components are set to default values which are
configured by the designer. All components are created with an
empty interpretation against the PIM schema.

The operations for updating components are summarized in
Table 7. Similar to the operations for updating PIM components,
there are two interesting operations – moving an attribute (� ′class

a)
and reconnecting an association end (� ′class

r). Both are similar to
their PIM equivalents but there are some differences. An attribute
can be moved to the nearest ancestor or descendant class of its cur-
rent class (parentclass(C ′) denotes the nearest ancestor class to C ′).
It can also be moved to a structural representative of its current
class or, conversely, to a class which is a structural representative
of its current class. For an association, only its parent association
end can be reconnected to the parent or to any child of its current
parent. When its current parent is a class, it can also be reconnected

to a structural representative of the current parent or, conversely,
to a class which is a structural representative of its current parent.

The operations for updating interpretations are summarized in
Table 8. Their preconditions ensure that the consistency of inter-
pretation is not violated. Concretely, the operation for updating
class interpretation (� ′int

c) could violate any of the conditions nec-
essary for consistency. However, its precondition requires that the
interpretation of any attribute or association, whose consistency
would be corrupted by the update, must be empty. This includes all
attributes and associations which have the same interpreted con-
text as the class (anc(X ′) used in the precondition which denotes
all ancestor classes of X ′). Also, the class can not be a structural
representative and, conversely, it cannot have a structural repre-
sentative. Therefore, the conditions can not be violated.

The operation for updating attribute interpretation (� ′int
a) could

affect condition (2) and the operation for updating association
interpretation (� ′int

r) could affect conditions (3) and (4). Their pre-
conditions prevent any violations. (They are directly rewritten from
the definition.)

The operations for removing components of PSM schemas are
listed in Table 9. Their functionality is quite clear. Let us note that
we can only remove classes and content models that are empty and
are roots of their PSM schema. Also, we can only remove associa-
tions, whose removal does not violate Definition 4.7. When there
are attributes or associations in the subtree of R ′ with the same
interpreted class context as R ′ and with non-empty interpretations,
we cannot remove R ′. To correct the schema, we would need to set
empty interpretations to these attributes and associations, which
is not an atomic operation. Note that when we remove an associa-
tion going to a class or content model, this class or content model
becomes a root.

And, finally, the operations for synchronizing two sets of PSM
components are listed in Table 10. Similar to their PIM equivalents,
they allow for synchronization of two sets of attributes and two
sets of associations. The operation for attributes corresponds to its
PIM equivalent. The operation for associations is also similar. How-
ever, it is not possible to require the associations to have the same

Table 9
Atomic operations for removing PSM schemas and their components.

Notation Description Precondition Post...

ı ′
s(S ′) Remove existing PSM

schema S ′ and its
interpretation I against S

S ′ ∈ PSM ∧ S ′ = (S ′
c, S ′

a, S ′
r , S ′

m, C ′
S ′)

∧S ′
a = S ′

r = S ′
m = ∅ ∧ S ′

c = {C ′
S ′ }

S ′ /∈
PSM+

ı ′
c(C ′) Remove class C ′ C ′ ∈ S ′

c ∧ attributes(C ′) = content (C ′) = ∅ ∧ (�C ′
0 ∈ Sc)(repr(C ′

0) = C ′) C ′ /∈ S ′+

ı ′
a(A ′) Remove attribute A ′ A ′ ∈ S ′

a A ′ /∈ S ′+

ı ′
r (R ′) Remove association R ′ R ′ ∈ S ′

r∧
(∀X ′ ∈ (Sa ∪ Sr : intcontext(X ′) = intcontext(R ′) ∧ R ′ ∈ anc(X ′))(I(X ′) = �)

R ′ /∈ S ′+

ı ′
m(M ′) Remove cont. model M ′ M ′ ∈ S ′

m ∧ content (M ′) = ∅ M ′ /∈ S ′+

M. Nečaský et al. / The Journal of Systems and Software 85 (2012) 683– 707 695

Fig. 8. Evolution of a sample PSM schema demonstrating the introduced creation, update, removal and synchronization atomic operations.

participants (because of the tree nature of PSM schemas). Instead,
we require that they have one of their participants in common: that
is the child of none or one of the associations and the parent of the
others. The other participants must be different classes but with the
same non-empty interpretation. In other words, these other partic-
ipants are semantically equivalent (they have the same class in the
PIM schema as their interpretation). Therefore, the operation also
corresponds to its PIM equivalent.

Note that similar to synchronization in a PIM schema, the
expression equiv+(X ′

1, X ′
2) = true in the postconditions of both

operations denotes that X ′
1 and X ′

2 are synchronized in the new
version of the PSM schema.

We demonstrate the operations in Fig. 8. Fig. 8(a) shows a
starting PSM schema. It has an interpretation against the PIM
schema depicted in Fig. 7(a). The PIM schema evolves as we have

demonstrated, so the consistency of the interpretation of the PSM
schema is broken. In this example, we show how the PSM schema
and its interpretation can be adapted using the introduced atomic
operations to ensure the consistency. Fig. 8(b)–(h) show particu-
lar evolutionary steps which result from changes at the PIM level
demonstrated in Fig. 7.

First, the designer needs to remove class Partner’
(ı ′

c(Partner ′)) to reflect the first change in the PIM schema
(removing class Partner). Prior to this, (s)he removes attribute
code’ (ı ′

a(code ′)) and both associations partner’ and customer’
(ı ′

r(partner ′), ı ′
r(customer ′)). Then, (s)he creates a new association

customer’ connecting the schema class and class Customer’
(customer ′ = ˛ ′

r(CustomerDetailSchema ′, Customer ′)) and sets its
name (� ′name

r (customer ′, “customer”)). The association has an
empty interpretation. The result is depicted in Fig. 8(b).

Table 10
Atomic operations for synchronization of components of PSM schemas.

Notation Description Precondition Postcondition

� ′
a(X ′

1, X ′
2) Synchronize set of

attributes X ′
2 with set of

attributes X ′
1

X ′
1 ⊆ S ′

a ∧ X ′
2 ⊆ S ′

a

∧(∃C ′ ∈ S ′
c)(X ′

1, X ′
2 ⊆ attributes(C ′))

equiv+(X ′
1, X ′

2)

� ′
r (X ′

1, X ′
2) Synchronize set of

associations X ′
2 with set of

associations X ′
1

X ′
1 ⊆ S ′

r ∧ X ′
2 ⊆ S ′

r∧
(∃C ′

1 ∈ S ′
c, C2 ∈ Sc ∪ {�})(∀R ′ ∈ X ′

1 ∪ X ′
2)(

(C ′
1 = parent(R ′) ∧ child(R ′) ∈ S ′

c∧
(I(child(R ′)) = C2))∨

(C ′
1 = child(R ′) ∧ parent(R ′) ∈ S ′

c∧
(I(parent(R ′)) = C2)))

equiv+(X ′
1, X ′

2)

696 M. Nečaský et al. / The Journal of Systems and Software 85 (2012) 683– 707

Second, address was split into three new attributes in the
PIM schema. The designer correspondingly needs to split attribute
address’ into three new attributes street’, city’, and coun-
try’ in the PSM schema. (S)he creates the attributes (street ′ =
˛ ′

a(Contact ′), . . .) and sets their names (� ′name
a (street ′, “street”),

. . .) and interpretations (� ′int
a (street ′, street), . . .). Then,

(s)he synchronizes the new attributes with the original one
(� ′

a({address ′}, {street ′, city ′, country ′})). Note that the precon-
ditions of both setting interpretations and synchronization is
satisfied – the attributes are in the respective interpreted con-
text and are within the same class. Finally, (s)he removes the old
attribute address’ (ı ′

a(address ′)). The result is depicted in Fig. 8(c).
The designer then proceeds with extending the three

new attributes with a new attribute gps’. (S)he cre-
ates the attribute (gps ′ = ˛ ′

a(Contact ′), . . .) and sets
its name (� ′name

a (gps ′, “gps”), . . .) and interpretation
(� ′int

a (gps ′, gps), . . .). Then, (s)he specifies that the three orig-
inal attributes are semantically equivalent to the extension
(� ′

a({street ′, city ′, country ′}, {street ′, city ′, country ′, gps ′})). The
result is depicted in Fig. 8(d).

Third, the designer needs to separate attributes street’, city’,
and country’ to a new class Address’. (S)he creates the new class
(Address ′ = ˛ ′

c()) and sets its name (� ′name
c (Address ′, “Address”))

and interpretation (� ′int
c (Address ′, Address)). Then, (s)he con-

nects the new class with Contact’ by creating a new
association (address ′ = ˛ ′

r(Contact ′, Address ′)). (S)he sets
its name (� ′name

r (address ′, “address”)) and interpretation
(� ′int

r (address ′, address)). Now, the preconditions allow
for moving the attributes from Contact’ to Address’

(� ′class
a (street ′, Address ′), . . .). The designer moreover needs to

specify that a customer has one or two addresses (� ′card
r (address ′,

1..2)). The result is depicted in Fig. 8(e). Later, (s)he similarly
moves the attribute gps’ to a new class GPS’ and splits it into two
new attributes longitude’ and latitude’ as depicted in Fig. 8(f).

Fourth, the PIM schema now distinguishes two different
addresses – shipping and billing. The designer needs to reflect
this change in the PSM schema by splitting the association
address’ correspondingly. However, the change is more com-
plex than in case of the PIM schema, because the resulting PSM
schema must be a tree. (S)he first needs to create new classes
ShipAddr’ and BillAddr’, set their names, and set their inter-
pretation to PIM class Address. Now (s)he may split address’.
(S)he creates two new associations shipto’ and billto’ con-
necting Contact’ with ShipAddr’ and BillAddr’, respectively.
(S)he sets their names and interpretations to PIM associations
shipto and billto, respectively. (S)he also sets cardinality of
billto’ to 0..1. Then, (s)he synchronizes the original asso-
ciation with the new ones (� ′

r ({address ′}, {shipto ′, billto ′})) and
removes the original one (ı ′

r(address ′)). (S)he wants both new
addresses to model the same XML fragments as the original one
and (s)he, therefore, sets ShipAddr’ and BillAddr’ as struc-
tural representatives of Address’ (� ′repr

c (ShipAddr ′, Address ′),
. . .).

In the final step, the designer needs to reflect in the PSM schema
reconnecting the association gps in the PIM schema. The impact
of this change to the PSM schema is that both, shipping and
billing address have GPS information. Therefore, the designer needs
to reconnect gps’ association to class Address’. This requires
two atomic reconnections of gps’. First, from class Contact’ to
class ShipAddr’ (� ′class

r (gps ′, ShipAddr ′)) and then to Address’

(� ′class
r (gps ′, Address ′)). Note that both reconnections are allowed

by the operation precondition. In the first case the reconnection is
between classes connected by an association. In the other case, the
reconnection is between a structural representative and its refer-
enced class.

6. Propagation of atomic operations

According to Section 4.3, an interpretation of a PSM schema S ′

against a PIM schema S must be consistent. When S or S ′ is modified
by an atomic operation, one or more conditions necessary for con-
sistency may be violated and, consequently, the interpretation or
the other schema must be adapted accordingly. We call the process
which ensures the adaptation propagation of the atomic operation.
In the example in the previous section we showed how a designer
can solve this issue manually (our designer performed a sequence
of operations in the PIM schema and then (s)he needed to perform
similar steps in the PSM schema). In this section, we show how the
propagation can be automated. If we consider the fact that there
may be many PSM schemas affected, automation is very helpful.

6.1. Propagation from PIM to PSM level

In this section, we describe how introduced atomic operations
executed on the PIM schema S are propagated to each PSM schema
S ′ ∈ PSM and its interpretation I against S. We will demonstrate
the propagation on our sample PIM and PSM schema evolution
depicted in Figs. 7 and 8, respectively. We suppose that the designer
manually changes the PIM schema in the steps depicted in Fig. 7. In
Section 5.2 we showed in Fig. 8 how the designer manually adapts
the PSM schema according to the changes in the PIM schema. In
this section we show that our propagation mechanism is able to
adapt the PSM schema automatically which reduces the designer’s
manual work.

Let us start with propagating the creation operations. Creating
a new component X in S does not automatically imply the exis-
tence of any component in S ′. This is because the creation does
not violate Definition 4.5. Moreover, X models a new part of the
reality which has no representation in the PSM schemas, where its
creation could be propagated. It is up to the designer, whether to
create new components in the PSM schemas which represent this
new part of the reality, or not. Therefore, the creation operations
are not propagated.

Let us consider the evolution of our sample PIM schema depicted
in Fig. 7(e). Here, the designer first created a new class Address
and association address. These operations on their own do not
automatically result in creating new classes and associations in the
PSM schemas. It is up to the designer whether to propagate them, or
not. For example, (s)he later decides to move some attributes from
Customer to Address. In that case it is necessary to create new
classes with Address as their interpretation in the PSM schemas,
because we need to correspondingly move attributes in the PSM
schemas.

An update of a component X of S may have an impact on each
component X ′ in the PSM schema with I(X ′) = X and its propagation
may be necessary. More specifically, an update of the name of X is
propagated to an optional update of the name of X ′. This is because
X and X ′ do not necessarily need to share the same name. On the
other hand, an update of the type or cardinality of X is propagated
to a mandatory update of the type or cardinality of X ′.

In our sample PIM schema evolution depicted in Fig. 7(f), the
cardinality of the association endpoint of association address con-
nected to class Address was updated from 1..1 to 1..2. This is
automatically propagated by our mechanism to all associations in
the PSM schemas with address as an interpretation. For example,
it is propagated to association address ′ depicted in Fig. 8(f).

The propagation of the two remaining update operations, i.e.
moving an attribute and reconnecting an association end, is more
complex. Both operations modify the structure of S which may
break the consistency of the interpretation. The impact on the
structure of S ′ may be quite extensive and it would be almost
impossible for the designer to manage the impact manually. The

M. Nečaský et al. / The Journal of Systems and Software 85 (2012) 683– 707 697

idea of propagation is similar for both operations even though
reconnecting an association end is technically more complicated.
However, we will discuss only the first one.

Suppose that �class
a (A, D) was performed. In other words, an

attribute A in the PIM schema was moved from its current class
C to another class D. Consider an attribute A ′ in the PSM schema
s.t. I(A ′) = A. Since the interpretation is consistent, we see that
class(A ′) = C ′ s.t. intcontext(C ′) = C = class(A). By executing �class

a (A, D)
we get class(A) = D. We see that, on one hand, A ′ is semantically an
attribute of C. On the other hand, we see that the semantics is A
which is an attribute of D /= C.

Therefore, the move of A must be propagated to a correspond-
ing move of A ′. Concretely, we have to move A ′ to a class with an
interpretation D to make the interpretation consistent. The move
and its propagation is illustrated in Fig. 9. Fig. 9(a) contains a PIM
schema fragment before executing the operation (on the left hand
side of the thick arrow) and the fragment after the move (on the
right hand side). Fig. 9(b) and (c) contain three PSM schema frag-
ments before and after the propagation. They illustrate three basic
situations which may occur.

Suppose class C ′ in the PSM schema with interpretation C. Let
A ′ be an attribute of C ′ with an interpretation A. The first situation
is depicted in Fig. 9(b). Here, C ′ contains an association R ′ with an
interpretation R. Its child is class D ′ with an interpretation D. In this
case the propagation means moving A ′ to D ′ which makes the inter-
pretation consistent. The second situation is depicted in Fig. 9(c).
Here, there is an association R ′ with an interpretation R which goes
to C ′. Its parent is class D ′ with an interpretation D. Again, this case
means moving A ′ to D ′. The last situation is depicted in Fig. 9(d).
Here, there is no association connected to C ′ and with an interpre-
tation R. In this case, propagation means creating a new association
R ′ with an interpretation R connecting C ′ and a new class D ′ with an
interpretation D. A ′ may be again moved to D ′. Also there are some
other situations which differ from the three demonstrated only in
technical details. This includes situations with content models or
classes without an interpretation on the path between C ′ and D ′.
We have solved these situations in our implementation but do not
specify them in this paper.

In a general case, there can be more and different associations
R1, . . ., Rn connecting C and D. There are associations R ′

1, . . ., R ′
n con-

nected to C ′ with directed images of R1, . . ., Rn as interpretations,
respectively. If some R ′

i
is missing, we ask a designer if it should

be created.3 If we apply the previous idea, we get up to C ′
v,1, . . .,

C ′
v,n classes, where A ′ should be moved. However, such move is not

possible. Instead, we make a copy A ′
i

of A ′ for each C ′
v,i

and move
the copy to C ′

v,i
. Making a copy means the following sequence of

atomic operations: (1) creating A ′
i
, (2) synchronizing it with A ′ (it

is important since it specifies that A ′ and A ′
i

model the same infor-
mation), (3) setting the properties of A ′

i
to the same values as A ′,

and (4) moving A ′
i
.

In our sample evolution depicted in Fig. 7(e), the designer moved
attributes street, city and country from class Customer to
class Address. This makes the interpretation of the PSM schema
depicted in Fig. 8(d) inconsistent. There are attributes street ′,
city ′ and country ′ having the moved PIM attributes as their inter-
pretation. Our propagation mechanism ensures automatically that
the attributes are moved correspondingly so that the interpreta-
tion is consistent again as depicted in Fig. 8(e). First, the mechanism
automatically creates a new class Address ′ which was not present
in the PSM schema and connects it with class Contact ′ by a new
association. Then, it automatically moves the attributes.

3 If all of them are missing and the designer decides not to create any, no propa-
gation is performed.

Removing components of S must be propagated by removing
corresponding components of S ′ or setting their interpretations to
� to keep the interpretation consistent. More specifically, removing
an attribute A leads to removing each attribute A ′ in S ′ s.t. I(A ′) = A
or setting I(A ′) = �. Both solutions are correct (i.e. they do not break
the consistency of interpretation) and, therefore, the designer has
to decide. Removing an association leads mandatorily to removing
each association R ′ in S ′ s.t. I(R ′) is a directed image of R. We cannot
set I(R ′) = �. This is because condition (3) of Definition 4.7, R ′ with a
non-empty interpretation has a child with an non-empty interpre-
tation and vice versa. Setting I(R ′) to � would break this condition.
And, finally, removing a class C leads to removing each class C ′ in
S ′ s.t. I(C ′) = C or setting I(C ′) to �. Both possibilities are correct.
From the precondition of the operation for removing a class, C has
no attributes and there are no associations connected to C. Because
of conditions (2) and (3) of Definition 4.7, there is no attribute or
association in S ′ in the interpreted context of C ′ with an non-empty
interpretation. Therefore, it is possible to set I(C ′) = �. It is also pos-
sible to remove C ′. However, it may have attributes and there may
be associations connected to C ′ with empty interpretations. These
must be removed first. There are also some technical details we do
not discuss further. For example, parent ends of the associations
going from C ′ may be reconnected to the parent of C ′ in certain
cases etc.

In our sample evolution depicted in Fig. 7(b), the designer
removed association responsibility and class Partner with its
attribute code. The propagation mechanism ensured that the cor-
responding components in our sample PSM schema were removed
after a dialogue with the designer as depicted in Fig. 8(b).

Synchronizing two sets X1 and X2 of components of S means
that the existence of both sets must be synchronized at all levels.
Whenever there is an equivalent to X1 in the PSM schema S ′ there
must also be an equivalent to X2 and vice versa.

The operation for synchronization of attributes, i.e. �a(X1, X2),
only enables one to synchronize two sets of attributes which have
a common class C. Let C ′ be a class s.t. I(C ′) = C which contains
attributes whose interpretations are all attributes from X1. Since
X1 and X2 are semantically equivalent, our propagation mecha-
nism interprets this as a fact that C ′ must be supplemented with
new attributes so that it contains attributes whose interpretations
are all attributes from X2 as well (and conversely) (there are some
technical details we do not discuss in more detail). First, we have
to consider also all attributes of repr(C ′) if repr(C ′) /= �. Second, we
have to consider all attributes with C ′ as an interpreted context, not
only the attributes of C ′.

In our sample evolution depicted in Fig. 7(c), the designer split
the original attribute address into three new attributes street,
city and country. For this, after the creation of the new attributes
(which is not propagated to the PSM level as we have already
discussed), the designer synchronized the original attribute with
the new ones. The synchronization is automatically propagated
by our mechanism as follows: wherever there is an attribute
address ′ with interpretation address in a PSM schema, create
three new attributes street ′, city ′ and country ′ and synchro-
nize them with address ′. The result of this automatic propagation
is depicted in Fig. 8(c). Note that after the synchronization, the
designer removed the original attribute address. This was propa-
gated by our mechanism to removing the attribute address ′ in the
PSM schema after the decision of the designer.

The operation for synchronization of associations, i.e. �r(X1, X2),
is very similar to the previous case. Again, when their common
class C ′ contains associations whose interpretations are directed
images of all associations from X1, it must be supplemented so that
it contains associations whose interpretations are directed images
of all associations from X2, and vice versa. Again, there are technical
details we omit for space limitations, i.e. we must not forget those

698 M. Nečaský et al. / The Journal of Systems and Software 85 (2012) 683– 707

Fig. 9. Visualization of the mechanism for propagating the operation for moving PIM attributes.

associations that are implicitly in the content of C ′ – it is a structural
representative and we must consider not only associations which
have C ′ as a parent but all which have C ′ as their interpreted context.

Synchronization of associations is demonstrated in Fig. 7(g),
where the designer split association address into two new associ-
ations shipto and billto. The result of automatic propagation is
depicted in Fig. 8(g).

6.2. Propagation from PSM to PIM level

In this section, we describe the opposite direction of propa-
gation, i.e. how operations executed on a PSM schema S ′ ∈ PSM
are propagated to the PIM schema S. Again, we will demonstrate
the propagation on our sample PIM and PSM schema evolution
depicted in Figs. 7 and 8, respectively. Now, we will, however, sup-
pose that the designer manually changes the PSM schema according
to the steps depicted in Fig. 8. We show how our propagation mech-
anism ensures that the PIM schema is adapted automatically.

Creating a new component in S ′ does not directly imply an exis-
tence of any component in S and, therefore, creation operations are
not propagated from PSM to the PIM level. For example, when cre-
ating a new class Address ′ and association address ′, connecting
Contact ′ and Address ′ in Fig. 8(e) does not imply creating a corre-
sponding class and association in the PIM schema. The creation will
be performed in the PIM schema only when it is explicitly required
by the designer. The propagation mechanism then also ensures that
interpretations of the class and association in the PSM schema are
set correctly. The result is depicted in Fig. 7(e).

Updating components in S ′ has an effect on corresponding com-
ponents in S with some exceptions; there are updates with no
effect on the PIM schema S, because the updated properties have
no equivalent in S. This includes updating a structural representa-
tive of a class, updating the position or XML form of an attribute
and updating the position of an association. There are also updates
which are only optionally propagated to S. This is similar to the
other direction; for example, changing a name of an attribute. And,
there are operations which are propagated mandatorily. The simple
case is, for example, updating a cardinality which is propagated in
a straightforward manner. And, as in the other direction, there are
two operations whose propagation is mandatory and more com-
plex: moving an attribute and reconnecting an association end.

When the interpretation of a moved attribute or reconnected
association is empty, the change is not propagated at all to S.
This is because the updated component has no equivalent in S

and, therefore, consistency of interpretation is not broken. Simi-
larly, no propagation is necessary when the interpreted context of
the updated component has not changed. In that case, there is no
change from the conceptual point of view.

For example, suppose the PSM schema in Fig. 8(b). Let
the designer move attribute address ′ from class Contact ′ to
Customer ′. The move is within the same interpreted context
(which is class Customer ′) and, therefore, the attribute was not
moved from the conceptual perspective and its interpretation
remains consistent. No propagation is necessary in this case.

In other cases, propagation is necessary. However, except for
the technical details, the principles of the propagation are similar
to the other direction and so, we omit their detailed description.
For example, suppose that the designer moves attributes street ′,
city ′ and country ′ from class Contact ′ to class Address as
depicted in Fig. 8(e). The interpreted context is changed (from class
Customer ′ to class Address ′). Our propagation mechanism auto-
matically ensures that the interpretations of the three attributes
(i.e. street, city and country) are moved correspondingly in the
PIM schema. The resulting PIM schema is depicted in Fig. 7(e).

Similar to the updates, removing a component from S ′ is not
propagated to S when the removed component has an empty inter-
pretation. Removing a PSM component X ′ with an interpretation X
may imply removing X when there are no other PSM components
with interpretation X. However, even when there are no PSM com-
ponents with interpretation X, we do not remove X ′ automatically.
This is because PSM schemas are only views of the whole domain
modeled by the PIM schema. Absence of a given concept modeled
by X in the views does not imply the necessity of removing X from
the PIM schema. The removal of X is, therefore, only optional.

For example, when the designer removes class Partner ′ as
depicted in Fig. 8(b), the propagation mechanism asks the designer
whether the corresponding class Partner in the PIM schema
should be removed as well, or not. In our case, the designer decides
to remove Partner as depicted in Fig. 7(b).

Synchronization of two sets X ′
1 and X ′

2 is propagated from S
to S ′ very similarly as in the opposite direction. The only differ-
ence is that there are components in X ′

1 and X ′
2 with and without

an interpretation. If X ′
1 (or X ′

2) contains only components with an
interpretation, its semantic equivalent exists in S and each com-
ponent X ′ of X ′

2 (or X ′
1), respectively, which does not have an

interpretation is, therefore, propagated to S. Propagation means
creating a new component X corresponding to X ′ and setting
I(X ′) = X. Otherwise, the synchronization is not propagated to the

M. Nečaský et al. / The Journal of Systems and Software 85 (2012) 683– 707 699

PIM level, because an equivalent of X ′
1 or (or X ′

2, respectively) does
not exist in S.

Sample synchronization operations are demonstrated in
Fig. 8(c) (attribute synchronization) and Fig. 8(g) (association
synchronization). They are automatically propagated by our mech-
anism to the PIM schema as depicted in Fig. 7(c) and (g),
respectively.

6.3. Minimality and correctness of atomic operations

Important properties of any set of atomic operations are their
minimality and correctness. Minimality means that there is no
atomic operation which could be expressed as a sequence of other
atomic operations. Correctness means that the proposed operations
are correct. In our specific case it means not only that an atomic
operation transforms a schema from a consistent state to another
consistent state but also that the propagation mechanism preserves
the consistency of interpretations of PSM schemas to PIM schemas.

Theorem 6.1. The set of atomic operations is minimal.

Proof. Assume the operations for evolution of classes in the PIM
schema, i.e. ˛c, ıc and �name

c . Without ˛c we are not able to cre-
ate any class. Similarly, without ıc we are not able to remove any
class. Finally, without �name

c we are not able to change the class
name. It cannot be set during the creation, because ˛c sets a default
name. The proof for other atomic operations for creating, removing
and updating PIM and PSM components is similar. The operations
for synchronizing two sets of attributes or associations are clearly
atomic as well. No other operation allows for synchronization. �

Theorem 6.2. The set of atomic operations together with the prop-
agation mechanism is correct.

Proof. We have already proved the correctness in the previ-
ous text. In Section 5.2 we have shown that the preconditions
of operations for updating interpretations of PSM components
ensure that the consistency of interpretation can not be broken.
In Sections 6.1 and 6.2 we have shown that the propagation mech-
anism repairs the consistency of interpretation when broken by
moving attributes, reconnecting associations ends and removing
components. We have also shown that the other operations do not
touch the consistency at all. And, finally, we have shown in these
sections that whenever the propagation mechanism needs to per-
form a sequence of atomic operations to repair the consistency of
interpretation, the preconditions of these operations are always
satisfied so that the sequence may be performed in any time. �

6.4. Completeness of atomic operations

Sometimes completeness is understood as a property which
ensures that for any two given schemas there always exists a
sequence of atomic operations which transform one of the schemas
to the other. The sequence usually removes all components of the
former schema and creates the components of the other. This is
not a correct proof of completeness, because it does not consider
possible semantic relationships between the components of both
schemas. The old components are simply removed and the new
ones are created without preserving the semantic relationships.
However, this only covers the structural part of the schema. What
we also aim for is preserving the semantic part of the schemas.
This is largely dependent on the user and his/her interpretation of
the meaning of the schemas. However, even if semantic relation-
ships are considered (e.g. semantic equivalence in our case) it is
not easy to prove general completeness formally. Even though such
proof would be interesting from the theoretical point of view, it is
beyond the scope of this paper. Instead, our aim is to demonstrate
completeness practically. In this paper we provide a case study of a

real world system, where we applied our approach. It experimen-
tally shows that the proposed set of atomic operations is complete.
The case study can be found in Section 9.

7. Composite operations

The atomic operations introduced formally in the previous sec-
tions were proposed so that they form minimal and correct set as
proven above. Naturally, they are not supposed to be used directly
by the user in all cases and it is not the whole set of available opera-
tions. In this section we show examples how the atomic operations
can form more user-friendly and realistic composite operations.

Formally, a composite operation is a sequence of two or more
atomic operations. As we have shown in the previous text, propaga-
tion mechanism ensures that any atomic operation does not corrupt
the consistency of affected interpretations. Therefore, composition
of atomic operations preserves consistency as well and it is not nec-
essary to extend the propagation mechanism with specifics of the
composition.

Creation with parameters. A simple composite operation neces-
sary in every system is creating a particular component with pre-set
values. We show such case in the operation createPIMAttr(C, n,
t, c) which allows for creating of a PIM attribute in a class C with
name n, data type t and cardinality c. It consists of the following
steps:

A = ˛a(C); �name
a (A, n); �type

a (A, t); �card
a (A, c)

The propagation mechanism optionally creates corresponding
PSM components.

Splitting of a PIM attribute. This operation is a typical example of
drill-down modeling, i.e. creating more and more precise data struc-
tures. An example of such an operation is shown in Fig. 7(c), where
the designer needs to detail a single-valued address of a customer to
street, city and country. In general, the composite operation split-
PIMAttr(A, {n1, n2, . . ., nk}) for splitting a PIM attribute A of a class
C to a set of attributes with names {n1, n2, . . ., nk} consists of the
following steps:

A1 = createPIMAttr(C, n1, type(A), card(A)); . . . ; Ak

= createPIMAttr(C, nk, type(A), card(A));
�a({A}, {A1, A2, ..., Ak}); ıa(A)

The propagation mechanism, in particular in case of synchro-
nization, ensures that all the PSM attributes representing A are
replaced with PSM attributes representing A1, A2, . . ., Ak. In our
sample depicted in Fig. 7(c), the designer would execute a sin-
gle composite operation splitPIMAttr(address, { “ street”, “city”,
“country”}).

Removing a PSM tree. In the previous case we have shown
an example of a composite operation which consists of a
sequence of atomic operations and a composite operation which
consists of atomic and other composite operations. Operation
removePSMtree(C ′) for removing a PSM tree rooted at class C ′ is
an example of a recursive composite operation, i.e. it calls itself if
necessary. The operation consists of the following steps:

1. (∀R ′ ∈ content(C ′)) removePSMtree(child(R ′));
2. (∀A ′ ∈ attributes(C ′)) ıa(A ′);
3. (∀R ′

p ∈ S ′
r s.t. child(R ′

p) = C ′)(ır(R ′));
4. ıc(C ′);

Naturally, we cannot provide the full list of possible composite
operations, as the particular set depends on the choice of the vendor
of a particular system and the requirements of users. Our aim was

700 M. Nečaský et al. / The Journal of Systems and Software 85 (2012) 683– 707

Fig. 10. Current XML evolution approaches.

to demonstrate that the proposed mechanism can be used in real-
world situations.

8. Related work

The current approaches towards evolution management can
be classified according to distinct aspects (Mens and Van Gorp,
2006; Czarnecki and Helsen, 2006). The changes and transforma-
tions can be expressed (OMG, 2005; Boronat et al., 2006) as well
as divided (Cicchetti et al., 2009) variously too. However, to our
knowledge there exists no general framework comparable to our
proposal in Section 3; particular cases and views of the prob-
lem have previously only been solved separately, superficially and
mostly imprecisely without any theoretical or formal basis. In this
section we describe the closest and most advanced approaches
related to our proposal.

XML view. We can divide the current approaches to XML schema
evolution and change management into several groups as depicted
in Fig. 10. Approaches in the first group (a) consider changes
at the schema level and differ in the selected XML schema lan-
guage, i.e. DTD (Al-Jadir and El-Moukaddem, 2003; Coox, 2003)
or XML Schema (Tan and Goh, 2005; Cavalieri, 2010). In gen-
eral, the transformations can be variously classified. For instance,
paper (Tan and Goh, 2005) proposes migratory (e.g. movements
of elements/attributes), structural (e.g. adding/removal of ele-
ments/attributes) and sedentary (e.g. modifications of simple data
types). The changes are expressed variously and more or less for-
mally. For instance in Cavalieri (2010) a language called XSUpdate
is described. The changes are then automatically propagated to the
extensional level to ensure validity of XML data. There also exists
an opposite approach that enables one to evolve XML documents
and propagate the changes to their XML schema (Bouchou et al.,
2004). Approaches in the second (b) and third (c) group are similar,
but they consider changes at an abstraction of logical level – either
visualization (Klettke, 2007) or a kind of UML diagram (Domínguez
et al., 2005). Both cases work at the PSM level, since they directly
model XML schemas with their abstraction. No PIM schema is con-
sidered. All approaches consider only a single separate XML schema
being evolved.

Another open problem related to schema evolution is adaptation
of the respective XML queries, i.e. propagation to the operational
level (Fig. 10(d)). Unfortunately, the amount of existing works is
relatively low. Paper (Moro et al., 2007) gives recommendations on
how to write queries that do not need to be adapted for an evolving
schema. On the other hand, in Geneves et al. (2009) the authors
consider a subset of XPath 1.0 constructs and study the impact of
XML schema changes on them.

In all the papers cited the authors consider only a single XML
schema. In Passi et al. (2009) multiple local XML schemas are con-
sidered and mapped to a global object-oriented schema. Then, the
authors discuss possible operations with a local schema and their
propagation to the global schema. However, the global schema does
not represent a common problem domain, but a common inte-
grated schema; the changes are propagated just upwards and the
operations are not defined rigorously. The need for well defined
set of simple operations and their combination is clearly identified
in Section 6 of a recent survey of schema matching and mapping
(Bellahsene et al., 2011).

Storage view. The idea of evolution and change management
in XML storage strategies is currently focused particularly on
data updates and, usually, joined with XQuery Update Facility
(Chamberlin et al., 2007). However, this is not the area we are
dealing with since the updates are mostly considered within the
respective XML schema. As depicted in Fig. 10(e), in the area of evo-
lution of general database schemas we can find approaches that
focus on evolution of (object-)relational schemas (Curino et al.,
2009, 2008) as well as object-oriented schemas (Banerjee et al.,
1987; Lerner, 2000). Similar to the case of XML schema evolution,
there are also approaches that deal with propagation from an ER
schema, i.e. PSM level, to a relational schema (An et al., 2008b),
i.e. schema level (Fig. 10(f)) or propagation to an operational level
(Curino et al., 2009) (Fig. 10(g)).

In the purely XML-related approaches we need to consider
schema-driven storage strategies. As surveyed in Simanovsky
(2008), the amount of the respective approaches is not high. We
can find first attempts of change propagation in the current lead-
ing object-relational database management systems – Oracle DB,4

IBM DB25 and Microsoft SQL Server.6 In this case we can differentiate
two types of schema evolution – whether backward compatibility
of the changes, i.e. preservation of data validity, is required, or not.
Both the DB2 and SQL Server require the backward compatibility.
Oracle DB also supports change propagation regardless backward
compatibility; however, it is not done automatically; a data expert
must provide an XSLT script which re-validates the stored XML
documents. To ease this approach we have recently proposed an
algorithm that enables one to provide such transformation script
semi-automatically (Malý et al., 2011).

Processing view. Since we are considering the area of evolution
of XML applications, we cannot omit the most popular applica-

4 http://www.oracle.com/us/products/database/.
5 http://www.01.ibm.com/software/data/db2/.
6 http://www.microsoft.com/sqlserver/2008/en/us/.

M. Nečaský et al. / The Journal of Systems and Software 85 (2012) 683– 707 701

Fig. 11. (a) PIM schema modeling the NRPP domain, (b) PIM schema evolved according to new requirements.

tion of XML format – Web Services. Currently we can find several
approaches that deal with evolution of Web Service; however,
again they solve just part of the issues described (ai Sun et al., 2010).
In Sindhgatta and Sengupta (2009) the authors describe a plugin
to IBM Rational Software Architect (RSA)7 which enables semi-
automatic propagation of changes from business process model
of Web Services (Fig. 10(h)) to respective BPEL scripts and thus
respective applications. It is one of the frameworks that are very
close to our proposal described in Section 3; however, the authors
do not provide any theoretical background on the allowed changes
or details on the propagation mechanisms. A different approach
(Fig. 10(i)) is used in system Morpheus (Ravichandar et al., 2008),
also based on IBM RSA. At the platform-specific level it considers
three UML artifacts – use cases, sequence diagrams and service
specifications – and the change propagation among them. The
output of the propagation is a set of change suggestions for the
respective execution part which should be then done manually by
an expert. Similarly, in Ryu et al. (2008) (Fig. 10(j)) the authors
deal with change propagation of business protocols of Web Ser-
vices, i.e. a kind of activity diagrams. The output of the system
is a set of recommendations detailing when affected parts are
replaceable/migrateable and under what circumstances. Again, the
migration is expected to be done by a system expert; however, the
system advises how to perform it correctly.

In Andrikopoulos et al. (2008) the authors solve the problem
using a completely different strategy. They provide an abstract ser-
vice definition model (ASD) which enables us to model all related
concepts of a Web Service, i.e. data structures, behavior and poli-
cies at a conceptual level using UML class diagrams. Both ASD and
the related operations are defined formally and the completeness
and correctness of the operations is proven. On the other hand,
change propagation to respective PSMs is not considered and the
ASD itself is relatively unnatural. And, considering even more for-
mal approaches and model, in Aversano et al. (2005) the authors
model the Web Services using Formal Concept Analysis and, in par-
ticular, lattices or in Stevens (2010) using lenses and monoids of
edits. However, though the approaches are theoretically very inter-
esting, our aim is to provide less complex and more user-friendly
formal background and tools.

9. Case study and evaluation

As has already been mentioned, we have implemented the pro-
posed technique in a tool called eXolutio (Klímek et al., 2011). In

7 http://www.01.ibm.com/software/awdtools/architect/swarchitect/.

general, it is a proof-of-concept desktop application for conceptual
XML data modeling. It implements the PIM and PSM modeling lan-
guages and operations for evolution of the PIM and PSM schemas
described in this paper. It provides a designer with a set of oper-
ations which are composed of the atomic operations described in
Section 5. It implements the propagation mechanism introduced in
Section 6. At the highest level, eXolutio is based on a well known
Model View Controller (MVC) design pattern.

Currently, for the purpose of this paper, the atomic operations
are implemented in the exact same way they are described here.
We use the implementation to experimentally demonstrate that
the proposed set of atomic operations is complete, i.e. that the
atomic operations are sufficient for real-world situations. As we
have already discussed in Section 6.4, we do not prove complete-
ness formally in this paper. As to performance and scalability, it is
a fact that a single atomic operation on a PIM schema can lead to
a large number of operations in each of the affected PSM schemas.
This number can be reduced by some optimizations, improving
both performance and scalability. So far, our implementation is
strictly based on our formal model and focuses on the clear demon-
stration of our ideas. The issues of performance and scalability
will be addressed in later stages of development. It is now clear
that some complex operations are far more efficient if they are
implemented from scratch, rather than by combining the individ-
ual atomic operations. This also holds true for some cases of change
propagation. Still, it will always be necessary to prove that the opti-
mized version of the operation has the same formal properties as
the non-optimized version would have, which is possible again
thanks to our formal model. In addition, many operations are in
fact interactive. For example, the designer will choose to which PSM
schemas a change will be propagated, in which case the actual time
spent by performing the operation will always be comparatively
negligible.

In the concluding part of this section we show how the devel-
oped technique for designing a family of XML schemas and their
evolution on a real-world system was applied. And, finally, we eval-
uate our technique on the basis of this case study and compare it
with other known techniques for XML schema evolution.

9.1. Case study: national register for public procurement

Our case study is the National Register for Public Procurement
(NRPP).8 It is a governmental information system intended for pub-
lishing data about public contracts by public authorities in the

8 http://www.isvz.cz (in Czech only).

702 M. Nečaský et al. / The Journal of Systems and Software 85 (2012) 683– 707

Fig. 12. PSM schemas modeling XML formats for (a) sending contract notifications to NRP, (b) reporting on contract supplier selection to the NRPP, and (c) representing
procurer detail.

Czech Republic. Publishing a contract is only obligatory when the
contracted price exceeds a level given by the current legislation;
otherwise, it is optional. Authorities send contract information for-
matted according to one of the 17 XML formats accepted by the
NRPP. This includes, e.g. XML format for contract notifications, sup-
plier selection notifications, etc.

Currently, the NRPP only provides a textual documentation for
the XML formats and a set of sample XML documents. There are nei-
ther XML schemas for the XML formats, nor a conceptual schema
of the problem domain. Therefore, our first goal was to design not
only the XML schemas but also the conceptual schema in a form of
a PIM schema and derive PSM schemas for the XML formats from
the PIM schema. The resulting PIM schema is depicted in Fig. 11(a).
Two of the resulting PSM schemas are depicted in Fig. 12(a) and
(b). The PSM schemas are mapped to the PIM schema. The map-
ping is intuitive and we do not describe it here. The PSM schemas
were created exactly according to the textual documentation and
XML examples. Let us note that the original schemas we created
are more extensive. Due to space limitations, we present here only
those parts that bear on our work.

The PIM schema contains classes which model public contracts
(class Contract) and their procurers and suppliers (class Organiza-
tion). There are also some additional concepts modeled – prices

(class Price) and contact information (class Contact). There are
several relationships modeled with associations. A supplier is asso-
ciated with a contract by supplied by association. A procurer is
associated with a contract by a path of associations has contact
and main. Each contract has additional contact information –
where documentation for the contract is provided (association
docs) and where bids to the contract are collected (association bids).
Finally, there are four different prices – expected price (association
expected), the best offered price (association offered), price agreed
by a selected supplier and procurer (association agreed), and a final
real price known after finishing the contract (association final).

The PSM schema depicted in Fig. 12(a) models an XML format for
notifications about a new public contract. When a public authority
issues a new contract, it must send a notification about the contract
to the NRPP using this format; it should contain contact information
and basic information about the contract. The other PSM schema
depicted in Fig. 12(b) models an XML format for notifications about
the supplier selected for the contract; it contains the main contract
contact, information about the number of offered bids, selected
supplier and offered and agreed price.

The numbers of atomic operations executed to create the PIM
and PSM schemas are depicted in Fig. 13(a). It shows that only
creation and update operations were used.

0

50

100

150

200

250

300

α ν δ σ
0

100

200

300

400

500

600

α ν δ σ
0

20

40

60

80

100

120

α ν δ σ
0

50
100
150
200
250
300
350
400
450

α ν δ σ

(a) (b) (c) (d)

Fig. 13. Numbers of atomic operations performed manually by the designer (dark gray) and automatically by the propagation mechanism (light gray).

M. Nečaský et al. / The Journal of Systems and Software 85 (2012) 683– 707 703

Fig. 14. (a) PSM schema with common components shared between other PSM schemas, (b) evolved PSM schema for reporting on contract supplier selection to the NRPP,
(c) evolved PSM schema for representing procurer detail.

There were several issues to solve in this case study. First, the
NRPP provides only XML formats which are used by public author-
ities to send data about their contracts to the NRPP. There are no
XML formats for providing information back to the public authori-
ties and other users, e.g. procurer or supplier detail. We show how
our approach may be used to easily design such XML formats in a
form of PSM schemas on the basis of the existing PIM schema. One
such PSM schema which models XML formats for public procurer
details is depicted in Fig. 12(c). The numbers of the atomic opera-
tions executed at this step are depicted in Fig. 13(b). Again, only the
creation and update operations were performed. Even though the
designer needs to design the PSM schemas for the new XML for-
mats manually, the experiment clearly showed that our approach
saves him/her a great deal of work and prevents him/her from mak-
ing unnecessary errors. This is because our technique enables us to
create the PSM schemas on the basis of the PIM schema (which is
quicker than creating PSM schemas separately) and ensures that
the designer creates the PSM schemas coherently with the PIM
schema (as it preserves the consistency of the interpretation). The
designer needs not check whether the PSM schema is semantically
correct, or not.

Second, as the reader may have noticed, the quality of the
XML formats is low. The designers of the XML formats did not
follow basic XML design principles (e.g. exploiting the hierarchical
nature of XML); for example, contact information is modeled by
XML elements with names prefixed with cont , docs , etc. It
would have been better to remove the prefixes and enclose the
semantically related XML elements into separate XML elements
(e.g. enclose contact XML elements to XML element contact
structured to main, doc, etc. or enclose all information related
to the supplier into XML element supplier). We have made

these adaptations in the present XML formats. Some PSM schema
components also appeared which had the same content and we,
therefore, used structural representatives to declare the shared
content only once. The numbers of the executed atomic operations
are depicted in Fig. 13(c). In this step, synchronization and removal
operations were also used, because some of the old parts of the
PSM schemas were replaced by new ones. Again, the experiment
demonstrated that our approach saves a lot of work as it preserves
the consistency of PSM schemas against the PIM schema. If the
designer makes a change which affects the PIM schema and,
possibly, other PSM schemas, our propagation mechanism will
notify him/her. We depict the evolved PSM schema from Fig. 12(b)
in Fig. 14(b) (it also includes changes described in the following
steps). The other PSM schema was evolved similarly. As the reader
may see, contact information is now represented hierarchically.
Also, the PSM schema is simplified by using structural representa-
tives referring to shared classes contained in a new separate PSM
schema depicted in Fig. 14(a).

Third, we implemented various changes which resulted from
new requirements on the NRPP functionality and from new leg-
islation. In both cases, changes to the PIM schema needed to be
done. The new functionalities required us to model contact persons
as a special class instead of attribute contact person. Therefore, we
evolved the attribute to a new class Person associated with Con-
tact and with two new attributes first name and surname using our
evolution operations.

The new legislation required to report not only the number of
bids received for each contract, but also particular bids including
the bidding supplier and offered price. Therefore, we replaced the
attribute number of bids with a new class Bid with several new
attributes. We changed the semantics of supplied by and offered

704 M. Nečaský et al. / The Journal of Systems and Software 85 (2012) 683– 707

associations by reconnecting them from Contract class to the new
Bid class. Finally, we distinguished the winning bid from the other
bids by splitting the association connecting Bid and Contract classes
into two associations offer and win. The evolved PIM schema is
depicted in Fig. 11(b). Since the PIM schema changed, the PSM
schemas needed to be adapted accordingly. This was ensured by our
propagation mechanism. Fig. 14(b) and (c) show how PSM schemas
depicted in Fig. 12(b) and (c) were automatically adapted by the
propagation mechanism, respectively.

Finally, there was a requirement to update the XML format for
contract notifications (Fig. 12(a)) so that it is possible to give noti-
fication not only on the expected months and days in which the
contract should be finished, but also on the exact date. Therefore,
we added a new attribute exp date which can be used equivalently
instead of two present attributes exp months and exp years. This
change was correctly propagated to the PIM schema, because it is
a conceptual change (see Fig. 11(b)). From here, it was propagated
to the other PSM schemas (see Fig. 14(c)).

The numbers of the atomic operations executed during the last
two steps are depicted in Fig. 13(d). The darker part shows the num-
bers of manually executed operations. The lighter part shows the
numbers of operations executed automatically by the propagation
mechanism.

9.2. Evaluation and comparison to other approaches

The following conclusions are drawn from the above case study:

• All proposed atomic operations are necessary for real-world sce-
narios as summarized in Fig. 13. The necessity for the creation and
updating of atomic operations is clear. The case study showed that
we also need removal operations even though we do not want to
directly remove parts of data but represent them in more (or less)
detailed structures (e.g. splitting attributes). For this, we also need
synchronization operations.

• The case study also demonstrates the completeness of the pro-
posed set of atomic operations. Most real-world scenarios we
target in our work will be similar to the presented case study (i.e.
extending existing schemas with new parts and replacing their
existing parts with more (or less) detailed alternatives). For this
kind of scenarios our proposed set of operations is complete. On
the other hand, there are some limitations. For example, when
synchronizing two sets of attributes, we can not exactly specify a
function which would transform values between both sets. How-
ever, we are not interested in data transformations in this paper
but only PIM and PSM schema evolution.

• The existence of the PIM schema and interpretations of PSM
schemas against the PIM schema is beneficial when the designer
performs creation and update operations for building new PSM
schemas or new parts of existing PSM schemas. Our technique
ensures that the designer creates new PSM components consis-
tently with the PIM schema (from the conceptual perspective).
This ensures semantical coherence between the modeled fam-
ily of XML schemas. All XML schemas in the family, even those
designed by different developers, are consistent with the PIM
schema. The designers need not check this coherence manually
which saves them a great deal of work and prevents design errors.

• Sometimes the designer may want to optimize the structure of
an XML schema but avoid changes to the semantics of the XML
schema. When the designer works with the PSM schema, our
mechanism is able to prevent these changes. It can automatically
check whether a change to the PSM schema needs to be propa-
gated to the PIM schema, or not. This also saves the designer a lot
of work, because (s)he does not need to check this manually.

• Finally, when the designer needs to change the PIM schema, our
mechanism automatically propagates the changes to the PSM

schemas and vice versa. Again, this saves work and prevents
errors, because the designer does not need to propagate the
changes manually.

Fig. 13(a)–(d) shows the number of atomic operations per-
formed by the designer in our case study. In comparison to existing
approaches to XML schema evolution, our technique saves the
designer a great deal of manual work. This is because we con-
sider the PSM schemas interpreted against a single common PIM
schema. As we have shown this saves work and prevents errors
when the designer needs to check the semantical consistency of
his/her new or evolved part of a PSM schema and when making
changes to PIM schema or PSM schemas and their propagation to
the other schemas. The amount of work saved in comparison to
other approaches is demonstrated by Fig. 13. The darker columns
show the amount of atomic operations performed manually by the
designer. These operations are assisted by our technique which
ensures that the consistency between the created XML schemas is
preserved. The designer does not need to check consistency manu-
ally which saves a lot of time. This consistency check is not provided
by existing approaches, where the designer has to do the check
manually. The lighter columns show the amount of atomic oper-
ations performed automatically by our propagation mechanism.
Again, propagation is not supported by existing approaches and
these operations would have to be done manually by the designer.

We can also see a fundamental problem in the current
approaches, because they do not consider synchronization oper-
ations or their equivalent. Without this operation a correct
propagation between PIM and PSM schemas is not possible. As we
have shown, this is necessary in various practical situations when
a part of a PIM or PSM schema is split into more detailed parts. It
is also useful in extending an existing part with new components,
as well as in a reversed process when more parts of a schema are
merged together.

On the other hand, our approach is more laborious in the ini-
tial phases, because the PIM schema and PSM schemas modeling
the XML schemas must be created. This is not the case of the
other approaches which work directly with an XML schema or its
direct translations to a conceptual schema. Therefore, the other
approaches are more suitable in situations, where the designer
works only with a single XML schema. When a family of XML
schemas needs to be managed, our approach is more beneficial.

Finally, let us note that the approach presented deals only with
PIM and PSM schemas and propagation of changes between both
levels. It does not solve the problem of propagation of changes to the
data, i.e. XML documents. As we have shown, this has been solved
by other approaches. We have also worked on this problem in our
previous work. In Malý et al. (2011) we show how XML documents
need to be adapted when a PSM schema which models their XML
schema evolves.

10. Conclusions

In this paper we focused on two of the main challenges of
Model-Driven Development (France and Rumpe, 2007) – evolu-
tion and its formal specification. In particular, we were interested
in model driven XML schema evolution and concentrated on the
PIM and PSM levels of our previously proposed five-level evolution
framework. We defined PIM and PSM schemas for modeling XML
schemas formally and extended them with atomic and composite
operations for their modification. We then identified minimal set of
atomic operations, proved its correctness and specified the respec-
tive mechanism for automatic propagation of changes between
PIM and PSM levels. The formal basis of the operations enables
us to ensure that the framework is designed correctly. Next we

M. Nečaský et al. / The Journal of Systems and Software 85 (2012) 683– 707 705

introduced implementation of the framework and depicted the
advantages of the system in a real-world use case.

Key contributions. If we compare the proposed system with the
current approaches, we can identify several key contributions and
innovations it brings:

• Global view of the evolution problem: As mentioned in Section 8,
the existing approaches towards the evolution and change man-
agement of XML schemas consider only a single XML schema. Our
proposed technique considers a family of XML schemas applied
in a system.

• Formal basis of the proposal: Similar to the current work being
done, we exploit the idea of a platform-independent conceptual
schema (PIM schema) of the problem domain which allows for
abstraction from technical details of particular XML schemas. We
also consider a platform-specific (PSM) schema for each targeted
XML schema. Each PSM schema is mapped to the PIM schema
and can be automatically translated to an expression in a selected
XML schema language such as XSD or RELAX NG. We defined PIM
and PSM schemas and mappings between them formally, which
enables us to effectively manage the evolution of XML schemas.
When a change to the PIM schema is made, we can precisely iden-
tify all the parts of XML schemas affected by this modification and,
conversely, when a change to the PSM schema is made, we can
identify whether the PIM schema is affected and how, or not.

• Hierarchy of operations: Naturally, the idea of change manage-
ment is based on a set of operations. As we have mentioned,
they can be classified variously and current approaches utilize
different sets. In our work we defined a set of atomic operations
and proved its minimality and correctness. Having this concept,
we could restrict ourselves to this set and define the respective
change propagation precisely and correctly. Last but not least, we
showed that using the set of correctly defined atomic operations
and the respective change propagation we can define any com-
posite and, hence, more user-friendly operation. The respective
change propagation is then defined implicitly and its correctness
is ensured as well. A system of operations similar to this was iden-
tified in a recent survey (Bellahsene et al., 2011) (Section 6), but
has not yet been researched properly.

• Experimental implementation of the proposal: The final contribu-
tion of this paper is not only the proposal itself, but also its
experimental and open-source implementation eXolutio. Even
though it currently does not cover all the proposed aspects (it is
still under intense development), a user may test the key features
for his/hers real-world examples. For instance, recently it has
been tested in real-world use-cases by the Fraunhofer Institut.9

Future work. Since the area of XML evolution is relatively new,
the number of current approaches and consequently solved issues
is not high; there is a significant amount of open problems and
future directions we want to focus on. The key areas involve:

• Specifics of XML schema languages: In Nečaský and Mlýnková
(2010), we show that the introduced PSM is equivalent to the
formalism of regular tree grammars (Murata et al., 2005) which
are considered as a basic formalism of XML schema languages.
However, practical XML schema languages such as (Thompson
et al., 2004), introduce various other concepts (e.g. namespaces,
use-defined simple data types, etc.) which we did not consider in
this paper. We are continuously extending our implementation
with these extensions.

9 http://www.isst.fraunhofer.de/dasinstitut/.

• Other conceptual modeling constructs: It is common in practice to
use other modeling constructs (e.g. inheritance, n-ary relation-
ships, etc.). In our future work, we will deal with these constructs
as well.

• Advanced integrity constraints of the XML data: As we have men-
tioned, currently we do not consider integrity constraints that can
be expressed using Schematron (Jelliffe, 2001) or XML Schema
assertions (Thompson et al., 2004) and we focus on purely
grammar-based languages. Our future step is incorporation of
advanced integrity constraints into the whole framework. In
particular, this involves extension of all levels with advanced
constraints, specification of a respective language for the con-
ceptual model and extension of the propagation mechanism. This
also includes extending the concept of semantic equivalence with
the real semantics (i.e. specification that an address is not only
semantically equivalent with street and city but also how). The
current approaches (e.g. Xiong et al., 2009) mainly exploit the idea
of writing a set of correction rules (mostly using OCL (OCL, 2009)
or its extension) that are applied when a particular constraint
is violated. Since the language is too general, we will focus on
its reasonable subset (Nečaský and Opočenská, 2009; Opočenská
and Kopecký, 2008).

• Operational and extensional level of the framework: As we have
described in Section 3, in this paper we focused on a subpart of
the proposed framework – data representation. So, naturally, our
next work will focus on those parts which were omitted, espe-
cially extensional and operational level. The extensional level is
crucial for the applicability of our solution during system run-
time. The operational level is also very important and has been
mostly omitted in the current literature.

• Modeling of storage strategies: Similar to the previous point, in
our future work we plan to focus on other parts of the framework
which were omitted. An important aspect that has so far not been
much considered is the relation of change propagation and XML
storage strategies. Currently there are approaches that deal with
evolution of database schemas (Curino et al., 2009; Banerjee et al.,
1987), but in our case we have to consider a set of applications
that form the system, the fact that the XML views of the data can
and will overlap and exploitation of the relations between com-
ponents of the framework. At the same time, we want to preserve
the optimal storage strategy for a given application (Mlýnková,
2009).

• Modeling of business processes: As we have mentioned, in this text
we considered only the modeling of XML data processed and
exchanged within an XML system. However, not only the data
structures, but also the respective business processes need to be
designed, maintained and updated within the evolution process.
Our other future aim is to extend and combine the conceptual
models of XML data with the respective business processes, to
preserve mutual relations and exploit them during the evolution
process (Murzek et al., 2006).

• Relation to ontologies: An up-to-date and important aspect of
data management is establishing and exploiting their semantics.
Undoubtedly, the most popular tool for this purpose are currently
ontologies. Since an ontology can be viewed as a particular type
of schema which has strong relationship to a given XML schema,
a natural open issue is developing and maintenance of such rela-
tionship under application evolution (Yu and Popa, 2005; An et al.,
2008a). However, since the ontologies bear a special type of infor-
mation, their treatment requires specific approaches (Noy and
Klein, 2004).

• Advanced operations with an XML system: In this paper we
described two types of operations that can occur in an XML sys-
tem – atomic and composite. However, these are not the only
operations that can occur within the system. If we consider the
area of integration, we need to deal with the problem of a new

706 M. Nečaský et al. / The Journal of Systems and Software 85 (2012) 683– 707

incoming application and its integration with the current ones
(Nguyen et al., 2011), or even integration of a whole XML sys-
tem. This wide area involves issues such as reverse-engineering
of conceptual models and schema matching (Wojnar et al., 2010;
Klímek and Nečaský, 2010; Tekli et al., 2009), similarity evalua-
tion (Wojnar et al., 2010) etc.

• Full implementation of the proposal and efficiency: Finally, we
intend to gradually extend the implemented framework with the
proposed improvements. Our aim is to provide a tool that is not
only an experimental prototype, but can be applied in complex
real-world use cases. Naturally, since our aim is a fully applicable
software, we will need to deal with aspects like benchmarking
(Alexe et al., 2008) and optimization (Langlois et al., 2006).

Acknowledgements

This work was partially supported by the Czech Science Foun-
dation (GAČR), grant numbers P202/11/P455, 201/09/P364 and
P202/10/0573.

References

ai Sun, C., Rossing, R., Sinnema, M., Bulanov, P., Aiello, M., 2010. Modeling and
managing the variability of web service-based systems. J. Syst. Software 83 (3),
502–516.

Alexe, B., Tan, W.-C., Velegrakis, Y., 2008. STBenchmark: towards a Benchmark for
Mapping Systems. Proc. VLDB Endow. 1 (1), 230–244.

Al-Jadir, L., El-Moukaddem, F., 2003. Once upon a time a DTD evolved into another
DTD. . .. In: Object-Oriented Information Systems. Springer, Berlin, Heidelberg,
pp. 3–17.

An, Y., Borgidaa, A., Mylopoulos, J., 2008a. Discovering and maintaining semantic
mappings between XML schemas and ontologies. J. Comput. Sci. Eng. 2 (1),
44–73.

An, Y., Hu, X., Song, I.-Y., 2008b. Round-trip engineering for maintaining
conceptual–relational mappings. In: CAiSE ’08: Proc. of the 20th Int. Conf. on
Advanced Information Systems Engineering, Springer-Verlag, Berlin, Heidel-
berg, pp. 296–311.

Andrikopoulos, V., Benbernou, S., Papazoglou, M.P., 2008. Managing the evolu-
tion of service specifications. In: CAiSE ’08: Proc. of the 20th Int. Conf. on
Advanced Information Systems Engineering, Springer-Verlag, Berlin, Heidel-
berg, pp. 359–374.

Aversano, L., Bruno, M., Penta, M.D., Falanga, A., Scognamiglio, R., 2005. Visualizing
the evolution of web services using formal concept analysis. In: IWPSE ’05: 8th
Int. Workshop on Principles of Software Evolution, pp. 57–60.

Banerjee, J., Kim, W., Kim, H.-J., Korth, H.F., 1987. Semantics and implementation of
schema evolution in object-oriented databases. SIGMOD Rec. 16 (3), 311–322.

Bellahsene, Z., Bonifati, A., Rahm, E., 2011. Schema Matching and Mapping,
Data-Centric Systems and Applications. Springer, Berlin, Heidelberg, Berlin, Hei-
delberg.

Boag, S., Chamberlin, D., Fernández, M.F., Florescu, D., Robie, J.,
Siméon, J., 2007. XQuery 1.0: An XML Query Language. W3C, URL:
http://www.w3.org/TR/xquery/.

Boronat, A., Carsí, J.A., Ramos, I., 2006. Algebraic specification of a model transforma-
tion engine. In: FASE ’06: Proc. of the 9th Int. Conf. Fundamental Approaches to
Software Engineering, Vienna, Austria, vol. 3922, LNCS, Springer, pp. 262–277.

Bouchou, B., Duarte, D., Alves, M.H.F., Laurent, D., Musicante, M.A., 2004. Schema
evolution for XML: a consistency-preserving approach. In: Mathematical Foun-
dations of Computer Science, Springer-Verlag, Prague, Czech Republic, pp.
876–888.

Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.,
2008. Extensible Markup Language (XML) 1.0, fifth ed. W3C, URL:
http://www.w3.org/TR/2008/REC-xml-20081126/.

Cavalieri, F., 2010. EXup: an Engine for the Evolution of XML Schemas and Associated
Documents. In: EDBT ’10: Proc. of the 2010 EDBT/ICDT Workshops, ACM, New
York, NY, USA, pp. 1–10.

Chamberlin, D., Florescu, D., Melton, J., Robie, J., Siméon, J., 2007. XQuery Update
Facility 1.0. W3C, URL: http://www.w3.org/TR/xquery-update-10/.

Chen, P., 2002. Entity-relationship modeling: historical events future trends, and
lessons learned. In: Software Pioneers: Contributions to Software Engineering,
Springer, New York, NY, USA, pp. 296–310.

Cicchetti, A., Ruscio, D.D., Pierantonio, A., 2009. Managing dependent changes in
coupled evolution. In: Proc. of the 2nd Int. Conf. on Model Transformations,
ICMT 2009, Zurich, Switzerland, vol. 5563, LNCS, Springer, pp. 35–51.

Coox, S.V., 2003. Axiomatization of the evolution of XML database schema. Program.
Comput. Softw. 29 (3), 140–146.

Curino, C.A., Moon, H.J., Zaniolo, C., 2008. Graceful database schema evolution: the
PRISM workbench. Proc. VLDB Endow. 1 (1), 761–772.

Curino, C., Moon, H.J., Zaniolo, C., 2009. Automating database schema evolution in
information system upgrades. In: HotSWUp ’09: Proc. of the 2nd Int. Workshop
on Hot Topics in Software Upgrades, ACM, New York, NY, USA, pp. 1–5.

Czarnecki, K., Helsen, S., 2006. Feature-based survey of model transformation
approaches. IBM Syst. J. 45 (3), 621–645.

Domínguez, E., Lloret, J., Rubio, A.L., Zapata, M.A., 2005. Evolving XML schemas and
documents using UML class diagrams. In: DEXA ’05: Proc. of the 16th Int. Conf.
on Database and Expert Systems Applications, vol. 3588, LNCS, Springer, pp.
343–352.

France, R., Rumpe, B., 2007. Model-Driven Development of complex software: a
research roadmap. In: FOSE ’07: 2007 Future of Software Engineering, IEEE
Computer Society, Washington, DC, USA, pp. 37–54.

Geneves, P., Layaida, N., Quint, V., 2009. Identifying query incompatibilities
with evolving XML schemas. In: ICFP ’09: Proc. of the 14th ACM SIG-
PLAN Int. Conf. on Functional Programming, ACM, New York, NY, USA,
pp. 221–230.

Hartung, M., Terwilliger, J., Rahm, E., 2011. Recent advances in schema and ontology
evolution. In: Bellahsene, Z., Bonifati, A., Rahm, E. (Eds.), Schema Matching and
Mapping, Data-Centric Systems and Applications. Springer, Berlin, Heidelberg,
pp. 149–190 (doi:10.1007/978-3-642-16518-4-6).

ISO/IEC 9075-14:2003 Part 14: XML-Related Specifications (SQL/XML), Int. Organi-
zation for Standardization, 2006.

Jelliffe, R., 2001. The Schematron – An XML Structure Validation Language using Pat-
terns in Trees, ISO/IEC 19757. URL: http://xml.ascc.net/resource/schematron/.

Klímek, J., Nečaský, M., 2010. Integrating XML schemas for evolution of web ser-
vices. In: ICWS 2010: Proc. of The 8th Int. Conf. on Web Services, IEEE Computer
Society, Miami, FL, USA, pp. 307–314.

Klímek, J., Malý, J., Nečaský, M., 2011. eXolutio – A Tool for XML Data Evolution. URL:
http://exolutio.com.

Klettke, M., 2007. Conceptual XML schema evolution – the CoDEX approach for
design and redesign. In: BTW ’07, Aachen, Germany, pp. 53–63.

Langlois, B., Exertier, D., Bonnet, S., 2006. Performance improvement of MDD tools.
In: EDOCW ’06: Proc. of the 10th IEEE on Int. Enterprise Distributed Object
Computing Conf. Workshops, IEEE Computer Society, Washington, DC, USA, p.
19.

Lerner, B.S., 2000. A model for compound type changes encountered in schema
evolution. ACM Trans. Database Syst. 25 (1), 83–127.

Malý, J., Mlýnková, I., Nečaský, M., 2011. XML data transformations as schema
evolves. In: ADBIS ’11: Proc. of the 15th Advances in Databases and Information
Systems, Springer-Verlag, Vienna, Austria.

Mens, T., Van Gorp, P., 2006. A taxonomy of model transformation. Electron. Notes
Theor. Comput. Sci. 152, 125–142.

Miller, J., Mukerji, J., 2003. MDA Guide Version 1.0.1, Object Management Group.
URL: http://www.omg.org/docs/omg/03-06-01.pdf.

Mlýnková, I., 2009. Adaptive XML-to-relational storage strategies. In: Handbook of
Research on Innovations in Database Technologies and Applications: Current
and Future Trends. Idea Group Publishing, pp. 852–859 (February).

Moro, M.M., Malaika, S., Lim, L., 2007. Preserving XML queries during schema evolu-
tion. In: WWW ’07: Proc. of the 16th Int. Conf. on World Wide Web, ACM, New
York, NY, USA, pp. 1341–1342.

Murata, M., Lee, D., Mani, M., Kawaguchi, K., 2005. Taxonomy of XML schema
languages using formal language theory. ACM Trans. Internet Tech. 5 (4),
660–704.

Murata, M., 2002. RELAX (Regular Language Description for XML), ISO/IEC DTR
22250-1. URL: http://www.xml.gr.jp/relax/.

Murzek, M., Kramler, G., Michlmayr, E., 2006. Structural patterns for the transfor-
mation of business process models. In: EDOCW ’06: Proc. of the 10th IEEE on
Int. Enterprise Distributed Object Computing Conf. Workshops, IEEE Computer
Society, Washington, DC, USA, p. 18.

Nečaský, M., Mlýnková, I., 2009a. On different perspectives of XML schema evolu-
tion. In: FlexDBIST ’09: Proc. of the 5th Int. Workshop on Flexible Database and
Information System Technology, IEEE Computer Society, Linz, Austria.

Nečaský, M., Mlýnková, I., 2009b. Five-level multi-application schema evolution. In:
DATESO ’09: Proc. of the Databases, Texts, Specifications, and Objects, Matfyz
Press, April, pp. 213–217.

Nečaský, M., Mlýnková, I., 2010. When conceptual model meets grammar: a for-
mal approach to semi-structured data modeling. In: Chen, L., Triantafillou, P.,
Suel, T. (Eds.), WISE ’10: Web Information Systems Engineering, vol. 6488, LNCS.
Springer, Berlin, Heidelberg, pp. 279–293.

Nečaský, M., Mlýnková, I., 2010. A framework for efficient design maintain-
ing, and evolution of a system of XML Applications. In: DATESO ’10:
Proc. of the Databases, Texts, Specifications, and Objects, MatfyzPress, April,
pp. 38–49.

Nečaský, M., Opočenská, K., 2009. Designing and maintaining XML integrity con-
straints. In: MoViX ’09: Proc. of the 1st Int. Workshop on Modelling and
Visualization of XML and Semantic Web Data, IEEE Computer Society, Linz,
Austria.

Nečaský, M., Klímek, J., Kopenec, L., Kučerová, L., Malý, J., Opočenská, K., 2008. XCase
– A Tool for XML Data Modeling. URL: http://xcase.codeplex.com.

Nečaský, M., 2009. Conceptual modeling for XML. Dissertations in Database and
Information Systems, vol. 99. IOS Press, Amsterdam, The Netherlands.

Nguyen, H.-Q., Taniar, D., Rahayu, J.W., Nguyen, K., 2011. Double-layered
schema integration of heterogeneous XML sources. J. Syst. Software 84 (1),
63–76.

Noy, N.F., Klein, M., 2004. Ontology evolution: not the same as schema evolution.
Knowl. Inf. Syst. 6 (4), 428–440.

M. Nečaský et al. / The Journal of Systems and Software 85 (2012) 683– 707 707

Object Management Group, 2007a. UML Infrastructure Specification 2.1.2 (Nov
2007). URL: http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF/.

Object Management Group, 2007b. UML Superstructure Specification 2.1.2 (Nov
2007). URL: http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF/.

Object Constraint Language Specification, version 2.0, OMG, 2009. URL:
http://www.omg.org/technology/documents/formal/ocl.htm.

OMG, 2005. MOF QVT Final Adopted Specification, Object Modeling Group (June
2005). URL: http://fparreiras/papers/mof qvt final.pdf.

Opočenská, K., Kopecký, M., 2008. Incox – a Language for XML Integrity Constraints
Description. In: DATESO ’08: Proc. of the Databases, Texts, Specifications, and
Objects, pp. 1–12, http://CEUR-WS.org.

Park, C.-S., Park, S., 2008. Efficient execution of composite web services exchanging
intensional data. Inform. Sci. 178 (2), 317–339.

Passi, K., Morgan, D., Madria, S., 2009. Maintaining integrated XML schema. In: IDEAS
’09: Proc. of the 2009 Int. Database Engineering, Applications Symp., ACM, New
York, NY, USA, pp. 267–274.

Ravichandar, R., Narendra, N.C., Ponnalagu, K., Gangopadhyay, D., 2008. Morpheus:
semantics-based incremental change propagation in SOA-based solutions. IEEE
Int. Conf. on Services Computing 1, 193–201.

Ryu, S.H., Casati, F., Skogsrud, H., Benatallah, B., Saint-Paul, R., 2008. Supporting the
dynamic evolution of web service protocols in Service-Oriented Architectures.
ACM Trans. Web 2 (2), 1–46.

Simanovsky, A.A., 2008. Data schema evolution support in XML-relational database
systems. Program. Comput. Softw. 34 (1), 16–26.

Sindhgatta, R., Sengupta, B., 2009. An extensible framework for tracing model evolu-
tion in SOA solution design. In: OOPSLA ’09: Proc. of the 24th ACM SIGPLAN Conf.
Companion on Object Oriented Programming Systems Languages and Applica-
tions, ACM, New York, NY, USA, pp. 647–658.

Stevens, P., 2010. Bidirectional model transformations in QVT: semantic issues and
open questions. Soft. Syst. Model. 9 (1), 7–20.

Tan, M., Goh, A., 2005. Keeping pace with evolving XML-based specifications. In:
EDBT ’04 Workshops, Springer, Berlin, Heidelberg, pp. 280–288.

Tekli, J., Chbeir, R., Yetongnon, K., 2009. Extensible user-based XML grammar
matching. In: Proc. of the 28th Int. Conf. on Conceptual Modeling, ER ’09,
Springer-Verlag, Berlin, Heidelberg, pp. 294–314.

Thompson, H.S., Beech, D., Maloney, M., Mendelsohn, N., 2004. XML Schema Part 1:
Structures, second ed. W3C, URL: http://www.w3.org/TR/xmlschema-1/.

Wojnar, A., Mlýnková, I., Dokulil, J., 2010. Structural and semantic aspects
of similarity of document type definitions and XML schemas. Inform. Sci.
180 (10), 1817–1836 (Special Issue on Intelligent Distributed Information
Systems).

Web Services Business Process Execution Language (WSBPEL) TC, OASIS, 2007. URL:
http://www.oasis-open.org/committees/tc home.php%3Fwg abbrev=wsbpel.

Xiong, Y., Hu, Z., Zhao, H., Song, H., Takeichi, M., Mei, H., 2009. Supporting automatic
model inconsistency fixing. In: ESEC/FSE ’09: Proc. of the 7th Joint Meeting of the
European Software Engineering Conf. and the ACM SIGSOFT Symp, ACM, New
York, NY, USA, pp. 315–324.

MOF 2.0/XMI Mapping Specification, v2.1.1, OMG, 2009. URL:
http://www.omg.org/technology/documents/formal/xmi.htm.

Yu, C., Popa, L., 2005. Semantic adaptation of schema mappings when schemas
evolve. In: VLDB ’05: Proc. of the 31st Int. Conf. on Very Large Data Bases, VLDB
Endowment, pp. 1006–1017.

Martin Nečaský received his Ph.D. degree in Computer
Science in 2008 from the Charles University in Prague,
Czech Republic, where he currently works at the Depart-
ment of Software Engineering as an assistant professor.
He is an external member of the Department of Com-
puter Science and Engineering of the Faculty of Electrical
Engineering, Czech Technical University in Prague. His
research areas involve XML data design, integration and
evolution. He is an organizer/PC chair/member of more
than 10 international events. He has published more than
30 papers (two received Best Paper Award). He has pub-
lished 3 book chapters and a book.

Jakub Klímek received his Master’s degree in Computer
Science in September 2009 from the Charles Univer-
sity in Prague, Czech Republic, where he currently is a
Ph.D. student at the Department f Software Engineering.
His research areas involve XML data design, integration
and evolution. He has published 12 refereed conference
papers. He is a co-organizer of 1 local workshop.

Jakub Malý received his Master’s degree in Computer Sci-
ence in June 2010 from the Charles University in Prague,
Czech Republic, where he currently is a Ph.D. student
at the Department of Software Engineering. His research
areas involve conceptual modeling of XML data and evo-
lution of XML applications. He has published 7 refereed
conference papers.

Irena Mlýnková received her Ph.D. degree in Computer
Science in 2007 from the Charles University in Prague,
Czech Republic. She is an assistant professor there and
an external member of the Department of Computer Sci-
ence and Engineering of the Czech Technical University.
She has published more than 40 publications (16 recorded
in WoS), 4 gained the Best Paper Awards. Her research
areas involve management of XML data, structural simi-
larity, analysis of real-world data, synthesis of XML data,
XML benchmarking, XML schema inference and appli-
cation evolution. She is a PC member/reviewer of 14
international events and co-organizer of 3 international
workshops.

50

Chapter 3

Efficient Adaptation of XML
Data Using a Conceptual
Model

Jakub Malý
Martin Nečaský
Irena Mlýnková

Published in the International Journal on Information Systems Frontiers.
Springer Science+Business Media, 2012. ISSN 1387-3326. (in press)

Impact Factor: 0.912
5-Year Impact Factor: 1.074

51

52

Inf Syst Front
DOI 10.1007/s10796-012-9375-8

Efficient adaptation of XML data using a conceptual model

Jakub Malý · Martin Nečaský · Irena Mlýnková

© Springer Science+Business Media, LLC 2012

Abstract One of the prominent characteristics of XML
applications is their dynamic nature. Changes in user
requirements cause changes in schemas used in the
systems and changes in the schemas subsequently make
existing documents invalid. In this work, we study two
tightly coupled problems—schema evolution and doc-
ument adaptation. The presented approach extends an
existing conceptual model for evolution of XML appli-
cations towards document adaptation, by introducing a
formal framework for detecting changes between two
versions of a schema. From the detected changes it is
possible to create a script that transforms documents
valid against the old version of the schema to docu-
ments valid against its new version.

Keywords XML schema evolution ·
Document adaptation · Change management ·
Conceptual model

This work was supported in part by the Czech Science
Foundation (GAČR), grants number P202/10/0573 and
P202/11/P455.

J. Malý (B) · M. Nečaský · I. Mlýnková
Department of Software Engineering, Charles University in
Prague, Malostranské nám. 25,
118 00 Praha 1, Czech Republic
e-mail: maly@ksi.mff.cuni.cz

M. Nečaský
e-mail: necasky@ksi.mff.cuni.cz

I. Mlýnková
e-mail: mlynkova@ksi.mff.cuni.cz

1 Introduction

The eXtensible Markup Language (XML) (Bray et al.
2008) is currently a de-facto standard for data ex-
change, gaining popularity as storage technology and,
together with the accompanying technologies, such
as XML Schema Definition (XSD) (Thompson et al.
2004; Biron 2004), XPath (W3C 2010a), XQuery (W3C
2010b), XSLT (Kay 2007) etc., it becomes a powerful
tool.

Consequently, the amount and complexity of soft-
ware systems that utilize XML and/or selected XML-
based standards and technologies for information
exchange and storage grows very fast. The systems
represent information in a form of XML documents.
One of the crucial parts of such systems are XML
formats which describe the allowed structure of XML
documents. Usually, a system does not use only a single
XML format, but a set of different XML formats, each
in a particular logical execution part. The XML formats
usually represent particular views on the application
domain of the software system. For example, a software
system for customer relationship management (CRM)
exploits different XML formats for purchase orders,
customer details, product catalogues, etc. All these
XML formats represent different views on the CRM
domain. We can, therefore, speak about a family of
XML formats utilized in by a software system.

Having a system which exploits a family of XML for-
mats, we face the problem of XML format evolution as
a specific part of evolution of the software system as
a whole. The XML formats may need to be evolved
whenever user requirements or surrounding environ-
ment changes. In our previous work Nečaský et al.
(2011a, b), we have introduced a framework for such

Inf Syst Front

evolution of a family of XML formats. The framework
considers different levels of abstraction of the XML for-
mats, e.g., conceptual schemas, logical XML schemas
or instance XML documents which are mutually in-
terrelated by mappings, which allow for correct evo-
lution. We solved a problem of coherent evolution
of XML formats according to changing requirements.
This means that when a new requirement appears,
it is implemented in the XML formats so that they
are updated coherently with each other. However, we
have not addressed yet another important part of the
problem—adaptation of underlying XML documents
when their XML schemas evolve.

Contributions In this paper we focus on the impact of
evolution of schemas of XML formats on their instance
XML documents. We extend our previously published
framework with versioning features and an algorithm
for propagation of changes to XML documents—i.e.
an algorithm for XML document adaptation. Our main
contributions can be summed up as follows:

– We propose an extension of our previously pub-
lished framework for evolution of XML formats
with versioning features.

– We provide an algorithm for automatic detection
of changes between any two versions of an XML
schema and propagation of changes to instance
XML documents (in a form of automatically gen-
erated version transformation script).

– The XML schemas of XML formats are edited by
designers at a more user-friendly level of concep-
tual schemas instead of technical XML schemas.

– The conceptual schemas enable the user to work
also with semantics of the XML formats, not only
syntax.

– The framework can decide automatically whether
transition from one version of the schema to an-
other requires transformation of the existing docu-
ments to make them valid against the new version.

Outline The rest of this paper is structured as follows:
Section 1 provides examples of situations where an evo-
lution framework can be used and Section 5 analyzes
the related work. Section 1 introduces our conceptual
model for XML schema modeling. In Section 1.2 we
extend the conceptual model to support evolution and
versioning of schemas. Section 2 formally defines types
of changes that can occur between two versions of a
schema. For each type of change Section 3 describes
how documents are adapted using our approach. In
Section 4 we discuss the remaining open issues and
possible ways to solve them. In Section 6 we conclude.

Relation to previous papers In this paper we con-
tinue in our effort towards a robust XML evolution
framework which would enable evolution and change
management of a set of related XML schemas using
a common conceptual model. The conceptual model
(without evolution features) was firstly proposed in
Nečaský (2009) and later generalized in Nečaský and
Mlýnková (2010). In Nečaský and Mlýnková (2009b)
we proposed the five-level XML evolution frame-
work and provided a sample set of operations and
propagation between the highest two levels—platform-
independent and platform-specific. The levels and their
mutual relations were formally defined in Nečaský et al.
(2011b), the edit operations at the conceptual levels
and their propagation to neighboring levels in Nečaský
et al. (2011a). Its experimental implementation of the
framework can be found at Klímek et al. (2011).

In this paper we focus on the problem of propagating
changes from the platform-specific to the extensional
(i.e. data) level. We have already briefly published basic
ideas of our approach in Malý et al. (2011). In this
paper, we provide a detailed and formal description of
the solution including all algorithms in the context of
our whole evolution framework.

As a motivation for our approach we provide three
different scenarios where it can be successfully applied.

Document update after new version adoption In the
first scenario, we consider an XML application storing
data in XML documents. The documents can be
stored in a file system, in an XML-enabled relational
database shredded into tables (Oracle XML DB Home.
http://www.oracle.com/technetwork/database/features/
xmldb/index.html) or in a native XML database (eXist
http://www.exist-db.org/, MarkLogic Server. http://www.
marklogic.com/). As requirements change, the system
designer needs to adjust the XML schemas existing
in the system. To keep the system consistent, the
documents stored in the system must be transformed
so that they are valid against the new version of the
schemas. The process of propagation of changes from
schemas to documents is called document adaptation.

The system designer may choose to adapt the docu-
ments manually (i.e. by editing them individually), but
the amount of work will grow with the number of doc-
uments and the whole process will be time-consuming
and error-prone. Alternatively, the user prepares an
adaptation script—a sequence of commands that can
be executed upon all the documents attached to the
schema and adapt them all in one batch. Creating such
a script from scratch can be difficult and requires a good
knowledge of a suitable implementation language. Our
approach aims to eliminate these obstacles and reduces

Inf Syst Front

the designer’s work to the necessary minimum by gen-
erating the adaptation script semi-automatically and
using an abstract model rather than working with an
implementation language directly.

In case where XML documents are stored as files or in
a native database, the adaptation script can be exe-
cuted upon them directly. When the documents are stored
in a relational database, the database vendor provides
an interface (Oracle XML DB Developer’s Guide—
XML Schema Evolution. http://download-uk.oracle.
com/docs/cd/B28359_01/appdev.111/b28369/xdb07evo.
htm#BCGFEEBB) using which transition to the new
version is performed—this interface requires the
evolved schema and the adaptation script. Using our
approach, the user only needs to evolve the schema,
the adaptation script is generated for him/her.

Translation/mediator In the second scenario there are
several systems exploiting the same family of XML
schemas to communicate with each other. The XML
schemas are administered by one of the parties or by a
standardization authority which issues the new versions
of the standard.

When the new version of the standard is issued,
the involved parties are required to adopt the new
version. However, some of the parties do not adopt
the new version immediately, hence, necessarily, after
a certain period of time, there are several versions of
the standard deployed and actively used at the same
time. This effectively means that the system needs to
be able to process different versions of documents. It
can be achieved in two ways—either (a) by accepting
different versions of the documents on the input and
processing each version differently, or (b) by transform-
ing the documents to the latest version before they are
processed. A similar situation and solutions are with the
output documents (responses)—when a system sends
a document valid against a schema which is a part of
version v of the standard, it probably expects a result to
be also valid against a schema which is a part of v.

The significant benefit of (b) approach is that the
business logic of the processing of the input document
is compact (and the problem of different versions is
solved by a stand-alone component, sometimes called
mediator), whereas the (a) approach may obfuscate the
business logic by introducing new branches, corrections
and error recovery sections in the code with each new
version supported.

Our framework significantly reduces the effort re-
quired when the first way of dealing with different
versions of documents on the input/output is selected. It
can generate an adaptation script for any two versions
of the schema and this adaptation script can be used

to pre-process the documents sent by the parties that
have not adopted the latest versions yet in the mediator
(and the process is transparent for the business logic
components). The only requirement that the designer
needs to evolve the old version to the new version
in our framework which keeps track between both
versions.

Mapping between schemas and system integration The
third scenario does not deal with schema evolution in
the system, but aims at reducing the effort for integra-
tion of schemas concerning the same problem domain.
For one business area or problem domain, several in-
dependent solutions may emerge. The result is a set
of parties using their proprietary schemas. After some
time, the involved parties come to the point where
they need to interact with each other (they share the
same business domain after all), companies may be
merged etc. This situation requires system integration.
One approach is to pick one of the existing solutions
or create a new one and unify the participants under
this chosen solution. However, this may turn out to be
too costly and the participants may instead decide to
continue using their proprietary systems and only pro-
vide separate interfaces for the other parties. The inter-
party communication can then be solved by mappings
between the proprietary systems.

In Klímek and Nečaský (2010), we describe, how
our framework deals with the integration problem and
helps the user to define mappings between systems.
The document adaptation algorithm can utilize these
mappings to create an adaptation script and again sup-
ply the systems with mediator components (and use
generated adaptation scripts in these), so that they will
be able to communicate with the other systems using
different set of schemas.

Our framework for design and evolution of a family
of XML formats applied in a software systems has five
separate hierarchical levels and we therefore call it five-
level evolution framework. The basic structure of the
framework is depicted in Fig. 1.

The framework is partitioned both horizontally and
vertically. Vertical partitions represent individual XML
formats. Horizontal partitions represent different levels
which characterize XML formats from different view-
points. Briefly, for each XML format the levels are the
following:

– The extensional level contains XML documents for-
matted according to the XML format. At this level,
the XML format is characterized by its instances.

– The operational level contains operations per-
formed with the XML documents. These can be

Inf Syst Front

Fig. 1 Five-level XML
evolution framework

queries over the instances or transformations of
the instances. At this level, the XML format is
characterized by operations.

– The logical level contains a logical XML schema
which specifies the syntax of the XML format. It
is expressed in an XML schema language.

– The platform-specif ic level contains a schema which
specifies the semantics of the XML format in terms
of the level above.

– The platform-independent level contains a concep-
tual schema which describes the information model
of the system and covers the semantics of all XML
formats in the family in a uniform way. It is com-
mon for all XML formats in the family.

As we can see, the framework covers the syntax and
semantics of the XML formats as well as their instances
and operations performed over the instances. However,
the XML documents, queries and schemas at different
horizontal levels are not the only first-class citizens of
our framework. There are also mappings between the
horizontal levels. They are depicted as lines connecting
the levels.

The mappings are crucial for correct evolution of the
XML formats. Briefly, evolution means that whenever
a change at any place of the framework is performed
by a user, the change is propagated to all other affected
parts. The need for change propagation is invoked
by the mappings. The propagation ensures that the
affected parts are adapted so that their consistency with
the changed part and with each other is preserved.

1.1 Framework horizontal levels

Let us now describe the horizontal levels in a more
detail.

1.1.1 Logical, operational and extensional level

The lowest level, called extensional level, represents
particular XML schema instances that occur in the
system. The instances are XML documents which are
persistently stored in an XML database or exchanged
between parts of the system or between the system and
other systems as messages. The level one step higher,
called operational level, represents operations over the
instances. These might be, e.g., XML queries over the
instances expressed in XQuery or transformations of
the instances expressed in XSLT. The level above,
called logical level, represents logical schemas that de-
scribe the structure of the instances. They are expressed
in a selected XML schema language, e.g. DTD (Bray
et al. 2008), XSD, RELAX NG (Clark and Makoto
2001), Schematron (ISO 2005), etc. We demonstrate
the three levels in Fig. 2. It shows our two sample XML
formats represented at the three levels.

There are two kinds of mappings depicted between
the three levels. There are mappings of instance XML
documents to their XML schemas. The instances are
XML documents valid against the XML schema. An
instance XML element or attribute is mapped to its
respective definition in the XML schema. The map-
ping is created automatically during XML document
validation. For example, XML elements cust in the
instances of XML format on the left of Fig. 2 are
mapped to the definition of the XML element cust in
the XML schema. A valid instance is fully mapped to
its XML schema.

The other kind are mappings of operations to XML
schemas. Operations are based on the XPath language
whose basic construct is a path comprising steps which
select XML elements and attributes from the instance
XML documents. The steps also specify required hi-
erarchical relationships between the selected XML

Inf Syst Front

Fig. 2 Two sample XML
formats represented in the
framework

elements and attributes (e.g. parent/child or ances-
tor/descendant). A path is mapped to a respective chain
of XML element or attribute definitions in the XML
schema. The definitions are in the structural relation-
ship specified by the path steps. The mapping is created
automatically during the validation of a path (similarly
to validation of XML documents). For example, there
are the following paths in the query for the XML format
on the left of Fig. 2: //cust/hq and //cust/name.
They are mapped to the corresponding XML element
definitions as depicted by the arrows. A correct XML
query has all its paths mapped.

Even these three levels indicate problems related to
XML evolution. A change in one of them can trigger
respective changes in the other two levels. Therefore,
we need a mechanism which correctly propagates a
change to the other levels. When the structure of an

XML schema changes, its instances and related queries
must be adapted accordingly so that their validity and
correctness is preserved respectively. Some changes
can be propagated automatically, in some cases user
interaction is necessary.

1.1.2 Platform-independent and platform-specif ic levels

If we consider only the three described levels we have
no explicit relationship between the vertical partitions,
i.e. between the XML formats applied in the system.
As we have already discussed, a change in one XML
format can trigger changes in the other XML formats
to keep their consistency. Therefore, a change in one
XML schema must be propagated to the other affected
XML formats manually by a designer. This is, of course,
highly time-consuming and error-prone solution. The

Inf Syst Front

designer must be able to identify all the affected for-
mats and propagate the change correctly. Often, (s)he
is not able to do such a complex work and needs a
help of a domain expert who understands the problem
domain, but is, typically, a business expert rather than
a technical XML format expert. Therefore, it is very
hard for him to navigate in the logical XML schemas,
operations and instances.

To overcome these problems, we introduce two addi-
tional levels to the framework which represent two ad-
ditional levels of abstraction of the XML schemas. The
levels are motivated by the MDA (Miller and Mukerji
2003) principles. The topmost one is a platform-
independent level which comprises a single schema
in a platform-independent model (PIM schema). The
PIM schema is a conceptual schema of the application

Fig. 3 Two sample XML formats represented at logical, PSM and PIM levels

Inf Syst Front

domain. We use the notation of UML class diagrams to
express PIM schemas. A sample PIM schema modeling
the domain of customers and their purchases is depicted
in Fig. 3.

The level below is a platform-specif ic level which
comprises a separate schema in a platform-specif ic
model (PSM schema) for each XML format in the
family. A PSM schema is also expressed in the notation
of UML class diagrams. However, we extended UML
notation in Nečaský et al. (2011b) so that it can be used
for modeling XML formats. First, a PSM schema has
a strictly hierarchical structure. Second, there are few
extending modeling constructs. For example, we use so
called choice content model which is depicted as an oval
with the | symbol inside. It models a choice in XML
content which is usual in XML formats. Two sample
PSM schemas for our two XML formats are depicted
in Fig. 3.

A PSM schema models an XML format and can be
viewed from two perspectives—conceptual and gram-
matical. The conceptual perspective models the seman-
tics of the XML format in terms of the conceptual
schema from the PIM level. The semantics is expressed
as an unambiguous mapping of the components of the
PSM schema to the components of the PIM schema.
We demonstrate the mapping in Fig. 3 on the right-
hand side PSM schema. There is depicted the mapping
of PSM class PrivateCus to PIM class PrivateCus and
its PSM attributes name, shipto, billto, code to PIM
attributes name, address, and code, respectively. The PSM
attributes shipto and billto are mapped to the same
PIM attribute. Therefore, the semantics of the portion
of the PSM schema is that PrivateCus class models a
private customer with a name and code. Both shipping
and billing address referred to in the purchase are the
same address evidenced in the system for the customer.
The PSM class CorporeCus is mapped similarly but its
PSM attributes shipto and billto are mapped to the
PSM attributes storage and headquarters, respectively.
In other words, the semantics of shipto and billto at-
tributes in the modeled XML formats is different for
the private and corporate customers. Associations are
mapped as well. For example, both PSM associations
going to PrivateCus and CorporateCus are mapped
to the PIM association connecting the PIM classes
Customer and Purchase. There can also be components
which are not mapped. They are displayed in the grey
color, e.g. class Items or PSM associations cust and
items in the PSM schema on the right. These compo-
nents have no semantics. in the PSM schema on the
right. These components have no semantics.

From the grammatical perspective, a PSM schema
models a grammar of the respective XML format. In

other words, it models the syntax of the XML format
which is expressed at the logical level as an XML
schema. The conversion of the PSM schema to a cor-
responding XML schema is automatic. Briefly, a class
models a sequence of XML element and attribute dec-
larations. An association with a name models an XML
element whose content is the sequence modeled by its
child class. The purpose of the choice content model
is to support variants in the XML format. In most
cases, the choice content model will actually allow for
different XML contents. That is the case of the left-
hand side schema in our example models (this case is
translated into choice construct at the logical level).
However, in some cases (as illustrated in the right-
hand side schema), the branches are equivalent from
the grammatical perspective (but not from the concep-
tual, as we have shown) and at the logical level joined
into one.

During the conversion, an unambiguous mapping
of the XML schema components to the PSM schema
components is automatically created. We depict a por-
tion of a sample mapping of XML elements name,
ship-to, etc. to PSM attributes of classes PrivateCus
and CorporateCus in Fig. 3.

In Nečaský et al. (2011b) we have formally shown
that the expressive power of our PSM schemas is the
same as the expressive power of regular tree grammars
(RTG) (Murata et al. 2005). RTG is a notation which
allows to express an XML schema in a formal way
and allows for reasoning about an expressive power of
various XML schema languages. It has been shown in
Murata et al. (2005) that each schema expressed in XSD
can be also expressed as RTG.

The result is a hierarchy which interconnects all the
XML formats in the family using the common PIM
schema. The change propagation between different
XML formats is realized using this common point.
For instance, if a change occurs in a selected XML
document, it is first propagated to the respective XML
schema, PSM schema and, finally, to the PIM schema.
We speak about an upwards propagation, in Fig. 1 rep-
resented by the upwards arrows. It enables one to iden-
tify the part of the problem domain that was affected.
Then, we can invoke the downwards propagation. It
enables one to propagate the change of the problem
domain to all the related parts of the system. In Fig. 1 it
is denoted by the downwards arrows.

In our previous work Nečaský et al. (2011a, b)
we have introduced the mechanism of propagating
changes between PSM and PIM levels in both direc-
tions. This also includes the logical level since the PSM
level is the full representation of the logical level (see
Nečaský et al. 2011b). In this paper, we concentrate on

Inf Syst Front

propagating changes from an XML schema expressed
at the PSM level to the extensional level. Propagating
changes from the extensional level to the logical level
and considering the operation level is our future work.
We have already developed an algorithm for propagat-
ing changes from the extensional to the logical level and
implemented it in an experimental tool called jInfer.1

The algorithm represents an XML schema as a regular
tree grammar (Nečaský et al. 2011b). It takes a set of
XML documents as an input and recognizes a grammar
describing their structure. It can also consider the old
version of the XML schema such that the XML doc-
uments were valid against it but were modified so that
they are no longer valid. The algorithm adapts the XML
schema in a minimal way so that the XML documents
are valid again. However, the full description of the
algorithms in the context of our evolution framework
is still our future work.

1.2 Selected part of the problem

In this work, we are interested in one particular prob-
lem in the context of the introduced framework which
is adaptation of instance XML documents of a single
XML format when the XML schema of the format is
changed. As the framework shows, we can consider
changes to the XML format at the two levels—logical
or PSM level. The former one specifies the syntax of the
XML format while the latter one models both syntax
and semantics in terms of the PIM schema.

Working at the logical level means that an XML
schema is evolved. It enables us to adapt to struc-
tural changes, but we are not able to identify changes
in the semantics. Consider the example provided by
authors of CoDEX (Klettke 2007),2 where the user
moves element address from element owner to
element producer. The structure of both the ele-
ments address is the same (they would probably re-
fer to the same type), but semantically the meaning
is different (the address of the producer is not the
same as the address of the owner). This evolution
step is depicted in Fig. 4. Both the old (a) (before
address was moved) and new version (b) have the
same PIM model (the PIM model was not evolved),
at other levels, they differ. When class Address is
moved from Owner to Producer, it can be observed,
that the structure remains the same (at the logical
and operational levels); however, the PSM schema is

1http://jinfer.sourceforge.net/index.html
2More on this system can be found in Section 5

Fig. 4 A sample XML format in two versions

different—the association leading to class Address is
mapped to a different PIM association, than in the old
version (Producer-Address vs. Owner-Address).
Propagating this change by moving the contents of
address from element owner to element producer
would create valid, yet semantically incorrect docu-
ment. With the two-layer conceptual model, the system
can identify that owner is a different concept than
producer and will not try to adapt the documents
by moving address element, but by a combination of
deleting and inserting. If we work at the PSM level, we
are also able to identify changes in the semantics. In

Inf Syst Front

that case we are able to easily recognize the above men-
tioned change and adapt the XML documents correctly.

Working at the PSM level (PSM schemas) instead
of at the logical (XML schemas, e.g. XSDs) level has
additional benefits from the user point of view. PSM
schemas are much more transparent and easier to read
and work with than lengthy XSDs. The same holds
for examining the list of changes between the old and
evolved PSM schemas compared to list of changes
between two XSDs. Also, since PSM schema has less
types of constructs than XML Schema language, the
comparison algorithm will be less complex.

Without any loss of generality, we therefore consider
that the XML format is changed at the PSM level,
i.e. that the designer changes the PSM schema of the
evolved XML format. We extend our framework with a
formalism for versioning of PIM and PSM schemas. We
further study the impact of changes in a PSM schema to
its instance XML documents and introduce a method
which correctly adapts them so that their validity is
restored.

First, we introduce the formal model of PIM and
PSM schemas (Nečaský et al. 2011b) and extend it
with a completely new formalism for their versioning.
The formalism allows for modeling more versions of
PIM and PSM schemas in parallel. We also show how
concepts in different versions are connected and why
we need such connections for document adaptation.

1.3 Formal definitions of PIM and PSM

Even though both PIM and PSM schemas are basically
UML class diagrams, we introduce our own formal
definitions of PIM and PSM schemas. This is neces-
sary because the original specification of UML class
diagrams was not formal enough for our purposes.

Let us start with the PIM schema. As we have
mentioned, it is a conceptual schema of the problem
domain based on the classical model of UML class
diagrams (Object Management Group 2007a, b). For
simplicity, we use only its basic constructs: classes, at-
tributes and binary associations.

Definition 1 A platform-independent schema (PIM
schema) is a triple S = (Sc, Sa, Sr) of disjoint sets of
classes, attributes, and associations, respectively.

– A Class C ∈ Sc has a name assigned by function
name.

– An Attribute A ∈ Sa has a name, data type and
cardinality assigned by functions name, type, and
card, respectively. Moreover, A is associated with
a class from Sc by function class.

– An Association R ∈ Sr is a set R = {E1, E2}, where
E1 and E2 are called association ends of R. R has
a name assigned by function name. Both E1 and
E2 have a cardinality assigned by function card
and are associated with a class from Sc by func-
tion participant. We will call participant(E1) and
participant(E2) participants of R. name(R) may be
undefined, denoted by name(R) = λ.

For a class C ∈ Sc, attributes (C) denotes the set of
attributes of C and associations (C) denotes the set of
associations with C as a participant.

PIM schema components have usual semantics: a
class models a real-world concept, an attribute of that
class models a property of the concept, and, an as-
sociation models a kind of relationships between two
concepts modeled by the connected classes. Note that
an association is formally an unordered set of its two
endpoints. In other words, associations are unordered
in PIM schemas. Even though UML allows for directed
associations we do not consider them in this paper. For
our purposes, it is not important whether an association
is ordered or not at the PIM level. At the PSM we
handle ordered and unordered associations from the
PIM level in the same way. A sample PIM schema is
depicted in Fig. 5.

A PSM schema represents a part of the PIM schema
and extends it with details of its representation in a
particular XML format. We model PSM schemas as
UML class diagrams extended for the purposes of
XML schema modeling. The extension is necessary be-
cause of several specifics of XML (such as hierarchical
structure or distinction between XML elements and
attributes) which cannot be modeled by standard UML
constructs.

Definition 2 A platform-specif ic model schema (PSM
schema) is a 5-tuple S ′ = (S ′

c, S ′
a, S ′

r, S ′
m, CS ′) of disjoint

sets of classes, attributes, associations, and content mod-
els, respectively, and one specific class CS ′ ∈ S ′

c called
schema class.

– A Class C′ ∈ S ′
c has a name assigned by function

name.
– An Attribute A′ ∈ S ′

a has a name, data type, cardi-
nality and XML form assigned by functions name,
type, card and xf orm, respectively. xf orm(A′) ∈
{e, a}. Moreover, it is associated with a class from
S ′

c by function class and has a position assigned by
function position within the all attributes associated
with class(A′).

– An Association R′ ∈ S ′
r is a pair R′ = (E′

1, E′
2),

where E′
1 and E′

2 are called association ends of

Inf Syst Front

Fig. 5 Sample PIM and PSM Schemas. Conceptual and gram-
matical perspective of a PSM schema

R′. Both E′
1 and E′

2 have a cardinality assigned
by function card and each is associated with a
class from S ′

c or content model from S ′
m assigned

by function participant, respectively. We will call
participant(E′

1) and participant(E′
2) parent and

child and will denote them by parent(R′) and
child(R′), respectively. Moreover, R′ has a name as-
signed by function name and has a position assigned
by function position within all the associations with
the same parent(R′). name(R′) may be undefined,
denoted by name(R′) = λ.

– A Content model M′ ∈ S ′
m has a content model

type assigned by function cmtype. cmtype(M′) ∈
{sequence, choice, set}.

The graph (S ′
c∪S ′

m,′ {(n1, n2) : n1, n2 ∈ S ′
c∪S ′

m ∧ (∃(E′
1,

E′
2)∈S ′

r) (participant(E′
1)=n1∧ participant(E′

2)=n2)})
must be a forest3 of rooted trees with one of its trees
rooted in CS ′ . We will use the notion N ′ = S ′

c ∪ S ′
m

for the nodes of this forest. For a class C′ ∈ S ′
c,

attributes (C′) denotes the sequence of attributes of
C′ ordered by position and content (C′) denotes the
sequence of associations with C′ as a parent ordered
by position. We denote content (C′) content of C′. Sim-
ilarly, for a content model M′ ∈ S ′

m, content (M′) de-
notes the sequence of associations with M′ as a parent
ordered by position.

As we have already discussed in Section 1, we view
a PSM schema from two perspectives—conceptual and
grammatical. From the conceptual perspective, a PSM
schema models the semantics of an XML format in
terms of a PIM schema. This is formally expressed by
mapping classes, attributes and associations in the PSM
schema to their PIM equivalents. We call the map-
ping interpretation of the PSM schema against the PIM
schema. The interpretation cannot be arbitrary. There
are some restrictions which prevent from semantic in-
consistencies. For example, a PSM attribute cannot be
mapped to an arbitrary PIM attribute—the class of the
PSM attribute must be mapped to the class of the PIM
attribute. Without this condition, it would be possible to
map, e.g., PSM attribute code′ of PSM class Customer′
in our sample PSM schema depicted in Fig. 5 to PIM at-
tribute number of PIM class Purchase. Intuitively, this
does not make any sense, but our condition prevents
from this mapping explicitly. It is forbidden because
class(code′) = Customer′ is mapped to Customer which
is not the class class(number) = Purchase. In other
words, the condition preserves semantic consistency
between PSM and PIM attributes.

In a similar fashion, we restrict association mappings.
Suppose a PSM association R′. Let child(R′) = D′ be
mapped to PIM class D. Let the closest ancestor class
of R′ which is mapped to the PIM schema be a class
C′. Let C′ be mapped to PIM class C. If C′ and D′ do
not exist, R′ cannot be mapped at all. Otherwise, it can
be mapped only to PIM association R which connects C
and D or their inheritance descendants. Similarly to the
attribute condition, the association condition preserves
semantic consistency between PSM and PIM associa-
tions. Without the condition, it would be possible to
map, e.g., PSM association R′ connecting PSM classes
Items′ and Item in our sample PSM schema to PIM

3Note that since S ′ is a forest, we could model R′ directly as a pair
of connected components. However, we use association ends to
unify the formalism of PSM with the formalism of PIM.

Inf Syst Front

association R connecting PIM classes Purchase and
Customer which, intuitively, does not make sense.

There can also be components which are not mapped
to the PIM schema. These components are displayed in
the gray color. We refer to Nečaský et al. (2011b) for
detailed and formal description.

From the grammatical perspective, a PSM schema
models the syntax of the XML format. In other words,
it models the XML schema of the XML format. For
example, the PSM schema depicted in Fig. 5 models
the syntax of the XML format whose instance is de-
picted in the same figure. The PSM schema does not
depend on any particular XML schema language. It
can be automatically translated to an arbitrary lan-
guage. In Nečaský et al. (2011b) we showed how a
PSM schema can be translated to a regular tree gram-
mar (Murata et al. 2005) which can be expressed in
XSD or RELAX NG.

Here, we describe only briefly which XML structures
are modeled by PSM components. Let us start with
the schema class of a PSM schema. It models whole
XML documents. In our example, the schema class,
named PurchaseRQSchema’, models whole XML
documents with purchase requests.

All other classes model a complex content which
comprises of a set of XML attributes and of a sequence
of XML elements. The set of XML attributes is mod-
eled by the class’ attributes (s.t. xf orm(A′) = e, see
the next paragraph), the sequence of XML elements by
the class’ attributes and child associations. For example,
class Purchase’ models an XML content represented
by its two child associations cust’ and items’. Class
Item’ models an XML content represented by its
attribute price’ and the association going to child
class Product′.

A class attribute A′ models an XML element
or XML attribute depending on its XML form. If
xf orm(A′) = e then A′ models an XML element.
Otherwise (when xf orm(A′) = a), A′ models an XML
attribute. The XML element or attribute name is given
by name(A′). Visually, the XML form is distinguished
by @ symbol for attributes with attribute XML form.
For example, the attribute code’ of class Product′
models an XML attribute code. On the other hand,
the attribute price’ of class Item′ models an XML
element price.

An association R′ models how the complex content
modeled by its child is nested in the complex content
modeled by the parent. It is therefore directed from the
parent to the child. If the name of R′ is defined, the
complex content modeled by the child is enclosed in an
XML element with the name given by the name of R′.
For example, the association cust’ has name cust. It

specifies that the complex content modeled by its child
is enclosed in the XML element cust which is nested
in the complex content modeled by the parent class
Purchase. On the other hand, the association con-
necting Item’ and Product’ does not have a name
defined and, therefore, models only the hierarchical
structure but no XML element. If the parent of R′ is
the schema class then R′ must have a name defined and
models a root XML element. In our sample, this is the
case of the association with the child Purchase’. It
models the root XML element purchaseRQ because
of its parent association with name purchaseRQ.

There are two PSM specific constructs. The first
one is called content model which was introduced in
Definition 2. By default, child associations of a class in a
PSM schema model specify a sequence content model.
However, sometimes it is necessary to specify a choice
or set content model. For this, we use content models
in PSM schemas. They are displayed as small ovals with
a specific symbol inside “|” for choice, “{}” for set and
“. . . ” for sequence. Our sample PSM contains a choice
content model. In this particular case it specifies that
content of an XML element cust (modeled by the
parent association of the choice content model) is one
of the contents modeled by classes PrivateCus’ and
CorporateCus’.

The other construct is called structural representative.
A structural representative is a class which refers to
another class (in the same or another PSM schema).
The structural representative extends the complex
content modeled by the referred class. A structural
representative is displayed as a class with the blue
background. For example, there are two structural rep-
resentatives PrivateCus’ and CorporateCus’ of
class Customer’ in our sample PSM schema. They
model the same complex content as Customer’ and
extend it with their own content. Note that we can-
not move the attributes ship-to’ and bill-to’
to Customer’ because they have different semantics
(different mapping to the PIM schema) even though
they are equivalent from the grammatical perspective.

Definition 3 Let S ′ = (S ′
c, S ′

a, S ′
r, S ′

m, CS ′) be a PSM
schema and C′ be a class from S ′

c. C′ may be a structural
representative of another class D′ in S ′

c which is assigned
to C′ by function repr (repr(C′) = D′). If repr(C′) is
undefined, denoted by repr(C′) = λ, we say that C′ is
not a structural representative of any class. Let repr∗(λ)

= {} and repr∗(C′) = {repr(C′)} ∪ repr∗(repr(C′)) where
C′ �= λ. It must hold that C′ �= repr∗(C′).

In Nečaský et al. (2011b) we have formally shown
that the expressive power of our PSM schemas is the

Inf Syst Front

same as the expressive power of regular tree grammars
(RTG) (Murata et al. 2005), i.e. each schema S ′ can be
translated into a corresponding regular tree grammar
GS ′ and vice versa. This allows us to introduce the
notion of validity of an XML document against a PSM
schema.

Definition 4 For a schema S ′, the set of conforming
documents T (S ′) equals to the language L(GS ′) gen-
erated by a grammar GS ′ . We will say that an XML
document T is valid against S ′ if T ∈ T (S ′) = L(GS ′).

For the algorithms presented in this paper, we re-
quire PSM schemas to fulfill certain additional condi-
tions. A PSM schema fulfilling these conditions will be
called normalized.

Definition 5 Let S ′ be a PSM schema. We call S ′ nor-
malized PSM schema when the following conditions are
satisfied:

(∀R′ ∈ content′(C′
S ′))(name′(R′) �= λ

∧ card′(R′) = 1..1) (1)

(∀R′ ∈ S ′
r)(child′(R′) ∈ S ′

m → name′(R′) = λ) (2)

(∀M′ ∈ S ′
m)(∃R′ ∈ S ′

r)(child′(R′) = M′) (3)

∀C′ ∈ S ′
c \ {C′

S ′ })((� ∃R′ ∈ S ′
r)(child′(R′) = C′)

→ (∃C′
0 ∈ S ′

c)(repr′(C′
0) = C′)) (4)

If S ′ does not satisfy some of the conditions 1–4, it is
called relaxed PSM schema.

The main purpose of normalization is to remove
redundancies and unreachable portions of the schema.
A normalized schema is simpler than its relaxed equiv-
alent. In Nečaský et al. (2011b), we presented, in the
form of an algorithm, how every PSM schema S ′ can be
normalized to schema S ′ and proved formally that nor-
malization does not reduce the modeled language (i.e.
L(GS ′) = L(GS ′)). In this paper, we exploit these pre-
vious results and work only with normalized schemas.
Therefore, the set of different types of possible edit
operations we need to consider will be smaller (e.g.
we do not have to consider an operation for moving a
content model to a root) and, therefore, the introduced
adaptation algorithms are less complex.

Condition 1 requires that an association with the
parent being the schema class C′

S ′ has a name and that
its cardinality is 1..1. This is natural because each such
association models a root XML element. Therefore,
its name needs to be specified and it has no sense to

specify a cardinality different from 1..1. Condition 2
requires that an association with a content model as a
child does not have a name. The names of associations
specify element names. However, an association with a
content model as a child does not model an element but
only a part of the content of an element. Therefore, its
name would not be used anyway. Condition 3 requires
that each content model is a child of an association.
A content model which is a root is unreachable in the
schema and, therefore, redundant. The last condition 4
requires that a class which is a root has a structural rep-
resentative. Otherwise, the class would be unreachable.

1.4 Versions of the model

One of our objectives was to allow the user to evolve
schemas and create new versions, but also let him/her
work with the old versions as well. In other words,
each version must be independent of the others and
the old version should not be lost and replaced by a
new version. That is why in our framework, the user
can choose any existing version v of the model and via
the branch operation, create a new version ṽ as a copy
of v (branch creates copies of all the concepts and their
properties). Then, the user can evolve ṽ to a desired
state, but also go back to work with v or any other
version existing in the system.

We suppose that each version is identified by some
label. In real systems, the labels usually are, e.g., “1.0”,
“1.1”, “2.0”, “2.1”, etc. We will use V to denote the
set of labels of all versions of the system. We will call
the members of V versions labels or simply versions.
Initially it has one member v0 which denotes the initial
version of the system. A new version is established and
added to V each time the user executes the branch
operation.

Versions in V allow us to say, e.g., “class C belongs
to version v”. We will use function ver which answers
questions like “To which version does class C belong?”.
To define the domain of function ver (i.e. everything,
that can be versioned in our framework), we will use
the following auxiliary definition:

Definition 6 Let S be a PIM schema and S ′ be a PSM
schema. The set of all the components in S and S ′ will
be denoted Sall = Sc ∪ Sr ∪ Sa and S ′

all = S ′
c ∪ S ′

r ∪ S ′
a,

respectively.
Further, let S∗ be a set of PIM schemas and S∗′ a

set of PSM schemas. We will use M∗ to denote the
set of all schemas in S∗ and S∗′, and all components
of the schemas. I.e. M∗ = S∗ ∪ S∗′ ∪ (

⋃
S∈S∗ Sall) ∪

(
⋃

S ′∈S∗′ S ′
all).

Inf Syst Front

Function ver specifies which version each schema or
component belongs to.

Definition 7 The function ver : M∗ → V assigns a ver-
sion to each PIM schema, PSM schema and to each of
their components. In other words,

Values of function ver form the input of the change
detection algorithm. When this function is imple-
mented in a tool, the values of ver are automatically
defined as the user edits the schemas and creates new
versions (using operation branch with usual semantics).

Figure 6 shows two versions of a PIM schema and
one PSM schema. The second version ṽ was created
from the first version v using branch operation. Branch
adds a new version to V (so that V = {v, ṽ} and defines
values of ver for the branched schemas and constructs.
When system is branched, function ver would return
v for the PIM and PSM schema on the left side and
all their constructs. For the schemas on the right side
and their constructs, it would return ṽ. Each time a
construct x is added to a schema S, ver(x) is set to
ver(S). When a new PSM schema S ′ is mapped to a
PIM schema S, ver(S ′) is set to ver(S). After being
branched, the two versions can be edited separately. In
the example, the user decided to reconnect PIM associ-
ation Address-Purchase to Address-Customer,

Fig. 6 Two versions of a PIM and a PSM schema

rename it from delivered to has and adapt the PSM
schema accordingly.

Definition 8 Let S∗ be a set of PIM schemas and S∗′
a set of PSM schemas. Let K ⊆ M∗ and v ∈ V . We
will use K[v] = {C|ver(C) = v} to denote projection of
K to version v or simply version projection. In other
words, version projection K[v] returns members of K
that belong to version v.

We require the following conditions to hold:

(∀v ∈ V)(|S∗[v]| = 1) (5)

(∀S ∈ S∗)(Sall ⊆ M∗[ver(S)]) (6)

(∀S ′ ∈ S∗′)(S ′
all ⊆ M∗[ver(S ′)]) (7)

The conditions in Definition 8 require that exactly
one PIM schema exists for each version (Eq. 5) and that
all components of a given PIM or PSM schema belong
to the same version (Eqs. 6 and 7). We also require
consistency in PSM—PIM mappings (interpretations of
PSM constructs can be only the PIM constructs from
the same version).

In our examples, we will usually show the system
divided into version projections. Figure 6 shows the two
version projections M∗[v] and M∗[ṽ], M∗[v] on blue
background, M∗[ṽ] in orange background.

Without any loss of generality, in the following text
we will assume |V| = 2, unless explicitly stated oth-
erwise (i.e. we expect there are two versions in the
system—the old version (v ∈ V) and the new version
(ṽ ∈ V)).

1.5 Document adaptation in a versioned system

Document adaptation is a process triggered by schema
evolution. By schema evolution we mean conduct-
ing certain operations upon the existing schema until
reaching the desired final state—new version of the
schema. Such a change can violate validity of instances
of the schema, i.e. XML documents. The state which
requires adaptation can be defined as follows:

Definition 9 We say that the set of conforming doc-
uments T (S ′) of schema S ′ was invalidated in the
new version (or just invalidated) if: ∃T ∈ T (S ′) : T /∈
T (S̃ ′). If no such T exists, then S ′ is called backwards-
compatible.

The goal of adaptation is to modify the XML docu-
ments according to changes in the schema so that they
are valid against the new version of the schema.

Inf Syst Front

The document adaptation process starts with change
detection—two schemas are compared and from the set
of detected changes the system deduces steps required
for successful document adaptation. Detecting changes
in an XML schema or a model of an XML schema is not
always straightforward; some differences between the
old and new version can be interpreted in more than
one way. For example, consider the PSM schemas in
Fig. 7.

There are two possible interpretations for evolution
of schema in Fig. 7a: either (1) attribute ID was re-
moved and new attribute SSN was added or (2) at-
tribute ID was renamed to SSN. When deciding which
interpretation is the correct one, mapping to a PIM
schema can be taken into account. E.g. if the attributes
are mapped to PIM attributes p1 and p2, whereas p2

is a new version of p1, we can assume that the second
interpretation is correct and the attribute was only
renamed. But even this is still only a heuristic.

Likewise, there can be two interpretations of the
change depicted in Fig. 7b: (1) attribute price was
moved from Item to Purchase or (2) the attribute
was removed from Item and a new attribute was added
to Purchase, having the same name coincidentally.
The adaptation of the documents in this example is
even more difficult to decide. In the second case, a
correct value must be assigned to the new attribute. In
the first case, the value of attribute price should be set
to the sum of the values of price in all the items of the
purchase.

version vv ersion v~

1..*

1..*

version v version v~

(a) Employee schema

(b) Purchase schema

Fig. 7 Examples of schema evolution

These are examples of the problems that a non-
trivial adaptation algorithm must solve. As we have
mentioned in Section 5, when designing an adaptation
algorithm, it is possible to take one of two distinct
approaches: either (1) recording the changes as they
are conducted during the schema evolution phase or (2)
comparing two versions of the schema.

A system that records the changes usually provides
some kind of a command that initiates the recording
and after issuing this command all operations carried
out by a user over the schema are recorded. When
the recording is finished, the system can normalize the
sequence, for example, by eliminating operations that
cancel each other or by replacing groups of operations
by other groups that lead to the same result but in
a more straightforward way. These normalizing rules
must be defined in the system. An alternative approach
is to compare the two versions of the schema. The user
can work with both schemas independently until (s)he
is satisfied with them. The change detection algorithm
then takes the schemas as an input and compares them.
The result of the comparison is a list of differences
between the schemas. Table 1 compares both the ap-
proaches from several aspects. In general, schema com-
parison has many advantages, but it must solve the
problem of ambiguities of the sort as illustrated in the
examples above.

If we do not want to settle for heuristics, the only
correct solution is to find all possible interpretations
and then let the user select the correct one. In our ap-
proach, we decided to solve this issue by adding another
type of concepts into the model—version links. Version
links connect constructs (i.e. classes, attributes etc.)
that represent the same real-word concept in different
versions of the model. They work as a mapping between
different versions of the schema and allow us to dis-
tinguish whether a given concept in the new version is
a completely new concept or whether it is an update
of an existing one. Therefore, it enables us to avoid
heuristics.

However, we do not rely upon the user—we do not
need the user to specify the version links manually. In
our framework, version links are most of the time kept
and managed automatically in the background. Each
time the user performs the branch operation, version
links are created between all the concepts and their
new versions. After that, they are maintained until a
concept is deleted (then the version links from that
concept must be removed as well). The user can add
and remove version links manually (e.g. when (s)he
is adding a new concept which should be mapped to
old concept), but most of the time, they are managed
by the system. One can regard version links as an

Inf Syst Front

Table 1 Approaches to evolution: recording changes vs. schema comparison

Recording changes Schema comparison

The recorded set should be normalized to eliminate No need to look for redundancies; the set of changes
redundancies (repeated changes in the same place etc.). is always minimal.

Once the evolution process is started, the old version Both old version and new version can be edited
cannot be easily changed. without limitations.

A user may want to interrupt his/her work at some point The process of evolution can be arbitrarily stopped
and continue in another session. The sequence of recorded and resumed.
changes would have to be stored and recording resumed later.

When the user wants to retrieve the sequence for a reversed The reversed operation can be easily handled by the same
process, (s)he will have to either start with the new version algorithm, only with the two schemas on the input swapped.
and record the operations needed to go back to the old version
again, or the system will have to be able to create an inverse
sequence for each sequence of operations.

When the evolved schema comes from an outer source, A schema from an outer source can be imported into the system
the sequence of operation changes cannot be retrieved directly; and serve as an input for the change detection algorithm.
the user must start with his/her old version of the schema
and manually adjust it to match the new schema.

The recorded set provides enough information to propagate Without additional information, some type of changes
changes in the schema to the documents; cannot be distinguished (rename
there are no ambiguities. vs. add & remove, move vs. add & remove), methods

for mapping discovery are necessary.

adoption from the change recording approaches and
our approach can thus be considered as a combination
of schema comparison (which is the core of the algo-
rithm) and change recording (which maintains version
links).

Definition 10 Let S∗ be a set of PIM schemas, S∗′ a
set of PSM schemas. A version links relation is an
equivalence relation VL ⊂ M∗ × M∗ s.t. for any pair
(x, x̃) ∈ VL

– Both x and x̃ are of the same kind (e.g. x is a
PSM class (attribute,. . .) ↔ x̃ is a PSM class (at-
tribute,. . .)) and

– ver(x) �= ver(x̃).

We will call (x, x̃) ∈ VL version link.

A version link (x, x̃) ∈ VL specifies that both x and
x̃ represent the same schema or schema component
but in different versions v and ṽ, respectively. We will
therefore say that x represents x̃ in v or, symmetrically,
x̃ represents x in ṽ. We will also simply say that x and
x̃ are dif ferent versions of the same schema or schema
component.

We also introduce a partial function getInVer. Given
a schema or schema component x and version v, the
function returns a schema or schema component x̃
which represents x in version v.

Definition 11 Function getInVer : (M∗ × V) → M∗ is
defined as follows:

getInVer(x, v) = x̃ ↔
∃x̃ ∈ M∗ : (x, x̃) ∈ VL ∧ ver(x̃) = v

For combinations of parameters (x, v) where no such
x̃ can be found, we will use the sign ⊥ in the meaning:
getInVer(x, v) = ⊥ ↔ ∀(x, x̃) ∈ VL : ver(x̃) �= v.

Pairs for VL are also added during operation branch
(a new version ṽ is created from version v), but can
be changed by the user. Figure 8 shows the same
schemas as Fig. 6, this time with version links as they
were created when the schemas were branched and
the second schema was edited (links between attributes
were omitted for clarity, also, the figure does not show
two version links between the schemas themselves).
All the version links in the figure were created and
maintained by the system, without the need from the
user to interfere.

Example 1 When we go back to the pair of schemas
depicted in Fig. 7a, with version links, we can unam-
biguously decide, which interpretation is correct. The
second interpretation (attribute ID was renamed to
SSN) is correct when there exists a version link (A′, Ã′)
(where A′, Ã′ are the attributes named ID and SSN
respectively). The usual process leading to this situ-
ation would be that the user created new version of

Inf Syst Front

Fig. 8 Two versions of a PIM and a PSM schema with version
links visualized

the schema via branch operation (which would create
schema class ẼS′ as a copy of schema class ES′ named
EmployeeSchema, class Ẽ′ as a copy of class E′ named
Employee, association ÃE′ as a copy of association
AE′ named employee and attribute Ã′ as a copy of
attribute A′ named ID). Branch operation would create
a copy of the schema and also version links (ES′, ẼS′),
(AE′, ÃE′), (E′, Ẽ′), (A′, Ã′) between the copied con-
cepts. Then the user would rename attribute Ã′ from
ID to SSN in the second version (but link (A′, Ã′) to
the attribute in the first version would be preserved).
For the second example in Fig. 7b the situation is
analogous and the interpretation would depend upon
the existence of the version link between the attributes
named Item.price and Purchase.price (moving
an attribute also preserves the version link).

2 Changes

In Section 1.2, we introduced PIM and PSM schemas
and the formalism for their versioning. We introduced
the notion of version links which allow to trace how
a given schema or schema component evolved in
different versions. We can use the version links not only
for tracing but also for adaptation of the underlying
XML documents. It is possible to use version links at
both PIM and PSM levels. We can also combine them
with interpretations of the PSM schemas against the
PIM schemas.

In this paper we, however, focus only on adaptation
of XML documents which are instances of a single
XML format modeled by a PSM schema. We suppose
different version of the PSM schema and version links
between the two versions. The rest of possibilities (i.e.
exploiting also version links at the PIM level and inter-
pretations of PSM schemas against the PIM schemas) is
the matter of our future work.

In this section, we focus on possible kinds of changes
between two versions of the PSM schema and its
components. A change can be considered as a local
difference between two PSM schemas (linked by a ver-
sion link so they are different versions of each other).
We distinguish a finite amount of types of changes (e.g.
classAdded, attributeMoved, etc.). We then introduce
the change detection algorithm which looks for partic-
ular changes of these types on the base of the version
links.

As can be seen, we suppose that version links exist
between two versions of a PSM schema. As we showed,
this can be easily achieved when the user utilizes our
framework which creates and maintains links as the
user edits the versions. When a new version of the
schema was not created using our framework (e.g. it
was issued by a standardizing organization managing
the specification which the modeled system adopted),
the version links do not exist. To solve this problem,
our framework supports reverse engineering and inte-
gration of schemas (Klímek and Nečaský 2010; Nečaský
2009). It maps new PSM schemas or their new versions
to the PIM schema. The version links can be then de-
duced by composing the interpretations of the versions
of the PSM schema against the PIM schema. However,
various heuristics together with broader user interac-
tion is required to create relation VL. The possibility to
infer version links from heuristics is not studied in this
paper and is a part of our future work.

We can divide the set of types of changes which
can occur between two versions of a PSM schema S ′
into four groups according to the character of a change
(the classification is similar to Nečaský and Mlýnková
(2009a)):

– Addition—a new construct was added to S ′,
– Removal—a construct was removed from S ′,
– Migratory—a construct (and possibly its subtree in

S ′) was moved to another part of S ′,
– Sedentary—an existing construct in S ′ was adjusted

in place, but not moved.

For each type there is also defined a type of construct
where it can be detected. We call it scope of change or
simply scope. There are four scopes of changes: class,
attribute, association, and content model.

Inf Syst Front

Table 2 Classification of changes

Change predicate Category Description

classAdded(C̃′, R̃′) Addition A new class C̃′ is added as a child of association R̃′ (if R̃′ = ⊥, C̃′ is added
as a new root class).

classRemoved(C′) Removal Class C′ is removed.

classRenamed(C̃′, ñ′) Sedentary The name of class C̃′ is changed to ñ′ ∈ L. The name is mandatory
for PSM classes, but can be changed.

classMoved(C̃′, R̃′
n) Migratory Class C̃′ is moved and becomes a child of association R̃′

n in version ṽ

(or becomes a new root class, in that case R̃′
n = ⊥). This change

encompasses changes of the child participant of associations (in contrast
to associationMoved—see below).

srIntroduced(C̃′, C̃′
r) Sedentary Class C̃′ becomes a structural representative of another class C̃′

r in the schema.
In the previous version, it was not a structural representative.

srRemoved(C̃′) Sedentary Class C̃′ is converted to a regular class. In the previous version,
it was a structural representative.

srChanged(C̃′, C̃′
r) Sedentary Class C̃′ becomes a structural representative of another class C̃′

r in the schema.
In the previous version, it was a structural representative of a different class.

attributeAdded(Ã′, C̃′, ĩ′) Addition A new attribute Ã′ is added to class C̃′ at position ĩ′ ∈ N0.

attributeRemoved(A′) Removal Attribute A′ is removed.

attributeRenamed(Ã′, ñ′) Sedentary The name of attribute Ã′ is changed to ñ′ ∈ L.

attributeMoved(Ã′, C̃′
n, ĩ′) Migratory The value of class(Ã′) is changed, i.e. attribute Ã′ is moved from class C′

o
to class C̃′

n at position ĩ′ ∈ N0. Moves within the same class are detected
by attributeIndexChanged.

attributeXFormChanged(Ã′, f̃ ′) Sedentary The value of xf orm is changed from a to e or vice versa for attribute
Ã′(f̃ ′ ∈ {a, e}).

attributeTypeChanged(Ã′, D̃′) Sedentary The type of attribute Ã′ is changed to D̃′ ∈ D.

attributeIndexChanged(Ã′, ĩ′) Migratory Attribute Ã′ is moved to position ĩ′ ∈ N0 within the same class as in version v.

Moves between classes are detected by attributeMoved.

attributeCardinalityChanged(Ã′, c̃′) Sedentary The cardinality of attribute Ã′ is changed to c̃′ ∈ C.

associationAdded(R̃′, C̃′, ĩ′) Addition A new association R̃′ is added to the content of class C̃′ at position ĩ′ ∈ N0.

associationRemoved(R′) Removal Association R′ is removed.

associationRenamed(R̃′, ñ′) Sedentary The name of association R̃′ is changed to ñ′ ∈ L.

associationMoved(R̃′, P̃′
n, ĩ′) Migratory Association R̃′ is moved from the content of node

P′
o to the content of node P̃′

n at position ĩ′ ∈ N0. This change encompasses
changes of the parent participant of associations (in contrast to classMoved
and contentModelMoved—see below).

associationCardinalityChanged(R̃′, c̃′) Sedentary The cardinality of association R̃′ is changed to c̃′ ∈ C.

associationIndexChanged(R̃′, ĩ′) Migratory Association R̃′ is moved to position ĩ′ ∈ N0 (within the same class as in version v).

contentModelAdded(M̃′, R̃′) Addition A new content model M̃′ is added as a child of association R̃′.
contentModelRemoved(M′) Removal Content model M′ is removed.

contentModelMoved(M̃′, R̃′
n) Migratory Content model M̃′ is moved and becomes a child of association R̃′

n in version ṽ.
Content models cannot be roots in a normalized PSM schema (see Definition 5).
Thus, unlike classMoved, R̃′

n is never null for contentModelMoved.

contentModelTypeChanged(M̃′, t̃′) Sedentary The type of content model (sequence, set, choice) M̃′ is changed
to t̃′ ∈ {sequence,set,choice} .

There are no predicates dedicated to the changes in the set S ′
e and function participant, because each change in S ′

e and participant is an
inherent part of another change (classAdded, classRemoved, classMoved, contentModelAdded, contentModelRemoved, contentModel-
Moved, associationAdded, associationRemoved). Thus, changes in S ′

e and participant are detected and documents adapted within the
scope of the changes listed above

Inf Syst Front

2.1 Change predicates

A change predicate is a formalization of a certain type
of change between two versions of a PSM schema. Each
change predicate has a certain amount of parameters.
Change detection can be then formalized as looking
for n-tuples satisfying the change predicates. The first
parameter always corresponds to one of the scopes.
We will use cins to denote the set of all n-tuples which
satisfy a change predicate c. We will call it the set of
instances of c.

Table 2 contains all the change predicates grouped
by the scope with their respective categories and de-
scription. We suppose a PSM schema in two different
versions v, ṽ ∈ V . We will use tilde to mark constructs
that belong to M∗[ṽ], constructs without the tilde mark
belong to M∗[v]. I.e. S ′ = (S ′

c, S ′
a, S ′

r, S ′
m, CS ′) ∈ M∗[v]

denotes the PSM schema in version v and S̃ ′ = (S̃ ′
c,

S̃ ′
a, S̃ ′

r, S̃ ′
m, C̃ ′

S ′) ∈ M∗[ṽ] denotes the PSM schema in
version ṽ.

Example 2 For an example of change predicates, let us
go back to Fig. 7. Let us assume a version link between
attributes A′ named ID and Ã′ named SSN in Fig. 7a.
Table 2 contains a change predicate attributeRenamed
with parameters Ã′ ∈ S̃ ′

a and ñ′ ∈ L (the new name).
Statement (Ã′, “SSN”) ∈ attributeRenamedins is a for-
mal expression of the fact that the name of the attribute
was changed from ID to SSN.

Similarly, let us assume a version link between
A′

p and Ã′
p (i.e. attributes Item.price and

Purchase.price in Fig. 7b, where ver(A′
p) = v and

ver(Ã′
p) = ṽ). Let C̃′

p be the class named Purchase
in version ṽ. Table 2 contains a change predicate
attributeMoved with parameters Ã′ ∈ S̃ ′

a, C̃′
n ∈ S̃ ′

c and
ĩ′ ∈ N0. Statement (Ã′

p, C̃′
p, 0) ∈ attributeMovedins is a

formal expression of the fact that attribute price was
moved to class Purchase to the position 0.

For the purposes of implementation of the change
detection and adaptation algorithms, we defined each
change predicate formally; however, due to space limi-
tations, we will not include the formal definitions of all
the change predicates in this paper. We selected three
change predicates—attributeAdded, associationIndex-
Changed and classMoved—for demonstration:

Ã′ ∈ S̃ ′
a ∧ C̃′ ∈ S̃ ′

c \ {C̃′
S ′ } ∧ ĩ′ ∈ N0∧

getInVer(Ã′, v) = ⊥
∧ position(Ã′, attributes(̃C

′
)) = ĩ′

↔ attributeAdded(Ã′, C̃′, ĩ′) (8)

(
R̃′ ∈ S̃ ′

r ∧ ĩ′ ∈ N0 ∧ C′
1 ∈ N ′ ∧ C̃′

1 ∈ Ñ ′∧
getInVer(R̃′, v) �= ⊥ ∧ C′

1 = getInVer(C̃′
1, v)∧

parent(getInVer(R̃′, v)) = C′
1 =

getInVer(parent(R̃′), v)∧
ĩ′ �= position(R′, content(C′

1))∧
ĩ′ = position(R̃′, content(C̃′

1))
)

↔ associationIndexChanged(R̃′, ĩ′) (9)

C̃′ ∈ S̃ ′
c \ {C̃′

S ′ } ∧ R̃′
n ∈ S̃ ′

r∧
getInVer(C̃′, v) = C′ �= ⊥ ∧ child(R̃′

n) = C̃′∧
[
(∃P′

o A ∈ S ′
r)(child(R′

o) = C′∧
P′

o A �= getInVer(R̃′
n, v))

∨ (∀P′
o A ∈ S ′

r)(child(R′
o) �= C′)

]

↔ classMoved(C̃′, R̃′
n)) (10)

C̃′ ∈ S̃ ′
c \ {C̃′

S ′ } ∧ getInVer(C̃′, v) = C′ �= ⊥
∧ (∃R′

o A ∈ S ′
r)(child(R′

o) = C′)∧
(∀R̃′

n ∈ S̃ ′
r)(child(R̃′

n) �= C̃′)

↔ classMoved(C̃′, ⊥)) (11)

Predicate 8 says that the examined attribute Ã′ has
no counterpart A′ present in version v and the posi-
tion of Ã′ among the attributes of class C̃′ equals to
ĩ′. Predicate 9 says that the parent of the examined
association R̃′ has not changed between versions v and
ṽ, but the position of R̃′ in the content of its parent has
changed to ĩ′. Predicate 10 says that the examined class
C̃′ was moved under association R̃′

n either from the root
or from another association, whereas Predicate 11 says
that C̃′ was moved from an association P′

o A to a root.
With the formal definitions of change predicates, we

are able to detect differences between two compared
versions of a schema. Now we can describe how algo-
rithm DetectChanges (see Algorithm 1 for pseudo-code
listings). It takes as an input two versions of the PSM
schema: S ′ and S ′ (s.t. ver(S ′) = v and ver(S ′) = ṽ) and
the relation VL. For each change predicate, it exam-
ines all constructs in the appropriate scope and tests,
whether the predicate is satisfied for any combination
of other parameters. Although the description of the
algorithm may arise a suspicion of inefficiency, it is
possible to define a more efficient lookup subroutine
for each change predicate. For instance, for predicate
classMoved, it is not necessary to test all associations

Inf Syst Front

for parameter R̃′
n, but only the actual parent of class C̃′.

That is how the actual implementation works.
The output of the algorithm is the set CS ′,S̃ ′,v,ṽ=⋃

c
(c, cins), containing for each change predicate the set

of all of its instances. The output set CS ′,S̃ ′,v,ṽ captures
the changes made between the two versions of a PSM
schema.

Algorithm 1 DetectChanges
Input: old and new version v, ṽ ∈ V , PSM schemas S ′,

S ′
Output: CS ′,S̃ ′,v,ṽ—set of changes between S ′ and S ′

1: CS ′,S̃ ′,v,ṽ ← ∅
2: for all change predicate c do
3: cins ← ∅
4: end for
5: for all change predicate c of arity k do
6: for all tuple t ∈ (S ′

all × S̃ ′
all)

k do
7: if c(t) then {tuple t satisfies c}
8: cins ← cins ∪ t
9: end if

10: end for
11: CS ′,S̃ ′,v,ṽ ← CS ′,S̃ ′,v,ṽ ∪ {(c, cins)}
12: end for

2.2 Impact on validity

The output set CS ′,S̃ ′,v,ṽ of algorithm DetectChanges
can be further analyzed. Having detected the set of
change instances CS ′,S̃ ′,v,ṽ , we can determine the impact
of evolution on validity. Some change instances do not
affect validity of the documents in T (S ′). However,
they may affect other parts of our five-level frame-
work. For example, during the translation of the PSM
schema into XSD, class names are used for naming
the generated complex types. Renaming a class does
not invalidate T (S ′) (because class names do not cor-
respond to content of the documents), but the XSD
generated from S ′ will differ from the XSD translated
from S ′.

The ability to identify instances of change predi-
cates not affecting validity can significantly simplify the
process of XML document adaptation. Of course, if
we are sure that all the detected change instances in
the evolved schema do not affect validity, it is cor-
rect to skip the adaptation of T (S ′), because valid-
ity against the new schema is guaranteed. For each
change predicate, we can define additional tests that,
if satisfied, ensure that the instance of the change
predicate does not affect validity of the documents
from T (S ′).

Definition 12 Let c be a change predicate (as listed in
Table 2) and ic ∈ cins its instance. We define predicate
cNI , called NI-predicate for c, with the same parameters
as change predicate c. When cNI is satisfied for an
instance ic, this instance does not affect validity of
documents in T (S ′).

Example 3 shows several NI-predicates and Lemma 1
joins NI-predicates with the notion of backwards com-
patibility from Definition 9. Its proof is a direct appli-
cation of the definitions.

Example 3 As an example consider the following NI-
predicates:

classRenamedNI(C̃′, ñ′) ↔ true (12)

attributeCardinalityChangedNI(Ã′, m̃′..ñ′) ↔
getInVer(Ã′, v) = A′ ∧ card(A′) = m′..n′ ∧
m′ ≥ m̃′ ∧ n′ ≤ ñ′ (13)

associationIndexChanged(R̃′, ĩ′) ↔
getInVer(R̃′, v) = R′ ∧
parent(R̃′) = M̃′ ∈ S̃ ′

m ∧ parent(R′) = M′ ∈ S ′
m ∧

(
(cmtype(M′) ∈ {sequence,set} ∧

cmtype(M̃′) = set) ∨
(cmtype(M′) = choice ∧

cmtype(M̃′) = choice)
)

(14)

Predicate 12 is satisfied for all instances of classRe-
named, because the name of a class does not corre-
spond to any part of the modeled XML document. All
instances of classRenamed thus do not violate valid-
ity. Predicate 13 is satisfied for those instances of at-
tributeCardinalityChanged which broaden the cardinal-
ity interval. Predicate 14 is satisfied for those instances
of associationIndexChanged which reorder content of
content models of type set and choice. For these, the
ordering of content is not significant.

Predicates for other changes are defined in a similar
manner (and, of course, predicates for some changes
are never satisfied, because the change always violates
validity).

Lemma 1 Let S ′ and S ′ be two versions of a PSM
schema (ver(S ′) = v, ver(S ′) = ṽ). Let CS ′,S̃ ′,v,ṽ be

Inf Syst Front

the output set of algorithm DetectChanges for these
schemas. Then:

(∀(c, cins) ∈ CS ′,S̃ ′,v,ṽ)((∀i ∈ cins)(cNI(i1, . . . , ik)) →
T (S ′) ⊆ T (S̃ ′)

where i1, . . . , ik are elements of k-tuple i ∈ cins with
arity k.

In other words, if cNI is true for all the instances of
every predicate c, then S ′ is backwards compatible.

3 Adaptation

When the new version S ′ of the schema S ′ invali-
dates the set T (S ′), we need to adapt the documents
respectively. For each change predicate, we describe
how documents in T (S ′) should be adapted. We will de-
scribe adaptation as a function adapt with the following
semantics:

∀T ∈ T (S ′) \ T (S̃ ′) : adapt(T) ∈ T (S̃ ′) (15)

∀c, ∀i, i ∈ cins, (c, cins) ∈ CS ′,S̃ ′,v,ṽ :
instance i is adapted correctly in adapt(T) (16)

The first condition defines correctness w.r.t. to the
evolved schema, i.e. that the adapted document is valid
against the new version. The second condition defines
correctness w.r.t. the detected set of changes. It must be
pointed out that not every action, that formally makes a
document valid, can be considered a correct adaptation.
For instance, let a user move an optional attribute
in a PSM schema from its current class to another
class. Deleting the corresponding parts in the document
would not be the correct adaptation even though the
result is formally valid. We need a more sophisticated
adaptation which correctly moves the corresponding
parts in the document.

Correct adaptations for each change predicate are
described in the rest of this section. The adapt func-
tion behaves differently for each change predicate and
has different preconditions. For some predicates the
function has more alternative behaviors depending on
various conditions which we discuss in the following
text. However, any document which is valid against
the old version of the schema can be adapted and
the adaptation results into a document which is valid
against the new version of the schema.

We gave reasons for using a comparison-based ap-
proach in Table 1 and the paragraphs below. Our
approach can be compared to a concrete incremental
approach. If we are able to identify for each evolution

primitive of the incremental approach (e.g. remove
element with simple content) a change predicate with
the same semantics (e.g. attributeRemoved), we can
simulate the incremental approach with ours (by per-
forming the whole adaptation cycle after each change).
The strength of the incremental approaches thus lies in
the number of supported evolution primitives. Because
this number is usually small (see Section 5) and our
approach uses some change predicates, for which there
is no corresponding evolution primitive, our approach
is stronger.

We do not expect any specific implementation lan-
guage (Kay 2007; W3C 2011, 2004; ISO 2008) in our
description. The sketch of the implementation (the
creation of an adaptation script) using XSLT can be
found in Malý et al. (2011).

3.1 Class changes

classAdded (C̃′, R̃′) If the added class C̃′ is a top class
(i.e. child of schema class C ′

S ′), Definition 5 requires
the association between C ′

S ′ and C̃′ to have a name.
If its whole subtree �C̃′ was added in ṽ, i.e. (∀x̃ ∈
�C̃′)(getInVer(x̃, v) = ⊥), we do not have to adapt
anything, because the added subtree defines whole new
possible shape of a valid document. Similarly, when C̃′
is not a top class, but card(R̃′) = 0..n, and again �C̃′
was added in ṽ, the change does not require adaptation
(the added subtree defines a whole new optional part of
a document).

In other cases, an instance of the class C̃′ is created
during adaptation. These are the cases where the user
decided to add a new class to refine the structure of the
document. (S)he may have decided to, e.g., add a wrap-
ping element for some elements to increase readability
(in that case, most likely the added class will not have an
interpretation against the PIM schema). If name(R̃′) �=
λ, creating an instance of C̃′ means adding an XML
element into the document. If the user adds a new, non-
optional class with semantic meaning (interpretation
I(C̃′) is defined), the adaptation remains the same, an
element is created if name(R̃′) �= λ.

If C̃′ or C̃′ itself are referenced by a structural
representative (this is guaranteed by condition 5 from
Definition 5 of a normalized PSM schema), each such
reference will be processed separately, following the
same principles as described above.

classRemoved (C′) Removal of a construct from the
model must be always solved by removal of the content
modeled by the removed construct from the documents
in T (S ′). However, the content modeled by the whole
subtree �C̃′ cannot be instantly removed from the

Inf Syst Front

document, because some other changes may move parts
of this content to other parts of the document.

classRenamed (C̃′, ñ′) This change does not require
any adaptation of XML documents, because the name
of a PSM class is not reflected in the XML document.

Translation of PSM schemas to XML Schema uses
class names to name complex types, groups and at-
tribute groups, so changing the name of a class results
in changing the name of a complex type in the XSD.
If names of types, groups and attribute groups in XSD
need to remain consistent with names of constructs in
other components of the systems (i.e. with names of
tables and columns in a relational database or names
of classes in an object model), these construct should
be renamed too.

3.2 Attribute changes

attributeAdded (Ã′, C̃′ ,̃ i′) If attribute Ã′ is added as
mandatory , a new content must be added into the
document—either an XML element with a simple con-
tent or an XML attribute (if xf orm(Ã′) = e or a respec-
tively). More about generating content can be found in
Section 3.7.

attributeRemoved (A′) All instances of attribute A′
(i.e. XML attributes or XML elements with simple
content) must be removed from the document.

attributeRenamed (Ã′, ñ′) Each XML attribute/element
modeled by A′ = getInVer(Ã′, v) (named name(A′))
must be renamed to ñ′ in the XML document.

attributeXFormChanged (Ã′, f̃ ′) Changing the xf orm
of a PSM attribute A′ requires:

– Creating a new XML node of the respective
type in the new location—either a new XML at-
tribute, if xf orm(Ã′) = a, or an XML element, if
xf orm(Ã′) = e. The node value is copied from the
old instance.

– Deleting the instance of A′ from its previous lo-
cation (It can be either an XML attribute, if
xf orm(A′) = a, or an XML element with simple
content, in that case xf orm(A′) = e.)

attributeTypeChanged (Ã′, D̃′) Let D′ be the type in
version v, i.e. D′ = type(getInVer(Ã′, v)). Adaptation
of documents may be skipped in case when D′ ⊆ D̃′.
This condition is guaranteed if D′ is a type derived
from D̃′ using restriction. The condition means that
the requirements for the documents were relaxed and
a more general set of values is allowed. In the opposite
situation, instead of a general set of values, the require-

ments are made more strict and only a specific subset
of values is allowed. E.g. instead of an arbitrary string
for email attribute in the old version, only strings valid
against a regular expression describing all the possible
email addresses are allowed in the new version. In
such case D′ ⊇ D̃′. In the general case the two sets are
incomparable.

Let us denote [A′][T (S ′)] the set of all values of
attribute A′ in all documents in T (S ′). Then we can
extend the previous approach if [A′][T (S ′)] ⊆ D̃′. In
this case no adaptation is needed again. Verifying this
condition cannot be possible in every case; however,
in some situations, it can be done easily. For instance,
when we return to the email example, the XML schema
may define an email as an arbitrary string, but the
system contains another component that verifies each
email more strictly, before it can occur in a document
D ∈ T (S ′). The applicability of this approach can be
decided by the user.

If adaptation is really necessary, function convA′ : D′
→ D̃′ or (since we do not need to be able to convert
all the possible values in D′) convA′ : [A′][T (S ′)] → D̃′
must be provided for the adaptation algorithm.

Function convA′ can be reused by pairs of at-
tributes with the same pairs of types, i.e. for attributes
(A′, Ã′) ∈ S ′

a × S̃ ′
a s.t. type(A′) = D′ and type(Ã′) =

D̃′, function convA′ = convD′,D̃′ converting values from
the domain of D′ to values from the domain of D̃′ can
be used.

Alternatively, the function can be defined separately
for each attribute A′.

attributeIndexChange (Ã′, ĩ′) Adaptation depends on
the values of f ′ = xf orm(A′) and f̃ ′ = xf orm(Ã′). If
either f ′ = a or f̃ ′ = a, the attribute modeled an XML
attribute in the old version or does so in the new ver-
sion. Since the order of attributes in an XML element
is insignificant and applications should not rely on the
order of attributes, no adaptation is needed.

If both f ′ = f̃ ′ = e the order of attributes determines
the order of XML subelements, which is significant.
The change then requires reordering of the subele-
ments modeled by the attributes with respect to the new
order of attributes (C̃′).

attributeCardinalityChange (Ã′, c̃′) Let card(A′) =
(m̃′, ñ′), getInVer(Ã′, v) = A′ and card(A′) = m′..n′.
For cardinality changes, there are two adaptation
actions from which none, one or both must be under-
taken to adapt a document (varying from document
to document).

– If m̃′ > m′, new content may have to be added for
some documents.

Inf Syst Front

– If ñ′ < n′, content may have to be removed from
some documents.

For each document D ∈ T (S ′), the number of XML
nodes (elements or attributes, depending on the value
of xf orm(A′)) that are instances of A′ differs (unless
m′ = n′), therefore the amount of XML nodes that need
to be added/removed differs too.

When removing nodes, the algorithm must either
choose which nodes to keep and which to delete (one
solution can be to always keep those nodes that occur
earlier in the document) or leave this choice up to the
user.

When adding nodes, the values for these nodes must
be assigned. Raising the lower cardinality from m′ ≥ 1
to m̃′ > m′ raises the minimum allowed occurrences,
(the special case m′ = 0 and m̃′ ≥ 1 makes an optional
subelement/attribute mandatory). That is why ap-
proaches to generate values of attributes need to be
discussed. (In this particular case, a suitable solution
would be using a default value of the attribute—see
Section 3.7).

attributeMoved (Ã′, C̃′
n, ĩ′) Moving an attribute is an

evolution operation that requires more in-depth en-
quiry. The aim of our approach is to keep the semantics
of the adapted document and not to loose the existing
data during adaptation. The trivial solution—deleting
the attribute from its former location in the document
and creating a new attribute in the new location (as
used in Su et al. (2002) and Guerrini et al. (2007))—
is not suitable, because the value of the attribute is lost.
The most general approach is to couple each instance
(Ã′, C̃′

n, ĩ′) of attributeMoved change with an adapta-
tion function attMoveÃ′(oldLocations, newLocation)

where oldLocations selects all existing instances of
A′ and newLocation contains the new location of the
instance in the adapted document. The result of the
function is the new value for the instance of Ã′ in the
new document. In general, the function attMoveÃ′ is
defined by the user, but the system can provide the user
with a suggestion in certain cases—several types of the
most common scenarios can be distinguished.

In the following text we expect that the attribute
was moved between classes C′

o and C̃′
n, i.e. at-

tribute A′ ∈ attributes (C′
o), Ã′ ∈ attributes (C̃′

n). Let
C̃′

o = getInVer(C′
o, ṽ) and C′

n = getInVer(C̃′
n, v) be the

new version of class C′
o and the old version of class C̃′

n
respectively, both can be ⊥. In the situation depicted in
Fig. 7b A′ = price1, Ã′ = price2, C′

o = Item1, C′
n =

Purchase1, C̃′
o = Item2, C̃′

n = Purchase2 (we use
subscripts to distinguish constructs in version v and ṽ).
We will use an auxiliary function tree, that returns the
smallest tree that contains a set of nodes. Formally:

Fig. 9 Example of tree
function

a

b c d
f g

h i
e

Definition 13 For a rooted tree (V, E), tree(X), tree :
2V → 2(V∪E) returns the nodes and edges of the sub-
graph of the smallest common subtree for a set X ⊆ V,
containing root b of the common subtree, members of
X and for each n ∈ X path between n and the root b .

Example 4 An example of the result of function tree is
depicted in Fig. 9. The result of tree({ f, g, i}) is the set
{a, b , d, f , g, i, a − b , b − f , f − i, a − d, d − g}, where
a is the root of the common subtree and a − b the edge
from a to b , etc.

In addition, we define predicate stable(X ′), X ′ ⊆
{S ′

all \ S ′
a} ↔ ∀X ′ ∈ X ′ : getInVer(X ′, ṽ) = X̃ ′ �= ⊥ and

X̃ ′ was not moved, added or deleted and its cardinality
was not changed (if X ′ is an association).

The intuitive meaning of predicate stable(X ′) is that
there were no radical changes in the structure of the
schema regarding for the members of X ′. If C′

n �=
⊥, T ′ = tree({C′

o, C′
n}) and stable(T ′) holds, then:

– If ∀ association R′ ∈ T ′ : card(R′) = mR′ ..1 (i.e.
only cardinalities 0..1 and 1..1 are allowed in the
affected part of the schema) and, therefore, the
attribute Ã′ will have 0 or 1 instance in the old
schema, then this instance can be copied to the
only one new location (attMoveÃ′ will be identity
function).

– If C′
o is a descendant of C′

n in the PSM tree (the
attribute is moved upwards, but the associations
between C′

o and C′
n can have arbitrary cardinali-

ties), then all instances of A′ under each instance
of C′

n should be “aggregated” to one instance of Ã′.
Several aggregation functions can be offered (e.g.
sum, count, avg, max, min known from relational
databases or concat inlining the respective values).

– If C′
o is a descendant of C′

n in the PSM tree,
card(A′) = m′..1 and card(Ã′) = m̃′..∗, then this
case is similar as the case above, but the cardinality
of attribute Ã′ is adjusted, so all the values from
existing instances can be used as values of Ã′. No
aggregation is needed.

– If C′
o is an ancestor of C′

n in the PSM tree, card(A′)
= m′..∗ and card(Ã′) = m̃′..1, then this is an inverse
case to the one above. The respective values of A′
can be distributed to the new locations. Nonethe-

Inf Syst Front

less, a user may have to specify the distribution
precisely.

When none of the conditions above is satisfied, a possi-
ble general approach is to use the function attMoveÃ′

= identityN which returns the value of the n-th in-
stance of A′ when required at the n-th location in the
adapted document. Other attMoveÃ′ functions must be
provided by the user.

3.3 Association changes

In the following text, let R̃′ = (Ẽ′
1, Ẽ′

2) ∈ S̃ ′
r be a

PSM association, R′ = (E′
1, E′

2) its previous version (if
it exists), participant(Ẽ′

1) = C̃′
1, participant(Ẽ′

2) = C̃′
2,

participant(E′
1) = C′

1, participant(E′
2) = C′

2.

associationAdded (R̃′, C̃′, ĩ′) If name(R̃′) is defined
(association has a name ñ′ ∈ L), wrapper XML el-
ement named ñ′ will be put to the adapted doc-
ument and then the adaptation proceeds to adapt
the child node C̃′

2 = child(R̃′). If C̃′
2 is a construct

added in the new version (getInVer(C̃′
2, v) = ⊥), adap-

tation is performed within the scope of adaptation
of classAdded/contentModelAdded change described
later in this section. Otherwise (when getInVer(C̃′

2)) =
C′

2 �= ⊥), C′
2 was moved from its previous location

in the PSM schema tree. In that case, adaptation is
performed within the scope of adaptation of class-
Moved/contentModelMoved change.

associationRemoved (R′) If name(R′) is defined, the
matching wrapping XML element is removed. Depend-
ing on whether child(R′) = C′

2 was deleted or not (i.e. it
was moved), the adaptation continues within the scope
of adaptation of classRemoved/contentModelRemoved
or classMoved/contentModelMoved changes, respectively.

associationCardinalityChange (R̃′, c̃′) Similarly as with
attributeCardinalityChanged, there exist two adaptation
actions, from which none, one or both must be under-
taken to adapt a document (varying from document to
document).

Let card(R′) = m′..n′ and card(getInVer(R̃′, v)) =
card(R̃′) = (m̃′, ñ′).

– If m̃′ > m′, new content may have to be added for
some documents.

– If ñ′ < n′, content may have to be removed from
some documents.

In case of PSM attributes, the content added or
deleted involves either XML attribute or leaf XML
elements with simple content. With PSM association
the adaptation actions have to deal with whole XML
subtrees.

For each document D ∈ T (S ′) the number of XML
nodes (elements or attributes, depending on the value
of xf orm(R′)) that are instances of R′ differs (unless
m′ = n′). Therefore the amount of XML nodes that
need to be added/removed differs too.

When removing nodes, the algorithm must either
choose which nodes to keep and which to delete (one
solution can be always keep those nodes that occur
earlier in the document) or leave this choice up to the
user.

When adding, the content for the new instances must
be generated (this involves generating a whole XML
subtree). More about generating content can be found
in Section 3.7.

associationIndexChange (R̃′, ĩ′) Two different cases
can be distinguished for associationIndexChanged:
either (1) {C′

1, C̃′
1} ⊆ S ′

c ∪ {M′ : S ′
m| cmtype(M′) =

sequence} or (2) at least one of C′
1 and C̃′

1 is a content
model and cmtype(C̃′

1) ∈ {choice,set}. In the former
case, adaptation is needed and content modeled by
C̃′

2 must be moved to the proper location. There is
only one exception. When subtreeC̃′

2 models only
XML attributes and no XML elements, no adaptation
is needed, because the order of attributes is not
significant in the XML data model and no application
should rely on attributes being defined in some
particular order. In the latter case, no adaptation is
necessary, because the ordering of content is irrelevant
in choices/sets.

associationRenamed (R̃′, ñ′) Since λ values must be
taken into consideration, three model cases can be
distinguished. Let n′ = name(getInVer(R̃′)):

– If n′ = λ ∧ ñ′ �= λ, the association was given a
name, which means the each instance (since R′ of
R′ can have cardinality �= 1..1) will be wrapped
in a new XML element with name ñ′. If subtree
�C′

2 models some attributes with xf orm = a, their
instances will now be moved to attributes of the
wrapping XML element.

– If n′ �= λ ∧ ñ′ �= λ, the association is renamed,
which means each wrapping XML element mod-
eled by R′ will be renamed to ñ′.

– If n′ �= λ ∧ ñ′ = λ, the name is removed from an as-
sociation, the needed adaptation is an exact oppo-
site of the first case, which means that the wrapping
XML element is removed (and when it contains
some XML attributes they are moved upwards).

Inf Syst Front

3.4 Content model changes

contentModelAdded, contentModelRemoved Adapta-
tion of these two changes follows the same principles as
adaptation of classAdded and classRemoved changes.

contentModelTypeChanged (M̃′, t̃′) In this part, let
L′ = childNodesOf (M′), L̃′ = childNodesOf (M̃′).
The list L̃′ may contain three groups of nodes:

1. Nodes added in version ṽ,
2. Nodes whose counterparts in version v are mem-

bers of the list L′, and
3. The rest—nodes whose counterparts in version v

reside elsewhere in the PSM tree.

Nodes from groups 2 and 3 may have instances in the
document D. On the basis of values t̃′ = cmtype(M̃′)
and t′ = cmtype(M′) we can distinguish the following
situations:

– If t′ ∈ {sequence,set} ∧ t̃′ = choice, when
processing an instance of M′, one child node C̃
from L̃′ must be selected and instance of C̃ will be
included in the adapted document. Groups 2 and 3
are preferred when selecting the node C. If there
are more candidates, it is up to the user to make
the decision.

– If t′ = sequence ∧ t̃′ = set, no adaptation
needed, because set is more relaxed than sequence.

– If t′ = choice ∧ t̃′ ∈ {sequence,set}, a content
must be added for each member of L̃′ which is

Fig. 10 associationMoved—
Revalidation

Inf Syst Front

not optional and no instance was found for it in
document D.

– If t′ = set ∧ t̃′ = sequence, instances must be re-
ordered to follow the ordering of L̃′.

3.5 Changes moving classes, content models
and associations

associationMoved (R̃′, P̃′
n, ĩ′) The content modeled by

R′ will be removed from the processed instance of P′
o.

Since in the new version, R̃′ is among contents of P̃′
n,

the wrapping XML subelement is created (if R̃′ has a
name) in the instance of P̃′

n.
If getInVer(child(R̃′), v) = child(R′), i.e. the asso-

ciation was moved with its child (which is the usual
situation, but not the general case), the adaptation
proceeds to the child, i.e. the instances of child(R′) will
be converted to instances of child(R̃′). The situation
is similar to adaptation of attributeMoved change de-
scribed in Section 3.2. The adaptation is again largely
affected by the cardinalities of the concerned associa-
tion and the positions of the nodes P′

o and P̃′
n. In case of

getInVer(P̃′
n, v) = P′

n �= ⊥ and stable(tree(P′
o, P′

n)), we
can distinguish some cases corresponding to those pro-
posed for attributeMoved and offer similar options for
adaptation. Otherwise, the user must provide his/her
adaptation function for the particular case.

Nonetheless, one additional aspect needs to be taken
into consideration: the association can be moved to or
from the content of schema class CS ′ . If the association
was moved to content(CS ′) (i.e. child(R̃′) became a top
class) and R̃′ has a name, then each instance of R′ can
become a basis of a new valid document. This way, if
there were more instances of R′ in the document D,
several adapted documents can be created from D. This
adaptation is correct, but the user should always be
warned before the algorithm proceeds to perform it,
because the consequences can be large-scale (Fig. 10).

If the association is moved from content(CS ′) else-
where in the tree, another top class must be selected
as the new root. Candidates are those top classes that
have instances in the adapted documents or classes
that serve as wrappers for such classes. Nonetheless,
if there is more than one such candidates, it is up to
the user to choose, whereas the class selected as the
new root can change from document to document. The
alternative in cases when more candidates are available
is again to produce one adapted document for each
such candidate.

classMoved (C̃′, R̃′
n) contentModelMoved (M̃′, R̃′

n) As
opposed to the previous case, it is now the node
which is moved, not the association leading to it.

We introduce separate predicates to cover all possi-
ble changes between two version of the model, but
their treatment during adaptation is analogous. Let
Ñ′ = C̃′/M̃′, N′ = getInVer(C̃′, v)/getInVer(M̃′, v) for
classMoved/contentModelMoved respectively. The in-
stances of N′ will be converted to the instances of Ñ′
in the content of R̃′

n. Again as for attributeMoved and
associationMoved, adaptation can be offered in some
particular cases, but for the general case, the user must
provide his/her adaptation function.

3.6 Structural representatives changes

srIntroduced (C̃′, C̃′
r) When a structural representative

is introduced, an instance of content inherited from the
represented class must be created. However, the moti-
vation for introducing a new structural representative
is when a certain part of the schema is factored out for
reuse. For instance, when translated to XML Schema
language, introducing a structural representative can be
translated as adding a new complex type and referenc-
ing this type from an element. In that case, the content
is already present in the document at the right place
(only it was an instance of another subtree) and no
adaptation is needed. This means that the adaptation
of the srIntroduced change can be skipped.

A more general case is when the part of the schema
is factored out and referenced from several classes
using the structural representative construct, i.e. several
instances of the srIntroduced change will be detected,
all sharing the parameter C̃′

r. In that case again, if the
content is already a part of the document, the adapta-
tion can be skipped.

srCleared (C̃′) Converting structural representative to
a regular class requires removing the content that is the
instance of the content inherited from the represented
class. It is an opposite case to srIntroduced and so is the
adaptation.

srChanged (C̃′, C̃′
r) The change of the represented

class from one class to another one is not an operation
that we expect the user to perform frequently. If it
is detected, the adaptation is, in fact, a combination
of adaptation of srRemoved and srIntroduced changes
described above.

3.7 Generating content

As mentioned before, certain modifications in the
schema may require a new content to be added into
some (or all) documents in T (S ′) to adapt the docu-
ments. This happens in particular when:

Inf Syst Front

– A new mandatory construct is added into the
schema, either a class via classAdded (C′, s.t.
card(parent(C′)) = l..u, l > 0) or an attribute via
attributeAdded (A′, s.t. card(A′) = l..u, l > 0).

– A cardinality interval was extended from l1..u1

to l2..u2, where l1 < l2 (using attributeCardinality-
Changed or associationCardinalityChanged).

– A construct was moved or deleted from a content
choice and its instance in the XML document must
be replaced by instance of one of the other com-
ponents in the content choice (using classMoved,
contentModelMoved, or associationMoved).

The following text discusses several possible solutions.

Default values of attributes One of the easiest ways
is to introduce function def ault : S ′

a → D∗ that would
assign a default value for PSM attributes. This value
could then be used each time an attribute instance
needs to be generated. XML schema languages rou-
tinely provide constructs for specifying default values
of attributes, so the result is always defined. However,
such a solution does not produce realistic data.

User-provided content Leaving the issue up to the user
to solve it can be very convenient and in some cases
the only correct solution. The adaptation script for
evolution from version v to ṽ can be generated by the
system with some “blanks” left for the user to fill in or
take a form of a parameterized script with the values
of parameters to be filled in when executing the script.
However, the problem is in cases when the values are
document-dependent.

Default complex content The adaptation script can
also create the missing element content itself. The
structure of the internal nodes is given, for values of leaf
nodes and attributes the default values for the given
type of each PSM attribute (e.g. an empty string for
type xs:string) can be utilized.4 Where a content
model of type choice is present, the first component
is always selected. For each attribute and association
with cardinality m..n, the algorithm creates exactly m
instances. Such a content will be called default instance.
The default instance can serve as a skeleton for the
user, who can then fill it in with relevant data.

Generalization of version links for sets As we can see
from Definition 11, we defined version links as 1 : 1
mappings. However, situations fitting 1 : N or M : N
may emerge in real-world evolution scenarios. Exam-
ples may be splitting one attribute into a group of

4Another possibility is to utilize function def ault proposed in
earlier in this section.

attributes or replacing one group of attributes with
another, for example, splitting an attribute name into
attributes first-name and last-name and annotat-
ing the change with the information that the value of
the old attribute is split among the values of the new
attributes by a whitespace in the text. Such annotations
can be either selected from a certain pre-defined set,
or entered by the user in the form of an integrity
constraint.

Utilization of PIM links and referencing other data
sources When a new PSM construct is added, it can
have an interpretation in the PIM. This semantic in-
formation can be used to obtain the correct data when
content is generated for the new construct.

An example could be the situation when the data is
stored in a relational database. The content for a PSM
construct can be then retrieved from the data in the
database. However, this would be possible only if there
is a model of a relational database linked to the PIM.
(We discuss this topic in detail in Section 4.) When
content is already present in the system (in any form,
e.g., in a relational database, another XML documents
etc.), it can be retrieved by the adaptation script.

Figure 11 contains a simple example of schema evo-
lution and Fig. 12 shows an adaptation script that refer-
ences an additional document to provide the necessary
data. In particular, a new attribute email was added
to the schema. The adaptation script is supplied with
an additional document CustomerData.xml, which
contains a list of emails of those customers, for which
email addresses are available. Even though the schema
is backwards compatible (email is optional), the cus-
tomer record will be enriched by the added content
where possible. The adaptation script can be used for
all the documents from T (S ′).

3.8 Adaptation example

We conclude this section with an example of an adapta-
tion stylesheet generated by the system. As an example,
we show the adaptation script in XSL that transforms

version v version v~

Fig. 11 Example of added content

Inf Syst Front

(a) Adaptation stylesheet (b) Referenced document

Fig. 12 Stylesheet and document with additional data

purchase documents processed by the print server. The
original and evolved version are depicted in Fig. 13. The
following changes were made upon the schema:

1. The print server can no longer access the database,
thus the printed purchase documents must contain
all the data themselves. That is the reason why
purchased items have name attribute.

2. The address is printed on envelopes by a separate
envelope printer which accepts a rigid data struc-
ture defined by class EnvelopeType. Attributes
of EnvelopeType are “semantically equivalent”
to attributes of Address.

3. The currency code which was in the original version
a part of the value of price attribute is now a
separate attribute.

4. Attribute name was moved from class Address to
class Customer.

5. There is only one note for the whole purchase in
the evolved version. Attribute note was moved
from Items to PurchaseP. The adaptation script
should concatenate the existing notes.

The list of the detected change instances is as fol-
lows (for better readability, we use names of classes,
attributes and associations in the predicate instances):

attributeTypeChangedins = {(price, integer)}

associationMovedins = {(customerAddress,

Customer, 0)}

attributeMovedins = {(name, customer, 1)}

attributeIndexChangedins = {(Address.number, 0),

(Address.streetCode, 1),

(Address.cityCode, 2),

(Address.zipCode, 3)}

classAddedins = {(Envelope, EnvelopeType)}

attributeAddedins = {(currencyCode, item, 3),

(salutation, Envelope, 0), . . . 5}

attributeMovedins = {(note, PurchaseP, 2)}
To demonstrate the possibility of generalized version
links (described in the previous subsection), we assume
a version link l between two sets of attributes:

l = ({number1, streetCode1, cityCode1, zipCode1},
{addressLine1-32, state2, zipCode2})

The generated adaptation XSLT script is listed in
Fig. 14. It follows the structure of the input doc-
ument. It consists of templates matching the ele-
ments in the input document (purchase, customer,
etc.) and named templates for the elements that are

5And other attributes of class EnvelopeType.

Inf Syst Front

1..*

1..*

(a) Original purchase schema

(b) Evolved purchase schema

Fig. 13 Two versions of a purchase schema

added in the new version (envelope, note). Tem-
plate customer adapts to the migratory change as-
sociationMoved by forcing the processor to progress
to customerAddress element. The adaptation of
price and the added attribute currencyCode is
achieved using user-provided functions. For the adap-
tation of notes, the user selected a general ‘concat’
adaptation (since the situation corresponds to the case
of adaptation of attributeMoved, see p. 21). Element
envelope is filled using information from the link
l (see template named envelope). In this template,
also the data from external source is required to fill in
the variable customerRec (the fetched data is used

to decide, whether the customer is male or female).
Similarly for variable itemRec in the template for
items (here the variable is used to provide value for
name attribute). Two last templates are used to process
nodes that were not changed.

3.9 Implementation

We gradually incorporate the results of all our research
activities related to our 5-level framework (see Fig. 1)
into an experimental tool eXolutio (Klímek et al. 2011).
The modules related to this paper are versioning (which
allows to keep and design multiple version of the

Inf Syst Front

Fig. 14 Adaptation script for
the schemas depicted in
Fig. 13

system in one project) and adaptation (which gen-
erates the adaptation stylesheet as described in Sec-
tion 3). Both work tightly with the evolution module,
which deals with propagating changes to all levels (see
Nečaský et al. (2011a) for more details).

We chose XSLT as an implementation language. We
were motivated by the wide support for XSLT both in
native XML databases and in XML-enabled relational
databases. The generated stylesheet, when applied at
the adapted document, acts as the adapt function. The

Inf Syst Front

description of the process of generating templates can
be found in Malý et al. (2011).

4 Open problems

Even though our approach is complex and covers the
most common XML schema features, operations and
cases, there is still a space of possible improvements.
They are mostly related to more advanced constructs
and more precise means of specification of data struc-
ture, or to operations with the data.

Integrity constraints The UML allows the designer to
specify constraints and invariants in the model via OCL
in those situations, where classes and associations do
not describe the model sufficiently. At the level of
XML schemas, constraints are required too. And some
types of constraints are impossible to be defined via
languages based on RTGs, i.e. DTD and XML Schema.
Examples of such constraints can be choices between
groups of attributes or so-called co-occurrence con-
straints (e.g. element E1 must occur only if the value of
element E2 is v2). To allow for such constraints, XML
Schema was extended with the possibility to declare
non-RTG constructs assert and report inspired by
key constructs Schematron language.

Since we modified UML to serve us in XML mod-
eling, we plan to modify OCL to serve us to define
constraints in XML schemas. Likewise PSM schemas
can be translated to XSDs, we will be able to translate
the PSM-level constraints to Schematron schemas anal-
ogously.

From the evolution point of view, with OCL con-
straints, it will be possible to track changes in semantics.
For example, consider the situation when the request
for customer history returns the list of all purchases in
the old version, but in the new version, the list should
contain only realized purchases. The structure of the
schema will remain unchanged, but in the new version,
a new constraint will be added. The evolution algo-
rithm will be able to adapt the document accordingly
via deleting all the unrealized purchases. Since all the
existing evolution frameworks only deal with structure
and do not recognize semantics, none of them is capable
at least to detect such a change.

Advanced constructs UML class diagrams define
other constructs apart from the fundamental ones that
we adopted for the PIM level. Besides compositions,
aggregations and association classes, the main contribu-
tion to the approach will be the notion of inheritance.
Defined at the PIM level, it can be transferred to the

PSM level and provide an alternative way of content
reuse to the means of the structural representatives.

Version links for imported schemas As we have men-
tioned, before our algorithm can be used to work with
imported schemas, it requires the relation VL to be
defined (i.e. version links joining the previous and the
evolved version of each construct). This relation can be
created manually by the user, but it is a time-consuming
process. It would be useful to extend the system with a
heuristic that could create a larger part of VL automati-
cally and ask for user input only in the unresolved cases.
There exists a lot of methods for finding similarities
and patterns among two XML schemas (a survey can
be found in Nečaský and Mlýnková (2009)). Outcomes
of these methods can be transferred into finding simi-
larities between two PSM schemas.

Generating content To date, our approach is able to
deal with changes that modify the structure and data
present in the document. In Section 3.7 we indicated
approaches how to handle adding content during adap-
tation. Besides the basic methods of using default val-
ues or letting the user to supply the content manu-
ally, other methods can be utilized. When the required
data is already present in the system, but not in the
adapted documents themselves (e.g. in a database, in
other XML documents, available through some service
interface), these sources can be used to retrieve the
data during adaptation. To achieve this, the data should
be mapped to the PIM. If the mapping is designed
appropriately, it will be possible to reconstruct the ap-
propriate queries/service calls. The capabilities of this
approach can be further enhanced when support for the
integrity constraints is added to the system.

Operations with the data The last but not least related
open problem is the propagation of changes from data
structures to respective operations, i.e. XPath/XQuery
queries, XSLT scripts etc. Surprisingly, the amount of
related works is relatively low. However, though the
problem seems to be completely different, it may be
solved in a similar way (Polák 2011). We may define a
model of the respective query language and its mapping
to the model of the data. Then, we need to specify
respective edit operations and their propagation. The
problem is that even the simplest XML query language
(XPath) is much richer than the language for descrip-
tion of data structures, so there are many cases to be
covered, not all of them can be solved manually and
some of them have multiple solutions when user inter-
action is required. However, even a respective detailed
case study is still missing.

Inf Syst Front

5 Related work

Currently there exists a significant number of ap-
proaches that detect changes between two schemas of
data and output the sequence of edit operations that
enable their re-validation (Malý et al. 2011). There are
two possible ways to recognize changes—recording the
changes as they are conducted during the edit process
or comparing two versions of the schema.

The edit operations can be also variously classified.
For instance, Tan and Goh (2005) proposes migratory
(e.g. movements of elements/attributes), structural (e.g.
adding/removal of elements/attributes) and sedentary
(e.g. modifications of simple data types) operations.
Classification according to complexity distinguishes
atomic and composite operations.

The changes can also be expressed variously and
more or less formally. For instance in Cavalieri (2010) a
language called XSUpdate is described. In Guerrini and
Mesiti (2009) the authors propose the XSchemaUpdate
language.6

5.1 Version comparison

If we analyze the two types of approaches in the area of
XML data and XML schemas, we can find numerous
methods that focus on the latter class, since change
detection of two given versions of data is a key part
of, e.g., data integration, versioning, similarity evalua-
tion, etc. Rahm and Bernstein (2001) In all the cases
we are interested in the sequence of edit operations,
which is further used for mapping purposes, evalua-
tion of the degree of difference etc. At the level of
XML documents we can restrict ourselves to detecting
changes between trees, either ordered (Cobena et al.
2002; Leonardi and Bhowmick 2007) or unordered
(Chawathe and Garcia-Molina 1997; Wang et al. 2003).
Since the problem is proven to be NP-hard (Cobena
et al. 2002), various heuristics reflecting the respective
application are often incorporated, as well as optimiza-
tion strategies for processing large documents and gain-
ing better results using relational databases (Leonardi
and Bhowmick 2006, 2007), XPath queries (Qeli et al.
2006), tuning steps (Lee and Kim 2006) etc.

In the area of XML schemas the amount of ap-
proaches is much lower. It is given mainly by the fact
that in this case we do not compare two trees, but
two general graphs possibly with cycles and with nodes
of highly different semantics (elements, attributes, op-
erators). One of the first approaches that deals with

6Not to be confused with XQuery Update Facility (W3C 2011)

detection of changes between two given DTDs (pos-
sibly extensible to XSDs) which shows that the ap-
proaches for XML data cannot be directly applied for
XML schemas due to the mentioned semantics of nodes
is proposed in Leonardi et al. (2007). It exploits a
heuristics based on MD5 hashing. There exists also an
approach that detects changes among XML schemas
for the purpose of evaluation of their similarity on the
basis of classical tree-edit distance (Wojnar et al. 2010).
On the other hand, the algorithm in Kwietniewski et al.
(2010) starts at roots of the source and target XML
schema and continues recursively (the routine attempts
to match sets of children of two already matched
nodes). The mapping is “best-effort” and partial, hence
the produced XSLT script does not guarantee cor-
rect revalidation (the output document will not be
valid against the target schema)—the user is expected
to adjust it. The commercial tool (Altova/DiffDog
http://www.altova.com/diffdog/) offers semi-automatic
schema comparison (of XML schemas, i.e. at the logical
level) and subsequent creation of an adaptation script,
but the task of resolving ambiguities inherent in schema
comparison approaches is left up to the user.

5.2 Recording changes

A system that records changes has the advantage of
knowing the sequence of operations that were per-
formed. However, the sequence does not have to be
optimal, because the user could reach the result using
various more or less reasonable sequences of oper-
ations. The user must also be provided with a user
friendly interface; hence, it is quite common that the
changes are expressed in a visualization or model of
the schema. In general, the user works with a kind of
evolution system and often the changes are propagated
directly one-by-one, i.e. an incremental (immediate) re-
validation is used.

System X-Evolution (Guerrini et al. 2007) is built
upon a graphical editor for creating schemas in the
XML Schema language. Each single evolution op-
eration executed upon the schema is immediately
propagated to valid documents, whereas backwards
compatible operations are recognized. System XEM
(XML Evolution Management) (Su et al. 2002) has a
similar strategy, i.e. immediate revalidation, but sup-
ports changes both in both DTD and XML docu-
ments represented as directed acyclic graphs. The set
of supported operations is proven to be sound and
complete. But, since renaming and moving is not sup-
ported (only adding and deleting), when the operations
are propagated, they lead to removing and re-creating
of significant parts of the data. Similarly, there are

Inf Syst Front

papers which deal with propagation of a single change
expressed in DTD (Al-Jadir and El-Moukaddem 2003;
Coox 2003) or XSD (Tan and Goh 2005; Cavalieri 2010)
to respective XML documents. There also exists an
opposite approach that enables one to evolve XML
documents and propagate the changes to their XML
schema (Bouchou et al. 2004).

System CoDEX (Conceptual Design and Evolution
of XML Schemas) (Klettke 2007) is an example of an
approach to schema evolution using the true recording
approach. The changes made in the visualization of
the schema are logged and when the evolution process
is finished, the resulting sequence of changes is nor-
malized and then performed in the XML schema and
respective XML documents. Moves and renames are
supported, but the tool does not support multiple in-
stances of schema constructs. They show an example
why this can lead to unexpected results as described by
the example in Section 1. The reason for this is that the
model used by CoDEX is not a conceptual model, even
though it hides some technical details of XML schema
languages.

In Dominguez et al. (2011) the authors propose
an approach for expressing changes at the level of
UML classes and their propagation to respective XML
schemas and XML documents with the emphasis on
traceability, i.e. preserving the links between the lev-
els. This is probably the closest system to our ba-
sic idea of five-level evolution framework (Nečaský
and Mlýnková 2009a); however, the authors consider
only its part. Considering the aim of this paper, i.e.
propagation of changes from XML schemas to XML
documents, the authors of Dominguez et al. (2011) do
not consider operation move or other more complex
operations (adding, deleting, renaming and changing a
property to a class is supported) and the framework
provides directly the output documents, not the set of
operations in some standard syntax, that might be fur-
ther processed with regard to the respective operation.

In Raghavachari and Shmueli (2007) the authors
propose an algorithm for incremental schema valida-
tion, i.e. checking validity of an XML document with
regard to a modified schema, whereas the aim is not
to check the whole document, but only necessary parts.
For this purpose, the old and the new version of
the schema are analyzed and an intersection automa-
ton is built from the two versions of the schemas. A
modification of the algorithm also enables to efficiently
check validity of a modified XML document against the
new version of XML schema.

As we can see, even though the amount of approach-
es and interesting contributions is high, there are still
many drawbacks and open issues. In this paper we show

that the basic features of our framework (namely con-
ceptual modeling levels and preserving respective rela-
tions) bring many optimizations and enable to preserve
not only structural, but also semantic fidelity. Since the
very first design we have also focussed on the indicated
problems of selection of the set of edit operations and
output formats and, hence, we can avoid them.

6 Conclusion

The aim of our work was to propose an approach to
XML schema evolution built upon a conceptual model
for XML schemas. It identifies changes in the schema,
determines the impact of the changes on the existing
documents valid against its old version and produces
an adaptation script when adaptation of the existing
documents is necessary with regard to the new version.

The key contributions of the approach can be sum-
med up as follows:

– We exploit the idea of a conceptual model of XML
schemas and, hence, the user is provided with a
user-friendly tool for expressing changes. We have
built the algorithm upon a general schema model,
which is proven (Nečaský et al. 2011b) to cover
DTD, XML Schema and RELAX NG.

– Our approach is integrated within a five-level
evolution framework where the two conceptual
levels—platform-independent and platform-specific—
together with the versioning support enable to
model multiple schema versions at once.

– We overcame the problem inherent in all ap-
proaches comparing/mapping two versions of
schemas via introducing the version links. Each
construct in the model is then correctly connected
with its counterpart constructs in all other versions,
where the construct exists. Adding the version links
allowed us to define changes that can occur be-
tween two versions v and ṽ of a schema and an
algorithm that detects these changes.

– Our approach outputs an XSLT script that adapts
the modified XML documents with regard to a new
version of a schema. The adapted document pre-
servers semantical meaning of the constructs due to
utilizing the version links.

– The user works with and evolves a conceptual model
of a schema and the mappings are defined for the
conceptual model as well. This is a significant im-
provement compared to working directly with often
lengthy and hard to read XML schemas.

Our approach is efficient, because the phase of adap-
tation is clearly separated from schema evolution. We

Inf Syst Front

do not require to adapt after each change in a schema,
but only when the whole schema is evolved (and all evo-
lution steps are consolidated). We are able to decide,
whether changes made in the schema are backwards-
compatible or not. The generated adaptation script is
one-pass and skips those portions of adapted docu-
ments that were not changed (see Malý et al. (2011) for
details).

The algorithm in its current version deals with reval-
idation of (1) structure and (2) data already present
in the document. Since new data are often required
for new versions, we will focus in our future work on
obtaining this data for the revalidated documents. For
this purpose, we will utilize the existing connection
between PIM and PSM and a new similar connection
between PIM and the model of a data storage (e.g. an
ER schema (Thalheim 2000)).

Finally, a complex system, besides a precise
definition of how the data are structured, requires a
support for modeling and checking integrity constraints
(ICs). ICs also change as system evolves and can also be
used to describe evolution operations in greater detail.
Support for ICs will further enhance capabilities and
applicability of the algorithm.

In our future work we will also consider the oper-
ational level expressed in, e.g., XQuery (W3C 2010b)
or XSLT (Kay 2007). The goal is to extend the adapt
function introduced in this paper also to queries ex-
pressed in various query languages. Having a set of
queries working on a set of XML documents valid with
respect to an old version of a schema, the extended
adapt function would adapt the queries so that they
correctly work on the XML documents adapted w.r.t.
to a new version of the schema.

References

Al-Jadir, L., & El-Moukaddem, F. (2003). Once upon a time a
DTD evolved into another DTD. In Object-oriented infor-
mation systems (pp. 3–17). Berlin: Springer.

Bouchou, B., Duarte, D., Alves, M.H.F., Laurent, D., Musicante,
M.A. (2004). Schema evolution for XML: A consistency-
preserving approach. In Mathematical foundations of com-
puter science (pp. 876–888). Prague: Springer.

Cavalieri, F. (2010). EXup: An engine for the evolution of XML
schemas and associated documents. In EDBT ’10: Proc. of
the 2010 EDBT/ICDT workshops (pp. 1–10). New York:
ACM.

Chawathe, S.S., & Garcia-Molina, H. (1997). Meaningful change
detection in structured data. In J. Peckham (Ed.), SIGMOD
conference (pp. 26–37). ACM Press.

Clark, J., & Makoto, M. (2001). RELAX NG specification.
Oasis. http://www.oasis-open.org/committees/relax-ng/spec-
20011203.html. Accessed 22 Nov 2011.

Cobena, G., Abiteboul, S., Marian, A. (2002). Detecting changes
in XML documents. In ICDE (pp. 41–52). IEEE Computer
Society.

Coox, S.V. (2003). Axiomatization of the evolution of XML data-
base schema. Programming and Computer Software, 29(3),
140–146.

Dominguez, E., Lloret, J., Pérez, B., Rodríguez, Á., Rubio, Á.L.,
Zapata, M.A. (2011). Evolution of XML schemas and doc-
uments from stereotyped UML class models: A traceable
approach. Information and Software Technology, 53, 34–
50.

Guerrini, G., & Mesiti, M. (2009). XML schema evolution
and versioning: Current approaches and future trends. In
E. Pardede (Ed.), Open and novel issues in XML database
applications: Future directions and advanced technologies
(pp. 66–87). Idea Group Publishing.

Guerrini, G., Mesiti, M., Sorrenti, M.A. (2007). XML schema
evolution: Incremental validation and efficient document
adaptation. In D. Barbosa, A. Bonifati, Z. Bellahsène, E.
Hunt, R. Unland (Eds.), Database and XML technolo-
gies, Lecture notes in computer science (Vol. 4704, pp.
92–106). Berlin/Heidelberg: Springer. doi:10.1007/978-3-540-
75288-2_8.

ISO (2005). Information Technology Document Schema Defi-
nition Languages (DSDL) Part 3: Rule-based Validation
Schematron. ISO/IEC 19757-3.

ISO (2008). ISO/IEC 9075-14:2008—SQL—Part 14: XML-
Related Specifications (SQL/XML). http://www.iso.org/
iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?
csnumber=45499. Accessed 22 Nov 2011.

Kay, M. (2007). XSL transformations (XSLT) version 2.0. W3C.
http://www.w3.org/TR/xslt20/. Accessed 22 Nov 2011.

Klettke, M. (2007). Conceptual XML schema evolution—The
CoDEX approach for design and redesign. In Workshop
proceedings datenbanksysteme in Business, Technologie und
Web (BTW 2007) (pp. 53–63). Aachen, Germany.

Klímek, J., Malý, J., Nečaský, M. (2011). eXolutio—A tool for
XML data evolution. http://exolutio.com. Accessed 22 Nov
2011.

Klímek, J., & Nečaský, M. (2010). Semi-automatic integration of
web service interfaces. In IEEE international conference on
web services (pp. 307–314).

Kwietniewski, M., Gryz, J., Hazlewood, S., Van Run, P. (2010).
Transforming XML documents as schemas evolve. Proceed-
ings of the VLDB Endowment, 3(1–2), 1577–1580. http://dl.
acm.org/citation.cfm?id=1920841.1921043.

Lee, S., & Kim, D. (2006). X-tree diff+: Efficient change de-
tection algorithm in XML documents. In E. Sha, S.K. Han,
C.Z. Xu, M.H. Kim, L. Yang, B. Xiao (Eds.), Embedded
and ubiquitous computing. Lecture notes in computer science
(Vol. 4096, pp. 1037–1046). Berlin: Springer.

Leonardi, E., & Bhowmick, S.S. (2006). Xandy: A scalable
change detection technique for ordered XML documents
using relational databases. Data & Knowledge Engineering,
59(2), 476–507.

Leonardi, E., & Bhowmick, S.S. (2007). XANADUE: A system
for detecting changes to XML data in tree-unaware rela-
tional databases. In Proceedings of the 2007 ACM SIGMOD
international conference on management of data, SIGMOD
’07 (pp. 1137–1140). New York: ACM.

Leonardi, E., Hoai, T.T., Bhowmick, S.S., Madria, S.K. (2007).
DTD-diff: A change detection algorithm for DTDs. Data &
Knowledge Engineering, 61(2), 384–402.

Malý, J., Mlýnková, I., Nečaský, M. (2011). On XML document
transformations as schema evolves—A survey of current ap-
proaches. ISD 2010.

Inf Syst Front

Malý, J., Mlýnková, I., Nečaský, M. (2011). XML data trans-
formations as schema evolves. In ADBIS ’11: Proc. of the
15th advances in databases and information systems. Vienna:
Springer.

Miller, J., & Mukerji, J. (2003). MDA guide version 1.0.1.
Object management group. http://www.omg.org/docs/omg/
03-06-01.pdf.

Murata, M., Lee, D., Mani, M., Kawaguchi, K. (2005). Taxonomy
of XML schema languages using formal language theory.
ACM Transasctions on Internet Technology, 5(4), 660–704.

Nečaský, M., & Mlýnková, I. (2009). Exploitation of similarity
and pattern matching in XML technologies. In DATESO
2009, CEUR workshop proceedings (Vol. 471, pp. 90–104).
Matfyz Press.

Nečaský, M. (2009). Conceptual modeling for XML. Dissertations
in database and information systems (Vol. 99). Amsterdam:
IOS Press.

Nečaský, M. (2009). Reverse engineering of XML schemas to
conceptual diagrams. In Proceedings of the 6th Asia-Pacif ic
conference on conceptual modelling (pp. 117–128). Welling-
ton: Australian Computer Society.

Nečaský, M., & Mlýnková, I. (2009a). Five-level multi-
application schema evolution. In DATESO ’09 (pp. 90–104).

Nečaský, M., & Mlýnková, I. (2009b). On different perspectives
of XML schema evolution. In FlexDBIST’09: Proceedings of
the 5th international workshop on f lexible database and in-
formation system technology. Linz: IEEE Computer Society.

Nečaský, M., & Mlýnková, I. (2010). A framework for
efficient design, maintaining, and evolution of a system of
XML applications. In Proceedings of the Databases, Texts,
Specif ications, and Objects, DATESO ’10 (pp. 38–49). Mat-
fyz Press.

Nečaský, M., Klímek, J., Malý, J., Mlýnková, I. (2011a).
Evolution and change management of XML-based sys-
tems. Journal of Systems and Software. doi:10.1016/j.jss.
2011.09.038. http://www.sciencedirect.com/science/article/pii/
S0164121211002524.

Nečaský, M., Mlýnková, I., Klímek, J., Malý, J. (2011b). When
conceptual model meets grammar: A dual approach to XML
data modeling. Data & Knowledge Engineering. doi:10.
1016/j.datak.2011.09.002. http://www.sciencedirect.com/science/
article/pii/S0169023X1100125X.

Object Management Group (2007a). UML infrastructure specifi-
cation 2.1.2. http://www.omg.org/spec/UML/2.4.1/Infrastructure/
PDF. Accessed 28 Feb 2012.

Object Management Group (2007b). UML superstructure
specification 2.1.2. http://www.omg.org/spec/UML/2.4.1/
Superstructure/PDF. Accessed 28 Feb 2012.

Biron, P.V., & Permanente, K.A.M. (2004). XML schema
part 2: Datatypes (2nd Edn.). W3C http://www.w3.org/TR/
xmlschema-2/. Accessed 22 Nov 2011.

Polák, M. (2011). XML query adaptation. Master Thesis,
Charles University in Prague, Czech Republic. http://www.
ksi.mff.cuni.cz/∼mlynkova/dp/Polak.pdf. Accessed 22 Nov 2011.

Qeli, E., Gllavata, J., Freisleben, B. (2006). Customizable detec-
tion of changes for XML documents using XPath expres-
sions. In D.C.A. Bulterman, D.F. Brailsford (Eds.), Proceed-
ings of the 2006 ACM symposium on document engineering
(pp. 88–90). Amsterdam: ACM Press.

Raghavachari, M., & Shmueli, O. (2007). Efficient revalida-
tion of XML documents. IEEE Transactions on Knowledge
and Data Engineering, 19, 554–567. doi:10.1109/TKDE.2007.
1004. http://dl.acm.org/citation.cfm?id=1263133.1263349.

Rahm, E., & Bernstein, P.A.: (2001). A survey of approaches to
automatic schema matching. The VLDB Journal, 10(4), 334–
350.

Su, H., Kramer, D.K., Rundensteiner, E.A. (2002). XEM: XML
evolution management. Tech. Rep. WPI-CS-TR-02-09, Com-
puter Science Department, Worcester Polytechnnic Insti-
tute, Worcester, Massachusetts.

Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau,
F. (2008). Extensible Markup Language (XML) 1.0 (5th
edn.). W3C http://www.w3.org/TR/REC-xml/.

Tan, M., & Goh, A. (2005). Keeping pace with evolving XML-
based specifications. In EDBT’04 workshops (pp. 280–288).
Berlin: Springer.

Thalheim, B. (2000). Entity-relationship modeling: Foundations
of database technology. Berlin: Springer.

Thompson, H.S., Beech, D., Maloney, M., Mendelsohn, N.
(2004). XML schema part 1: Structures (2nd edn.). W3C
http://www.w3.org/TR/xmlschema-1/.

W3C (2004). Document Object Model (DOM) specification.
http://www.w3.org/DOM/. Accessed 22 Nov 2011.

W3C (2010a). XML Path Language (XPath) 2.0. http://www.w3.
org/TR/xpath20/. Accessed 22 Nov 2011.

W3C (2010b). XQuery 1.0: An XML query language. http://
www.w3.org/TR/xquery/. Accessed 22 Nov 2011.

W3C (2011). XQuery update facility 1.0 specification. http://
www.w3.org/TR/xquery-update-10/. Accessed 22 Nov 2011.

Wang, Y., DeWitt, D.J., Cai, J.Y. (2003). X-diff: An effective
change detection algorithm for XML documents. In Inter-
national conference on data engineering (p. 519).

Wojnar, A., Mlýnková, I., Dokulil, J. (2010). Structural and se-
mantic aspects of similarity of document type definitions
and XML schemas. Information Sciences, 180(10), 1817–
1836. Special Issue on Intelligent Distributed Information
Systems.

Jakub Malý received his Master’s degree in Computer Science
in June 2010 from the Charles University in Prague, Czech Re-
public, where he currently is a Ph.D. student at the Department
of Software Engineering. His research areas involve conceptual
modeling of XML data and evolution of XML applications,
integrity constraints in models and Object Constraint Language .
He has published two journal and eight conference papers.

Martin Nečaský received his Ph.D. degree in Computer Science
in 2008 from the Charles University in Prague, Czech Republic,
where he currently works at the Department of Software Engi-
neering as an assistant professor. He is an external member of
the Department of Computer Science and Engineering of the
Faculty of Electrical Engineering, Czech Technical University in
Prague. His research areas involve XML and Linked data design,
integration and evolution. He is an organizer/PC chair/member of
more than 10 international events. He has published more than
40 papers (two received Best Paper Award). He has published
three book chapters and a book.

Irena Mlýnková received her Ph.D. degree in Computer Science
in 2007 from the Charles University in Prague, Czech Republic.
She is an assistant professor at the Department of Software
Engineering of the Charles University and an external member
of the Department of Computer Science and Engineering of
the Czech Technical University. She has published more than
60 papers and books on management of XML data, structural
similarity, analysis of real-world data, synthesis of XML data,
XML benchmarking, XML schema inference and application
evolution. Four gained the Best Paper Awards. She is a PC
member or reviewer of 15 international events and co-organizer
of three international workshops.

Chapter 4

Heuristic Methods for Inference
of XML Schemas: Lessons
Learned and Open Issues

Irena Mlýnková
Martin Nečaský

Published in Informatica – the International Journal. IOS Press, 2012. ISSN
0868-4952. (in press)

Impact Factor: 1.627
5-Year Impact Factor: 1.074

87

88

INFORMATICA, 2012 Vol. ?, No. ?, 1–38

HEURISTIC METHODS FOR INFERENCE OF XML SCHEMAS:
LESSONS LEARNED AND OPEN ISSUES ∗

Irena MLÝNKOVÁ
Department of Software Engineering, Faculty of Mathematics and Physics,
Charles University in Prague, Czech Republic
E-mail: mlynkova@ksi.mff.cuni.cz

Martin NEČASKÝ
Department of Software Engineering, Faculty of Mathematics and Physics,
Charles University in Prague, Czech Republic
E-mail: necasky@ksi.mff.cuni.cz

Abstract. In this paper we focus on a specific class of XML schema inference approaches
– so-called heuristic approaches. Contrary to grammar-inferring approaches, their result does not
belong to any specific class of grammars and, hence, we cannot say anything about their features
from the point of view of theory of languages. However, the heuristic approaches still form a wider
and more popular set of approaches due to natural and user-friendly strategies. We describe a gen-
eral framework of the inference algorithms and we show how its particular phases can be further
enhanced and optimized to get more reasonable and realistic output. The aim of the paper is (1) to
provide a general overview of the heuristic inference process and existing approaches, (2) to sum
up the improvements and optimizations we have proposed so far in our research group, and (3)
to discuss possible extensions and open problems which need to be solved. Hence, it enables the
reader to get acquainted with the field fast.

Key words: XML Schema inference, regular-tree grammars, heuristics, integrity constraints;

1. Introduction Without any doubt the XML Bray et al. (2008) is currently a de-
facto standard for data representation. Its popularity is given by the fact that it is well-
defined, easy-to-use and, at the same time, enough powerful. To enable users to specify
own allowed structure of XML documents, so-called XML schema, the W3C has pro-
posed two languages – DTD Bray et al. (2008) and XML Schema Thompson et al. (2004);
Biron and Malhotra (2004). The former one is directly a part of XML specification and
due to its simplicity it is one of the most popular formats for schema specification. The
latter language was proposed later, in reaction to the lack of constructs of DTD. The key
emphasis is put on simple types, object-oriented features (such as user-defined data types,
inheritance, substitutability etc.) and reusability of parts of a schema or whole schemas.

On the other hand, statistical analyses of real-world XML data show that a significant
portion of XML documents (52% Mignet et al. (2003) of randomly crawled or 7.4%
Mlýnková et al. (2006) of semi-automatically collected) still have no schema at all. What

*This work was partially supported by the Czech Science Foundation (GAČR), grant number
P202/10/0573.

2 Mlýnková, I., Nečaský, M.

is more, XML Schema definitions (XSDs) are used even less (only for 0.09% Mignet
et al. (2003) of randomly crawled or 38% Mlýnková et al. (2006) of semi-automatically
collected XML documents) and even if they are used, they often (in 85% of cases Bex
et al. (2004)) define so-called local tree grammars Murata et al. (2005), i.e. grammars
that can be defined using DTD as well.

Consequently a new research area of automatic inference of an XML schema has
opened. The key aim is to create an XML schema for the given sample set of XML
documents that is neither too general, nor too restrictive. It means that the set of docu-
ment instances of the inferred schema is not too broad in comparison with the sample
data but, also, it is not equivalent to it. Currently, there are several proposals of respective
algorithms, but there is also still a space for further improvements. In particular, since
according to the Gold’s theorem Gold (1967) regular languages are not identifiable only
from positive examples (i.e. sample XML documents expected to be valid against the re-
sulting schema), the existing methods need to exploit either heuristics or a restriction to
an identifiable subclass of regular languages.

Contributions In this paper we focus on a specific class of XML schema inference
approaches – so-called heuristic approaches. Contrary to grammar-inferring approaches,
their result does not belong to any specific class of grammars and, hence, we cannot say
anything about their features from the point of view of theory of languages. However,
the heuristic approaches still form a wider and more popular set of approaches due to
natural and user-friendly strategies. We describe a general framework of the inference
algorithms and we show how its particular phases can be further enhanced and optimized
to get more reasonable and realistic output. The aim of the paper is (1) to provide a
general overview of the heuristic inference process and existing approaches, (2) to sum
up the improvements and optimizations we have proposed so far in our research group,
and (3) to discuss possible extensions and open problems which need to be solved. Hence,
it enables the reader to get acquainted with the field fast..

Outline The rest of the paper is structured as follows: In Section 2 we provide a brief
overview of existing XML schema languages and in Section 3 we introduce a formal view
of XML schemas. In Section 4 we first describe a general overview of typical phases of
XML schema inference algorithm and then analyze particular phases from the point of
view of current and well as our improvements. In Section 5 we discuss the remaining
open issues to be solved in the area of XML schema inference in general. Finally, in
Section 6 we conclude and outline possible future work.

Relation to Previous Papers In this paper we combine and, in particular, extend
our several previous results. In paper Mlýnková (2008a) we have provided a brief general
overview of both heuristic and grammar-inferring approaches and stated several open is-
sues. In this paper we extend and update it with new findings and conclusions. In papers
Vošta et al. (2008) and Vyhnanovská and Mlýnková (2010) we provided two approaches
that enable one to infer advanced XML Schema constructs that were not supported in pre-
vious works; in the latter one also with the usage of user interaction. In our next work we
focussed mainly on further possible inputs of the approaches – i.e. XML queries over the
data Nečaský and Mlýnková (2009) and an obsolete schema Mlýnková (2009). And, fi-

Heuristic Methods for Inference of XML Schemas: Lessons Learned and Open Issues 3

nally, in paper Mlýnková and Nečaský (2009) we aimed at refining the resulting schemas
on the basis of more detailed analysis of data. In this paper we describe the approaches in
the context of a common algorithm framework, in more detail and in relation to current
works. Our aim is to sum up our as well as general results and provide a detailed and
concise overview and summary useful for other researchers in this field.

2. XML Schema Languages Nowadays, there exist several languages for descrip-
tion of an XML schema, i.e. the allowed structure of XML documents. The best known
and most commonly used representatives are DTD, XML Schema, RELAX NG, and
Schematron.

DTD The simplest and most popular language for description of the allowed struc-
ture of XML documents is currently the Document Type Definition (DTD) Bray et al.
(2008). It enables one to specify allowed elements, attributes and their mutual relation-
ships, order and number of occurrences of subelements (using operators ‘,’, ‘|’, ‘?’,
‘+’ and ‘*’), data types (ID, IDREF, IDREFS, CDATA or PCDATA) and allowed occur-
rences of attributes (IMPLIED, REQUIRED or FIXED). A simple example of a database
of employees is depicted in Figure 1.

At first glance it seems that the specification of the allowed structure is sufficient.
Nevertheless, even in this simple example we can find several problems. For instance, we
are not able to specify the correct structure of an e-mail address. Similarly, we cannot
simply specify that a person can have four e-mail addresses at maximum. And, as we can
see, the fact that the order of elements first and surname is not significant cannot be
expressed simply as well.

XML Schema With regard to the insufficiency of DTD, the W3C2 proposed a more
powerful tool – XML Schema Thompson et al. (2004); Biron and Malhotra (2004) and
its instances called XML Schema Definitions (XSDs). An example of an XSD equivalent
to the example of a DTD in Figure 1 is depicted in Figure 4. XML Schema involves all
the DTD constructs, only the syntax is different (e.g. element sequence represents op-
erator ‘,’, choice represents ‘|’, content models are specified using simpleTypes
and complexTypes). It also adds several new constructs that can be divided into “syn-
tactic sugar” and true new constructs extending the expressive power. The former class
involves, e.g., precise occurrence ranges (i.e. attributes minOccurs and maxOccurs)
or globally defined items (i.e. simple/complex types, elements/attributes, groups of ele-
ments/attributes). In the latter class we can find a new rich set of simple data types (such
as integer or date), user-defined simple types, derivation of complex data types from
existing ones, advanced identity constraints (i.e. unique, key, keyref) or assertions
(i.e. assert, report) supported since version 1.1 Gao et al. (2009); Peterson et al.
(2009). In addition, each XSD is an XML document, hence, for its processing we can
exploit any XML technology.

On the other hand, XML Schema has also several disadvantages. Firstly, as we can see
from the examples in Figure 1 and 4, the description of an XSD is much longer and less

2http://www.w3.org/

4 Mlýnková, I., Nečaský, M.

Fig. 1. An example of a DTD

Fig. 2. An example of a RE-
LAX NG schema

Fig. 3. An example of a
Schematron schema

Fig. 4. An example of an XSD

lucid than the respective DTD. In addition, since the language involves a huge amount of
constructs, which are mostly a “syntactic sugar” and, hence, have the same or almost the
same expressive power, it is not easy for a user to learn all of them and decide which is
better to use.

RELAX NG The authors of RELAX NG Murata (2002) tried to propose a language
that involves key advantages of both DTD and XML Schema, but avoids their disadvan-
tages. In particular, as we can see in Figure 2 the language has both XML and compact
syntax which are equivalent and mutually transferable. Hence it exploits the advantages

Heuristic Methods for Inference of XML Schemas: Lessons Learned and Open Issues 5

of both DTD and XML Schema. Contrary to DTD it allows to specify the structure of a
mixed-content element precisely (i.e. like XML Schema does); contrary to XML Schema
it does not restrict the complexity of unordered sequences only to simple cases. Also,
similarly to XML Schema, it supports a wide set of simple data types, both built-in and
user-defined. On the other hand, precise occurrence ranges of elements or groups of ele-
ments are surprisingly not supported – RELAX NG supports the same operators as DTD
(i.e. optional, oneOrMore and zeroOrMore). Last but not least, contrary to both
DTD and XML Schema, the definition of a content model can combine both elements and
attributes, hence the expressive power is much higher. XML Schema can express similar
restrictions using assertions, but these were established in version 1.1 and currently are
not much supported so far.

Schematron Contrary to the previous languages where we can find numerous simi-
larities, Schematron Jelliffe (2001) uses a completely different strategy. However, on the
other hand, it probably served as an inspiration for XML Schema assertions. As we can
see in Figure 3, each Schematron schema is based on the idea of patterns. A pattern
can be described as a set of rules an XML document must satisfy to be valid against a
Schematron schema. A rule involves either element assert or report depending on
the requirement of satisfaction or not satisfaction of the condition specified in attribute
test. Since a Schematron schema can be evaluated by translation to XSLT Clark (1999)
and usage of an XSLT parser, it supports the same subset of XPath Clark and DeRose
(1999) as XSLT.

Even though the expressive power of Schematron is apparently higher than in case
of the previous three XML schema languages (if we omit XML Schema assertions),
Schematron has also several disadvantages. As we can see in Figure 3, the biggest prob-
lem is complexity of expressing simple rules such as “an element e has an attribute a”.
Hence, Schematron should rather be considered as an extension of the previous languages
that enables one to express complex integrity constraints. Both XML Schema and RE-
LAX NG support Schematron subschemas.

3. Formal View of XML Schema Languages For the purpose of the following text
we need a formal view of XML documents, XML schema languages and mutual validity.
In general, we can divide the described schema languages into grammar-based (i.e. DTD,
XML Schema, RELAX NG) and pattern-based (i.e. Schematron). The majority of current
papers deal with basic and most common structural specification of XML data that can
be expressed using the grammar-based languages. In other words, they do not deal with
advanced integrity constraints that can be expressed using Schematron or XML Schema
assertions. So, if not stated otherwise, we consider the same set.

The grammar-based XML schema languages we consider in the first parts of our text
can be further classified according to their expressive power. We borrow and slightly mod-
ify for our purposes the definitions from Murata et al. (2005). Since the well-formedness
of XML documents Bray et al. (2008) ensures that the correct usage of start and end
tags forms a tree structure of XML documents, we usually speak about tree grammars. In
addition, since most of the current approaches do not consider attributes, because their in-

6 Mlýnková, I., Nečaský, M.

ference can be considered as a special case of inference of elements having a text content,
we omit them for simplicity too.

We represent an XML document as directed labeled tree t = (V,E) called XML
tree whose vertices from set V represent XML elements and attributes and edges from
set E represent the hierarchical structure. We also consider a common formalization of
an XML schema in a form of a regular tree grammar (RTG) G = (N,T, S, P) having
a set of non-terminals N , a set of terminals T , a set of start symbols S and a set of
production rules P . Terminals of the grammar specify allowed elements (and attributes)
in the XML document and the production rules, resp. regular expressions (REs) on their
right hand sides, specify their allowed content. An XML tree valid against a given regular
tree grammar is then an XML tree which can be constructed by the rewriting rules of
the grammar. Another possibility to formalize XML schemas are classical finite state
automata (FSA). It is a well known fact that production rules of regular grammars can be
expressed as finite state automata and vice versa.

In Murata et al. (2005), various classes of RTGs that correspond to particular XML
schema languages were introduced. In particular, we can define so-called local-tree gram-
mars that correspond to DTD and single-type tree grammars that correspond to XML
Schema. Note that RELAX NG corresponds to general regular tree grammars.

Definition 3.1. Let us have an RTGG = (N,T, S, P). Two non-terminalsA,B ∈ N are
competing with each other if there exist two production rules A → ar1 and B → ar2,
where a ∈ T and r1, r2 are REs over N .

Definition 3.2. A local tree grammar (LTG) is a RTG without competing non-terminals.
A tree language is a local tree language if it is generated by a local tree grammar.

Definition 3.3. A single-type tree grammar (STTG) is a RTG such that

• for each production rule, non-terminals in its content model do not compete with
each other, and
• start symbols do not compete with each other.

A tree language is a single type tree language if it is generated by a single type tree
grammar.

4. General Framework of Heuristic Inference Approaches The studied prob-
lem of XML schema inference can be described as follows: Being given an input
set of XML trees I = {t1, t2, ..., tn}, we search for an XML schema, i.e. an RTG
GI = (NI , TI , PI , SI), such that ∀i ∈ [1, n] : ti is valid against GI . In particular,
we are searching for GI that is enough concise, precise and, at the same time, general.
This requirement indicates, that the optimal result is hard to define and, in general, there
may exist several solutions, i.e. a set of candidate RTGs O = {G1

I , G
2
I , ...G

m
I }, such that

∀i ∈ [1, n],∀j ∈ [1,m] : ti is valid against Gj
I , whereas we are looking for the optimal

Gopt
I ∈ O.

The problem of finding Gopt
I can be viewed as a special kind of optimization problem

called combinatorial optimization problem (COP) Barták (1998).

Heuristic Methods for Inference of XML Schemas: Lessons Learned and Open Issues 7

Most of the existing works use the same strategy consisting of the following phases
to solve this problem:

• Phase I. Derivation of initial grammar
• Phase II. Clustering of production rules of initial grammar
• Phase III. Inference of REs
• Phase IV. Refactorization
• Phase V. Inference of simple data types
• Phase VI. Inference of integrity constraints
• Phase VII. Expressing the inferred items in the target XML schema language

The current methods differ in involving/omitting selected phases and, in particular,
strategies they apply on them. In the following sections we describe in detail the current
approaches and the improvements we have proposed so far.

4.1. Phase I. Derivation of Initial Grammar The first phase of the inference pro-
cess is the same in all existing works: For each element node e in any of the XML
trees in I and its child nodes e1, e2, ..., ek we construct a production ~pe of the form
e → lab(e)(e1 e2 ... ek), where lab(e) denotes the label of e. The production rules
form so-called initial grammar (IG).

Example 4.1. An example of an XML document (a) and respective IG (b) is depicted in
Figure 5.

Fig. 5. An example of an XML document (a) and its IG (b)

Note that for the sake of clarity we start non-terminals of IG with capital letters and
terminals of IG with small letters.

4.2. Phase II. Clustering of Production Rules of IG In the second phase the pro-
duction rules of IG need to be clustered, since for each cluster a single RE is inferred
in phase III (see Section 4.3). A typical strategy of the existing works is to cluster the
production rules simply on the basis of the equivalence of left-hand sides.

8 Mlýnková, I., Nečaský, M.

Example 4.2. An example of clusters of IG in Figure 5 (omitting duplicities and the
production rule for pcdata) is depicted in Figure 6.

Fig. 6. Production rules of IG clustered according to equivalence of left hand sides

Apparently, such beginning step leads to inference of an LTG, i.e. DTD, where all
the elements are defined at the same level, and, hence, we are not able to specify ele-
ments with the same name but different structure. However, the described functionality
is included in XML Schema and RELAX NG, i.e. STTGs and RTGs, and can have quite
reasonable usage due to homonymy of element names.

Example 4.3. Let us have an XML schema of a library where each book, author and
publisher has a name. In the former case it can be only a simple string, whereas in
the latter two cases the name can consist of a couple of elements each having its own
semantics – see Figure 7.

Fig. 7. Elements with the same name but different structure

In paper Vošta et al. (2008) we have proposed two strategies that enable one to infer
both STTGs and RTGs. They are based on two extensions of the clustering algorithm –
on the basis of similarity of context of elements and similarity of content of elements.
In paper Vyhnanovská and Mlýnková (2010) we have proposed another extension, that
enables one to cluster also elements with different context (and names), but similar struc-
ture. This feature is supported in XML Schema, where various features (such as refer-
ences or assigning of globally defined data types) enable one to create shared parts of the
schema and thus describe the data more precisely. Both the extensions are described in
the following subsections.

4.2.1. Similarity of Context The key feature of STTGs is based on the fact that
elements in the same content model, i.e. context, do not compete with each other. First,
we need a formal definition of a context.

Heuristic Methods for Inference of XML Schemas: Lessons Learned and Open Issues 9

Definition 4.1. A context contv of an element node v ∈ V in a document tree t = (V,E)

is a concatenation of lab(v0)lab(v1)...lab(vn), where v0 is the root node of the tree,
vn = v, and ∀i ∈ [1, n] : 〈vi−1, vi〉 ∈ E.

For the purpose of evaluation of similarity of two contexts contv and contu, we ex-
ploit and modify the classical Levenshtein algorithm Levenshtein (1966) that determines
the edit distance of two strings sx, sy using inserting, deleting or replacing a single char-
acter. Each operation is assigned with a constant cost and the edit distance (i.e. similarity)
is given by the amount of operations that need to be done to transform sx to sy . In our
case instead of single characters our operations work with whole element names.

Hence, in the following text we can assume that we have a function simcontext :

V × V → [0, 1] which expresses the similarity of contexts of two element nodes, where
0 denotes strong dissimilarity and 1 equivalence.

4.2.2. Similarity of Content The key feature of RTGs is that they allow for any
kind of competing non-terminals. In other words, we can cluster the elements not only
according to their context, but also content. As an XML element e can be viewed as a
subtree te (in the following text denoted as an element tree) of corresponding document
tree t, we use a modified idea of tree edit distance, where the similarity of trees te and tf
is expressed using the minimum number of edit operations necessary to transform te into
tf (or vice versa).

Currently, there exist several approaches to tree edit distance (e.g. Touzet (2005);
Marian (2002); Torsello and Hancock (2003); Touzet (2003)). The key aspect is obviously
the set of allowed edit operations which need to be suitable for a particular application.

Example 4.4. Consider two simple operations – adding and removal of a leaf node (and
respective edge). As depicted in Figure 8, such similarity is not suitable, e.g., for recursive
elements. The example depicts two element trees of element a having subelement i having
subelement j having subelement k which contains either subelement z or again i. With
the two simple edit operations the edit distance would be 4, but, since the elements have
the same XML schema, we would expect the optimal distance of 1 reflecting the usage of
one additional recursive level.

Fig. 8. Tree edit distance of recursive elements

For our purpose we exploit a similarity measure defined in Nierman and Jagadish
(2002) which specifies more complex XML-aware tree edit operations on whole subtrees,
each having its constant cost, as follows:

• Insert – a single node n is inserted to the position given by parent node p and
ordinal number expressing its position among subelements of p

10 Mlýnková, I., Nečaský, M.

• Delete – a leaf node n is deleted
• Relabel – a node n is relabeled
• InsertTree – a whole subtree t is inserted to the position given by parent node p

and ordinal number expressing position of its root node among subelements of p
• DeleteTree – a whole subtree t rooted at node n is deleted

As it is obvious, for given trees te and tf there are usually several possible transfor-
mation sequences for transforming te into tf . A natural approach is to evaluate all the
possibilities and to choose the one with the lowest cost. But such approach can be quite
inefficient. Thus authors of Nierman and Jagadish (2002) propose so-called allowable
sequences of edit operations, which significantly reduce the set of possibilities and, at the
same time, speed up their cost evaluation.

Definition 4.2. A sequence of edit operations is allowable if it satisfies the following two
conditions:

1. A tree t may be inserted only if t already occurs in the source tree te. A tree t may
be deleted only if it occurs in the destination tree tf .

2. A tree that has been inserted via the InsertTree operation may not subsequently
have additional nodes inserted. A tree that has been deleted via the DeleteTree operation
may not previously have had children nodes deleted.

The first restriction forbids undesirable operations like, e.g., deleting whole te and
inserting whole tf etc., whereas the second one enables one to compute the costs of the
operations efficiently. The evaluating algorithm is based on the idea of determining the
minimum cost of each required insert of every subtree of te and delete of every subtree
of tf using a simple bottom-up procedure.

In the following text we assume that we have a function simcontent : V ×V → [0, 1]

which expresses the similarity of element trees te and tf rooted at element nodes e, f ∈
V , i.e. content of elements.

4.2.3. Clustering Algorithm In the resulting clustering algorithm we utilize a mod-
ification of classical mutual neighborhood clustering (MNC) approach Jain and Dubes
(1988). We start with initial clusters c1, c2, ...ck of elements given by the equivalence of
their context, i.e. elements e and f belong to cluster ci if simcontext(e, f) = 1. In other
words, the initial clustering is based on a natural assumption that elements having the
same context are likely to have the same schema definition. The initial clusters are then
merged on the basis of element structure using the tree edit distance simcontent. Firstly,
∀i ∈ [1, k] we determine a representative element ri of cluster ci. Then, for each pair of
〈ri, rj〉 such that i, j ∈ [1, k]; i 6= j we determine tree edit distance distcontent(ri, rj)
of the respective trees. The MNC algorithm is parameterized by three parameters – min-
imum distance distMIN , maximum distance distMAX , and factor φ – and exploits the
definition of mutual neighborhood:

Definition 4.3. Let e and f be two elements, where e is i-th closest neighbor of f and
f is j-th closest neighbor of e. Then mutual neighborhood of e and f is defined as
MN(e, f) = i+ j.

Heuristic Methods for Inference of XML Schemas: Lessons Learned and Open Issues 11

Consequently, the MNC algorithm places two elements ri and rj into the same cluster
if:

distcontent(ri, rj) <= distMIN ∨
(distcontent(ri, rj) <= distMAX ∧MN(ri, rj) <= φ) (1)

resulting in a set of clusters c1, c2, ..., cl (where l <= k) of elements grouped on the basis
of their context and content.

4.3. Phase III. Inference of REs Having the set of clusters c1, c2, ..., cl of produc-
tion rules, the key emphasis is in the existing works put on inference of REs. A common
approach is so-called merging state algorithm which consists of two steps:

1. ∀i ∈ [1, l] a prefix tree automaton (PTA) Aci is built from the production rules of
cluster ci.

2. Each Aci is generalized via merging of its states.

Example 4.5. An example of a cluster ci of IG and the respective PTA Aci is depicted in
Figure 9.

Fig. 9. An example of an IG and a PTA

In Mlýnková (2009) we have focussed on further extension of this step based on a
typical real-world situation when a user creates an XML schema of XML documents but
then modifies and updates only the data (identified in Mlýnková et al. (2006)). In other
words, we are provided not only with the input documents I = {t1, t2, ..., tn}, but also
an obsolete XML schema, i.e. in general an RTG Gobs = (Nobs, Tobs, Pobs, Sobs), such
that there exist parts of the input documents that are valid against it, i.e. the similarity of
Gobs andGopt

I is high. Such input can be exploited for speeding up the inference process.
We only need to modify the process of creating the initial automata to be optimized and
generalized. In particular, we cluster and merge the production rules of IG extracted from
I together with production rules from Pobs. Hence, we do not start with PTAs, but general
FSAs.

Example 4.6. An example of merging a production rule of IG with a production rule
from an obsolete schema Gobs is depicted in Figure 10.

Regardless the input automaton, the rules and strategies for merging the states of
a PTA used in the current approaches differ, but they have a common aim to output a

12 Mlýnková, I., Nečaský, M.

Fig. 10. Exploitation of an obsolete schema. a) a production rule of an IG and a
production rule of an obsolete schema, b) result of their merging.

concise and precise XML schema. As we have mentioned at the beginning of this section,
since the amount of possible output automata, i.e. schemas, is theoretically infinite, the
approaches search only a subspace of possible solutions using a kind of greedy-search,
terminating condition etc.

4.3.1. Naive Solutions The first and simplest approaches implemented, e.g., in sys-
tems GB-engine Shafer (1995) or DTD-miner Moh et al. (2000), use a simple set of
heuristic rules such as those depicted in Figure 11 and the search strategy continues until
there exists a rule that can be applied.

aaaa ⇒ a+

(ab)∗|a?b? ⇒ (a?b?)∗

ab|ab∗ ⇒ ab∗

a?, b?, c? ⇒ a|b|c
a, b, c, d, a, d, b, c ⇒ (a|b|c|d)+

Fig. 11. Simple heuristic rules for merging states of automaton

4.3.2. Evaluation of Schema Quality A strategy similar to DTD-miner is used also
in system XTRACT Garofalakis et al. (2000). However, the rules are not applied using
a greedy search, but a set of possible solutions is produced and the system selects the
optimal one, i.e. it is able to evaluate quality of a schema generalization.

For the purpose of schema evaluation the authors (as well as the subsequent ap-
proaches) exploit so-called minimum description length (MDL) principle Grunwald
(2005). It expresses the quality of an XML schema candidate using two aspects – con-
ciseness and preciseness. Conciseness of an XML schema is expressed using the number
of bits required to describe the schema itself (the smaller, the better). Preciseness of an
XML schema is expressed using the number of bits required for description of the input
XML trees in I using the schema. In other words, on the one hand, a good schema should
be enough general which is related to the low number of states of the schema automaton,
but, on the other hand, it should preserve details which means that it enables one to ex-
press document instances using short codes, since most of the information is carried by
the schema itself.

Heuristic Methods for Inference of XML Schemas: Lessons Learned and Open Issues 13

Formally, we can express the quality of an RTG Gci = (Nci , Tci , Sci , Pci) inferred
from a set of XML trees in a cluster ci as the sum of the size (in bits) of Pci and the size
of codes of instances in ci. Let D be the set of allowed operators and E the set of distinct
element names in ci. Then we can view the right-hand side of each p ∈ Pci as a word
over D ∪ E and the size of its code can be expressed as:

|p| × dlog2(card(D) + card(E))e (2)

where |p| denotes length of word p. The size of code of a single element tree e ∈ ci
is defined as the size of code of a sequence of production rules P〈e〉 = 〈~p1, ~p2, ..., ~pk〉
necessary to convert an initial nonterminal s ∈ Sci to e using production rules from
Pci . Since we can represent the sequence P〈e〉 as a sequence of ordinal numbers of the
production rules in Pci , the size of the code of e can be expressed as:

card(P〈e〉)× dlog2(card(Pci))e (3)

4.3.3. Advanced Merging Rules Apart from simple heuristic merging rules, there
exist also approaches that base their strategy on various theoretical results.

The k, h-context method Ahonen (1996) specifies an identifiable subclass of regular
languages which assumes that the context of elements is limited. So merging states of an
automaton A = (Q,Σ, δ, s, F) is based on an assumption that two states x, y ∈ Q are
identical (and can be merged) if there exist two identical paths of length k terminating in
x and y. In addition, also h <= k preceding states in these paths are then identical.

On the other hand, the s, k-string method Wong and Sankey (2003) is based on
Nerod’s equivalency of states of automaton A assuming that two states x, y ∈ Q are
equivalent if sets of all paths leading from x and y to any f ∈ F are equivalent. But since
such condition is hard to check, we can restrain to k-strings, i.e. only paths of length of
k or terminating in a terminal state f ∈ F . The respective equivalency of states then
depends on equivalency of sets of outgoing k-strings. In addition, for easier processing
we can consider only s most probable paths, i.e. we can ignore singular special cases.

Example 4.7. Two examples of the described merging are depicted in Figure 12. In the
former case (a), we can merge states 4 and 5, because they have the same prefixes of
length 1 (i.e. edge Address). In the latter case (b), we can merge states 3, 5 and 4, 6
because they have the same suffixes of length 1.

4.3.4. Advanced Search Strategies As we have mentioned, we can view the prob-
lem of generalization of an automaton as a kind of optimization problem where we search
for an optimal solution in a theoretically infinite space. The basic strategy is to use a kind
of a greedy search. However, with the general view of the problem as a COP , we can use
also more advanced meta-heuristics.

In Wong and Sankey (2003) the authors utilize a classical approach called Ant Colony
Optimization (ACO) Dorigo et al. (2006). The ACO heuristic is based on observations
of nature, in particular the way ants exchange information they have learnt. A set of
artificial “ants” ∆ search the space of solutions Θ trying to find the optimal solution

14 Mlýnková, I., Nečaský, M.

Fig. 12. Merging states of an automaton. a) k, h-context and b) s, k-string.

sopt ∈ Θ such that σ(sopt) <= σ(s);∀s ∈ Θ. In i-th iteration each ant a ∈ ∆ searches a
subspace of Θ for a local suboptimum until it “dies” after performing a predefined amount
of steps Nant. While searching, an ant a spreads a certain amount of “pheromone”, i.e. a
positive feedback which denotes how good solution it has found so far. This information
is exploited by ants from the following iterations to choose better search steps. The key
aspect of the algorithm is one step of an ant. Each step consists of generating of a set
of possible movements, their evaluation using σ, and execution of one of the candidate
steps. The executed step is selected randomly on the basis of probability given by σ. The
algorithm terminates either after a specified number of iterations Niter or if s′opt ∈ Θ is
reached such that f(s′opt) <= Tmax, where Tmax is a required threshold. Note that the
randomness is the key aspect of the metaheuristic, since it enables one to search larger
space of solutions than greedy strategies do and thus possibly find a better suboptimum.

In Vošta et al. (2008) we have exploited also a temporary negative feedback which
enables one to search a larger subspace of Θ. The idea is relatively simple – whenever an
ant performs a single step, it spreads a reasonable negative feedback. The difference is
that the positive feedback is assigned after i-th iteration is completed, i.e. all ants die, to
influence the behavior of ants from (i+ 1)-st iteration. The negative feedback is assigned
immediately after a step is performed, i.e. it influences behavior of ants in i-th iteration
and at the end of the iteration it is zeroed.

In our case of schema inference we start with the PTA (or its modification) from phase
II (see Section 4.2). A step of an ant means application of a selected generalization rule,
either a naive one (see Section 4.3.1) or any of the advanced methods such as, e.g., k, h-
context or s, k-string (see Section 4.3.3). The objective function σ can be defined, e.g.,
using the MDL principle (see Section 4.3.2).

4.3.5. XML Schema Unordered Sequences In all the previous approaches the au-
thors focussed on constructs that can be expressed in DTD. In Vošta et al. (2008) we
extended the current approaches with the ability to infer also unordered sequences of el-
ements, i.e. XML Schema all construct (or & operator for simplicity). (Even though,
such construct can be expressed in DTD using a list all possible permutations, such ap-
proach is not used in practise for apparent disadvantages.) Our extension is based on the

Heuristic Methods for Inference of XML Schemas: Lessons Learned and Open Issues 15

observation that it can be considered as a special kind of rule for merging states of an
automaton. It enables one to replace a set of ordered sequences of elements with a single
unordered sequence represented by the & operator.

In general the & operator can express the unordered sequence of REs of any complex-
ity such as, e.g., (e1|e2) ∗ &e3?&(e4, e5, e6). But, the W3C recommendation of XML
Schema language does not allow to specify so-called nondeterministic data model Mani
(2001), i.e. a data model which cannot be matched without looking ahead. A simple ex-
ample can be a RE (e1, e2)|(e1, e3), where while reading the element e1 we are not able to
decide which of the alternatives to choose unless we read the following element. Hence,
also the allowed complexity of unordered sequences is restricted. The former and cur-
rently recommended version 1.0 of XML Schema specification Thompson et al. (2004);
Biron and Malhotra (2004) allows to specify an unordered sequence of elements, each
with the allowed occurrence of [0, 1], whereas the allowed occurrence of the unordered
sequence itself is of [0, 1] too. XML Schema 1.1 Gao et al. (2009); Peterson et al. (2009),
currently in the status of a working draft, is similar but the allowed number of occur-
rence of items of the sequence is [0,∞]. In our approach we focus on the more general
possibility, since it will probably soon become a new recommendation.

For the purpose of identification of subgraphs representing the allowed type of un-
ordered sequences, we first define so-called common ancestors and common descendants.

Definition 4.4. Let G = (V,E) be a directed graph. A common descendant of a node
v ∈ V is a descendant d ∈ V of v such that all paths traversing v traverse also d.

Definition 4.5. LetG = (V,E) be a directed graph. A common ancestor of a node v ∈ V
is an ancestor a ∈ V of v such that all paths traversing v traverse also a.

Definition 4.6. LetG = (V,E) be a directed graph. A common ancestor of a node v ∈ V
with regard to a node u ∈ V is an ancestor a ∈ V of v such that a is a common ancestor
of each direct ancestor of v occurring on path from u to v.

Example 4.8. Considering the example in Figure 13 (temporarily without labels of
edges) we can see that the common descendants of node 3 are nodes 6 and 7, whereas
node 1 has no common descendants, since paths traversing node 1 terminate in nodes
7 and 9. Similarly, the common ancestor of node 6 is node 1. Note that in the former
case there can exist paths which traverse d but not v (see node 3 and its common descen-
dant 6), whereas in the latter case there can exist paths which traverse a but not v. The
common ancestors of node 6 with regard to node 2 are nodes 2 and 3.

Fig. 13. An example of common ancestors and descendants

16 Mlýnková, I., Nečaský, M.

We denote the node v from Definition 4.4 or the node a from Definitions 4.5 and 4.6
as input nodes and their counterparts as output nodes. The set of nodes occurring on paths
starting in an input node and terminating in an output node are called a block. Using the
definitions we can now identify subgraphs which are considered as first-level candidates
for unordered sequences.

Definition 4.7. Node nin is an input node of block representing a first-level candidate if:
1. its out-degree is higher that 1,
2. the set of its common descendants is not empty, and
3. at least one of its common descendants, denoted as nout, whose set of common

ancestors with regard to nin contains nin.

The three conditions ensure that there are at least two paths leading from nin repre-
senting at least two alternatives and that the block is complete, meaning that there are no
paths entering or leaving the block otherwise than using nin or nout.

Example 4.9. Considering Figure 13, the only first-level candidate is subgraph consist-
ing of nodes 3, 4, 5, and 6.

Having a first-level candidate we need to check it for fulfilling conditions of an un-
ordered sequence and, hence, being a so-called second-level candidate. We again exploit
the idea of similarity of graphs expressed using edit distance. In particular, we exploit the
fact that for each n ∈ N we know the structure of the automaton Pn which accepts each
permutation of n items having all the states fully merged.

Example 4.10. An example of automaton P3 is depicted in Figure 14 for three items A,
B, C.

Fig. 14. Automaton P3 – permutation of three items

The idea is to compare the similarity of the first-level candidates with Pn automata.
We only need to modify the first-level candidate so that the similarity measure can cope
with optional and repeatable elements in the unordered sequences and the fact that the
input elements on whose basis the automaton was built do not need to contain all possible
permutations. We can also observe, that the candidate graph must be always a subgraph
of Pn, otherwise we can skip its processing. Hence, the problem of edit distance is highly
simplified and we use the following types of edit operations:

• adding an edge between two existing nodes, and
• splitting an existing edge into two edges, i.e. adding a new node and an edge.

Heuristic Methods for Inference of XML Schemas: Lessons Learned and Open Issues 17

The first operation is obvious and corresponds to the operation of adding paths that
represent permutations which were not present in the source data. In the latter case the
operation corresponds to adding an item of a permutation which was not present in the
source data.

4.3.6. XML Schema “Syntactic Sugar” As we have mentioned, XML Schema in-
volves plenty of “syntactic sugar”, i.e. constructs being equivalent. For instance, the un-
ordered sequences described in the previous section represent one of the cases.

Definition 4.8. Let sx and sy be two XML schema fragments. Let η(s) = {d such that d
is an element tree valid against s}. Then sx and sy are equivalent, denoted as sx ∼ sy ,
if η(sx) = η(sy).

Example 4.11. As depicted in Figure 15 (a), there is no difference if a simple type is
defined locally or globally. Example (b) depicts the equivalence between an unordered
sequence of a set of elements and a choice of their possible ordered permutations.

Fig. 15. “Syntactic sugar” of XML Schema. a) globally and locally defined simple
types, b) unordered sequences.

Consequently, having a set ξ of all XSD constructs, we can specify the quotient set
ξ/ ∼ of ξ by ∼ and respective equivalence classes Mlýnková and Nečaský (2009) – see
Table 1. Each of the classes of ∼ equivalence can be then represented using a selected
canonical representative as listed in Table 1 as well. Note that each of the constructs not
mentioned in the table forms a single class C1, C2, ..., Cn.

With regard to the classes, we can generalize the previous approach for inference of
unordered sequences, since from a general point of view we can find multiple ways how
to express an XSD. For our purposes, we first slightly modify its definition Vyhnanovská
and Mlýnková (2010).

Definition 4.9. An extended finite state automaton (exFSA) is a 6-tuple (Q,Qex,Σ, δ, s, F),
where:

18 Mlýnková, I., Nečaský, M.

Table 1. XSD equivalence classes of ξ/ ∼
Class Constructs Canonical representative
CST globally defined simple type, locally defined

simple type
locally defined simple type

CCT globally defined complex type, locally defined
complex type

locally defined complex
type

CEl referenced element, locally defined element locally defined element
CAt referenced attribute, locally defined attribute,

attribute referenced via an attribute group
locally defined attribute

CElGr content model referenced via an element group,
locally defined content model

locally defined content
model

CSeq unordered sequence of elements e1, e2, ..., el,
choice of all possible ordered sequences of
e1, e2, ..., el

choice of all possible or-
dered sequences of e1, e2,
..., el

CCTDer derived complex type, newly defined complex
type

newly defined complex
type

CSubGr elements in a substitution group γ, choice of el-
ements in γ

choice of elements in γ

CSub data types τ1, τ2, ..., τk derived from type
τ , choice of content models defined in
τ1, τ2, ..., τk, τ

choice of content models
defined in τ1, τ2, ..., τk, τ

• Q is a set of basic states,
• Qex is a set of extended states,
• Σ is a set of input symbols,
• δ : Q ∪Qex × Σ∗ → Q ∪Qex is the transition function,
• s ∈ Q ∪Qex is the initial state, and
• F ⊆ Q ∪Qex is the set of final states.

An exFSA behaves similarly to a deterministic FSA. The only difference is that it con-
tains in addition a set of extended states. An extended state sx represents a subautomaton
Ax which accepts a part of the input XML tree. When the sx state is reached, the Ax au-
tomaton continues in processing of input, it consumes as much symbols as possible and
then returns processing to the original automaton. Every extended state has a helper state,
i.e. a basic state with only one transition point to it – the λ-transition from the extended
state. When the processing is returned from the subautomaton, the automaton moves into
the helper state according to the λ-transition.

An exFSA has the same expressive power as a FSA and it can be transformed to the
FSA with λ-edges. An extended state has only one transition – λ-transition – which is
redirected to the initial state of the subautomaton. All final states of the subautomaton
have one additional λ-transition to the destination state of the original λ-transition.

Example 4.12. An example of exFSA and its transformation to the respective FSA is
depicted in Figure 16.

An exFSA enables us to outline and merge equivalent schema fragments, i.e. to ex-
press sharing of selected parts of an XSD. However, we cannot merge and outline schema

Heuristic Methods for Inference of XML Schemas: Lessons Learned and Open Issues 19

Fig. 16. exFSA transformed to the FSA. a) up – a subautomaton, down – exFSA
with an extended state 1 and helper state 5, b) transformed FSA with λ-
edges.

fragments that have nothing in common but a subset of subelements.

Example 4.13. Let us have an element person with attribute id and subelements
name, address and phone and an element book with attribute id and subelements
name, address and authors. The approach would lead to creating three complex
types – typeCommon involving the common items and two derived types typePerson
and typeBook, each adding the respective subelement. Since the two elements have
nothing in common, such schema would obviously be semantically wrong.

The solution to the problem we proposed Mlýnková and Nečaský (2009) is taking into
account also the semantics of the data. In particular, we use a kind of a thesaurus that en-
ables one to discover semantic relations. Hence, we discover that the semantic similarity
of words person and book is not high, but similarity of, e.g., person, author and
editor is sufficient. And it also brings another advantage, since it indicates the way we
should express the sharing (as discussed in detail in Section 4.7).

Example 4.14. Let us have two candidates for outlining – employee and manager.
The thesaurus not only determines that they are related, but also that employee is a
broader term to manager. Hence, instead of creating typeCommon and derived types
typeEmployee and typeManager, we create typeEmployee and a derived type
typeManager.

To ensure the indicated functionality, we extend the process of inference of RE with
an outlining rule. The algorithm directly searches for equivalent schema fragments and
analyzes their semantic relevance. If it is identified as sufficient, the respective subau-
tomaton is outlined.

Example 4.15. An example of outlining of an automaton is depicted in Figure 17 (a) and
(b). In this case we exploit the fact that elements person and manager have common
items that can be outlined into a globally defined schema fragment represented using
a subautomaton. Since “person” and “manager” are semantically related, the sets are
enough large and the items are not too general, the result again bears more information
and it is more realistic.

20 Mlýnková, I., Nečaský, M.

Fig. 17. Splitting and outlining an automaton. a) productions with a common frag-
ment, b) outlined common fragment.

Evaluation of Quality of a Schema With the introduced extension, we need to
modify the strategy for evaluation of quality of the given XML schema. Otherwise, our
more precise XML schema would never be inferred, because since our primary aim is
conciseness, their quality with regard to MDL (see Section 4.3.2) is lower.

Let us have an RTG Gci = (Nci , Tci , Sci , Pci) inferred from a set of XML trees in
cluster ci. Let us denote P ′′ci ⊆ Pci the set of outlined production rules and P ′ci ⊆ Pci

the set of original production rules from which a fragment was outlined. In general, if
we outline a reasonably big schema fragment from at least two production rules, we
obviously decrease the sum of sizes of production rules in Pci . But, on the other hand,
if there exists an element tree e ∈ ci such that P〈e〉 involves a production rule ~p ∈ Pci

that was split into multiple production rules, the length of P〈e〉 increases. To solve this
problem, we modify the evaluation as follows:

• Each ~p ∈ Pci is provided with a weight α(p) ∈ [0, 1] which influences (multiplies)
the size of code of ~p expressing its appropriateness with regard to the previously
described outlining heuristics.

• The production rules from P ′′ci are not involved in counting the size of P〈e〉 for
∀e ∈ ci.

The strategy of assigning α is as follows: At the beginning of the search algorithm
(i.e. when Pci = P ′ci) for ∀~p ∈ P ′ci : α(~p) = 1 representing the fact that each contributes
to the total cost 100% as in the original metric. If two production rules ~p, ~q ∈ Pci are
split into production rules ~o ∈ P ′′ci and ~p′, ~q′ ∈ Pci , such that type(~o) ∈ model(~p′) and
type(~o) ∈ model(~q′), each of them is assigned α as follows:

α(~o′) = new (4)

α(~p′) = α(~p); ~p ∈ P ′ci

Heuristic Methods for Inference of XML Schemas: Lessons Learned and Open Issues 21

= new; ~p ∈ P ′′ci (5)

α(~q′) = α(~q); ~q ∈ P ′ci
= new; ~q ∈ P ′′ci (6)

The new values are counted as follows: Let context(~x) = {~q ∈ P ′ci such that
type(~x) ∈ model(~q) ∨ (∃~p ∈ P ′′ci such that type(~x) ∈ model(~p) ∧ type(~q) ∈
context(~p))} and let model′(~x) be model(~x), where ∀~p ∈ P ′′ci such that type(~p) ∈
model(~x) is recursively replaced with model(~p). The weight α(~x) is evaluated as fol-
lows:

α(~x) = 1− (α1 × sim|context(~x)|i=1 (~qi ∈ context(~x)) +

α2 ×
|context(~x)|
|P ′ci |

+ α3 ×
|model′(~x)| − |stoplist(model′(~x))|

avgki=1(|model′(~qi)|)
) (7)

where
∑3

i=1 αi = 1 and ∀i : αi ∈ [0, 1], sim() evaluates semantic similarity of the given
words and stoplist() returns the set of terminals of the given content model that occur in
the stoplist. In other words, the weight of the outlined production rule is expressed as a
combination of similarity of elements it influences (the higher, the better), the amount of
elements it influences (the more, the better) and its size except for words in the stoplist
(the bigger, the better).

Example 4.16. An example of counting the respective parameters for evaluation of α is
depicted in Table 2. In step 1 we start with three production rules without parameters,
since their weight α remains 1. In step 2 we outline production ~P . It occurs in context of
two original productions and its length is of 6. In step 3 we outline production ~Q which
occurs in context of ~C, but also ~P , resulting in overall context ~A, ~B and ~C. The length of
~Q is of 3. Note that the length of model′(~P) does not change though model(~P) does.

Table 2. An example of evaluation of weight α

Step ~x context(~x) |model′(~x)|
1 A -> a (U W (B | C)) - -

B -> b (X Y W (B | C)) - -
C -> c (D (B | C)) - -

2 A’ -> a (U P) - -
B’ -> b (X Y P) - -
C -> c (D (B | C)) - -
P -> (W (B | C)) ~A, ~B 6

3 A’ -> a (U P) - -
B’ -> b (X Y P) - -
C’ -> c (D Q) - -
P -> (W Q) ~A, ~B 6
Q -> (B | C) ~A, ~B, ~C 3

22 Mlýnková, I., Nečaský, M.

4.3.7. Statistical Analysis of Input Documents If we want to go in the inference
process even further and be more precise, we can exploit the given XML documents
more deeply Mlýnková and Nečaský (2009). Our motivation results from ideas used in
adaptive schema-driven XML-to-relational mapping strategies (e.g. Du et al. (2004)).
They apply various XML-to-XML transformations (such as, e.g. a+ = a, a∗) on the
input XML schema, evaluate them and select the optimal one. For this purpose, we can
exploit almost any equation known for regular expressions. However, since the amount
of options is again large and we would get to the same problem as described above, we
need to restrict ourselves to cases that can be assessed as relevant. But, since we do not
have an etalon in a set of XML queries like the adaptive mapping methods do, we exploit
etalons relevant to schema inference.

Example 4.17. For instance we can find out that in 95% of cases element person
has two subelements phone at maximum and only in 5% of cases there occur elements
person having more than five subelements phone. In the existing works the schema
would be generalized to phone+ or phone* although for most of the input XML docu-
ments it is too general. Consequently, if we exploit the above described equation we could
preserve the first two occurrences of element phone and provide more realistic schema,
i.e. phone phone phone*, bearing more precise information.

For the purpose of the indicated improvements we further extend the rules for merging
states of an automaton. In particular, we add new merging rules that exploit statistics of
the given XML data, i.e. while merging we take into account also additional information
that influence the process.

Example 4.18. An example of exploitation of data statistics is depicted in Figure 18. The
numbers above the particular elements depict the amount of data instances that induce
this production rule. If we do not consider the statistics, we would infer the schema (a).
But, with regard to the data, it would be too general, since most of the person elements
have right three subelements phone, whereas only in few cases there are persons with
more phone numbers. Consequently, from the point of view of preciseness of information
on the data, the schema (b) is much realistic and bears more precise information.

Evaluation of Quality of a Schema Also in this case we need to modify the eval-
uations process, however we encounter an opposite problem. The length of the preferred
production rule is always higher than the length of the most concise one, because (regard-
ing the data statistics) we do not include all the repeating fragments into the repetition.
We again provide the production rules with a weight, β, expressing their appropriateness
with regard to splitting repetitions. The weight is assigned as follows: At the beginning
of the search algorithm, each edge of the PTA is assigned a number of instances it is
induced by. At the same time, each of the production rules is assigned weight β of 1

representing the fact that each contributes to the total cost 100% as in the original met-
ric. If the selected merging rule does not induce merging repetitions, β remains the same
and we only sum up the numbers of instances of the merged edges (as depicted in Fig-
ure 18). If a merging rule that induces repetitions is applied on a production rule ~x, i.e.

Heuristic Methods for Inference of XML Schemas: Lessons Learned and Open Issues 23

Fig. 18. Splitting repetitions. a) application of merging rule a, a, a, ..., a⇒ a+, b)
application of splitting repetitions rule a, a, a, ..., a⇒ a, a, a, a∗

there is a sufficient amount of a repeating pattern r (a sequence r(1)r(2)...r(l)), the weight
β(~x′) of resulting production rule ~x′ is counted as follows: Let repmin be the minimum
amount of occurrences a pattern must fulfill to be merged into a repetition, let i, j, such
that 1 <= i <= j <= l; j − i + 1 >= repmin, determine the borders of the selected
subsequence of repeating patterns to be merged and let ind(r(i)) denote the number of
inducing instances of r(i). Then:

β(~x′) = 1− score(~x′)
score(~x)

(8)

score(~x) =

l∑

k=1

ind(r(k)) (9)

score(~x′) =
i−1∑

k=1

ind(r(k)) + repmin ×maxjk=i(ind(r(k))) +

l∑

k=j+1

ind(r(k)) (10)

Example 4.19. Consider the example in Figure 18. If we do apply merging rule (a),
assuming that repmin = 3, then score(~x) = 105 + 3×105 = 420. If apply merging rule
(b), then score(~x) = 105 + 105 + 105 + 3× 8 = 339, i.e. it is a better candidate.

4.4. Phase IV. Refactorization A natural next phase of each schema inference
method is refactoring or refinement, i.e. improving readability and simplifying structure
while preserving the functionality of the resulting schema. Such requirement is ensured
using a set of rules that enable one to describe equivalent or more general result. A demon-
strative set of rules is depicted in Figure 19.

As we can see, the specified rules enable one to remove duplicate occurrence oper-
ators, to merge sequences of distinct occurrence operators into a single one, to merge

24 Mlýnková, I., Nečaský, M.

a?? ⇒ a? a∗? ⇒ a∗ aa∗ ⇒ a+ (ab)|(ac) ⇒ a(b|c)
a++ ⇒ a+ a?∗ ⇒ a∗ a+a∗ ⇒ a+

a∗∗ ⇒ a∗ a+∗ ⇒ a∗ a?a+ ⇒ a∗

a∗+ ⇒ a∗

a?+ ⇒ a∗

a+? ⇒ a∗

Fig. 19. Merging of operators during refactorization

sequences of the same fragments, to avoid nondeterministic content models etc. Almost
all of the mentioned approaches involve such a phase which indicates that the merging
rules are not optimal and the approaches can still be improved. On the other hand, natu-
rally, we can apply only those rules that do not interfere with other approaches, such as
exploitation of splitting repetitions described in Section 4.3.7.

In phase III. (see Section 4.3) we have also discussed our extension Mlýnková (2009)
of usage an obsolete schema. Apparently, using this approach, there may occur schema
fragments that are not used in any of the input data. In other words, the input XML trees
in I are valid againstGopt

I , however, it is too general and may cover also too distinct data.
Hence, we extend the refactorization process with the following steps:

1. Pruning of unused schema fragments
2. Correction of lower and upper bounds of occurrences of schema fragments
3. Correction of operators
All the three steps can be done using a single linear passing of the input documents in

I and preserving respective flags for particular schema parts.

4.5. Phase V. Inference of Simple Data Types Since most of the current ap-
proaches focus on inference of DTDs, they treat all text values as simple strings, i.e. they
use common PCDATA data type. However, in XML Schema, as well as RELAX NG, we
have a hierarchy of simple data types and also an option to specify user-defined types.
Surprisingly, the inference problem of simple data types is currently highly marginal-
ized. There seem to exist only two exceptions Chidlovskii (2002); Hegewald et al. (2006)
which utilize the same approach: Each set of values of an element/attribute is sim-
ply analyzed to identify the minimal data type which contains all of them. Neverthe-
less, the authors focus only on numeric data types (such as decimal, float, long,
negativeInteger), date, binary and string. Broader sets of simple types or
even user-defined simple types are not supported so far.

4.6. Phase VI. Inference of Integrity Constraints Similarly to the case of infer-
ence of simple data types, the process of inference of integrity constraints (ICs) can be
considered as an additional phase that can extend any of the inference strategies in gen-
eral. An IC is a condition specified on the XML data. From this point of view we can
consider simple data types as ICs as well. However, in this section we mean the “clas-
sical” ICs, in particular those that can be expressed in current XML schema languages
(see Section 2). The most common type of ICs are keys and feign keys. As we have
mentioned, in DTD they are expressed using simple data types ID and IDREF(S) and

Heuristic Methods for Inference of XML Schemas: Lessons Learned and Open Issues 25

are valid in the context of the whole document. In XML Schema we are provided with
constructs unique, key, and keyref which enable one to specify the context/scope
of the constraint. Apart from that, XML Schema involves new constructs assert and
report that correspond to Schematron rules. However, none of the current approaches
focuses on these advanced constructs.

Basic foundations and classifications of XML keys and discussion of the related de-
cision problems can be found in Buneman et al. (2003), satisfiability of specification of
keys is studied in Arenas et al. (2002).

Definition 4.10. A key is a construct (C,P, {L1, L2, ...Lk}), where C, P , L1, L2, ...Lk

are XPath paths without predicates that use only child and descendant axes. C is called
context path, P target path and L1, L2, ...Lk key paths. C can be omitted, i.e. we can
write (P, {L1, L2, ...Lk}). This is equivalent to (/, P, {L1, L2, ...Lk}). If C is omitted
we call the key global key, otherwise, it is called relative key.

For the sake of simplicity we can consider that k = 1, i.e. a key is a construct
(C,P, {L}). A key specifies the following condition: Let c be an element targeted by
C and p and p’ be two elements targeted by P from c. If the value targeted by L from
p equals to the value targeted by L from p’, then p and p’ are the same elements. In
other words, no two different elements targeted by P from c can have the same value of
L. This formalism corresponds to XML Schema keys. C specifies context elements, P
target elements (selector), and L key elements (field).

Example 4.20. A key (//project,member, {mid}) formalizes the XML Schema key
example depicted in Figure 20.

Fig. 20. An example of XML Schema key and keyref constructs

Since the authors of Buneman et al. (2003) do not provide a formalism for foreign
keys, we extend it in a similar manner.

Definition 4.11. A foreign key is a construct (C, (P 1, {L1
1, L

1
2, ... L

1
k})⇒ (P 2, {L2

1, L
2
2,

... L2
k})), where (C,P 2, {L2

1, L
2
2, ...L

2
k}) is a key and P 1, L1

1, L
1
2, ...L

1
k are XPath paths

without predicates that use only child and descendant axes. C can be omitted as in the
case of keys.

For the sake of simplicity we can again consider that k = 1, i.e. a foreign key is a
construct (C, (P 1, {L1}) ⇒ (P 2, {L2})). Let c be an element targeted by C and p1 be

26 Mlýnková, I., Nečaský, M.

an element targeted by P 1 from c. The foreign key specifies that there is an element p2

targeted by P 2 from c such that the value targeted by L1 from p1 equals to the value
targeted by L2 from p2. In other words, each element targeted by P 1 from c refers to
an element targeted by P 2 from c via the pair L1 and L2. A foreign key in this for-
malism corresponds to XML Schema foreign keys. (C, P 2, {L2}) is the referenced key
(refer),C specifies context elements, P 1 target elements (selector), and L1 foreign
key elements (field).

Example 4.21. A foreign key (//project, (document, {mid}) ⇒ (member,
{mid})) formalizes the XML Schema foreign key (keyref construct) depicted in Fig-
ure 20.

Probably the first approach that enables one to search for XML keys can be found in
Grahne and Zhu (2002). The authors first show that the set of candidate keys, i.e. sets of
values that fulfill the condition of uniqueness in a specific context (see Definition 4.10),
is large and we need to select the optimal one. They propose an algorithm based on a
classical data-mining technique called Apriori which enables one to mine all frequent
item sets. For finding minimal keys, i.e. the set where no key is inferable from others the
authors exploit a sound and complete set of inference rules proposed in Buneman et al.
(2003), such as, e.g.

(C, (P, S)) ∧ C ′ ⊆ C → (C ′, (P, S))

(C, (P, S)) ∧ P ′ ⊆ P → (C, (P ′, S)) (11)

Another aim of the authors is to find so-called approximate keys, i.e. those valid in
“almost” the whole XML document. For this purpose they introduce two concepts – sup-
port and confidence of key expression, i.e. measures of interestingness of a key expression
from the point of view of the input data.

In Barbosa and Mendelzon (2003) the authors focus on the problem of inference of
ID and also IDREF(S) attributes. In case of keys, they focus on the same issue, i.e. to
identify the optimal key from the set of candidates, in this case using a greedy search
strategy. Then, having a set of keys, the finding of foreign keys means just checking the
condition specified by Definition 4.11.

In Nečaský and Mlýnková (2009) we propose an approach which enables to discover
keys and foreign keys more precisely using the analysis of XML queries, in particular
join queries. Assume a query Q which joins a sequence of elements S1 targeted by a path
P1 with a sequence of elements S2 targeted by a path P2 on a condition L1 = L2. It
means that Q joins an element e1 from S1 with an element e2 from S2 if e1/L1 equals to
e2/L2.

Example 4.22. An example of such query is depicted in Figure 21. It joins a sequence
of elements targeted by a path //employee with a list of elements targeted by a path
//member on a condition eid = mid at line 05, i.e. an //employee element e is
joined with a //member element m if eid of e equals to mid of m.

Heuristic Methods for Inference of XML Schemas: Lessons Learned and Open Issues 27

01 for $e in //employee
02 return
03 <employee>
04 {$e/name}
05 {for $m in //member[mid=$e/eid]
06 return
07 <member>{$m/../code,$m/position}</member>}
08 {let $d := //document[mid=$e/eid]
09 return
10 <doccnt>{count($d)}</doccnt>
11 <docavgpages>{avg($d/pages)}</docavgpages>}
12 </employee>

Fig. 21. Query with repeating join pattern

Assume that each join is done via a key/foreign key pair. Hence, we can infer from
Q that L1 is a key for elements in S1 or L2 is a key for elements in S2 and the other is
a foreign key referencing the key. From our sample query in Figure 21, we can therefore
infer (//employee, {eid}) or (//member, {mid}). We can also infer the respective
foreign key, i.e. (//member, {mid}) ⇒ (//employee, {eid}) or (//employee,
{eid})⇒ (//member, {mid}), respectively.

The problem is how to decide which of L1 and L2 is the key and which is the foreign
key. For this purpose we analyze the constructs used in the query (e.g. for vs. let
clauses, aggregation functions such as avg, min, max or sum, function count etc.).
On the basis of their usage we are able to output a list of scored keys and for each key
a list foreign keys referencing the key. The score of a key can be negative or positive. A
negative score means that the key is not specified by the XML documents while positive
means that it is satisfied. The absolute value of the score means how sure we are about
it. The method is supposed to be used in combination with any of the methods which
analyze the data to optimize the search process.

4.7. Phase VII. Expressing the Inferred Items in the Target Language Last but
not least we need to express the inferred schema using constructs of the target XML
schema language. In case of DTD constructs it is a quite straightforward process since
the inferred REs only need to be directly rewritten into the respective syntax using clas-
sical approaches such as a state removal method Du and Ko (2001); Linz (2000) or an
algebraic method Brzozowski (1964); Kain (1972). Note that a crucial issue of these
methods is to select the best order of states to remove, since different removal sequences
lead to different regular expressions. For this purpose several heuristics are proposed in
Han and Wood (2007).

In case of XML Schema constructs the situation is much more complicated due to
extensions we proposed Vyhnanovská and Mlýnková (2010); Mlýnková and Nečaský
(2009) and described in phase III. (see Section 4.3). In general in all cases we can exploit

28 Mlýnková, I., Nečaský, M.

classes CEl, CElGr and CAt (see Table 1). Depending on the type of the outlined pro-
duction rule, we simply define respective globally defined element, group of elements,
attribute or group of attributes. The problem is when we want use also classes CCT and
CCTDer, i.e. globally defined complex types and their mutual derivation. Firstly, we nat-
urally need to follow the W3C specifications Thompson et al. (2004). In particular, we
have two choices – extension and restriction. Consequently, we can exploit outlining of
complex types and their derivation only in case it can be specified in either of the two
ways. Otherwise we must use its combination with classes CEl, CElGr and CAt. In ad-
dition, in general we usually have multiple options how to define the type hierarchy.

Example 4.23. Consider the example in Figure 22, where ~P and ~Q denote production
rules outlined from original production rules ~M and ~N . In case (a) we exploit class
CElGr and define groups P and Q that are referenced from element definitions of m and
n. In case (b) we combine classes CElGr, CCT and CCTDer and define complex type P
to be the ancestor of complex types of both elements m and n. Similarly, in case (cNote
that the authors of Buneman et al. (2003) define keys with more key paths.) we define
content model of m, i.e. type mT, to be the ancestor of type nT derived by restriction.

Fig. 22. Options of rewriting into XSD syntax

For selecting the optimal choice we again exploit a thesaurus, but this time we do not
determine semantic similarity of element names, but their mutual hierarchy. The rules are
relatively simple:

Heuristic Methods for Inference of XML Schemas: Lessons Learned and Open Issues 29

• Relationships Broader Term/Narrower Term, which specify more/less general
terms, determine the broader term to be the candidate for ancestor.
• Relationships Use/Used For, which specify authorized/unauthorized terms,

determine any of the terms to be the candidate for ancestor.
• Relationship Related Term determines related terms, for whom a common

ancestor is created.
• In other cases, i.e. when the terms are not related or we cannot say anything about

their semantic relationship, we do not exploit derived complex types.

Example 4.24. Consider again the example in Figure 22. If we knew that “m” is broader
term of “n” (e.g. “employee” and “director”), we would choose schema c). If we knew
that “m” and “n” are related terms (e.g. “cat” and “dog”), we would choose schema
(b). And if we knew that “m” and “n” are not related, but their content models are so
similar that they were selected for merging, we would choose schema (a).

If we consider the resulting schema of existing approaches, i.e. two element defini-
tions that involve separate local specifications of their content models, we can see that
any of the three results is much more informative and precise.

4.8. User Interaction Most of the previously described phases of general inference
algorithm can be further optimized with the usage of user interaction (UI). The optimal
situation would be if a user directly specified, e.g. the clusters of IG, the required merg-
ing rules, the outlined automata, target XML Schema constructs etc. However, since our
primary aim is automatic inference, we cannot expect the user to execute the merging
process, but to help it. Another problem is that the amount of user decisions cannot be
too high, otherwise no one would exploit it.

In Vyhnanovská and Mlýnková (2010) we have proposed several cases when the in-
ference process can benefit from user interaction. In particular we discuss the situations
when the user can confirm/reject:

• clusters of IG to be merged, including clusters of elements with different names
(phase II),
• subautomata to be outlined (phase III),
• candidates for unordered sequences (phase III), and
• XML Schema constructs (i.e. type inheritance and shared fragments) to be used in

the target schema (phase VII).

Since all the cases are based on exploitation of a kind of similarity measure, we ex-
ploit a simple and straightforward two-threshold approach: If the particular similarity
falls below threshold1, the candidate is rejected automatically. If the distance falls be-
tween threshold1 and threshold2, UI is required. And if the result of similarity measure
is higher than threshold2, the candidate is automatically confirmed.

Last but not least, for the sake of clarity, the key characteristics of the described ap-
proaches are summed up in Table 3.

30 Mlýnková, I., Nečaský, M.

Table 3. Key characteristics of heuristic methods

Paper Schema Key Contributions
Shafer (1995); Moh et al.
(2000)

SGML DTD first simple heuristic merging rules

Garofalakis et al. (2000) DTD set of candidate solutions, MDL principle
Wong and Sankey (2003) DTD sk-string merging rule, ACO heuristics
Ahonen (1996) DTD k, h-context merging rule
Chidlovskii (2002); Hegewald
et al. (2006)

XSD precise occurrence ranges, simple data
types

Vošta et al. (2008) XSD unordered sequences, STTGs and RTGs
Vyhnanovská and Mlýnková
(2010)

XSD user interaction

Mlýnková (2009) DTD, XSD exploitation of an obsolete schema
Mlýnková and Nečaský (2009) XSD globally defined schema fragments, ex-

ploitation of data semantics and data statis-
tics

Grahne and Zhu (2002) DTD ID attributes
Barbosa and Mendelzon (2003) DTD ID, IDREF(S) attributes
Nečaský and Mlýnková (2009) XSD confirmation/rejection of keys/foreign keys

using XML queries

5. Open Issues Although each of the existing approaches brings certain interest-
ing ideas and optimizations, there is still a space of possible future improvements. We
describe and discuss them in this section.

User Interaction In most of the existing papers the approaches focus on purely
automatic inference of an XML schema. The problem is that the resulting schema may be
highly unnatural. Although, e.g., the MDL principle evaluates the quality of the schema
using a realistic assumption that it should tightly represent the data and, at the same time,
be concise and compact, user preferences can be quite different. (Note that this is not the
same motivation as in case of papers Bex et al. (2006, 2007) that focus on real-world
DTDs and XSDs.) Hence, a natural improvement may be exploitation of user interaction.
Some of the existing papers (e.g. Ahonen (1996)) mention the aspect of user interaction,
typically in phase IV. (see Section 4.4) of refinement of the result, but there seems to be no
detailed study and, in particular, respective implementation. And, naturally, this problem
is closely related to a suitable user interface which does not require complex operations
and decisions.

In paper Vyhnanovská and Mlýnková (2010) we have proposed our preliminary at-
tempts towards exploitation of user interaction, however we can certainly go even further.
For instance, the user may influence the merging phase by proposing preferred merging
operations/target constructs, clustering similar elements etc. Such approach will not only
enable one to find more concise result, but to find it more efficiently as well.

Other Input Information In all the existing works the XML schema is inferred
on the basis of a set of positive examples, i.e. XML documents that should be valid
against the inferred schema. As we have mentioned, the Gold’s theorem highly restricts

Heuristic Methods for Inference of XML Schemas: Lessons Learned and Open Issues 31

the existing solutions and, hence, the authors focus on heuristic approaches or limit the
methods to particular identifiable classes of languages. But another natural solution to the
problem is to exploit additional information, such as an XML schema or XML queries.

In Mlýnková (2009) we have proposed a preliminary solution exploiting an obsolete
schema, but the exploitation strategy can go even further. A related problem is being
currently solved and, hence, an inspiration can be found in the area of schema evolution
Guerrini and Mesiti (2008); Nečaský et al. (2009) or correction of XML data Bouchou
et al. (2006); Staworko and Chomicki (2006); Svoboda and Mlýnková (2011) at a much
sophisticated level.

In case of exploitation of XML queries the motivation is similar though more obvi-
ous. In Nečaský and Mlýnková (2009) we exploited XML queries just for the purpose
of inference of integrity constraints. But, in general, the queries restrict parts of the data
structure (those that should appear at output) and this partial information can be exploited
for schema inference. A related problem is being solved in the area of XML views Pa-
pakonstantinou and Vianu (2000).

In addition, there seems to be no approach that would exploit negative examples (i.e.
XML documents that should not conform to the schema). In this case we can find a real-
world motivation again in the area of data evolution and versioning.

XML Schema Simple Data Types One of the biggest advantages of the XML
Schema language in comparison to DTD is its wide support of simple data types Biron
and Malhotra (2004). It involves 44 built-in data types such as, e.g., string, integer,
date etc., as well as user-defined data types derived from existing simple types using
simpleType construct. In enables one to derive new data types using restriction of val-
ues of an existing type (e.g. a string value having length greater than two), list of values
of an existing type (e.g. list of integer values) or union of values of existing data types
(e.g. union of positive and negative integers). Hence, a natural improvement of the ex-
isting approaches is a precise inference of simple data types. Unfortunately, most of the
existing approaches omit the simple data types and consider all the values as strings. As
we have mentioned, two exceptions are proposed in Chidlovskii (2002); Hegewald et al.
(2006), but both the algorithms focus only on selected built-in data types.

Also note that the necessity to infer simple data types is naturally closely related to
the purpose the schema is inferred for. Assuming that the resulting XML schema is used
within a kind of XML data editor, the inferring module should propose also simple data
types. On the other hand, if the inferred XML schema is used as a solution for approaches
based on existence of an XML schema, e.g. schema-driven XML-to-relational mapping
methods Shanmugasundaram et al. (1999); Mlýnková (2007), the simple data types are
of marginal importance and, thus, can be omitted.

XML Schema Advanced Constructs The second big advantage of the XML
Schema language are various complex constructs. The language exploits object-oriented
features, such as user-defined data types, inheritance, polymorphism, i.e. substitutability
of both data types and elements etc. Although most of these constructs do not extend
the expressive power of XML Schema in comparison to DTD Mlýnková (2008b), they
enable one to specify more user-friendly and, hence, realistic schemas. Naturally, their

32 Mlýnková, I., Nečaský, M.

usage is closely related to the previously described problem of user-interaction, since the
user can specify which of the constructs are preferred. In Mlýnková and Nečaský (2009);
Vošta et al. (2008); Vyhnanovská and Mlýnková (2010) we have proposed several pre-
liminary approaches towards inference of unordered sequences, shared fragments or type
inference. But, the language itself provides much stronger tools.

Integrity Constraints As we have mentioned, both DTD and XML Schema enable
one to specify not only the structure of the data, but also various semantic constraints.
Both involve ID and IDREF(S) data types that specify unique identifiers and refer-
ences to them. The XML Schema language extends this feature using unique, key and
keyref constructs that have the same purpose but enable one to specify the unique/key
values more precisely, i.e. for selected subsets of elements and/or attributes and valid
within a specified area. In addition, the assert and report constructs enable one
to express specific constraints on values using the XPath language. The current works
focus mainly on the ID, IDREF(S) attributes Grahne and Zhu (2002); Barbosa and
Mendelzon (2003) and exploit various data mining approaches to find the optimal sets of
keys and foreign keys. In Nečaský and Mlýnková (2009) we optimize the search strat-
egy using analysis of XML queries. Unfortunately, all the existing works infer the keys
separately, i.e. regardless a possibly existing XML schema or on the basis of an infer-
ence approach. Similarly, none of them focusses on any of the advanced constraints of
XML Schema or Schematron. In addition, there are also more complex XML integrity
constraints Opočenská and Kopecký (2008) that could be inferred, though they cannot be
expressed in the existing schema specification languages so far, functional dependencies
Yu and Jagadish (2008); Fassetti and Fazzinga (2007) or even languages for express-
ing any integrity constraint in general, such as, e.g., Object Constraint Language (OCL)
OMG (2009). A detailed study of XML integrity constraints can be found in Fan (2005),
whereas their inference would extend the optimization of approaches that analyze and
exploit information on XML data from XML schemas.

Other Schema Definition Languages The DTD and XML Schema are naturally
not the only languages for definition of structure of XML data, though they are undoubt-
edly the most popular ones. The obvious reason is that these two have been proposed by
the W3C, whereas DTD is even a part of specification of XML. Nevertheless, there are
also other relatively popular schema specification languages, the two most popular ones,
RELAX NG and Schematron, are briefly introduced in Section 2. The former language
has higher expressive power than XML Schema and DTD, since it enables one, e.g., to
combine elements and attributes in the regular expressions. The latter one exploits com-
pletely different approach (since it is a pattern-based, not grammar-based language) and,
hence, it will require completely different inference approach.

Data Streams A special type of XML data that have only recently become popular
and, hence, the necessity for proposing respective processing approaches is crucial are so-
called XML data streams. In this particular application the input data are so huge and/or
their amount is so high that they cannot be kept in a memory concurrently, they cannot
be read more than once or their processing cannot “wait” for the last portion of the data.
Hence the situation is much more complicated. All the XML technologies are currently

Heuristic Methods for Inference of XML Schemas: Lessons Learned and Open Issues 33

being accommodated to stream processing and it is only a matter of time when respective
efficient schema inference approach will be required as well.

6. Summary and Future Work In general, the XML schema of XML documents
is currently exploited mainly for two purposes – data-exchange and optimization. In the
former case we usually need the inferred schema as a candidate schema further improved
by a user using an appropriate editor, or in cases when no schema is available. In the latter
case the approaches exploit the knowledge of the schema, i.e. the expected structure of
the data, for optimization purposes such as, e.g., finding the optimal storage Shanmuga-
sundaram et al. (1999) or compression Augeri et al. (2007) strategy. However, in general,
almost any approach that deals with XML data can benefit from the knowledge of their
structure, i.e. XML schema. The only question is to what extent.

In this paper we focussed on the most popular group of approaches for semi-automatic
inference of XML schema for a given set of XML documents – heuristic methods. Their
popularity is given by the fact that their key aim is to provide natural and realistic results,
despite we cannot specify any special features of the resulting schemas.

The main contribution of this paper can be summed up as follows:

• A general framework that characterizes the classical phases of algorithm for
heuristic inference of XML schemas.
• A study of current approaches and their improvements of the particular phases of

the general inference algorithm.
• A detailed description of several optimization approaches we proposed in recent

years and their comparison with current approaches.
• A study of open issues to be solved in the area of schema inference in general.

Recently we have finished implementation of a general and extensible framework
called jInfer Klempa et al. (2012) that covers the general inference phases. Using plugins
it enables one to change the respective approaches and compare their influence on the in-
ference process as well as results in general. (Note that a similar system, called SchemaS-
cope, focussing on the grammar-inferring approaches, was described in Bex et al. (2008).)
In the next phase we will implement the current approaches and provide their detailed
analysis and comparison using nontrivial set of both real-world and synthetic data. And,
finally, in our future work we will focus mainly on the open issues stated in Section 5. Our
primary aim is to study the advantages of other input information (such as XML queries
or XML operations in general) and to infer broader information on the data, in particu-
lar integrity constraints. Our preliminary results in this area using jInfer can be found in
Švirec and Mlýnková (2012); Klempa et al. (2012b); Vitásek and Mlýnková (2012).

References

Ahonen, H. (1996). Generating Grammars for Structured Documents Using Grammati-
cal Inference Methods. Report A-1996-4, Department of Computer Science, University
of Helsinki.

34 Mlýnková, I., Nečaský, M.

Arenas, M., Fan, W., Libkin, L. (2002). On Verifying Consistency of XML Specifications.
In: Proceedings of PODS ’02. ACM Press, Madison, Wisconsin, USA, pp. 259–270.

Augeri, C. J., Bulutoglu, D. A., Mullins, B. E., Baldwin, R. O., Baird, III, Leemon C.
(2007). An Analysis of XML Compression Efficiency. In: Proceedings of ExpCS ’07,
article no. 7. ACM Press, San Diego, California, USA.

Barbosa, D., Mendelzon, A. (2003). Finding ID Attributes in XML Documents. In:
Proceedings of Xsym 2003. Lecture Notes in Computer Science, vol. 2824. Springer
Verlag, Berlin / Heidelberg, pp. 180–194.

Barták, R. (1998). On-Line Guide to Constraint Programming. http://kti.mff.
cuni.cz/~bartak/constraints/.

Bex, G. J., Neven, F., Van den Bussche, J. (2004). DTDs versus XML Schema: a Practical
Study. In: Proceedings of WebDB ’04. ACM Press, New York, NY, USA, pp. 79–84.

Bex, G. J., Neven, F., Schwentick, T., Tuyls, K. (2006). Inference of Concise DTDs from
XML Data. In: Proceedings of VLDB ’06. VLDB Endowment, Seoul, Korea, pp.
115–126.

Bex, G. J., Neven, F., Vansummeren, S. (2007). Inferring XML Schema Definitions from
XML Data. In: Proceedings of VLDB ’07. VLDB Endowment, Vienna, Austria, pp.
998–1009.

Bex, G. J., Neven, F., Vansummeren, S. (2008). SchemaScope: a System for Inferring and
Cleaning XML Schemas. In: Proceedings of SIGMOD ’08. ACM Press, Vancouver,
Canada, pp. 1259–1262.

Biron, P. V., Malhotra, A. (2004). XML Schema Part 2: Datatypes (Second Edition).
W3C. http://www.w3.org/TR/xmlschema-2/.

Bouchou, B., Cheriat, A., Alves, M. H. ., Savary, A. (2006). Integrating Correction into
Incremental Validation. In: Informal Proceedings of BDA ’06. Lille, France.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., Yergeau, F. (2008). Extensible
Markup Language (XML) 1.0 (Fifth Edition). W3C. http://www.w3.org/TR/
REC-xml.

Brzozowski, J. A. (1964). Derivatives of Regular Expressions. J. ACM, 11(4), 481–494.

Buneman, P., Davidson, S., Fan, W., Hara, C., Tan, W.-C. (2003). Reasoning about Keys
for XML. Inf. Syst., 28(8), 1037–1063.

Chidlovskii, B. (2002). Schema Extraction from XML Collections. In: Proceedings of
JCDL ’02. ACM Press, Portland, Oregon, USA, pp. 291–292.

Clark, J. (1999). XSL Transformations (XSLT) Version 1.0. W3C. http://www.w3.
org/TR/xslt.

Heuristic Methods for Inference of XML Schemas: Lessons Learned and Open Issues 35

Clark, J., DeRose, S. (1999). XML Path Language (XPath) Version 1.0. W3C. http:
//www.w3.org/TR/xpath.

Dorigo, M., Birattari, M., Stutzle, T. (2006). Ant Colony Optimization – Artificial Ants
as a Computational Intelligence Technique. Report TR/IRIDIA/2006-023, IRIDIA,
Bruxelles, Belgium.

Du, D.-Z., Ko, K.-I. (2001). Problem Solving in Automata, Languages, and Complexity.
Wiley-Interscience; 1st edition.

Du, F., Amer-Yahia, S., Freire, J. (2004). ShreX: Managing XML Documents in Rela-
tional Databases. In: Proceedings of VLDB ’04. VLDB Endowment, Toronto, Canada,
pp. 1297–1300.

Fan, W. (2005). XML Constraints: Specification, Analysis, and Applications. In: Pro-
ceedings of DEXA ’05 Workshops. IEEE Computer Society, Copenhagen, Denmark,
pp. 805–809.

Fassetti, F., Fazzinga, B. (2007). FOX: Inference of Approximate Functional Depen-
dencies from XML Data. In: Proceedings of DEXA ’07. IEEE Computer Society,
Washington, DC, USA, pp. 10–14.

Gao, S., Sperberg-McQueen, C. M., Thompson, H. S. (2009). W3C XML Schema Defi-
nition Language (XSD) 1.1 Part 1: Structures. W3C. http://www.w3.org/TR/
xmlschema11-1/.

Garofalakis, M., Gionis, A., Rastogi, R., Seshadri, S., Shim, K. (2000). XTRACT: a
System for Extracting Document Type Descriptors from XML Documents. SIGMOD
Rec., 29(2), 165–176.

Gold, E. M. (1967). Language Identification in the Limit. Information and Control,
10(5), 447–474.

Grahne, G., Zhu, J. (2002). Discovering Approximate Keys in XML Data. In: Proceed-
ings of CIKM ’02. ACM Press, McLean, Virginia, USA, pp. 453–460.

Grunwald, P.D. (2005). A Tutorial Introduction to the Minimum Description Principle.
Centrum voor Wiskunde en Informatica. http://homepages.cwi.nl/~pdg/
ftp/mdlintro.pdf.

Guerrini, G., Mesiti, M. (2008). X-Evolution: A Comprehensive Approach for XML
Schema Evolution. In: Proceedings of DEXA ’08. IEEE Computer Society, Washing-
ton, DC, USA, pp. 251–255.

Han, Y.-O., Wood, D. (2007). Obtaining Shorter Regular Expressions from Finite-State
Automata. Theor. Comput. Sci., 370(1-3), 110–120.

36 Mlýnková, I., Nečaský, M.

Hegewald, J., Naumann, F., Weis, M. (2006). XStruct: Efficient Schema Extraction from
Multiple and Large XML Documents. In: Proceedings of ICDEW ’06. IEEE Computer
Society, Washington, DC, USA, pp. 81–81.

Jain, Anil K., Dubes, Richard C. (1988). Algorithms for Clustering Data. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA.

Jelliffe, R. (2001). The Schematron – An XML Structure Validation Language using
Patterns in Trees. http://xml.ascc.net/resource/schematron/.

Kain, R. Y. (1972). Automata Theory: Machines and Languages. McGraw-Hill Inc.,
USA.

Klempa, M., Mikula, M., Smetana, R., Švirec, M., Vitásek, M. jInfer XML Schema Infer-
ence Framework. http://jinfer.sourceforge.net/modules/paper.
pdf.

Klempa, M., Stárka, J., Mlýnková, I. (2012). Optimization and Refinement of XML
Schema Inference Approaches. In: Proceedings of ANT ’12, vol. 10. Elsevier, Niagara
Falls, Canada, pp. 120–127.

Levenshtein, V. I. (1966). Binary Codes Capable of Correcting Deletions, Insertions and
Reversals. Soviet Physics Doklady, 10(8), 707–710.

Linz, P. (2000). An Introduction to Formal Languages and Automata. Jones & Bartlett
Publishers; 3rd edition.

Mani, M. (2001). Keeping Chess Alive: Do We Need 1-Unambiguous Content Models?
Montreal, Canada talk given at Extreme Markup Languages.

Marian, A. (2002). Detecting Changes in XML Documents. In: Proceedings of ICDE ’02.
IEEE Computer Society, Washington, DC, USA, pp. 41–52.

Mignet, L., Barbosa, D., Veltri, P. (2003). The XML Web: a First Study. In: Proceedings
of WWW ’03. ACM Press, Budapest, Hungary, pp. 500–510.

Mlýnková, I. (2008a). An Analysis of Approaches to XML Schema Inference. In: Pro-
ceedings of SITIS ’08. IEEE Computer Society, Los Alamitos, CA, USA, pp. 16–23.

Mlýnková, I. (2009). On Inference of XML Schema with the Knowledge of an Obsolete
One. In: Proceedings of ADC ’09. Australian Computer Society, Inc., Darlinghurst,
Australia, pp. 77–84.

Mlýnková, I., Nečaský, M. (2009). Towards Inference of More Realistic XSDs. In:
Proceedings of SAC ’09. ACM Press, Honolulu, Hawaii, USA, pp. 639–646.

Mlýnková, I., Toman, K., Pokorný, J. (2006). Statistical Analysis of Real XML Data
Collections. Proceedings of COMAD’06. Tata McGraw-Hill, New Delhi, India, pp.
20–31.

Heuristic Methods for Inference of XML Schemas: Lessons Learned and Open Issues 37

Mlýnková, I. (2007). A Journey towards More Efficient Processing of XML Data in
(O)RDBMS. In: Proceedings of CIT ’07. IEEE Computer Society, Washington, DC,
USA, pp. 23–28.

Mlýnková, I. (2008b). Similarity of XML Schema Definitions. Proceeding of Do-
cEng ’08. ACM Press, Sao Paulo, Brazil, pp. 187–190.

Moh, C.-H., Lim, E.-P., Ng, W.-K. (2000). Re-engineering Structures from Web Docu-
ments. In: Proceedings of DL ’00. ACM Press, San Antonio, Texas, USA, pp. 67–76.

Murata, M. (2002). RELAX (Regular Language Description for XML). http://www.
xml.gr.jp/relax/.

Murata, M., Lee, D., Mani, M., Kawaguchi, K. (2005). Taxonomy of XML Schema
Languages Using Formal Language Theory. ACM Trans. Internet Technol., 5(4), 660–
704.

Nečaský, M., Mlýnková, I. (2009). Discovering XML Keys and Foreign Keys in Queries.
In: Proceedings of SAC ’09. ACM Press, Honolulu, Hawaii, USA, pp. 632–638.

Nečaský, M., Klímek, J., Kopenec, L., Kučerová, L., Malý, J., Opočenská, K. (2009).
XCase – A Case Tool for Designing XML. http://www.codeplex.com/xcase.

Nierman, A., Jagadish, H. V. (2002). Evaluating Structural Similarity in XML Docu-
ments. In: Proceedings of WebDB’02. ACM Press, Madison, Wisconsin, USA, pp.
61–66.

OMG. (2009). Object Constraint Language Specification, version 2.0.
http://www.omg.org/technology/documents/formal/ocl.htm.

Opočenská, K., Kopecký, M. (2008). Incox – a Language for XML Integrity Constraints
Description. In: Proceedings of DATESO’08. CEUR-WS.org, Desna – Cerna Ricka,
Czech Republic, pp. 1–12.

Papakonstantinou, Y., Vianu, V. (2000). DTD Inference for Views of XML Data. In:
Proceedings of PODS ’00. ACM Press, Dallas, Texas, USA, pp. 35–46.

Peterson, D., Biron, P. V., Malhotra, A., Sperberg-McQueen, C. M. (2009). W3C XML
Schema Definition Language (XSD) 1.1 Part 2: Datatypes. W3C. http://www.
w3.org/TR/xmlschema11-2/.

Shafer, K. E. (1995). Creating DTDs via the GB-Engine and Fred. In: Proceedings of
SGML’95. Graphic Communications Association, pp. 399.

Shanmugasundaram, J., Tufte, K., Zhang, C., He, G., DeWitt, D. J., Naughton, J. F.
(1999). Relational Databases for Querying XML Documents: Limitations and Op-
portunities. In: Proceedings of VLDB ’99. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, pp. 302–314

38 Mlýnková, I., Nečaský, M.

Staworko, S., Chomicki, J. (2006). Validity-Sensitive Querying of XML Databases. In:
Proceedings of EDBT ’06. Lecture Notes in Computer Science, vol. 4254. Springer
Verlag, Berlin / Heidelberg, pp. 164–177.

Svoboda, M., Mlýnková, I. (2011). Correction of Invalid XML Documents. In: Proceed-
ings of DASFAA ’11. Springer Verlag, Hong Kong, China, pp. 179–194.

Thompson, H. S., Beech, D., Maloney, M., Mendelsohn, N. (2004). XML Schema Part 1:
Structures (Second Edition). W3C. http://www.w3.org/TR/xmlschema-1/.

Torsello, A., Hancock, E. R. (2003). Computing Approximate Tree Edit Distance Using
Relaxation Labeling. Pattern Recogn. Lett., 24(8), 1089–1097.

Touzet, H. (2003). Tree Edit Distance with Gaps. Inf. Process. Lett., 85(3), 123–129.

Touzet, H. (2005). A Linear Tree Edit Distance Algorithm for Similar Ordered Trees.
In: Proceedings of CPM ’05. Lecture Notes in Computer Science. Springer Verlag,
Heidelberg, pp. 334–345.

Vitásek, M., Mlýnková, I. (2012). Inference of XML Integrity Constraints. In: Proceed-
ings of ADBIS ’12. Springer Verlag, Poznan, Poland (in press).

Vošta, O., Mlýnková, I., Pokorný, J. (2008). Even an Ant Can Create an XSD. In:
Proceedings of DASFAA’08. Springer Verlag, New Delhi, India, pp. 35–50.

Švirec, M., Mlýnková, I. (2012). Efficient Detection of XML Integrity Constraints Vio-
lation. In: Proceedings of NDT ’12. Springer Verlag, Dubai, UAE, pp. 259–273.

Vyhnanovská, J., Mlýnková, I. (2010). Interactive Inference of XML Schemas. In: Pro-
ceedings of RCIS ’10. IEEE Computer Society, Nice, France, pp. 191–202.

Wong, R. K., Sankey, J. (2003). On Structural Inference for XML Data. Report UNSW-
CSE-TR-0313, School of Computer Science, The University of New South Wales.

Yu, C., Jagadish, H. V. (2008). XML Schema Refinement Through Redundancy Detection
and Normalization. The VLDB Journal, 17(2), 203–223.

Received June 2011

Heuristic Methods for Inference of XML Schemas: Lessons Learned and Open Issues 39

I. Mlýnková received her Ph.D. degree in Computer Science in 2007 from the Charles
University in Prague, Czech Republic. She is an assistant professor at the Department of
Software Engineering of the Charles University and an external member of the Depart-
ment of Computer Science and Engineering of the Czech Technical University. She has
published more than 60 publications, 4 gained the Best Paper Award. She is a PC mem-
ber or reviewer of 15 international events and co-organizer of 3 international workshops
(X-Schemas@ADBIS, MoViX@DEXA, BenchmarX@DASFAA, all since 2009).

M. Nečaský received his Ph.D. degree in Computer Science in 2008 from the Charles
University in Prague, Czech Republic, where he currently works in the Department of
Software Engineering as an assistant professor. He is an external member of the De-
partment of Computer Science and Engineering of the Faculty of Electrical Engineering,
Czech Technical University in Prague. His research areas involve XML data design, in-
tegration and evolution. He is an organizer or PC chair of three international workshops.
He has published 15 refereed conference papers (2 received the Best Paper Award). He
has published 3 book chapters and a book.

Irena MLÝNKOVÁ, Martin NEČASKÝ

128

Chapter 5

Structural and Semantic
Aspects of Similarity of
Document Type Definitions
and XML Schemas

Aleš Wojnar
Irena Mlýnková
Jǐŕı Dokulil

Published in the Special Issue on Intelligent Distributed Information Systems
of the International Journal on Information Sciences, volume 180, issue 10,
pages 1817–1836. Elsevier, May 2010. ISSN 0020-0255.

Impact Factor: 2.836
5-Year Impact Factor: 3.009

129

130

Structural and semantic aspects of similarity of Document
Type Definitions and XML schemas

Aleš Wojnar, Irena Mlýnková *, Jiří Dokulil
Department of Software Engineering, Faculty of Mathematics and Physics, Charles University, Malostranské nám. 25, 118 00 Praha 1, Czech Republic

a r t i c l e i n f o

Article history:
Received 21 November 2008
Received in revised form 6 November 2009
Accepted 22 December 2009

Keywords:
XML schema
DTD
XSD
Similarity
Data semantics
Structural analysis

a b s t r a c t

The natural optimization strategy for XML-to-relational mapping methods is exploitation
of similarity of XML data. However, none of the current similarity evaluation approaches
is suitable for this purpose. While the key emphasis is currently put on semantic similarity
of XML data, the main aspect of XML-to-relational mapping methods is analysis of their
structure.

In this paper we propose an approach that utilizes a verified strategy for structural sim-
ilarity evaluation – tree edit distance – to DTD constructs. This approach is able to cope
with the fact that DTDs involve several types of nodes and can form general graphs. In addi-
tion, it is optimized for the specific features of XML data and, if required, it enables one to
exploit the semantics of element/attribute names. Using a set of experiments we show the
impact of these extensions on similarity evaluation. And, finally, we discuss how this
approach can be extended for XSDs, which involve plenty of ‘‘syntactic sugar”, i.e. con-
structs that are structurally or semantically equivalent.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Without any doubt the eXtensible Markup Language (XML) [13] has become a standard for data representation and
manipulation. This situation naturally initiated a boom in the efficient implementation of XML data management and pro-
cessing tools. One of the typical optimization strategies is exploitation of similarity of XML data. In general it enables one to
treat similar data in a similar way or to extend appropriate approaches verified for particular data to the whole set of similar
ones.

In this paper we deal with similarity of XML schema fragments expressed in Document Type Definitions (DTDs) [13] or
XML Schema definitions (XSDs) [62,11]. In this area we can deal with either quantitative or qualitative similarity measure. In
the former case we are interested in the degree of difference of the schemas, in the latter one we also want to know how the
schemas relate, e.g. which of the schemas is more general. In this paper we focus on quantitative measure which is currently
used in a huge number of applications such as clustering of XML data [17,59], dissemination-based applications [6,68], sche-
ma integration systems [42,34] or other less obvious areas [53], such as, e.g., e-commerce, semantic and approximate query
processing, etc.

In our case we focus on the exploitation of similarity in schema-driven XML-to-relational mapping strategies [44] where
the similarity of schema fragments can be used for determining the optimal storage strategy in the case of fragments
for which we do not have any other information. The problem we are facing is that none of the current approaches is
suitable for this purpose, since the key emphasis is currently put on semantic similarity. However, since the key aspect of

0020-0255/$ - see front matter � 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.ins.2009.12.024

* Corresponding author.
E-mail addresses: ales.wojnar@gmail.com (A. Wojnar), irena.mlynkova@mff.cuni.cz (I. Mlýnková), jiri.dokulil@mff.cuni.cz (J. Dokulil).

Information Sciences 180 (2010) 1817–1836

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins

XML-to-relational storage strategies is the structure of schema fragments, we focus on more precise structural analysis. On
the other hand, since the semantics of the data can also be important information, we still preserve the exploitation of
semantic similarity. To fulfill both the aims we combine and adapt to DTD constructs two verified approaches – tree edit
distance and semantics of element/attribute names. We show how a well-known and verified methodology of edit distance
can be utilized for DTDs that can involve several types of nodes and form general graphs and even extended with exploita-
tion of semantic similarity. Using a set of experiments we show the impact of these extensions on similarity evaluation. And,
last but not least, we show how this approach can be extended for XSDs, which involve more complex structures than DTDs
and, in particular, plenty of ‘‘syntactic sugar”, i.e. constructs that are structurally or semantically equivalent.

The paper is structured as follows: Section 2 provides the background information on related technologies, as well as an
overview of terms used in the rest of the text. Section 3 reviews the related works dealing with similarity of XML data from
various points of view. Section 4 describes the proposed approach in detail and Section 5 discusses the results of related
experiments. In Section 6 we describe a possible extension of the proposal for XML Schema definitions. Section 7 discusses
the main advantages and disadvantages of the algorithm and compares it with the current approaches. And, finally, Section 8
provides conclusions and outlines future work.

This paper is in fact an extended version of paper [66]. In addition to the strategies and algorithms included to that earlier
work, we now briefly describe how the approach proposed for DTDs can be further extended for XSD-specific constructs. The
full description of this approach can be found in paper [45].

2. Background

An XML document is usually viewed as a directed ordered labeled tree with several types of nodes whose edges represent
relationships among them.

Definition 1. An XML document is a directed ordered labeled tree T ¼ ðV ; E;RE;RA;C; lab; rÞ, where V is a finite set of nodes,
E # V � V is a set of edges, RE is a finite set of element names, RA is a finite set of attribute names, C is a finite set of text
values, lab : V ! RE [RA [C is a surjective function which assigns a label to each v 2 V , whereas v is an element if
labðvÞ 2 RE, an attribute if labðvÞ 2 RA or a text value if labðvÞ 2 C and r is the root node of the tree.

An example of an XML document and its tree representation is depicted in Fig. 1.
The allowed structure of an XML document can be described using an XML schema. The most popular XML schema lan-

guage is currently the Document Type Definition (DTD) [13]. A simple example is depicted in Fig. 2 on left-hand side.
The key aspect of a DTD is a description of the allowed structure of an element using its content model.

Definition 2. A content model a over a set of element names R0E is a regular expression defined as a ¼
�jpcdatajf jða1;a2; . . . ;anÞjða1ja2j . . . janÞjb�jbþ jb?, where � denotes the empty content model, pcdata denotes the text
content, f 2 R0E, ‘‘,” and ‘‘j” stand for concatenation and union (of content models a1;a2; . . . ;an) and ‘‘*”, ‘‘+” and ‘‘?” stand for
zero or more, one or more and optional occurrence(s) (of content model b), respectively.

Definition 3. An XML schema S is a four-tuple ðR0E;R
0
A;D; sÞ, where R0E is a finite set of element names, R0A is a finite set of attri-

bute names, D is a finite set of declarations of the form e! a or e! b, where e 2 R0E; a is a content model over R0E and b # R0A
and s 2 R0E is a start symbol.

To simplify the processing, an XML schema is often transformed into a graph representation called DTD graph [56]. An
example of a schema graph is depicted in Fig. 2 on right-hand side.

Definition 4. A schema graph of a schema S ¼ ðR0E;R
0
A;D; sÞ is a directed, labeled graph G ¼ ðV ; E; lab0Þ, where V is a finite set of

nodes, E # V � V is a set of edges, lab0 : V ! R0E [R0A [f\j"; \ � "; \þ "; \?"; \; "g [fpcdatag is a surjective function which
assigns a label to 8v 2 V and s is the root node of the graph.

Fig. 1. An example of an XML document and its tree representation.

1818 A. Wojnar et al. / Information Sciences 180 (2010) 1817–1836

3. Related work

The number of current papers in the area of XML data similarity is huge. We can evaluate similarity among XML docu-
ments, XML schemas or between the two groups. We can distinguish several levels of similarity, such as, e.g., structural level,
semantic level or constraint level. Or we can require different precisions of the similarity.

3.1. Similarity of XML documents

In the case of document similarity the amount of related techniques is high. In general, we distinguish techniques
expressing similarity of two documents Dx and Dy using the edit distance of their tree representations Tx and Ty (e.g.
[50,18,16,32]) and techniques which specify a simpler representation of Dx and Dy that enables more efficient similarity eval-
uation (e.g. [52,71,26,64]).

The edit distance strategy was originally used for comparing similarity between two strings sx and sy [28,35]. It is based
on the idea of finding the cheapest sequence of edit operations that can transform sx into sy. The edit operations can be de-
fined variously. For example, paper [28] uses a single operation – substitution of a single character, therefore this algorithm
can be used only for strings of the same length. On the other hand, the Levenshtein distance algorithm [35] supports inser-
tion, deletion and substitution of a single character. In addition, a non-negative constant cost is associated with each opera-
tion. In the simplest case all the operations cost one unit except for substitution of identical characters, in which case the cost
is zero.

The edit distance can be applied on labeled trees as well, only the set of operations needs to be adapted respectively. The
basic set of tree edit operations involves insertion and deletion of a single node and relabeling of a node. However, the
respective approaches [60,65,15] are appropriate only for general trees, not for XML data structure. The problem is that
as two documents created from the same DTD can have radically different structure (due to repeatable, optional and alter-
native elements), they would compute an undesirably high distance. Consequently, the true XML tree edit strategies
[50,18,16,32,19] involve more complex operations, in particular insertion and deletion of a whole subtree. In general, the ap-
proaches are quite similar; they slightly differ only in the sets of simple operations (such as, e.g., inserting/deleting a leaf or
inner node, moving a node, etc.) and the way they search for the shortest sequence of edit operations.

The idea of the latter set of approaches [52,71,26,47,41] is that it is possible to find a simpler representation of XML doc-
uments that enables one to evaluate their similarity more efficiently. The basic approaches represent an XML document
using a set of elements, root paths or even all paths (possibly with respective frequencies) and, hence, reduce the problem
to similarity of the sets. Paper [26] proposes an interesting approach that is based on the idea of representing an XML doc-
ument as a time series in which each occurrence of a (start or end) tag represents an impulse. Hence, it reduces the problem
to similarity of two signals. However, the main disadvantage of all these approaches is that they do not consider all XML
features such as, e.g., the order of elements.

3.2. Similarity of an XML document and an XML schema

In the case of the similarity of a document D and a schema S we cannot transform the problem to measuring similarity of
two ordered labeled trees, since, on the one hand, we have a tree, but we have to match it with a schema, i.e. a set of regular
expressions. Thus, the problem is much complicated and the set of solutions is quite small.

We can again identify two types of strategies. On one hand, there are techniques [9,10] based on the fact that while
matching D against S, some attributes and subelements of an element in S can be missing from the corresponding element
in D or D can contain some additional attributes and/or subelements. Hence, they measure the number of elements which
appear in D but not in S and vice versa. On the other hand, there are techniques [49,14] that measure the closest distance
between D and ‘‘all” documents valid against S. The idea is relatively simple: Since an XML schema can be described as
an extended context free grammar [8], S is represented using an automaton (built using Thompson’s classical algorithm
[63]) and the problem is reduced to evaluation of the edit distance between the automaton and a document tree.

Fig. 2. An example of a DTD and its graph representation.

A. Wojnar et al. / Information Sciences 180 (2010) 1817–1836 1819

3.3. Similarity of XML schemas

In the case of methods for measuring the similarity of two XML schemas Sx and Sy, we consider the problem of similarity
of two sets of regular expressions, typically called a schema matching problem [57]. In comparison with the previous case the
amount of current techniques is enormous.

The vast majority of the approaches exploit various supplemental matchers [53], i.e. functions which evaluate similarity of
a particular feature of the given schema fragments, such as, e.g., similarity of labels of leaf nodes or root nodes [40], similarity
of context [38,39,34,54,69] or paths [70,61], similarity of schema instances [37], etc. Some of the approaches also exploit
additional information, such as predefined similarity rules [42], previous results [37], user interaction [21], machine-learning
strategies [37,31], knowledge of related queries [25], constraints [55], etc. All the partial results are then combined into the
resulting similarity value, usually using a kind of a weighted sum, either simple or advanced [23]. Some of the approaches
also focus on special situations, such as matching large schemas [22], matching large number of schemas [59] or matching
several schemas at the same time [30]. But, in general, with regard to the purpose of the similarity measure, the approaches
focus mostly on semantic aspects of data, i.e. similarity of element/attribute names.

A special type of approach has only recently been proposed in [5]. Similarly to the case of XML documents, it is based on
the idea of finding a simpler representation of XML schema fragments that enables one to evaluate their similarity more effi-
ciently. In this particular case the authors exploit Prufer sequences.

In general, due to various approximations and simplifications, the approaches provide more or less precise results. There-
fore, a new research area has recently opened dealing with verification of the resulting matches, i.e. schema fragments de-
noted as similar [12]. However, these approaches are already beyond the scope of this paper.

4. Proposed algorithm

As we have already described in the introduction, we exploit similarity of XML schema fragments in order to allow opti-
mization of XML-to-relational mapping strategies [44]. Hence, contrary to current approaches which search for matching
between semantically related schema fragments, we search for schema fragments which are related structurally. However,
as the semantics of element/attribute names is an important aspect, we want to involve this information as well.

The algorithm we propose is based mainly on the work presented in [50] which focuses on expressing the similarity of
XML documents Dx and Dy using tree edit distance. The main contribution of the algorithm is in introducing two new edit
operations InsertTree and DeleteTree which allow the manipulation of more complex structures than a single node. Since re-
peated structures can be found in a DTD as well, if it contains shared or recursive elements, we must also involve these oper-
ations. However, contrary to XML documents that can be modeled as trees, DTDs can, in general, form general cyclic graphs.
Thus, procedures for computing edit distance of trees need to be modified for use with DTD graphs.

The proposed approach can be divided into three parts as depicted in Algorithm 1. The input DTDs are firstly parsed (lines
1 and 2) and their tree representations are constructed. Next, costs for tree inserting (line 3) and tree deleting (line 4) are
computed. In particular, we pre-compute the cost for deleting all subtrees of Tx and inserting all subtrees of Ty. And, finally
(line 5), we compute the resulting edit distance, i.e. similarity.

Algorithm 1. Main body of the proposed approach

Input: DTDx; DTDy

Output: Edit distance between DTDx and DTDy

1: Tx ¼ ParseXSDðDTDxÞ;
2: Ty ¼ ParseXSDðDTDyÞ;
3: CostGraft ¼ ComputeCostðTyÞ;
4: CostPrune ¼ ComputeCostðTxÞ;
5: return EditDistanceðTx; Ty; CostPrune; CostGraftÞ;

4.1. DTD Tree construction

The key operation of our approach is tree representation of the given DTDs. As we have mentioned, the problem is that a
DTD graph can contain both undirected and directed cycles. In addition, the structure of a DTD can be quite complex – the
specified content models can contain arbitrary combinations of operators (i.e. ‘‘|” or ‘‘,”) and cardinality constraints (i.e. ‘‘?”,
‘‘*” or ‘‘+”). Therefore, we must first simplify the complex regular expressions using a set of transformation rules and we
eliminate the cycles.

4.1.1. Simplification of DTDs
In order to simplify content models we use a classical approach – a set of transformation rules. The biggest set was prob-

ably defined in [56], but these simplifications are too strong for our purpose. Hence, we use only a subset of them as depicted
in Figs. 3 and 4.

1820 A. Wojnar et al. / Information Sciences 180 (2010) 1817–1836

The rules enable one to convert all element definitions so that each cardinality constraint operator is connected to a single
element and, hence, we can merge the nodes of an element and a respective operator in the graph representation. The second
purpose is to avoid usage of ‘‘|” operator. Note that some of the rules do not produce equivalent XML schemes and cause a
kind of information loss. But this aspect is common for all current XML schema similarity measures – it seems that the full
generality of the regular expressions cannot be captured easily. On the other hand, for the purpose of XML-to-relational map-
ping, this loss of information is acceptable since we are usually interested in general aspects such as multiple or optional
occurrence of an element.

4.1.2. Shared and recursive elements
In this step we need to eliminate shared and recursive elements, i.e. undirected and directed cycles in the DTD graph. In

the case of a shared element the solution is simple: We create its separate copy for each sharer as depicted in Fig. 5.
The problem is that in the case of recursive elements the same idea would invoke infinitely deep trees. Nevertheless, we

can combine it with the results of a statistical analysis of real-world XML data [46] that the amount of repetitions of a

Fig. 3. Flattening rules.

Fig. 4. Simplification rules.

Fig. 5. Shared elements and their copies.

Fig. 6. An example of a DTD and its tree representation.

A. Wojnar et al. / Information Sciences 180 (2010) 1817–1836 1821

recursive element is in real-world XML documents very low – less than 10. Consequently, we approximate the infinite
amount of repetitions with a realistic limited constant value based on observations of reality. In addition, since our approach
involves operations on whole trees, it is not important exactly how many occurrences we use, because each of them can be
transformed using a single edit operation.

4.1.3. DTD Tree
Having a simplified DTD without shared and recursive elements, its tree representation is defined as follows:

Definition 5. A DTD Tree is a directed ordered tree T ¼ ðV ; EÞ, where

1. V is a finite set of nodes, s.t. for 8v 2 V ; v ¼ ðvType;vName;vCardinalityÞ, where vType is the type of a node (i.e. attribute, ele-
ment or pcdata), vName is the name of an element/attribute and vCardinality is the cardinality constraint operator of an
element/attribute,

2. E # V � V is a set of edges representing relationships between elements and their attributes or subelements.

An example of a DTD and its tree representation (after simplification) is depicted in Fig. 6.

4.2. Tree edit operations

Having the above described tree representation of a DTD, we can now easily utilize the tree edit algorithm proposed in
[50]. Assume that we are being given a tree T with a root node r and its first-level subtrees T1; T2; . . . ; Tm (m is denoted as a
degree of tree T), then the tree edit operations are defined as follows:

Definition 6. SubstitutionTðrnewÞ is a node substitution operation applied to T that yields the tree T 0 with root node rnew and
first-level subtrees T1; . . . ; Tm.

Definition 7. Given a node x with degree 0, InsertTðx; iÞ is a node insertion operation applied to T at i that yields the new tree
T 0 with root node r and first-level subtrees T1; . . . ; Ti; x; Tiþ1; . . . ; Tm.

Definition 8. If the first-level subtree Ti is a leaf node, DeleteTðTiÞ is a delete node operation applied to T at i that yields the
tree T 0 with root node r and first-level subtrees T1; . . . ; Ti�1; Tiþ1; . . . ; Tm.

Definition 9. Given a tree Tj; InsertTreeTðTj; iÞ is an insert tree operation applied to T at i that yields the tree T 0 with root node
r and first-level subtrees T1; . . . ; Ti; Tj; Tiþ1; . . . ; Tm.

Definition 10. DeleteTreeTðTiÞ is a delete tree operation applied to T at i that yields the tree T 0 with root node r and first-level
subtrees T1; . . . ; Ti�1; Tiþ1; . . . ; Tm.

The transformation of a source tree Tx to a destination tree Ty can be done using various sequences of the operations. But,
we can only deal with so-called allowable sequences, i.e. the relevant ones. For the purpose of our approach we only need to
modify the original definition [50] as follows:

Definition 11. A sequence of edit operations transforming a source tree Tx to a destination tree Ty is allowable if it satisfies
the following two conditions:

1. A tree T may be inserted only if a tree similar to T already occurs in the source tree Tx. A tree T may be deleted only if a tree
similar to T occurs in the destination tree Ty.

2. A tree that has been inserted via the InsertTree operation may not subsequently have additional nodes inserted. A tree that
has been deleted via the DeleteTree operation may not previously have had nodes deleted.

While the original definition requires exactly the same nodes and trees, the requirements can be relaxed to include only
similar ones. The exact meaning of the similarity is explained in the following text and enables one to combine the tree edit
distance with other similarity measures. Also note that each of the edit operations is associated with a non-negative cost as
well.

4.3. Similarity of nodes of a DTD Tree

Since structural similarity is solved via the edit distance, we focus on similarity of information carried in nodes of the tree.
To evaluate the similarity of the nodes u and v we exploit the semantic and syntactic similarity of element/attribute names
and cardinality-constraint similarity.

Semantic similarity of element/attribute names (SemanticSim) is a score that reflects the semantic relation between the
meanings of two words. We exploit procedure described in [34] which determines ontology similarity between two words

1822 A. Wojnar et al. / Information Sciences 180 (2010) 1817–1836

uName and vName by comparing uName with synonyms of vName. It exploits procedure SynSetðwÞ which searches a thesaurus and
returns the set of synonyms of a word w. At the beginning a set S is initialized as S ¼ fvNameg and the depth of algorithm
Adepth ¼ 0. If uName R S, then S ¼

S

w2S
SynSetðwÞ and Adepth ¼ Adepth þ 1, until uName 2 S or Adepth > MAXdepth, where MAXdepth is a

threshold to avoid infinite searching of the thesaurus. If no synonym is found, then SemanticSim is 0, otherwise it is defined
as 0:8Adepth .

Syntactic similarity of element/attribute names (SyntacticSim) is determined by computing the edit distance between
uName and vName. For our purpose the classical Levenshtein algorithm [35] is used for those cases where we cannot rely on
the semantics of element/attribute names, e.g. if abbreviations are used instead.

And finally, we consider similarity of the cardinality constraints (CardSim) of elements. This is determined by the cardi-
nality compatibility table depicted in Table 1. In general, the values can be set variously – in our case we used the values pro-
posed and verified in [34].

The overall similarity of nodes u and v is computed as:

Simðu;vÞ ¼ MaxðSemanticSimðu;vÞ; SyntacticSimðu;vÞÞ � aþ CardSimðu; vÞ � b

where aþ b ¼ 1 and a; b P 0.

4.4. Costs of inserting and deleting trees

Inserting (deleting) a subtree Ti can be done with a single operation InsertTree (DeleteTree) or with a combination of Insert-
Tree (DeleteTree) and Insert (Delete) operations. To find the optimal variant the algorithm uses pre-computed cost for insert-
ing Ti; CostGraftðTiÞ and deleting Ti; CostPruneðTiÞ. The procedure can be divided into two parts: In the first part ContainedIn list
is created for each subtree of Ti; in the second part CostGraft and CostPrune are computed for Ti.

4.4.1. ContainedIn lists
The procedure for determining node similarity is used for creating ContainedIn lists which are then used for computing

CostGraft and CostPrune. The list is created for each node of the destination tree and contains pointers to similar nodes in the
source tree (and vice versa).

The procedure for creating ContainedIn lists described in Algorithm 2, lines 1–5, represents the processing of leaf nodes. In
this case we simply find all nodes similar to the given node and sort them; otherwise, there is first a recursive calling of the
procedure at lines 6–8, i.e. the procedure starts with leaves and continues towards the root. We then, at line 9, find all similar
nodes of n in tree Tx and add them to a temporary list; after which, we have to filter the list with lists of its descendants (lines
10–12). At this step each descendant of v has to be found at a corresponding position in the descendants of nodes in the cre-
ated ContainedIn list. More precisely, let u 2 vContainedIn; childrenu is the set of descendants of u and c is a child of v. Then
cContainedIn \ childrenu–;, otherwise u is removed from vContainedIn. Finally, the list is again sorted (line 13).

Algorithm 2. CreateContainedInListsðTx; vÞ

Input: tree Tx, root v of Ty

Output: CointainedIn lists for all nodes in Ty

1: if v is leaf node then
2: vContainedIn ¼ FindSimilarNodesðTx;vÞ;
3: SortðvContainedInÞ;
4: return;
5: end if
6: for all child of v do
7: CreateContainedInListsðTx; childÞ;
8: end for
9: vContainedIn ¼ FindSimilarNodesðTx;vÞ;
10: for all child of v
11: vContainedIn ¼ FilterListsðvContainedIn; childContainedInÞ;
12: end for
13: SortðvContainedInÞ;

Table 1
Cardinality compatibility table.

* + ? none

* 1 0.9 0.7 0.7
+ 0.9 1 0.7 0.7
? 0.7 0.7 1 0.8
none 0.7 0.7 0.8 1

A. Wojnar et al. / Information Sciences 180 (2010) 1817–1836 1823

4.4.2. Costs of inserting trees
When the ContainedIn list with corresponding nodes is created for node u, the cost for inserting the tree rooted at u can be

assigned. The procedure is shown in Algorithm 3. The for loop (lines 2–5) computes sum sumd0 for inserting node u and all its
subtrees. If InsertTree operation can be applied (ContainedIn list of u is not empty) sumd1 is computed for this operation at line
8. The minimum of these costs is finally denoted as CostGraft for node u.

Algorithm 3. ComputeCost(u)

Input: root u of Ty

Output: CostGraft for Ty

1: sumd0
¼ 1;

2: for all child of u do
3: ComputeCost(child);
4: sumd0

þ ¼ CostGraft(child);
5: end for
6: sumd1

¼ 1;
7: if uContainedIn is not empty then
8: sumd1

¼ ComputeInsertTreeCostðuÞ;
9: end if
10: CostGraftðuÞ ¼Minðsumd0

; sumd1
Þ;

4.4.3. Costs of deleting trees
Since the rules for deleting a subtree of Tx are the same as rules for inserting a subtree of Ty, costs for deleting trees are

obtained by the same procedures. We only switch tree Tx with Ty in procedures CreateContainedInLists (Algorithm 2) and
ComputeCost (Algorithm 3).

4.5. Computing edit distance

The last part of the algorithm, i.e. computing the edit distance, is based on dynamic programming. At this step the
procedure decides which of the operations defined in Section 4.2 will be applied for each node to transform Tx to Ty. This
part of algorithm does not have to be modified for DTDs, so the original procedure presented in [50] is used as depicted
in Algorithm 4.

Algorithm 4. EditDistanceðTx; Ty;CostGraft of Ty;CostPrune of TxÞ

Input: tree Tx and Ty

Output: edit distance of Tx and Ty

1: M ¼ degreeðTxÞ;
2: N ¼ degreeðTyÞ;
3: intdist½ �½ � ¼ newint½0::M�½0::N�;
4: dist½0�½0� ¼ CostSubstitutionðrootðTxÞ; rootðTyÞÞ;
5: for j 2 ½1;N� do
6: dist½0�½j� ¼ dist½0�½j� 1� þ CostGraftðTyj

Þ
7: end for
8: for i 2 ½1;M� do
9: dist½i�½0� ¼ dist½i� 1�½0� þ CostGraftðTxi Þ
10: end for
11: for i 2 ½1;M� do
12: for j 2 ½1;N� do
13: dist½i�½j� ¼

minðdist½i� 1�½j� 1� þ editDistanceðTxi ; Tyj
Þ; dist½i�½j� 1� þ CostGraftðTyj

Þ; dist½i� 1�½j� þ CostPruneðTxi ÞÞ;
14: end for
15: end for
16: return dist½M�½N�;

4.6. Complexity

In [50] it was proven that the overall complexity of transforming a tree Tx into a tree Ty is OðjTxkTyjÞ. In our method we
have to consider procedures for constructing DTD Trees and for evaluating node similarity. Constructing a DTD Tree can be

1824 A. Wojnar et al. / Information Sciences 180 (2010) 1817–1836

done in OðjTxjÞ for tree Tx, so the main influence on the complexity of the algorithm have procedures SemanticSim, Syntac-
ticSim and CardinalitySim. SyntacticSim is computed for each pair of elements in trees Tx and Ty, so the overall complexity
is OðjTxkTykxjÞ, where x is maximum length of an element/attribute label. CardinalitySim is also computed for each pair
of elements, however, with constant complexity, i.e. in OðjTxkTyjÞ. The complexity of SemanticSim depends on the size of
the thesaurus, so the overall complexity is OðjTxkTykRjÞ, where R is the set of words in the thesaurus; it also determines
the complexity of the whole algorithm.

5. Experiments

To analyze the behavior of the proposal we have created an experimental implementation of the proposed approach and
then performed various tests with both synthetic and real-world XML data. The testing software was implemented in C# 2.0
[4] and the particular thesaurus used for evaluation of SemanticSim was WordNet 2.1 [3]. The implementation can be down-
loaded from [1].

The experiments have two phases – preparatory and experimental. In the first phase we need to tune the weights and
parameters of the similarity measure so that it provides realistic results. In the second phase we analyze the behavior of
the proposed improvements on real-world DTDs.

5.1. Tuning of parameters

The experimental implementation enables one to set the following parameters:

� weights a and b of Sim (however only one of the weights needs to be set, since the value of the second one is then
determined),

� node similarity threshold Tsim and
� cost costtree of operations InsertTree/DeleteTree (for simplicity we assume that their costs are equal).

Most of the current papers claim that the setting of similarity parameters can be determined by a user and, hence, it is not
discussed. The problem is how to prepare a reasonable setting so that the similarity measure returns reasonable results. For
this purpose we use the following strategy: Firstly, we prepare a set of synthetic DTDs and we determine their mutual sim-
ilarity from user’s perspective. Then, we set the respective parameters so that the similarity measure returns similar results.
We depict the strategy using four DTDs describing employees. Their mutual user-specified similarity is listed in Table 2.

Firstly, we set Tsim ¼ 0:5 and costtree ¼ 1 (i.e. we use generally acknowledged ‘‘reasonable” values) and analyze the results
of similarity evaluation with changing weight a = 0,0.05,0.1,0.15, . . . ,1 (and respective inverse values of b ¼ 1� a). In Fig. 7
the X-axis represents the values of a and the curves the resulting similarity of the respective pairs of DTDs. As we can see, the
most reasonable values of a corresponding to similarity results expected by a user are represented using the black dots and
occur within the interval of [0.6,0.85] stressed using the vertical lines. The only exception is the similarity of DTDs A and D,
which demonstrates the classical situation that user-specified similarity is not precise.

Secondly, we set a and b and tune the value of Tsim, i.e. we perform the same set of experiments with a ¼ 0:65; b ¼ 0:35;
costtree ¼ 1 and changing Tsim ¼ 0; 0:05; 0:1; 0:15; . . . ; 1. Their results are depicted in Fig. 8. As we can see, the optimal inter-

val for Tsim, i.e. the interval where the expected similarity values (denoted again using black dots) occur is [0.35,0.6] (again
stressed using the vertical lines). Note that in this case the similarity of DTDs A and D is also diverse, even beyond the scope
of the results of the algorithm.

Having a reasonable setting of a; b and Tsim, we can now perform tests for setting costtree. In the current papers all the edit
operations have the same cost of 1 unit; however, using the tests we want to make sure that the setting is also correct for our
case. Otherwise, if we set costtree too high, the operation will never be used since it will be much cheaper to use Insert/Delete
instead. Fig. 9 depicts the results of similarity evaluation for costtree ¼ 0; 0:25; 0:5; 0:75; . . . ; 6. As we can see, except for the
similarity of B and C the edit operations are not involved in the similarity measure if their cost is greater than 1.5, i.e. the
strategy in most of the current papers is reasonable and can be used for our case too.

5.2. Experiments with real-world DTDs

According to the tuning tests in the previous experiments with synthetic data we set a ¼ 0:65; b ¼ 0:35; Tsim ¼ 0:5 and
costtree ¼ 1 and analyze the behavior of our similarity measure on real-world DTDs. In particular, we use the same set of 100

Table 2
Similarity of synthetic DTDs.

A B C D

A 1 0.43 0.60 0.38
B 0.43 1 0.70 0.15
C 0.60 0.70 1 0.38
D 0.38 0.15 0.38 1

A. Wojnar et al. / Information Sciences 180 (2010) 1817–1836 1825

XML schemas (eventually transformed to DTD) that were used in the statistical analysis of real-world XML data [46]. They
can be downloaded from [2].

In the following set of test we focus on usage of all the parameters of the proposed similarity evaluation strategy, i.e.
exploitation of InsertTree/DeleteTree operations, CardinalitySim, SemanticSim and SyntacticSim. As depicted in Table 3, in Test

Fig. 7. Tuning of weights a (and b ¼ 1� a) with fixed values of Tsim ¼ 0:5 and costtree ¼ 1.

Fig. 8. Tuning of node similarity threshold Tsim with fixed values of with a ¼ 0:65; b ¼ 0:35 and costtree ¼ 1.

Fig. 9. Tuning of cost of InsertTree/DeleteTree costtree with fixed values of a ¼ 0:65; b ¼ 0:35; Tsim ¼ 0:5.

1826 A. Wojnar et al. / Information Sciences 180 (2010) 1817–1836

0 we start with all the aspects disabled (denoted with �) and then, in Tests 1–4, we gradually involve them in the similarity
evaluation (denoted with U) and analyze the differences. Test 0 represents the basic tree edit distance and it is used only for
completeness. Test 1 represents classical XML tree edit distance involving InsertTree/DeleteTree operations. In Test 2 we ana-
lyze the impact of CardinalitySim, whereas in Test 3 the impact of SemanticSim and SyntacticSim. Note that we do not analyze
them separately, since, as has been mentioned, they are complementary. Finally, in Test 4 we analyze the impact of all the
proposed improvements.

In all the tests we perform mutual similarity evaluation for all the 100 DTDs resulting in 4950 results. (Note that
SimðTx; TyÞ ¼ SimðTy; TxÞ.) However, due to space limitations and in the interest of clarity we show only the first 1000 most
interesting results.

5.2.1. Test 0 vs. Test 1
In the first set of tests we analyze the necessity of using InsertTree/DeleteTree operations for the case of DTDs. For this

purpose we compare Tests 0 and 1. The former one has all the parameters disabled, i.e. the similarity evaluation corresponds
to classical tree edit distance strategy. In the latter one we enable usage of InsertTree/DeleteTree operations, i.e. it corresponds
to XML tree edit distance.

The results are depicted in Fig. 10 which shows the differences between the respective results of similarity evaluation. For
better clarity the results are sorted according to results of Test 0 (red curve). As we can see, there is a significant portion of
cases where the results of similarity differ, i.e. adding InsertTree/DeleteTree operations provides more precise information. As
expected, all the similarities are higher since the two more complex operations enable one to decrease the amount of simple
edit operations.

In Table 4 we provide more precise information of the 4950 results of Tests 0 and 1. In particular we can see that the num-
ber of cases where the similarity changed is not high – 5.2% of results. The maximum deviation between the results of Tests 0
and 1 is 0.413, i.e. quite high. However, the average deviation is relatively low – 0.0023. It is probably caused by the fact that,
in general, real-world XML schemas are relatively simple and even if they contain shared or recursive elements, they are not
complex. For instance, according to the analysis [46] the most common type of recursion is the linear recursion which con-
sists of a single recursive element that does not branch out.

5.2.2. Test 1 vs. Test 2
Secondly, we compare the results of Test 1, i.e. classical XML tree edit distance, with additional exploitation of similarity

of cardinality constraints (CardinalitySim), i.e. Test 2. As depicted in Fig. 11, the differences between the similarity results are
quite small (even by a magnitude smaller than in the previous case). As stated in Table 4, they are the smallest among all the
performed tests. Also the number of cases that are influenced by involving this information is almost the same as in the case
of the exploitation of InsertTree/DeleteTree operations.

Table 3
Setting of parameters of tests.

Test InsertTree/DeleteTree CardinalitySim SemanticSim SyntacticSim

0 � � � �
1 U � � �
2 U U � �
3 U � U U

4 U U U U

Fig. 10. Tests 0 and 1.

A. Wojnar et al. / Information Sciences 180 (2010) 1817–1836 1827

5.2.3. Test 1 vs. Test 3
Next, we compare the results of Test 1, i.e. classical XML tree edit distance, with the additional exploitation of similarity of

element/attribute names (SemanticSim and SyntacticSim), i.e. Test 3. As we can observe in Fig. 12, in this case the deviation is
quite high and so is the percentage of influenced cases (14.2%). This result is quite expected, though one may anticipate even
greater differences. The problem is that it is quite common that element/attribute names do not have a proper meaning and
various abbreviations or even senseless synthetic names are used instead [46]. For this purpose we have involved also Syn-
tacticSim; however, it apparently cannot cope with all the cases.

5.2.4. Test 1 vs. Test 4
Finally, we compare the results of classical XML tree edit distance (Test 1) with similarity evaluation that involves all the

proposed aspects, i.e. CardinalitySim, SemanticSim and SyntacticSim (Test 4). The results are depicted in Fig. 13 and again in
Table 4. As we can see, in this case almost half of the results are modified and also the deviation of the modifications is the
highest of all the tests. This confirms the assumption of all current schema matching approaches that the more partial results
we include in the overall similarity measure, the more precise results we get. In this particular case we can see that the num-
ber of cases influenced is even higher than the sum of the cases influenced by the parameters separately.

Table 4
Characteristics of comparison tests.

Characteristic 0 vs. 1 1 vs. 2 1 vs. 3 1 vs. 4

Percentage of changes (%) 5.2 6.8 14.2 46.7
Maximum deviation 0.4130 0.0273 0.2962 0.3314
Average deviation 0.0023 0.0002 0.0033 0.0227

Fig. 11. Tests 1 and 2.

Fig. 12. Tests 1 and 3.

1828 A. Wojnar et al. / Information Sciences 180 (2010) 1817–1836

6. Extension to XSDs

In the previous sections we have described the proposed approach considering the DTD language. For the sake of com-
pleteness, in this section we briefly show how it can be easily extended for XSDs. As the approach has already been described
in detail, we will focus only on those aspects that need to be modified. A full description of the algorithm for XSDs can be
found in paper [45].

6.1. XSD constructs and their equivalence

The XML Schema language [62,11] was proposed by the W3C to address the main disadvantage of DTD – simplicity. In
particular, the XML Schema language provides a wide range of simple data types (both built-in and user-defined), object-ori-
ented features (such as inheritance or substitution), strong support for keys/foreign keys or multiple ways for reusing various
parts of a schema through references. On the other hand, most of these advantages complicate the automatic processing of
an XSD, because an XSD equivalent1 to a given DTD can be written in multiple ways and the XSD itself is much more complex.
An example of two XSDs equivalent to the example of a DTD in Fig. 2 are depicted in Fig. 14 examples I and II.

As we can see, the two XSDs differ in the used XML schema constructs; however, the set of XML documents valid against
them is the same. In general, there are sets of XML Schema constructs that enable one to generate XSDs that have different
structure but are structurally equivalent.

Definition 12. Let Sx and Sy be two XSD fragments. Let IðSÞ ¼ fD s:t: D is an XML document fragment valid against Sg. Then
Sx and Sy are structurally equivalent, Sx � Sy, if IðSxÞ ¼ IðSyÞ.

Consequently, having a set X of all XSD constructs, we can specify the quotient set X= � of X by � and respective equiv-
alence classes – see Table 5. For instance, as depicted in Fig. 15, class CST specifies that there is no difference if a simple type is
defined locally or globally. Similarly, CSeq (as depicted in Fig. 16) expresses the equivalence between an unordered sequence
of elements e1; e2; . . . ; el and a choice of all its possible ordered permutations. Also note that each of the remaining XML Sche-
ma constructs not mentioned in Table 5 forms a single class. We will denote these classes as C1;C2; . . . ; Cn.

Apart from XSD constructs that restrict the allowed structure of XML data, we can also find constructs that enable one to
express various semantic constraints. In particular, they involve identity constraints and simple data types ID, IDREF,
IDREFS. Hence, we can again find constructs that enable one to generate XSDs that have different structure but are seman-
tically equivalent.

Definition 13. Let Sx and Sy be two XSD fragments. Then Sx and Sy are semantically equivalent, Sx � Sy, if they abstract the
same reality.

Having a set X of all XSD constructs, we can specify the quotient set X= � of X by � and respective equivalence classes –
see Table 6. Classes C0IdRef and C0KeyRef express the fact that both IDREF(S) and keyref constructs, i.e. foreign keys of other
schema fragments, are semantically equivalent to the situation when we directly copy the referenced schema fragments to
the referencing positions. An example of the equivalent schemas is depicted in Fig. 17. Similar to the previous case, each of
the remaining XML Schema constructs not mentioned in Table 6 forms a single class. We will denote these classes as
C01;C

0
2; . . . ;C0m.

Fig. 13. Tests 1 and 4.

1 Having the same set of instances.

A. Wojnar et al. / Information Sciences 180 (2010) 1817–1836 1829

Each of the previously defined classes of � or � equivalence can be represented using any of its elements. Since we want
to simplify the specification of XSD in order to analyse its similarity, we have selected respective canonical representatives
listed in Tables 5 and 6 as well. They enable one to simplify the structure of the XSD only to core constructs. (Note that since
C1;C2; . . . ;Cn and C01;C

0
2; . . . ;C0m are singletons, the canonical representatives are obvious.)

Fig. 14. Examples of XSDs.

Table 5
XSD equivalence classes of X= �.

Class Constructs Canonical representative

CST Globally defined simple type, locally defined simple type Locally defined simple type
CCT Globally defined complex type, locally defined complex type Locally defined complex type
CEl Referenced element, locally defined element Locally defined element
CAt Referenced attribute, locally defined attribute, attribute referenced via an attribute

group
Locally defined attribute

CElGr Content model referenced via an element group, locally defined content model Locally defined content model
CSeq Unordered sequence of elements e1; e2; . . . ; en , choice of all possible ordered sequences

of e1; e2; . . . ; en

Choice of all possible ordered sequences of
e1; e2; . . . ; en

CCTDer Derived complex type, newly defined complex type Newly defined complex type
CSubSk Elements in a substitution group r, choice of elements in r Choice of elements in r
CSub Data types s1; s2; . . . ; sm derived from type s, choice of content models defined in

s1; s2; . . . ; sm; s
Choice of content models defined in
s1; s2; . . . ; sm; s

1830 A. Wojnar et al. / Information Sciences 180 (2010) 1817–1836

6.2. Similarity of XSD constructs

Similar to the case of DTDs, the key aspect of the similarity evaluation is a tree representation of the given XSDs. We also
need to simplify the content models of XSDs and to eliminate shared and repeatable elements. While the latter problem can
be solved the same way as in the case of DTDs (see Section 4.1), in the former case we exploit the above defined equivalence
classes.

6.2.1. Simplification of XSDs
In the first step of the simplification of XSDs we exploit structural equivalence � of XSD constructs and we replace each

construct with the respective canonical representative. Let r be the root node of the canonical representative and, at the same
time, add the respective class to the set req� ; the resulting schema will not contain shared schema fragments and unordered
sequences.

Fig. 15. Example for class CST .

Fig. 16. Example for class CSeq .

Table 6
XSD equivalence classes of X= �.

Class Constructs Canonical representative

C0IdRef Locally defined schema fragment, schema fragment referenced via IDREF attribute Locally defined schema fragment

C0KeyRef Locally defined schema fragment, schema fragment referenced via keyref element Locally defined schema fragment

Fig. 17. Example for class C0IdRef .

A. Wojnar et al. / Information Sciences 180 (2010) 1817–1836 1831

In the second step we exploit semantic equivalence � and we again replace each construct with its canonical represen-
tative r and we add the respective class to req� . Now, the resulting schema involves only elements, attributes, operators
choice and sequence, intervals of allowed occurrences, simple types and assertions.

In the third step we simplify the remaining content models. For this purpose we can use the same rules as depicted in
Figs. 3 and 4. Though they are expressed for DTD constructs, we can reuse them if we consider that ‘‘|” represents choice,
‘‘,” represents sequence, ‘‘?” represents interval [0,1], ‘‘+” represents intervals ½m;n�, where m > 0 and n > 1, ‘‘*” represents
intervals ½m;n�, where m P 0 and n > 1 and empty operator represents interval [1,1].

6.2.2. XSD tree
Now, having a simplified XSD without shared and recursive elements, its tree representation is defined as follows:

Definition 14. An XSD tree is an ordered tree T ¼ ðV ; EÞ, where

1. V is a set of nodes of the form v ¼ ðvType; vName;vCardinality;veq� ;veq� Þ, where vType is the type of a node (i.e. attribute, ele-
ment or particular simple data type), vName is the name of an element or an attribute, vCardinality is the interval ½m;n� of
allowed occurrence of v ; veq� is the set of classes of � v belongs to and veq� is the set of classes of � v belongs to,

2. E # V � V is a set of edges representing relationships between elements and their attributes or subelements.

An example of tree representation of XSD in Fig. 14 example I (after simplification) is depicted in Fig. 18.

6.2.3. Similarity evaluation
Having the tree representation of an XSD, we can now reuse most of the previously defined similarity evaluation strategy.

The key difference is apparently in evaluation of similarity of XSD tree nodes u and v. In particular, we consider all the infor-
mation carried in each node, i.e. semantic and syntactic similarity of element/attribute names, similarity of cardinality con-
straints, structural and semantic similarity of schema fragments and similarity of data types.

Semantic similarity (SemanticSim) and syntactic similarity (SyntacticSim) of element/attribute names are determined in
the same way as in the case of XSDs.

On the other hand, contrary to the case of DTDs, similarity of cardinality constraints (CardSim) is determined by similarity
of intervals uCardinality ¼ ½ulow; uup� and vCardinality ¼ ½v low;vup�. It is defined as follows:

CardSimðu; vÞ ¼ 0; ðuup < v lowÞ _ ðvup < ulowÞ
¼ 1; uup; vup ¼ 1^ ulow ¼ v low

¼ 0:9; uup; vup ¼ 1^ ulow–v low

¼ 0:6; uup ¼ 1_ vup ¼ 1
¼ minðuup ;vupÞ�maxðulow ;v lowÞ

maxðuup ;vupÞ�minðulow ;v lowÞ
; otherwise

Structural and semantic similarity of schema fragments (StrFragSim and SemFragSim) rooted at u and v is determined by
the similarity of sets ueq� ; veq� and ueq� ; veq� . It is defined as follows:

StrFragSimðu; vÞ ¼ 1; ueq� ;veq� ¼ ;
¼ jueq�\veq� j
jueq�[veq� j

; otherwise

SemFragSimðu;vÞ ¼ 1; ueq� ;veq� ¼ ;
¼ jueq� \veq� j
jueq� [veq� j

; otherwise

Fig. 18. An example of an XSD tree.

1832 A. Wojnar et al. / Information Sciences 180 (2010) 1817–1836

And, finally, similarity of data types (DataTypeSim) is determined by similarity of simple types uType and vType. It is specified
by a type compatibility matrix that determines similarity in distinct simple types. For instance, similarity of string and nor-

malizedString is 0.9, whereas similarity of string and positiveInteger is 0.5. Similarly, the table involves similarity
of restrictions of simple types specified either via derivation of data types or assertions as well as similarity between element
and attribute nodes. (We omit the whole table owing to its length.)

The overall similarity, Simðu;vÞ of nodes u and v is computed as follows:

Simðu;vÞ ¼ MaxðSemanticSimðu;vÞ; SyntacticSimðu;vÞÞ � a1 þ CardSimðu;vÞ � a2

þ StrFragSimðu;vÞ � a3 þ SemFragSimðu;vÞ � a4 þ DataTypeSimðu;vÞ � a5

where
P5

i¼1ai ¼ 1 and 8i : ai P 0.
Complexity Since the modifications of the algorithm for the purpose of XSDs do not have higher complexity than the orig-

inals, the overall complexity is mainly determined by exploitation of SemanticSim, i.e. the size of the thesaurus.

6.3. Experiments

The experimental evaluation of the modifications for XSDs is similar to the DTD case. When we depict the features of the
approach using the three XSDs in Fig. 14, we can see the difference between XSD I and II is only within classes of � equiv-
alence. On the other hand, XSD III differs in more aspects, such as, e.g., simple types, allowed occurrences, globally/locally
defined data types, exploitation of groups, element/attribute names, attributes vs. elements with simple types etc.

Table 7 depicts the results in the case we set a3 ¼ a4 ¼ 0, i.e. we ignore the information on the original constructs of XML
Schema. In this case similarity of XSD I and XSD II is 1.0, because they are represented using identical XSD trees. Similarity
between XSD I vs. XSD III and XSD II vs. XSD III is also equivalent for the same reasons, though naturally lower.

If we set a3–0 (according to our experiments it should be >0.2 to influence the algorithm), the resulting similarity is influ-
enced by the difference between the used XML Schema constructs. The results are depicted in Table 8, where we can see
more precise results. In particular, the similarity of XSD I and II is naturally – 1.0, and the similarity of XSD II and III is higher
due to the respective higher structural similarity of constructs.

On the other hand, if we set a4–0 and a3 ¼ 0, i.e. we are interested in semantic similarity of schema fragments, the results
have the same trend as the results in Table 7, because we again omit the structural similarity of XSD constructs, but in this
case the semantic similarity of schema fragments relationships and connections is high.

As we have mentioned, the most time consuming operation of the approach which determines the overall complexity of
the algorithm is searching the thesaurus. Hence, in the last test we try to omit evaluation of SemanticSim. If we consider the
first situation, i.e. when a3 ¼ a4 ¼ 0, it influences similarity with XSD III (which drops to 0.33), whereas similarity of XSD I
and II remains the same because the respective element/attribute names are the same. The results in case a3–0 are depicted
in Table 9. As we can see, the similarity of XSD I and II again remains the same, whereas the other values are much lower.

Table 7
Similarity for a3 ¼ a4 ¼ 0.

XSD I XSD II XSD III

XSD I 1.000 1.000 0.820
XSD II 1.000 1.000 0.820
XSD III 0.820 0.820 1.000

Table 8
Similarity for a3–0.

XSD I XSD II XSD III

XSD I 1.000 0.890 0.660
XSD II 0.890 1.000 0.700
XSD III 0.660 0.700 1.000

Table 9
Similarity without SemanticSim.

XSD I XSD II XSD III

XSD I 1.000 0.890 0.240
XSD II 0.890 1.000 0.255
XSD III 0.240 0.255 1.000

A. Wojnar et al. / Information Sciences 180 (2010) 1817–1836 1833

In general, the experiments show that various parameters of the similarity measure can highly influence the results. On
the other hand, we cannot simply analyze all possible aspects, since some applications may not be interested, e.g., in seman-
tic similarity of used element/attribute names or the structurally equivalent constructs XML Schema involves.

7. Discussion

In the previous sections we have proposed an approach that enables one to evaluate similarity of XML schema fragments.
Contrary to current papers (see Section 3) our approach brings several advantages and innovations.

7.1. Structural similarity

The most important advantage of our approach is a precise analysis of the structure of the compared XML schema frag-
ments. Since most of the current approaches exploit the similarity measure for different purposes than we do, they focus
mainly on semantic similarity of the given fragments, i.e. they mostly analyze the element/attribute names. In some cases
the structure is taken into account – for instance leaf nodes or child nodes of the root node, paths, etc. are analyzed as well.
However, a true structural analysis is not done. Since the similarity measure we propose is primarily used for the purpose of
XML-to-relational mapping strategies, we focus on precise analysis of the structural aspects. The usage of edit distance en-
ables us to fully propagate the structural differences to the resulting similarity. In addition, since we exploit more complex
edit operations, i.e. inserting/deleting whole subtrees, the edit distance corresponds to features of XML data. Currently, there
seems to exist only a single approach that exploits tree edit distance for XML schema similarity evaluation [29]; however, the
authors deal with a special case of schemas of web service operations and, hence, they can consider only simple edit oper-
ations and schema constructs.

7.2. Exploitation of semantics

Even though we have just mentioned that our primary aim is structural analysis, we still want to incorporate semantic
aspects as well. The reason being that even though the main decision for appropriate XML-to-relational storage strategy is
the structure and complexity of the given XML schema fragment, the semantic aspects can provide more precise information
when the given fragments are structurally highly similar, and we can still choose from multiple storage strategies.

7.3. XSD constructs

Apart from structural similarity of DTD fragments, we propose an extension of the proposed approach for XSD constructs.
For this purpose we defined classes of equivalence of XSD constructs. Since we firstly preprocess the given XSDs so that they
involve only canonical representatives of the equivalence classes, we are able to easily cope with the ‘‘syntactic sugar” of
XML Schema language. However, since we preserve the information of the originally used constructs, we can still incorporate
it to the resulting similarity if necessary. To our knowledge, this is the first approach that considers equivalency of XSD con-
structs in relation to similarity evaluation.

7.4. Tuning of weights

Finally, similar to current papers we exploit the idea of a weighted sum of various supplemental similarity measures. On
one hand this approach requires a reasonable tuning of the weights so that the overall similarity measure returns realistic
results. However, on the other hand, it enables one to easily exclude various aspects and to adapt the similarity measure to
the particular application. For example, as mentioned in the previous paragraph, using the weights we can easily include or
exclude the information on the originally used XSD construct.

8. Conclusion

The exploitation of similarity is a classical optimization approach for most of XML processing approaches. Hence, the area
of XML similarity evaluation is wide. We can even find several papers which compare and contrast various subsets of current
approaches from different points of view [20,53,57] as well as theoretic studies [58]. However, although the amount of cur-
rent approaches is wide, there are still several open problems to be solved.

In this paper we focused on the problem of structural similarity of DTDs. For this purpose we have combined two ap-
proaches and adapted them to DTD-specific structure – edit distance and semantic similarity. The exploitation of edit dis-
tance enables one to analyze the structure of DTDs more precisely, whereas semantic similarity enables one to get more
precise results, though at the cost of searching a thesaurus. Using a set of experiments we have demonstrated the features
of the proposal. And finally, we have described its adaptation for XML Schema language and, in particular, its ‘‘syntactic
sugar”.

1834 A. Wojnar et al. / Information Sciences 180 (2010) 1817–1836

In our future work we will focus mainly on further improvements of our approach. The first possible improvement can be
found in using other edit operations such as, e.g. moving a node or adding/deleting a non-leaf node. Secondly, simplification
rules which are satisfactory for our primary purpose should be improved, because the loss of information is relatively high in
general. Another remaining issue that persists in most similarity approaches that involve a kind of weighted sum is the ques-
tion of reasonable setting of the weights. In general, all such approaches consider the possibility of setting the weights
according to user’s requirement as an advantage. However, the problem is how to find such reasonable setting.

The key aim of our future work will be to find further ways of exploiting our proposal, i.e. areas that can be optimized
with its usage. The possible range is relatively wide and involves problems such as XML query evaluation [7,33,43], XML data
storage strategies [67,44], XSLT transformations [24,27], reverse engineering of XML data [48] or even searching of best K
objects [51,36]. However, each such strategy has different requirements for the similarity evaluation and, hence, it needs
to be appropriately adapted.

Acknowledgement

We would sincerely like to thank all our reviewers for their careful reading of the paper and for their extremely valuable
comments and suggestions. Our thanks also go to our sponsors, in particular this work was supported in part by the Czech
Science Foundation (GAČR), Grant No. 201/09/P364.

References

[1] http://www.ksi.mff.cuni.cz/mlynkova/xmlsim/app.zip.
[2] http://www.ksi.mff.cuni.cz/mlynkova/xmlsim/dtd.zip.
[3] WordNeta – Lexical Database for the English Language, Princeton University, 2006. <http://wordnet.princeton.edu/>.
[4] The C# Language, Microsoft Corporation, 2008. <http://msdn.microsoft.com/en-us/vcsharp/aa336809.aspx>.
[5] A. Algergawy, E. Schallehn, G. Saake, Improving XML schema matching performance using prufer sequences, Data Knowl. Eng. 68 (8) (2009) 728–747.
[6] M. Altinel, M.J. Franklin, Efficient filtering of XML documents for selective dissemination of information, in: VLDB’00: Proceedings of 26th International

Conference on Very Large Data Bases, Morgan Kaufmann, San Francisco, CA, USA, 2000, pp. 53–64.
[7] D. Bednarek, Output-driven XQuery evaluation, in: Intelligent Distributed Computing, Systems and Applications, Studies in Computational Intelligence,

vol. 162, Springer-Verlag, 2008, pp. 55–64.
[8] J. Berstel, L. Boasson, XML grammars, in: Mathematical Foundations of Computer Science, LNCS, Springer, 2000, pp. 182–191.
[9] E. Bertino, G. Guerrini, M. Mesiti, A matching algorithm for measuring the structural similarity between an XML document and a DTD and its

applications, Inform. Syst. 29 (1) (2004) 23–46.
[10] E. Bertino, G. Guerrini, M. Mesiti, I. Rivara, C. Tavella, Measuring the Structural Similarity among XML Documents and DTDs, Technical Report DISI-TR-

02-02, Dipartimento di Informatica e Scienze dell’Informazione, Universita‘ di Genova, 2001. <ftp://ftp.disi.unige.it/person/MesitiM/papers/BGM-
xml.pdf>.

[11] P.V. Biron, A. Malhotra, XML schema part 2: datatypes (second ed.), W3C, 2004. <www.w3.org/TR/xmlschema-2/>.
[12] A. Bonifati, G. Mecca, A. Pappalardo, S. Raunich, G. Summa, Schema mapping verification: the spicy way, in: EDBT’08: Proceedings of the 11th

International Conference on Extending Database Technology, ACM, New York, NY, USA, 2008, pp. 85–96.
[13] T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler, F. Yergeau, Extensible Markup Language (XML) 1.0 (fourth ed.), W3C, 2006. <http://www.w3.org/TR/

REC-xml/>.
[14] E.R. Canfield, G. Xing, Approximate XML document matching, in: SAC’05: Proceedings of the 2005 ACM Symposium on Applied Computing, ACM Press,

New York, NY, USA, 2005, pp. 787–788.
[15] S.S. Chawathe, Comparing hierarchical data in external memory, in: VLDB’99: Proceedings of the 25th International Conference on Very Large Data

Bases, Morgan Kaufmann, San Francisco, CA, USA, 1999, pp. 90–101.
[16] S.S. Chawathe, H. Garcia-Molina, Meaningful change detection in structured data, in: SIGMOD’97: Proceedings of the 1997 ACM SIGMOD International

Conference on Management of Data, ACM Press, New York, NY, USA, 1997, pp. 26–37.
[17] I. Choi, B. Moon, H.-J. Kim, A clustering method based on path similarities of XML data, Data Knowl. Eng. 60 (2) (2007) 361–376.
[18] G. Cobena, S. Abiteboul, A. Marian, Detecting changes in XML documents, in: ICDE’08: Proceedings of the 18th International Conference on Data

Engineering, IEEE Computer Society, San Jose, CA, USA, 2002, pp. 41–52.
[19] T. Dalamagas, T. Cheng, K.-J. Winkel, T. Sellis, A methodology for clustering XML documents by structure, Inform. Syst. 31 (3) (2006) 187–228.
[20] H. Do, S. Melnik, E. Rahm, Comparison of schema matching evaluations, in: Revised Papers from the NODe’02 Web and Database-Related Workshops

on Web, Web-Services, and Database Systems, Springer-Verlag, London, UK, 2003, pp. 221–237.
[21] H.H. Do, E. Rahm, COMA – a system for flexible combination of schema matching approaches, in: VLDB’02: Proceedings of the 28th International

Conference on Very Large Data Bases, Morgan Kaufmann, Hong Kong, China, 2002, pp. 610–621.
[22] H.-H. Do, E. Rahm, Matching large schemas: approaches and evaluation, Inform. Syst. 32 (6) (2007) 857–885.
[23] F. Duchateau, Z. Bellahsene, R. Coletta, A flexible approach for planning schema matching algorithms, in: OTM’08: Proceedings of the OTM 2008

Confederated International Conferences, CoopIS, DOA, GADA, IS, and ODBASE 2008, Springer-Verlag, Berlin, Heidelberg, 2008, pp. 249–264.
[24] J. Dvorakova, F. Zavoral, Using Input Buffers for Streaming XSLT Processing, in: Proceedings of the First International Conference on Advances in

Databases, Knowledge, and Data Applications, IEEE Computer Society, Los Alamitos, CA, USA, 2009, pp. 50–55.
[25] H. Elmeleegy, M. Ouzzani, A. Elmagarmid, Usage-based schema matching, in: ICDE’08: International Conference on Data Engineering, 2008, pp. 20–29.
[26] S. Flesca, G. Manco, E. Masciari, L. Pontieri, A. Pugliese, Detecting structural similarities between XML documents, in: WebDB’02: Proceedings of the

Fifth International Workshop on the Web and Databases, Madison, Wisconsin, USA, 2002, pp. 55–60.
[27] S. Groppe, J. Groppe, Output schemas of XSLT stylesheets and their applications, Inform. Sci. 178 (21) (2008) 3989–4018.
[28] R.W. Hamming, Error detecting and error correcting codes, Bell Syst. Tech. J. 26 (2) (1950) 147–160.
[29] Y. Hao, Y. Zhang, Web services discovery based on schema matching, in: ACSC’07: Proceedings of the 30th Australasian Conference on Computer

Science, Australian Computer Society, Inc., Darlinghurst, Australia, 2007, pp. 107–113.
[30] B. He, K.C.-C. Chang, A holistic paradigm for large scale schema matching, SIGMOD Rec. 33 (4) (2004) 20–25.
[31] B. Jeong, D. Lee, H. Cho, J. Lee, A novel method for measuring semantic similarity for XML schema matching, Expert Syst. Appl. 34 (3) (2008) 1651–

1658.
[32] T. Jiang, L. Wang, K. Zhang, Alignment of trees – an alternative to tree edit, Theor. Comput. Sci. 143 (1) (1995) 137–148.
[33] H.-H. Lee, W.-S. Lee, Selectivity-sensitive shared evaluation of multiple continuous XPath queries over XML streams, Inform. Sci. 179 (12) (2009) 1984–

2001.

A. Wojnar et al. / Information Sciences 180 (2010) 1817–1836 1835

[34] M.L. Lee, L.H. Yang, W. Hsu, X. Yang, XClust: clustering XML schemas for effective integration, in: CIKM’02: Proceedings of the 11th International
Conference on Information and Knowledge Management, ACM Press, New York, NY, USA, 2002, pp. 292–299.

[35] V.I. Levenshtein, Binary codes capable of correcting deletions, insertions and reversals, Sov. Phys. Dokl. 10 (1966) 707.
[36] G. Li, C. Li, J. Feng, L. Zhou, SAIL: structure-aware indexing for effective and progressive top-K keyword search over XML documents, Inform. Sci. 179

(21) (2009) 3745–3762.
[37] J. Madhavan, P.A. Bernstein, A. Doan, A. Halevy, Corpus-based schema matching, in: ICDE’05: Proceedings of the 21st International Conference on Data

Engineering (ICDE’05), IEEE Computer Society, Washington, DC, USA, 2005, pp. 57–68.
[38] J. Madhavan, P.A. Bernstein, E. Rahm, Generic schema matching with cupid, in: VLDB’01: Proceedings of the 27th International Conference on Very

Large Data Bases, Morgan Kaufmann, San Francisco, CA, USA, 2001, pp. 49–58.
[39] S. Melnik, H. Garcia-Molina, E. Rahm, Similarity flooding: a versatile graph matching algorithm and its application to schema matching, in: ICDE’02:

Proceedings of the 18th International Conference on Data Engineering, IEEE Computer Society, Washington, DC, USA, 2002, p. 117.
[40] P.D. Meo, G. Quattrone, G. Terracina, D. Ursino, Integration of XML schemas at various ‘‘severity” levels, Inform. Syst. 31 (6) (2006) 397–434.
[41] F. Meziane, Y. Rezgui, A document management methodology based on similarity contents, Inform. Sci. 158 (1) (2004) 15–36.
[42] T. Milo, S. Zohar, Using schema matching to simplify heterogeneous data translation, in: VLDB’98: Proceedings of 24th International Conference on

Very Large Data Bases, Morgan Kaufmann, San Francisco, CA, USA, 1998, pp. 122–133.
[43] J.-K. Min, M.-J. Park, C.-W. Chung, XTREAM: an efficient multi-query evaluation on streaming XML data, Inform. Sci. 177 (17) (2007) 3519–3538.
[44] I. Mlynkova, A journey towards more efficient processing of XML data in (O)RDBMS, in: CIT’07: Proceedings of the Seventh International Conference on

Computer and Information Technology, IEEE Computer Society, Fukushima, Japan, 2007, pp. 23–28.
[45] I. Mlynkova, Equivalence of XSD constructs and its exploitation in similarity evaluation, in: ODBASE’08, LNCS, vol. 5332, Springer-Verlag, Monterrey,

Mexico, 2008, pp. 1253–1270.
[46] I. Mlynkova, K. Toman, J. Pokorny, Statistical analysis of real XML data collections, in: COMAD’06: Proceedings of the 13th International Conference on

Management of Data, Tata McGraw-Hill Publishing, New Delhi, India, 2006, pp. 20–31.
[47] R. Nayak, Fast and effective clustering of XML data using structural information, Knowl. Inform. Syst. 14 (2) (2008) 197–215.
[48] M. Necasky, Reverse engineering of XML schemas to conceptual diagrams, in: APCCM’09: Proceedings of the Sixth Asia-Pacific Concerence on

Conceptual Modelling (to appear), CRPIT, Australian Computer Society, Inc., 2009.
[49] P.K. Ng, V.T. Ng, Structural similarity between XML Documents and DTDs, in: ICCS’03: Proceedings of the Third International Conference on

Computational Science, Springer-Verlag, 2003, pp. 412–421.
[50] A. Nierman, H.V. Jagadish, Evaluating structural similarity in XML documents, in: WebDB’02: Proceedings of the Fifth International Workshop on the

Web and Databases, Madison, Wisconsin, USA, 2002, pp. 61–66.
[51] M. Ondreicka, J. Pokorny, Extending Fagin’s algorithm for more users based on multidimensional B-tree, in: Advances in Databases and Information

Systems, Lecture Notes in Computer Science, vol. 5207, Springer, 2008, pp. 199–214.
[52] D. Rafiei, D.L. Moise, D. Sun, Finding syntactic similarities between XML documents, in: DEXA’06: Proceedings of the 17th International Conference on

Database and Expert Systems Applications, IEEE Computer Society, Washington, DC, USA, 2006, pp. 512–516.
[53] E. Rahm, P.A. Bernstein, A survey of approaches to automatic schema matching, VLDB J. 10 (4) (2001) 334–350.
[54] K. Saleem, Z. Bellahsene, E. Hunt, PORSCHE: Performance ORiented SCHEma Mediation, Inform. Syst. 33 (7–8) (2008) 637–657.
[55] S. Sellami, A.-N. Benharkat, R. Rifaieh, Y. Amghar, Extension of schema matching platform ASMADE to constraints and mapping expression, 2009, pp.

223–234.
[56] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D.J. DeWitt, J.F. Naughton, Relational databases for querying XML documents: limitations and

opportunities, in: VLDB’99: Proceedings of 25th International Conference on Very Large Data Bases, Morgan Kaufmann, San Francisco, CA, USA, 1999,
pp. 302–314.

[57] P. Shvaiko, J. Euzenat, A survey of schema-based matching approaches, J. Data Semantics IV 3730 (2005) 146–171.
[58] M. Smiljanic, M. van Keulen, W. Jonker, Formalizing the XML schema matching problem as a constraint optimization problem, in: DEXA’05:

Proceedings of the 20th International Conference on Database and Expert Systems Applications, LNCS, vol. 3588, Springer-Verlag, 2005, pp. 333–342.
[59] M. Smiljanic, M. van Keulen, W. Jonker, Using element clustering to increase the efficiency of XML schema matching, in: ICDEW’06: Proceedings of the

22nd International Conference on Data Engineering Workshops, IEEE Computer Society, Los Alamitos, CA, USA, 2006, pp. 45–54.
[60] K.-C. Tai, The tree-to-tree correction problem, J. ACM 26 (3) (1979) 422–433.
[61] N. Tansalarak, K.T. Claypool, QMatch – using paths to match XML schemas, Data Knowl. Eng. 60 (2) (2007) 260–282.
[62] H.S. Thompson, D. Beech, M. Maloney, N. Mendelsohn, XML Schema part 1: structures (second ed.), W3C, 2004. <www.w3.org/TR/xmlschema-1/>.
[63] K. Thompson, Programming techniques: regular expression search algorithm, Commun. ACM 11 (6) (1968) 419–422.
[64] X. Wan, A novel document similarity measure based on earth mover’s distance, Inform. Sci. 177 (18) (2007) 3718–3730.
[65] L. Wang, K. Zhang, K. Jeong, D. Shasha, A system for approximate tree matching, IEEE Trans. Knowl. Data Eng. 6 (4) (1994) 559–571.
[66] A. Wojnar, I. Mlynkova, J. Dokulil, Similarity of DTDs based on edit distance and semantics, IDC’08, Studies in Computational Intelligence, vol. 162,

Springer-Verlag, Catania, Italy, 2008, pp. 207–216.
[67] J. Yaghob, F. Zavoral, Semantic Web Infrastructure using DataPile, in: The 2006 IEEE/WIC/ACM International Conference on Web Intelligence and

Intelligent Agent Technology, IEEE Press, Los Alamitos, California, 2006, pp. 630–633.
[68] T.W. Yan, H. Garcia-Molina, The SIFT information dissemination system, ACM Trans. Database Syst. 24 (4) (1999) 529–565.
[69] S. Yi, B. Huang, W.T. Chan, XML application schema matching using similarity measure and relaxation labeling, Inform. Sci. 169 (1–2) (2005) 27–46.
[70] A. Zerdazi, M. Lamolle, Computing path similarity relevant to XML schema matching, in: OTM’08: Proceedings of the OTM Confederated International

Workshops and Posters on On the Move to Meaningful Internet Systems, Springer-Verlag, Berlin, Heidelberg, 2008, pp. 66–75.
[71] Z. Zhang, R. Li, S. Cao, Y. Zhu, Similarity metric for XML documents, in: FGWM’03: Proceedings of the International Workshop on Knowledge and

Experience Management, Karlsruhe, Germany, 2003.

1836 A. Wojnar et al. / Information Sciences 180 (2010) 1817–1836

Chapter 6

Analyzer: A Complex System
for Data Analysis

Jakub Stárka
Martin Svoboda
Jan Sochna
Jǐŕı Schejbal
Irena Mlýnková
David Bednárek

Published in the Computer Journal, volume 55, issue 5, pages 590–615. Ox-
ford University Press, 2012. ISSN 0010-4620.

Impact Factor: 0.785
5-Year Impact Factor: 0.943

151

152

© The Author 2011. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oup.com

Advance Access publication on 13 October 2011 doi:10.1093/comjnl/bxr103

Analyzer: A Complex System for Data
Analysis

Jakub Stárka
∗
, Martin Svoboda, Jan Sochna, Jiří Schejbal,

Irena Mlýnková and David Bednárek

Department of Software Engineering, Charles University in Prague, Malostranské nám. 25, 118 00 Praha 1,
Czech Republic

∗Corresponding author: starka@ksi.mff.cuni.cz

Recently eXtensible Markup Language (XML) has achieved the leading role among languages for data
representation and, thus, we can witness a massive boom of corresponding techniques for managing
XML data. Most of the processing techniques, however, suffer from various bottlenecks worsening
their time and/or space efficiency. We assume that the main reason is they consider XML collections
too globally, involving all their possible features, although real-world data are often much simpler.
Even though some techniques do restrict the input data, the restrictions are mostly unnatural. This
paper aims to introduce Analyzer—a complex framework for performing statistical analyses of real-
world documents. Exploitation of results of these analyses is a classical way how data processing
can be optimized in many areas. Although this intent is legitimate, ad hoc and dedicated analyses
soon become obsolete, they are usually built on insufficiently extensive collections and are difficult
to repeat. Analyzer represents an easily extensible framework, which helps the user with gathering

documents, managing analyses and browsing computed reports.

Keywords: XML data analysis; XML data crawling; XML data correction; structural analysis;
XQuery analysis

Received 9 May 2011; revised 7 August 2011
Handling editor: Ethem Alpaydin

1. INTRODUCTION

The eXtensible Markup Language (XML) [1] is currently a
de facto standard for data representation. Its popularity is
given by the fact that it is well defined, easy to use and,
at the same time, powerful enough. Firstly, XML was only
exploited as a syntax for parametrization files. However, with
the growing popularity of advanced XML technologies (such
as XML Schema [2, 3], XPath [4], XQuery [5], XSLT [6]
etc.) there appeared also true XML applications that exploit
the whole family of XML standards for managing, processing,
exchanging, querying, updating and compressing XML data
that mutually compete in speed, efficiency and minimum space
and/or memory requirements. Similarly, there occurred a huge
amount of standards based on XML technologies, such as
WSDL [7], SVG [8], RDF [9], OpenOffice [10] etc., that exploit
the advantages of XML for specific purposes. Unfortunately,
for a majority of these techniques and applications there can be
found a number of drawbacks concerning their efficiency.

Under closer investigation we can distinguish two situations.
On the one hand, there is a group of general techniques that
take into account all possible features of input XML data. This
idea is obviously correct, but the problem is that the XML
standards were proposed in full possible generality so that
future users can choose what suits them most. Nevertheless,
the real-world XML data are usually not so ‘rich’, thus the
effort spent on every possible feature is mostly useless. From
the point of view of structural or space efficiency, it can even be
harmful. On the other hand, there are techniques that somehow
do restrict features of the given input XML data. For them
it is natural to expect inefficiencies to occur only when the
given data do not correspond to these restrictions. (In extreme
cases, selected approaches even do not support any other data
than those that they can process efficiently.) The problem is
that such restrictions do not result from features of real-world
XML applications and requirements, but they are often caused
by limitations of a particular technique, complexity of such a

The Computer Journal, Vol. 55 No. 5, 2012

 at U
niverzita K

arlova v Praze on O
ctober 9, 2012

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

Analyzer: A Complex System for Data Analysis 591

solution, irregularities etc. Consequently, the restrictions are not
natural and do not reflect user requirements.

We can naturally pose two apparent questions:

(i) Is it necessary to take into account a feature that will
be used minimally or will not be used at all?

(ii) If so, what are these features?

The answer for the first question obviously depends on the
particular situation, i.e. application. The second question can
be answered only using a detailed analysis of a sample set of
real-world XML documents. However, working with real-world
data is not simple, since they can often change, are not precise
or even involve a number of errors. In our approach, we have
addressed the following four problems:

(i) Data crawling: there exists a huge number of web
crawlers; however, their filters and crawling strategies
must be retargeted from HTML to the XML family of
documents.

(ii) Processing of incorrect data: since the data are usually
human-written, they contain a number of errors. In this
case we can either discard the incorrect data and, hence,
lose a significant portion of them, or provide a kind of
corrector.

(iii) Structural analysis: a number of features like size,
depth or fan-out may be statistically examined in a
collection of XML documents; similar analysis may
also be applied to XML schemas in any form.

(iv) Query analysis: a collection of XQuery, XSLT or
XPath queries may be examined for the presence of cer-
tain query language constructs or their combinations.
Because of the complexity of the query languages and
the large variety of motivations for such examination,
the analytical tool must be as generic as possible.

In addition, we have to cope with the fact that the data can
change and, hence, the analytical phase must be repeatable
and extensible. And, finally, having obtained the results of the
statistics, we need to be able to visualize and analyze the huge
amount of information efficiently and mutually compare the
results.

In this paper, we describe a proposal background, architecture
outline, implementation aspects and usage scenarios of a general
framework called Analyzer that aims to cope with all the
previously named requirements. In other words, it provides
all the essential functionality for an easy management of
files to be analyzed, configuration and execution of selected
analyses and an advanced graphical user interface (GUI) for
browsing generated reports. The key advantage of Analyzer
is extensibility. This not only means the ability to implement
own and more suitable kernel components responsible, e.g. for
storing computed analytical data, but primarily the open concept
of plugins. Analyzer provides a general environment, whereas
all analytical computations themselves are defined solely within
the implementation of plugins. The user is therefore expected to

first install Analyzer itself and then create his/her own plugins
designed to correspond to the determined research intents.
Although our initial motivations were related to XML data,
Analyzer usage is not limited only to this area.

Contributions. The key contributions of this paper can be
summed up as follows:

(i) We introduce the architecture and functionality of
Analyzer. To our knowledge it is a unique application
that enables to perform automatic, repeatable and
extensible analyses of real-world data. It currently
supports modules for XML data processing and
analyses, however, using plugins it can be extended
to any kind of data.

(ii) Analyzer is a complex tool that supports not only the
analytical part, but also various ‘supportive’functions,
such as data crawling or data correction, as well as
user-related features, such as definition of projects,
visualization of results etc.

(iii) With regard to the current support of XML, we study
and describe four related issues—XML data crawling,
XML data correction, structural analysis of XML data
and query analysis of XML queries. In the former three
cases we provide significant extensions to the current
approaches; in the latter case we provide a unique
approach which has not been considered in the current
papers so far.

(iv) We provide an overview of the current-related work, in
particular, results of statistical analyses of real-world
XML data. It enables us to show that all the results
can easily be covered by Analyzer, further extended
and repeated so that data changes and application
evolution can be studied. Again, to our knowledge,
such a feature has not been considered in the recent
literature so far.

Outline. The paper is structured as follows. In Section 2
we provide a brief motivating discussion which outlines the
necessity of analyses of real-world XML data. In Section 3
we describe the architecture of Analyzer, which indicates its
general functionality. The next four sections are devoted to four
key parts of Analyzer—data crawling (Section 4), processing
of incorrect data (Section 5), structural analysis (Section 6) and
query analysis (Section 7). In Section 8 we describe the related
papers relevant to our research and in Section 9 we indicate
remaining open problems and possible future extensions of
Analyzer. Finally, in Section 10 we conclude.

Relation to previous work. In this paper, we partially exploit,
combine and, in particular, extend our several previous results.
Motivated by a successful and interesting statistical analysis of
real-world XML data [11], Analyzer was implemented as an
SW project of Master students of the Department of Software

The Computer Journal, Vol. 55 No. 5, 2012

 at U
niverzita K

arlova v Praze on O
ctober 9, 2012

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

592 J. Stárka et al.

Engineering of the Charles University in Prague. Its installation
package as well as documentation and source files can be
found at its official website [12]. Its first release 1.0 involved
only basic functionality to demonstrate its key features and
advantages and it was briefly introduced in paper [13]. Its
four key parts were then extended in four master theses of its
authors supervised by Irena Mlýnková and David Bednárek.
In particular, Jan Sochna [14] focussed on the primary aspect
of Analyzer—efficient crawling of XML data. Svoboda [15]
proposed several improvements of algorithms for correction
of XML data. Stárka [16] focussed on an important aspect of
the structural analysis of XML data, i.e. XML similarity. And,
finally, Schejbal [17] dealt in his thesis in current a most open
topic of analysis of XML operations, i.e. XQuery queries. In the
following text we describe and put into context the key results
of the four theses and, in particular, show their close connection
and resulting advantages and contributions they bring. Our aim
is to provide a thorough description of all aspects of Analyzer
as well as data analysis in general, useful for both future users
of Analyzer and researchers dealing with related issues.

2. MOTIVATION

The idea of exploitation of the knowledge of real-world data
is not new and currently we can find several applications and
use cases, where it is successfully applied. From the general
point of view we are interested in the subset of constructs and
structures allowed by a particular language that is commonly
used in practice. In this section, we provide several examples,
where the knowledge of real-world data has been successfully
exploited.

Incorrect assumptions on real-world data. One of the most
important advantages of statistical analyses of real-world data
are refutation of incorrect assumptions on typical use cases,
features of the data, their complexity etc. As an example we can
consider two distinct cases—schema-driven XML-to-relational
storage strategies and exploitation of recursion.

Schema-driven XML-to-relational mapping methods [18, 19]
are based on an existing schema S1 of stored XML documents
which is mapped to an (object-)relational database schema S2.
The data from XML documents valid against S1 are then stored
into relations of S2. The purpose of these methods is to create
an optimal schema S2, which consists of a reasonable amount
of relations and whose structure corresponds to the structure of
S1 as much as possible. Naturally, such approaches require a
presence of an XML schema. However, statistical analyses of
real-world XML data show that a significant portion of XML
documents (52% [20] of randomly crawled or 7.4% [11] of
semi-automatically collected) still have no schema at all. What
is more, XML Schema definitions (XSDs) are used even less
(only for 0.09% [20] of randomly crawled or 38% [11] of semi-
automatically collected XML documents) and even if they are

used, they often (in 85% of cases [21]) define so-called local
tree grammars [22], i.e. grammars that can be defined using
DTD as well. Hence, these methods need to be accompanied
with approaches for inference of an XML schema for a given
set of XML documents [23, 24].

Conversely, the support for recursion is often neglected and
it is considered as a side/auxiliary construct. However, analyses
show that in selected types of XML data it is used quite often
(in 58% of all DTDs [25], or in 43% of document-centric
and 64% of exchange documents [11]) and, hence, its efficient
support is very important. On the other hand, the number of
distinct recursive elements is typically low (for each category
less than 5) and that the type of recursion commonly used is
very simple.

Efficient processing of XML data with limited complexity.
Another important observation common to all the current papers
describing results of statistical analyses of real-world data is that
the data is usually much simpler than the respective standard
allows. Such a feature opens a wide range of optimization
strategies that do not have to consider the full generality of the
standard, but can count on some limitations. One of the most
surprising observations of this kind is that the average depth of
XML documents is <10, mostly around 5. This information is
already widely exploited in techniques [26, 27] that represent
XML documents as a set of points in multidimensional space
and store them in corresponding data structures, e.g. R-trees,
UB-trees [28] or BUB-trees [29], for the purpose of efficient
querying. The dimension of the space is given by the depth of
the data, and so the lower, the better.

Restriction to real-world data structures. A situation similar to
the previous one occurs in cases when we can restrict a particular
approach only to cases that occur in real-world data and, hence,
have a reasonable basis. A research area that widely exploits
the knowledge of complexity of real-world data is inference of
XML schemas from a given sample set of XML documents.
Since according to Gold’s theorem [30] regular languages (i.e.
those generated by XML schemas) are not identifiable only from
positive examples (i.e. sample XML documents which should
be valid against the resulting schema), the existing methods
need to exploit either heuristics or a restriction to an identifiable
subclass of regular languages. The question is which subclass
should be considered. The authors of papers [31, 32] obtain
a result from their analysis of real-world XML schemas [21]
and define the classes so that they cover most of the real-world
examples. So the identifiable subclass corresponds to a realistic
situation.

Tuning of weights and parameters. Last but not least typical
example of exploitation of characteristics of real-world XML
data can be found in reasonable and realistic setting of
various weights, parameters and characteristics of different
approaches. As an example we can consider two XML

The Computer Journal, Vol. 55 No. 5, 2012

 at U
niverzita K

arlova v Praze on O
ctober 9, 2012

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

Analyzer: A Complex System for Data Analysis 593

applications—evaluation of similarity of XML schemas and
adaptive XML-to-relational storage strategies.

Similarity of XML schemas is currently exploited in many
approaches, typically as a kind of optimization heuristics. The
current approaches [33–35] are based on the idea of exploitation
of various matchers, i.e. functions that evaluate similarity of
selected simple data characteristics (e.g. similarity of element
names, similarity of number of subelements etc.). Their results
are then aggregated to a resulting composite similarity measure
using a kind of weighted sum. The problem is how to set the
weights so that the result reflects the reality. And the solution
can be found in statistical analyses of real-world data.

In case of adaptive XML-to-relational storage strategies we
need to solve a similar problem. The approaches [36, 37] focus
on the idea that each application requires a different storage
strategy to achieve optimal efficiency. So, before they provide
the resulting mapping, they analyze a given set of sample data
and operations which represent the target application and adapt
the resulting mapping accordingly. Hence, again, an analysis of
real-world data is crucial so that the algorithm works correctly
and efficiently.

Apparently, in all the described examples we need to know the
structure and complexity of the real-world data as precisely as
possible. What is more, since user requirements often change
and new applications occur every day, we also need to know
whether and how the data characteristics evolve and adapt the
approaches and optimizations accordingly.

3. FRAMEWORK ARCHITECTURE

This section is concerned with the architecture of Analyzer, the
proposed analytical model and basic implementation aspects.

3.1. Framework architecture

The implementation of Analyzer allows one to work with
multiple opened projects at once, each representing one
analytical research intent. Thus, we can divide the framework
architecture into two separate levels, as it is depicted in Fig. 1.
The first one contains components, which are shared by all the
projects. The second one represents components exclusively
used and created in each opened project separately.

Project components. Components at the project level involve
particularly repositories, storages and crawlers. They are
exclusively owned by each project, but this does not mean
that, e.g. a real relational database server behind a repository
cannot be used by multiple projects. This is allowed and a given
component only has to ensure the required isolation between
individual projects (which can be done easily in the given
example using different databases).

First, each project must have a single repository. It serves for
storing all computed analytical data and the majority of project
configuration metadata. Although the design of Analyzer does
not require it, all provided repository implementations are based
on standard relational databases. Secondly, storages are used
for storing document contents, i.e. binary contents of analyzed
files. The only stable implementation is based on a native file
system, but experiments were taken with native storages for
XML documents, too. Thirdly, there are two ways how we can
insert files to be analyzed into a created project. First, we are able
to import them from a specified storage, or we can use crawlers
to download them from the Web. The download process may
involve accessing of explicitly required files, or the crawler itself
may be able to attempt to find other referenced files using link
traversal, limited only by a maximum allowed searching depth.

An essential design feature of all these three components is
extensibility. Although a typical user would probably not need
it, new components can be implemented and added relatively
easily into the entire system.

The project layer also contains a set of managers, which are
responsible for creating, editing and processing of all entities
such as documents, collections or reports. As all computed
analytical data are stored permanently in a repository, in order
to increase efficiency, the managers are able to cache loaded
data and release them, if they are no longer required at runtime.
Some managers are also able to postpone and aggregate update
operations, but the consistency of computed data are still
guaranteed.

Shared components. Shared components are instantiated only
once in a running Analyzer application and are used by all
opened projects together. Passing over auxiliary components,
the most important one is a launcher, which is responsible
for executing tasks over all such projects. Tasks represent

FIGURE 1. Architecture of Analyzer.

The Computer Journal, Vol. 55 No. 5, 2012

 at U
niverzita K

arlova v Praze on O
ctober 9, 2012

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

594 J. Stárka et al.

small units of analytical or other actions and computations.
For example, each download of a selected file or computation
over a given document is internally encapsulated and processed
in a form of a task. Once it is decided that some work
should be done, a new task is created, scheduled and later
on prepared for execution, if no blocking dependencies exist.
The execution itself is invoked by the launcher, maintaining a
parallel environment with worker threads prepared in a pool. If
a given task could not be successfully finished (for whatever
reasons), launcher attempts to execute it repeatedly with a
defined number of attempts.

Clearly, this model is a compromise, since it decreases
the efficiency, but enables nearly full control over project
processing. The user is able to attach/detach a particular
project to/from the launcher and, thus, say whether tasks from
the project should be executed at the moment, or not. As
a consequence, the user can pause started computations and
resume them later.

Graphical user interface. The GUI is based on possibilities of
the NetBeans platform [38]. It brings the complete and robust
environment for creating and managing projects and performing
analyses from their configuration to browsing of the computed
reports.

The browser itself contains adjustable windows through
which the user is able to monitor the progress of computations
and browse all existing entities in opened projects. The data are
provided mainly in the form of interactive trees or listings. More
complicated project actions, like creation of new components
or configuration of analyses, are implemented using wizards.

3.2. Analysis model

In this section, we describe the life cycle of a typical analysis.
As an example, suppose we want to develop an indexing
service over Linked Data [39] and we want to know their basic
characteristics, e.g. maximum and average depth or average
number of child elements, to optimize our service. We choose
DBpedia1 as a source of data, create a project and set up all
components described in the previous section. Documents are
stored locally and the computed results in a MySQL database.
For this analysis, we discard all documents except for RDF
ones.Additionally, we add plugins to get expected results which
have to be able to identify the RDF files, repair them and
compute expected characteristics. When Analyzer downloads
the files, the analyzed measures are computed and stored in
the repository. Then we create a collection with all documents,
Analyzer computes aggregated results and we can use the results
for the optimization.

Later on, we decide to extend the service to index over
another domain, e.g. data.gov.uk. We can use our old project
and download and analyze a new version of the documents from

1http://dbpedia.org.

DBpedia and data.gov.uk. We add a new collection with newly
added files from DBpedia to get the changes and a collection
with all actually downloaded files to get actual characteristics
of the examined domains.

From the previous example, we can derive the following list
that represents a standard life cycle of each project:

(i) Creation of a new project and configuration of
repository, storages and crawlers,

(ii) Selection and configuration of analyses using
available plugins,

(iii) Insertion of documents to be analyzed through import
or download sessions,

(iv) Computation of analytical results over documents of
a given relative age,

(v) Selection and configuration of clusters and collec-
tions,

(vi) Document classification and assignment into collec-
tions and

(vii) Computation of final statistical reports over particular
collections.

Projects encapsulate inserted documents, configuration of
analyses and computed data and represent a single research
intent. During creation of a new project, the user can (besides
changing other configuration) optionally select document types
the project should be dedicated for. This selection is defined by
a set of regular expression patterns over types.

The next step is a selection of analyses to be used in a
given project (Fig. 2). This selection is based on a list of all
currently available plugins, but the user can only instantiate a
particular plugin once, if such a plugin is not configurable. As
will be explained later, plugins offer their functionality through
methods. An integral part of configuration of analyses is also
the definition of the desired ordering of such methods.

Next, the user can import or download required documents. If
a project involves type filtering, a given document is removed,
if it does not match any of the provided patterns. The following
step is creation of new clusters with sets of collections. Once
a new collection is created, the classification of all existing
documents satisfying other filtering criteria is automatically
initiated. The final step is closing of clusters which invokes
aggregation of results into reports. The reports are stored
permanently and the user can browse them any time later.

FIGURE 2. Analysis model diagram.

The Computer Journal, Vol. 55 No. 5, 2012

 at U
niverzita K

arlova v Praze on O
ctober 9, 2012

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

Analyzer: A Complex System for Data Analysis 595

FIGURE 3. Document model diagram.

FIGURE 4. Session model diagram.

Model of documents. Each document to be analyzed is
characterized by a pair of physical and logical resources
(Fig. 3). The first one is the URL address from which the file
was really imported, downloaded or sought from. The second
one represents an address Analyzer ‘thinks’ the original file
should be located at. However, the guessing heuristic is not
currently completely implemented and is a subject of our future
work which will exploit and combine the crawling module
(Section 4), and the query analysis (Section 7). Analyzer itself
is able to maintain multiple versions of the same file. Several
consecutive import or download sessions are always grouped
together into chains, defining a relative age for all documents in
them (Fig. 4). It is not allowed to have more than one document
of the same logical resource and the same relative age in a
project.

The document entity itself is only an abstraction of a file—
data content of a given file is treated independently and
maintained using storages. Once a new document is inserted
into a project, the corresponding file content is bound with this
document entity. When generating content corrections, a new
content version is always created and the previous one is thrown
away, unless the previous one is the original one.

During the first steps of document processing, document
types are recognized. Because this detection is realized by
plugins, the typing concept is not limited and developers are
allowed to work with their own typing namespace. However, we
have proposed to harness standardized MIME types. The most

important fact about types is that each document is described
by a set of recognized types, not only a single type. The idea
behind types is simple: plugins recognize types, plugins analyze
only documents of selected known types and, finally, projects
can be restricted to processing of selected types only.

Analyzer also supports detection and processing of links
between documents. A link is a typed reference from a source
document to a target document, e.g. schema declarations in
XML documents or image source file definitions in HTML [40]
pages. The system is able to automatically delay processing
of a given document until all required and accessible target
documents are present in a project too.

Model of collections. After all documents with the same relative
age are inserted into a project, the phase of computation of
results is initiated. Each result is a small piece of information
computed by a configured plugin over a particular document
(Fig. 5). It is assumed that results are not the goal of analyses,
they are created in order to be aggregated over multiple
documents later on, in a form of reports over collections.

Collections are introduced in order to allow grouping of
documents, i.e. creating named sets of documents (Fig. 6). The
process of particular document classification is, once again,
semantically defined by a configured plugin itself. Despite this
fact, the user is also able to filter documents using general
criteria like, e.g. resource addresses or relative age restrictions.
Since some collections can be mutually related (e.g. they
classify documents into multiple categories using a shared
set of criteria), Analyzer requires grouping of collections into
clusters.

When the classification of all documents is done, computed
results can be aggregated as previously outlined (Fig. 5). This
is done separately in each collection and, thus, the generated
reports are always derived only from documents that are
members of a given collection. However, not all documents
may be provided with required results and, therefore, involved
in this aggregation.

3.3. Model of plugins

Analyzer itself provides a general environment for performing
analyses over documents and collections of documents, but

FIGURE 5. Result and report model diagram.

The Computer Journal, Vol. 55 No. 5, 2012

 at U
niverzita K

arlova v Praze on O
ctober 9, 2012

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

596 J. Stárka et al.

FIGURE 6. Collection model diagram.

the actual analytical logic is not a part of it. All analytical
computations and mechanisms are implemented in plugins. The
current distribution of Analyzer includes a few basic plugins for
processing general files and XML-related files (see Sections 6
and 7), but the user is the one who is expected to create and
use own extended plugins. It is also expected, but not required,
that each plugin is determined for processing files of specific
types. In other words, a plugin publishes its functionality and
Analyzer makes it usable for analyses in projects.

Plugin methods. Disregarding the ability of a plugin to be
configured (and thus, e.g. adjusted to particular analytical
intents), each plugin specifies a set of document types that
can be processed by it. This restriction is defined by regular
expression patterns. The plugin functionality is provided
through implemented methods (Fig. 7). They are of eight
predefined types listed in the following enumeration. Although
these methods are not Java methods but classes, we can omit
this fact for simplicity.

(i) detector recognizes types of a processed document,
(ii) racer looks for outgoing links in a given document,

(iii) corrector attempts to repair a content of a given
document,

(iv) analyzer produces results over a given document,

(v) collector classifies documents into collections of a
given cluster,

(vi) provider creates reports by aggregating results of
documents in a collection,

(vii) viewer serves for browsing computed results over a
document and

(viii) performer serves for browsing computed reports over
a collection.

After the user selects and configures all required analyses
(plugins the user wants to use), the selection of particular
available detectors, tracers, correctors and analyzers must be
managed. This comprises not only the selection, but also the
order of these methods. Despite different aims of these four
method types, all of them may produce results. Collectors are
methods that are responsible for classifying documents into
collections. In other words, they make the decision, whether
a given document belongs to a given related collection, or
not. Once the user closes a cluster, Analyzer invokes provider
methods over all its collections in order to aggregate results
into reports. Finally, viewer and performer methods are used
for presenting computed results over documents and computed
reports over collections, respectively.

Execution of methods. The execution of tasks representing
plugin methods is similar to the execution of other tasks,
Analyzer only wraps the code written by the plugin programmer,
invokes the computation and handles potentially raised errors
or other forms of incorrect processing.

All plugin methods share the way how they access the
functionality of Analyzer and how they acquire data about
documents or other entities they are processing or generating.
These requests are processed by mediators, objects with well-
known interface and contract. Each method type works its
with own specialized mediator, which allows only for relevant
operations.

The mediator itself in fact only pretends to process of all
these requests and internally simulates required actions, and the

FIGURE 7. Plugin model diagram.

The Computer Journal, Vol. 55 No. 5, 2012

 at U
niverzita K

arlova v Praze on O
ctober 9, 2012

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

Analyzer: A Complex System for Data Analysis 597

FIGURE 8. Sample screenshot of Analyzer.

real execution is postponed until the very end of a given task
execution.As a consequence, we are able to reveal several forms
of inconsistent behavior based on the violation of a published
plugin contract.

Implemented plugins. The implementation of Analyzer comes
with a few created plugins, which are ready for use. If we omit
sample plugins demonstrating only framework possibilities,
there are three main groups of plugins: a universal plugin for
basic analyses of documents regardless of their types, a plugin
for XML documents and their schema analyses (see Section 6)
and, finally, a plugin for XQuery and XPath analyses (see
Section 7).

3.4. Implementation of analyzer

Analyzer is implemented in Java 6 language [41] as a desktop
application with a robust GUI. It is built on top of NetBeans 6.8
platform [38] and capable of the cross-platform usage.

The GUI of Analyzer is based on the possibilities of the
NetBeans platform. It brings the complete environment for
creating and managing projects and performing analyses from
their configuration to browsing of computed reports. A sample
screenshot image can be found in Fig. 8.

The default Analyzer distribution contains implementation
of three repositories (MySQL server database through MySQL
Connector 5.1.7 [42], embedded Apache Derby 10.5.1.1
database [43] and embedded H2 Database 1.1.117 [44]), two
crawlers (simple built-in crawler and flooding Egothor 1.0
crawler [45]) and two storages (filesystem storage and dedicated
Egothor storage).

3.5. Performance experiments

Apparently, the key performance role is represented by
repositories and, therefore, the main impact brings primarily
the number of analyzed documents. We configured two simple
analyses with four methods for generating results in total.

The Computer Journal, Vol. 55 No. 5, 2012

 at U
niverzita K

arlova v Praze on O
ctober 9, 2012

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

598 J. Stárka et al.

TABLE 1. Performance characteristics.

Set Document Repository Document Results Collections Reports
name count and size database import computation filling computation

A 1000 × 100 kB Derby 7 s 60 s 14 s 12 s
H2 DB 2 s 12 s 6 s 1 s
MySQL 3 s 19 s 9 s <1 s

B 10 000 × 10 kB Derby 45 s 13 min 5 min 11 min
H2 DB 10 s 100 s 90 s 60 s
MySQL 15 s 135 s 70 s 10 s

C 100 000 × 1 kB H2 DB 1 min 150 min 150 min 16 h
MySQL 3 min 22 min 14 min 1 min

The documents were inserted into a project using import without
copying of physical files. Finally, a single cluster was created
and all processed documents were classified into its two of six
collections.

Table 1 shows results of performed experiments over three
different sets of documents. All tests were executed using a
PC with Intel Core 2 Quad Q9550 2.83 GHz processor, 4 GB
RAM and Gentoo Linux 10.1 operating system. The analyzed
documents were stored on a local hard drive and also all three
repositories stored their internal data locally on the same drive.
MySQL Community Server 5.0.84 was installed locally and
used through JDBC connector 3.0. Both filling of collections
and computation of reports phases are based only on querying
of the repository (document contents are never read).

It is worth noting that the purpose of these experiments was
to show capabilities of the framework itself and not particular
plugins, e.g. for XML documents analyses. Therefore, we used
special plugins with methods of constant time complexity only.
As we can see, there is a significant difference especially
between H2 and MySQL. This can be explained by the inability
of H2 to work with defined auxiliary index structures during
selection queries.

As we have mentioned, there are four key aspects of the
analytical process performed by Analyzer—data crawling,
data correction, structural analysis and query analysis. In the
following four sections we discuss them in detail. For each
of the four topics we briefly describe the state of the art of
the respective area and then we provide a description of the
particular decisions and especially contributions applied in
Analyzer.

4. DATA CRAWLING

The first key aspect of every data analysis is data gathering.
As we have mentioned, Analyzer supports several types of
input of the analyzed data, whereas the interesting aspect is the
possibility of data crawling. The development of XML is closely
tied to the Web; therefore, the Web is expected to contain vast
amounts of XML-related data. Nevertheless, collecting the data

are surprisingly difficult. While there are a number of crawlers
used to collect data from the Web, most of them are limited to
HTML and widespread text-document formats like PDF [46].

XML-related data, which we consider in the broadest sense
in this section, include all XML-based formats (including, e.g.
XML Schema and XSLT) and related non-XML languages (like
DTD or XQuery). When crawling the Web, some documents
of these types may be found linked from HTML pages;
however, others are referenced from the primary documents,
like their schemas or included documents. Thus, the secondary
documents cannot be located using HTML-based crawling—
instead an XML-aware crawler must be able to parse both XML
documents and the related formats (DTD etc.) to extract the links
to the secondary documents.

Crawling the Web correctly is a difficult task, entangled
within performance bottlenecks and surrounded by ethics
and copyright rules. Creating a new crawler from scratch is
apparently a senseless effort. Thus, we have opted to adapt and
extend an existing HTML-oriented crawler. For our purposes
we have evaluated the following systems:

(i) Xyleme/Larbin [47, 48] was included in our list due
to its ability to handle XML-to-DTD links. However,
since Xyleme is not an open-source software, it might
not be extended in our project.

(ii) Egothor [45] was a system developed at the Charles
University in Prague and, therefore, it was the
first candidate for extension. Unfortunately, the
community of Egothor developers is too small to
ensure the required long life of the system.

(iii) Apache Nutch [49] is an open-source project from
the Apache family. Owing to its system of extension
points, it originally seemed that the extension for
XML-related data might be completely implemented
using plugins.

(iv) Bixo [50] is a topical crawler focused on mining
data from selected locations, thus using a strategy
different from traditional crawlers. However, it is
tightly coupled with the mining methods.

The Computer Journal, Vol. 55 No. 5, 2012

 at U
niverzita K

arlova v Praze on O
ctober 9, 2012

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

Analyzer: A Complex System for Data Analysis 599

(v) Google and Google Web APIs [51] are included in
our list as a kind of a benchmark because Google
allows to search specific file types (like DTD) in
its huge collection. Unfortunately, the exact method
which Google uses for locating the specific documents
is unknown.

As the previous list suggests, we selected the Apache Nutch
system. We extended the system with a number of plugins and
tuned its configuration toward the search for XML-related data.
In addition, we had to modify the source code of Nutch at a few
places. Our modifications and extensions together realized the
following alterations to the original behavior of the crawler:

(i) Improved address filtration—avoiding unwanted
protocols (mailto, javascript) and formats (PDF, MP3
etc.).

(ii) Altered document filtration—cutting out excessively
large HTML documents, assuming that they would
unlikely contain any XML-related links.

(iii) Whitelisting apparently XML-related documents
based on their reported MIME-type and (a part of)
contents.

(iv) Blacklisting unwanted documents. (Due to
widespread errors in the Web content, we found
blacklisting more efficient than whitelisting.)

(v) Altered scoring mechanism—favorizing XML-
related data in the download queue.

(vi) Parsing XML-based documents and locating external
references in them.

Our XML parser, based on a SAX implementation from the
Xerces [52] family, is used to locate the following kinds of links
in XML-based documents:

(i) schemaLocation and
noNamespaceSchemaLocation attributes
in any XML document,

(ii) import, include, and redefine elements in
XSDs,

(iii) import and include elements in XSLT programs,
(iv) processing instructions in XML Style Sheets and
(v) include and externalRef elements in RELAX

NG [53].

Another important fact is that many web documents are
malformed but still usable in crawling. Therefore, we made our
parser robust with respect to non-well-formed data.

To depict the features of our modifications, Fig. 9a shows
the percentage of document types encountered and downloaded
during a testing run of unmodified Nutch system. The small
non-XML part of these data are shown in detail in Fig. 9b—the
left column corresponds to the behavior of the original Nutch
system; the right column displays the results of the system
after our modification. The figures are based on medium-scale
tests—approximately 1 million documents of which 3.62%
were XML-related.

FIGURE 9. Results of experiments with data crawler. (a) Types
of crawled documents. (b) Types of crawled documents after
improvements.

5. PROCESSING OF INCORRECT DATA

Documents gathered by the automatic crawler as described
in the previous section, or imported manually from different
sources (e.g. filesystem), can contain several types of structural
or semantic errors, which have to be solved. In Analyzer,
we include error processing as the optional part of document
processing. During this phase, corrector methods of available
plugins are able to modify data contents of the documents, or
discard the document from the analyzed set. Therefore, a plugin
developer may propose methods for document correction and,
thus, other methods can be assured that they are working only
with correct data.

In the study of XML documents, we can witness a rather
surprisingly high number of documents involving various forms
of errors [11]. These errors can cause the documents to be not
well formed, to not conform to the required structure or to
have inconsistencies in data values. Anyway, the presence of
errors causes at least obstructions and may completely prevent
successful processing. Generally, we can modify existing
algorithms to deal with errors, or we can attempt to modify
invalid documents themselves.

We particularly focus on the problem of structural invalidity
of XML documents. In other words, we assume the inspected
documents are well formed and constitute trees; however, these
trees do not conform to a schema in DTD or XML Schema,
i.e. a regular tree grammar with the expressive power at the
level of single-type tree grammars [22]. Having a potentially

The Computer Journal, Vol. 55 No. 5, 2012

 at U
niverzita K

arlova v Praze on O
ctober 9, 2012

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

600 J. Stárka et al.

invalid XML document, we process it from its root node
toward leaves and propose minimum corrections of elements
in order to achieve a valid document close to the original one.
In each node of a tree we attempt to statically investigate
all suitable sequences of its child nodes with respect to a
content model and once we detect a local invalidity, we propose
modifications based on operations capable of inserting new
minimum subtrees, delete existing ones or recursively repairing
them.

The remaining parts of this section present basic ideas of our
correction model and proposed algorithms for finding structural
repairs of invalid XML documents. Details of this proposal are
presented in [15, 54].

5.1. Existing approaches

The proposed correction model is based primarily on ideas
from [55, 56]. Authors of the former paper dynamically inspect
the state space of a finite automaton for recognizing regular
expressions in order to find valid sequences of child nodes
with minimum distance. However, this traversal is not effective,
requires a threshold pruning to cope with potentially infinite
trees, repeatedly computes the same repairs and acts efficiently
only in the context of incremental validation. Although these
disadvantages are partially handled in the latter paper, its authors
focused on document querying, but not repairing.

Next, we can mention an approximate validation and cor-
rection approach [57] based on testers and correctors from the
theory of program verification. Repairs of data inconsistencies
like functional dependencies, keys and multivalued dependen-
cies are the subject of [58, 59].

Contrary to all existing approaches, we consider single type
tree grammars instead of only local tree grammars. Thus, we
work both with DTD and XML Schema. Approaches in [55, 57]
are not able to find repairs of more damaged documents; we
are able to always find all minimum repairs and even without
any threshold pruning to handle potentially infinite XML trees.
Next, we have proposed a much more efficient algorithm
following only perspective ways of the correction and without
any repeated repair computations. Finally, we have a prototype
implementation [60] and performed experiments show a linear
time complexity depending on a number of nodes in documents.

5.2. Proposed solution

Our correction framework is capable of generating local
structural repairs for locally invalid elements. These repairs are
motivated by the classic Levenshtein metric [61] for strings. For
each node in a given XML tree and its sequence of child nodes
we attempt to efficiently inspect new sequences that are allowed
by the corresponding content model and that can be derived
using the extended concept of measuring distances between
strings. However, in our case we do not handle ordinary strings,

FIGURE 10. Sample XML tree with its three repairs. (a) Original
tree. (b) Insert–Rename. (c) Rename–Delete. (d) Rename–Rename.

but sequences of nodes, which, in fact, are not only labels, but
also entire subtrees.

The correction algorithm starts processing at the root node
and recursively moves toward leaf nodes. We assume that we
have the complete data tree loaded into the system memory
and, therefore, we have a direct access to all its parts. Under
all conditions the algorithm is able to find all minimum repairs,
i.e. repairs with the minimum distance to the grammar and the
original data tree according to the introduced cost function.

To illustrate the correction process throughout the following
paragraphs, we use a sample XML document based on a
fragment: <a><x><d/></x><d><d/><d/></d>.

The derived data tree T is depicted in Fig. 10a. Its underlying
tree has nodes {ε, 0, 0.0, 1, 1.0, 1.1} and element labels are
inscribed in nodes.

We want this document to conform to a simple local tree
grammar G, which requires that the label of the root node can
only be a or b, child nodes of element a should match a regular
expression c.d∗, elements b and d may contain an unlimited
number of elements d, and, finally, element c should always be
empty. Obviously, the sample data tree T is not valid against G,
since element x is not allowed by the grammar at all.

Edit operations. Edit operations are elementary transforma-
tions that are used for altering invalid data trees into valid ones.
They behave as deterministically defined functions, perform-
ing small local modifications with a provided data tree. Though
the correction algorithm does not directly generate sequences
of these edit operations, we can, in the end, acquire them using
a translation of generated repairs, as will be explained later.

We have proposed and implemented the following edit
operations:

(i) insert a new leaf node,
(ii) delete an existing leaf node,

(iii) rename a label of a node,
(iv) push a group of adjacent sibling nodes lower under a

newly inserted internal node and

The Computer Journal, Vol. 55 No. 5, 2012

 at U
niverzita K

arlova v Praze on O
ctober 9, 2012

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

Analyzer: A Complex System for Data Analysis 601

(v) pull all sibling nodes one level higher deleting their
original parent node.

Moreover, we have also formally studied other node and
attribute operations. However, these operations were not yet
fully implemented and, therefore, will be omitted in the rest of
this section.

Update operations. Edit operations can be composed together
into sequences. And if these sequences fulfill certain qualities,
they can be classified as update operations. We have proposed

(i) insertion of a new minimal subtree,
(ii) deletion of an existing subtree and

(iii) a recursive repair of a subtree with an option of
changing a label of its root node.

Anyway, the purpose of each update operation is to correct
a local part of a data tree in order to achieve its local validity.
Unfortunately the correction algorithm does not generate these
operations. The algorithm generates repairs based on repairing
instructions, which are subsequently translated into sequences
of edit operations. And this is the reason, why update operations
are not defined deterministically similarly to edit operations.
Having a particular sequence of edit operations, we can inspect
its subsequences and if all required conditions are satisfied, a
given subsequence can be viewed as an update operation of a
corresponding type.

Assume that we have edit sequences

(i) X1 = 〈addLeaf (0, c), renameLabel(1, d)〉;
(ii) X2 = 〈renameLabel(0, c), removeLeaf (0.0)〉 and

(iii) X3 = 〈renameLabel(ε, b), renameLabel(0, d)〉.
Applying these sequences separately to data tree T from

our example, we obtain data trees depicted in Figs. 10b–d,
respectively. If we use a unit cost function, these three data
trees represent all minimal repairs of the original tree with the
cost 2.

Repairing instructions. Assume that we are in a particular node
in a data tree and our goal is to locally correct this node, which,
passing over attributes, especially involves the correction of
the sequence of its child nodes. Since the introduced model
for measuring distances uses only non-negative values for the
cost function, in order to acquire the global optimum, we
can simply find minimum combinations of local optimums,
meaning minimum repairs for all subtrees of original child
nodes of the inspected one.

However, we need to find all minimum repairs, and since edit
operations require particular positions in a current data tree to be
specified, we cannot use them to describe all repairs. Assume,
for example, that we have several options how to correct the
first child node. If we delete it, all positions of nodes to the right
must be shifted by one to the left, but if we accept the first child
node, the original positions are preserved. Thus, we are not able

to use edit operations for describing multiple different repairing
sequences.

The problem with the continuously changing numbers of
positions is solved by the model of repairing instructions. We
have exactly one instruction for each edit operation and these
instructions represent the same transforming ideas, however,
do not include particular positions to be applied on. Having
a particular sequence of repairing instructions, we can easily
translate it into the corresponding sequence of edit operations
later on.

Correction intents. Being in a particular node and repairing its
sequence of child nodes, the correction algorithm generally has
many ways to achieve the local validity proposing repairs for all
these involved nodes. As already outlined, these actions follow
the model for measuring distances between ordinary strings.
The Levenshtein metric is defined as the minimum number
of required elementary operations to transform one string into
another. These operations are insertion of one new symbol,
deletion of an existing one and also replacement of an existing
symbol with a new one. We follow the same model, however,
we have edit and update operations and sequences of nodes. The
given sequence can be viewed as an ordinary string over labels
of its nodes. For example insertion of a new subtree at a given
position stands for insertion of its label into the corresponding
string of labels and, of course, recursive processing of such a
new subtree.

The algorithm attempts to examine all suitable new words
that are in the language of the provided regular expression
restraining the content model of the inspected parent node. We
do not generate word by word, but we attempt to inspect all
these words statically using a notion of a correction and derived
multigraphs.

Anyway, suppose that the algorithm has already processed the
first few nodes from the inspected sequence of sibling nodes,
and thus all nodes from the corresponding prefix of the original
sequence are already involved in corrections. Now the algorithm
must consider all possible actions that can be selected in order
to involve at least one next node from the original sequence. The
possibilities are modeled using the notion of correction intents.

In other words, the correction algorithm in each parent node
has a variety of options how to achieve its validity, and particular
steps performed with its child nodes are called correction
intents, because we always examine one possible action from
more permitted ones.

Correction multigraphs. All existing correction intents in a
context of a given node can be modeled using a correction
multigraph. Suppose that we need to process a sequence of child
nodes with n nodes. This means that the graph will have n + 1
strata, numbered from 0 to n. Being on a stratum with number i,
we have already processed right i first nodes from this sequence.

Each stratum is constructed from the Glushkov automaton
for recognizing the provided regular expression restricting

The Computer Journal, Vol. 55 No. 5, 2012

 at U
niverzita K

arlova v Praze on O
ctober 9, 2012

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

602 J. Stárka et al.

the given sequence. This means that there are vertices
corresponding to states of the automaton and directed edges
reflecting the transition function in each stratum. Each such
edge represents a new tree insertion operation. Similarly, we
can define edges between strata to represent other allowed
operations.

In other words, the correction multigraph represents all
correction intents that can be derived for this sequence. And
more precisely, each intent is represented by some edge in this
multigraph. However, there can be intents that are represented
by more edges at once.

To find best repairs for a provided sequence of nodes, we
need to find all shortest paths in this multigraph, assuming that
every edge is rated with an overall cost of corresponding nested
correction intent associated with such an edge. However, to
resolve these costs, we need to fully evaluate associated intents.
And this represents non-trivial nested recursive computations.
Anyway, we require that each edge can be evaluated in a finite
time, otherwise we would obviously not be able to find required
shortest paths.

If we return to our sample data tree T , we can represent
all nested correction intents derived for a root node a and a
sequence 〈x, d〉 of its child nodes with respect to a regular
expression c.d∗ by a correction multigraph in Fig. 11. For
simplicity, edges are described only by abbreviated intent types
(I for insert, D for delete, R for repair and N for
rename), supplemented by a repairing instruction parameter if
relevant and, finally, the complete cost of assigned intent repair.
Names of vertices are concatenations of a stratum number and
an automaton state.

Our goal is to find all shortest paths from the source vertex 00
to any of the target vertices 21 or 22 in the last stratum. Having
found them, we can represent them in a form of the repairing
multigraph in Fig. 12.

Repairs construction. Each correction intent can essentially be
viewed as an assignment to the nested recursive processing.
This model, in fact, has a transparent relation with a structure
of an underlying tree itself and its processing from the root node
toward leaves. The entire correction of a provided data tree is
initiated as a special starting correction intent for the root node
and processing of every intent always involves the construction

FIGURE 11. Sample correction multigraph.

FIGURE 12. Sample repairing multigraph.

of at least the required part of the introduced multigraph
with other nested intents. Therefore, we continuously invoke
recursive computations of nested intents. When we reach the
bottom of the recursion, we start backtracking, which involves
gathering of found repairs. This means that after we have found
the desired shortest paths at a given level, we encapsulate them
in a form of a compact repair structure and pass it one level up,
toward the starting correction intent.

Having found the shortest paths in the repairing multigraph
for the starting intent, we have found repairs for the entire
data tree. Each intent repair contains encoded shortest paths
and related repairing instructions. Now we need to generate all
particular sequences of repairing instructions and translate them
into standard sequences of edit operations. Having one such edit
sequence, we can apply it on the original data tree and we obtain
its valid correction with a minimum distance.

Correction algorithms. Now we have completely outlined
the model of the proposed correction framework. However,
there are several related efficiency problems that would cause
significantly slow behavior, if we would strictly follow this
model. Therefore, we have introduced two particular correction
algorithms. They both produce the same repairs, but there are
key differences in their efficiency.

The first algorithm is able to directly search for the shortest
paths inside each intent computation and, therefore, does
not need the entire multigraphs to be constructed. The next
improvement is based on caching already computed repairs
using signatures distinguishing different correction intents, but
intents with the same resulting repair structure. This causes
this algorithm to never compute the same repair twice. The
second algorithm is able to compute lazily even to the depth
of the recursion. We have achieved this behavior by scattering
all nested intents’ invocation and multigraph edges’ evaluation
into small tasks, which are executed by a simple scheduler.

6. STRUCTURAL ANALYSIS

Having crawled and corrected the data, we can start with
their analysis. In this chapter, we discuss several metrics, we
implemented in the current version of Analyzer. We have to note
that the implemented methods cover only basic characteristics

The Computer Journal, Vol. 55 No. 5, 2012

 at U
niverzita K

arlova v Praze on O
ctober 9, 2012

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

Analyzer: A Complex System for Data Analysis 603

of XML, DTD and XSD, and they are based on previously
published statistics of XML formats (see Section 8).

The implemented methods cover XML documents and the
related schemas expressed in DTD and XML Schema. We
created one plugin for each of the document types and one
universal plugin to determine basic file attributes. The plugin
for XML documents is applied to XML Schema documents, but
beside the basic statistics, the usage of some specific constructs
is measured.

We expected that the analyzed documents can be very large,
and so we based the implementation of plugins on Simple
API for XML (SAX) [62]. SAX allows for efficient work with
large files, but, on the other hand, it complicates some analytic
methods, e.g. XPath fragment search.

6.1. Common properties

Although we focused on three different formats, they have many
common aspects which can be analyzed in a similar way. First,
we analyze the number of entities used in the document, e.g.
elements, attributes, declarations, etc. Secondly, we analyze the
structural complexity of the used model. To define the structural
characteristics of the document, we first need to define the XML
document and XML schema. We use the definitions as presented
in [63, 64]. The XML documents are expressed as ordered trees
and XML schemas are expressed as regular expressions over
element names.

Definition 6.1. An XML document is a finite ordered tree
T = (�, N, E, r), where � is a finite alphabet, N is a set
of nodes of the tree, E is a set of edges of the tree and r ∈ N

denotes a root element of the tree. Each node ∈ N is associated
with a type of the node which can be one the following:
element, attribute, text, processing instruction or comment.
Nodes with element or attribute type are also associated with a
node label l ∈ � called an element name or an attribute name,
respectively. The tree T is called �-tree

Definition 6.2. A DTD is a collection of element
declarations of the form e → α, where e ∈ � is an element
name and α is its content model, i.e. regular expression over
�. The content model α is defined as α = ε | pcdata | f
| (α1, α2, . . . , αn) | (α1 | α2 | . . . | αn) | β∗ | β+ | β?,
where ε denotes the empty content model, pcdata denotes the
text content, f denotes a single element name, ‘,’and ‘|’stand for
concatenation and union (of content models α1, α2, . . . , αn),

and ‘*’, ‘+’ and ‘?’ stand for zero or more, one or more, and
optional occurrence(s) (of content model β), respectively.

One of the element names s ∈ � is called a start symbol.

In the following definitions we focus on the key
characteristics of XML data. Due to space limitations and
similarity, we provide definitions for XML schemas, in
particular DTDs, and assume that their modifications for XSDs
and XML documents are simple and apparent.

The complexity of the content model can be described by its
depth.

Definition 6.3. A depth of a content model α is inductively
defined as follows:

(i) depth(ε) = 0;
(ii) depth(pcdata) = depth(f) = 1;

(iii) depth(α1, α2, . . . , αn) = depth(α1 | α2 | . . . | αn) =
max(depth(αi)) + 1; 1 ≤ i ≤ n;

(iv) depth(β∗) = depth(β+) = depth(β?) =
depth(β) + 1.

Another important characteristic of the structure of whole
schemas/documents are fan-out and fan-in.

Definition 6.4. A fan-out of an element e is the cardinality
of the set {f | e′ is the element name of element e, e′ → α and
the element name f ′ of element f occurs in α}.

Definition 6.5. A fan-in of an element e is the cardinality
of the set {f | f → α′ and the element name e′ of element e

occurs in α′}.
Another metric of complexity of both documents and schemas

is the usage of different types of content of an element.
Generally, we can distinguish four types of content: empty, text,
element and mixed. The former two are trivial; the latter two
are defined as follows.

Definition 6.6. A content model α is element, if ∃e ∈ �

such that e occurs in α.

Definition 6.7. A content model α is mixed, if α = (α1 | . . . |
αn | pcdata)∗ | (α1 | . . . | αn | pcdata)+, where n ≥ 1 and
∀i, such that 1 ≤ i ≤ n, content modelαi �= ε∧αi �= pcdata.An
element e is called mixed-content element if its content model
α is mixed.

The last but not least important characteristic is the usage of
specific structures. As mentioned in Section 2, a controversial
characteristic are recursive elements.

Definition 6.8. An element e is recursive if there exists at
least one element d in the same document such that d is a
descendant of e and d has the same element name as e.

6.2. XML documents

We created plugins to measure the following properties on XML
documents:

(i) The size of the XML document, e.g. in bytes, the
number of elements or the number of attributes.

(ii) Maximum depth of the document.
(iii) Distribution of various types of content model over

different levels.
(iv) Recursion of elements.
(v) Maximum and average fan-out.

The Computer Journal, Vol. 55 No. 5, 2012

 at U
niverzita K

arlova v Praze on O
ctober 9, 2012

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

604 J. Stárka et al.

(vi) Usage of XML Schema versus DTD.
(vii) Distinct element/attribute name usage.

(viii) Namespace usage.

6.3. DTD analysis

For the DTDs, the system contains methods to compute the
following statistics:

(i) The size of the DTD, e.g. number of declarations of
elements, attributes, notations, entities etc.

(ii) Number of DTD-specific declarations of elements
content type (empty, any, ‘|’, ‘,’).

(iii) Number of DTD-specific declarations of attribute
optionality (#REQUIRED, #IMPLIED, #FIXED).

(iv) Usage of keys (i.e. attribute data types ID and
IDREFS(S)).

(v) Maximum, minimum and average depth.
(vi) Average and maximum fan-outs and fan-ins.

6.4. XML schema analysis

The complexity of XSDs is basically measured in the same way
as XML documents, since each XSD is at the same time an
XML document. Besides these properties, we created a plugin
for measurement of the usage of specific constructs as follows:

(i) Type specification (simpleType and complex
Type).

(ii) Restriction and extension of existing types.
(iii) Content model of the elements (sequence,

choice, all).
(iv) Element groups and attribute groups (group,

attributeGroup).

6.5. Results

Due to space limitations, we prepared a small sample of data
to show the capabilities of the framework. A complete analysis,
together with analysis of related operations (see Section 7) will
be a subject of our very next future work and a separate paper.
We used the current implementation of Analyzer with the basic
implemented set of plugins.We run the application on a common
dual-core processor with 2 GB RAM. The project was created
with the H2 DB repository and the filesystem storage.

Data sources. For the experiments we used several data sources
to get a variable sample of real-world data. As the open data
became more popular, the methods for their processing are
more required. Despite widespread use of XML, we can expect
that the part of the data will be simple conversions from other
formats like XLS2 or CSV,3 and so we used also a small sample

2Microsoft Excel format.
3Comma Separated Values.

of publicly available data to get some basic information about
their structure. Firstly, the XML documents are gathered mostly
from the U.S. federal executive branch datasets on data.gov.
Some data were downloaded from the open data server of
the Government of Catalonia4 and the rest of the documents
from U.S. congress5 and Open Data Euskadi6. The datasets
generally contain financial reports or geographical information
related to the government. Secondly, we used the OpenTravel
specification7 as a sample of XSD documents and compared
their versions over the last 9 years.

XML documents statistics. In the first phase we took all data
from all open data sources and computed global statistics
over them. The results are shown in Fig. 13. The document
type distribution by size is depicted in Fig. 13a and the type
distribution by number in Fig. 13b. Having we gathered the
XML documents, we can that see they are the main part of
the data. On the other hand, the chart shows a big average
size of RDF documents. Just 161 RDF documents take almost
40% of the total size. The distribution by size is illustrated
in Fig. 13c and shows that the majority of this sample are
documents between 10 kB and 10 MB.

To get a more precise picture of the examined sample, we
computed the basic statistics over the documents. We focused
on the number of the used elements and their attributes, depth
and used schemas. The basic attributes of the examined files
divided by the source are depicted in Table 2. The results show
that the documents are generally flat; the average depth of
open.gov sample exceeded depth of 10 with a maximum
depth of 15. We can also see that XSDs are used only in the
sample fromopen.gov. DTDs are partially used in documents
from euskadi.net.

According to the results we can say that a typical open data
document is shallow and its size is up to 5 MB. Anyway, due to
the sample size and the limitations of space we cannot make a
general conclusion. We shall focus on a detailed analysis over
various large datasets in our future work.

XML schema statistics. In the second experiment we focused
on XSDs used in the OpenTravel specification. The dataset
contains 4637 documents with a total size of 194 MB. The
dataset consist of several versions of the specification. In our
experiment, we tried to show the evolution of the specification
in terms of the size of the documents and the complexity of used
constructs. The results of the analysis are shown in Fig. 14. In
particular, we focused on global characteristics like the number
of distinct element names (see Fig. 14a), the average depth (see
Fig. 14b) or the average number of elements (see Fig. 14c).
The second group of the examined values are XSD-specific

4http://opendata.gencat.cat/en/dades-obertes.html.
5http://www.govtrack.us/data/rdf/.
6http://opendata.euskadi.net/.
7http://opentravel.org/.

The Computer Journal, Vol. 55 No. 5, 2012

 at U
niverzita K

arlova v Praze on O
ctober 9, 2012

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

Analyzer: A Complex System for Data Analysis 605

FIGURE 13. Document distribution. (a) Size distribution of types. (b) Type distribution. (c) Size distribution.

TABLE 2. Results of XML document analysis.

Total Maximum Average Document Maximum Average
Source size size size count depth depth Used DTD (%) Used XSD (%)

open.gov 2.5 GB 67 MB 2314 kB 1156 15 10.16 0.2 88.6
gencat.cat 58.3 MB 40 MB 7.4 MB 8 11 6 0 0
govtrack.us 1.93 GB 77 MB 12.8 MB 253 5 4.76 0 0
euskadi.net 3.4 MB 1765 kB 27 kB 124 9 6.16 41.93 0

All 4643 MB 77 MB 2956 kB 1541 15 8.87 7.4 63.3

keywords.As an example, we show the evolution of the usage of
sequences (see Fig. 14d), extensions (see Fig. 14e) and simple
types (see Fig. 14f).

According to the results, we can see that, quite naturally,
the specification is getting more complex and its depth is
increasing. The largest change came between versions 2007A
and 2007B. On the other hand, the usage of XSD constructs is
stagnating; only the use of the extension keyword is rising,
which reflects the general strategy of preserving backward
compatibility.

7. QUERY ANALYSIS

Besides XML data and/or schemas, whose analysis was
described in the previous section, analysis of queries over XML
data may also give some insight into the way how XML is
used. Such analysis will be useful for implementers of query
engines or storage systems; in addition, the queries may also
reveal useful facts on the data themselves (e.g. the presence

of recursion). There are a number of languages designed for
processing and/or generating XML data. While the scientific
community focuses on the XML Query (XQuery) language
[5], real-world applications often use the XSLT [6]. These two
languages, supported by their W3C standards, are currently the
most widely used ones, although challenged by a number of
more or less exotic languages like XDuce [65] etc.

XQuery 1.0 and XSLT 2.0 are powerful, Turing-complete
[66] languages; however, their applications usually solve
relatively simple problems like generating HTML pages or
transforming XML between two schemas. Consequently, it is
often believed that most applications use only small subsets of
these languages. This observation is also supported by the fact
that the most popular textbooks on XQuery or XSLT do not
cover the languages exhaustively.

From the perspective of the implementor of an XQuery or
XSLT processor, this observation suggests that a number of
language features is rarely used and, therefore, not worthy of
aggressive optimization. For example the following/preceding
axes [4] are used significantly less frequently than the

The Computer Journal, Vol. 55 No. 5, 2012

 at U
niverzita K

arlova v Praze on O
ctober 9, 2012

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

606 J. Stárka et al.

FIGURE 14. Results of XSD analysis. (a) Distinct element names. (b) Average depth. (c) Average number of elements. (d) Usage of sequences.
(e) Usage of extensions. (f) Usage of simple types.

child/descendant axes; consequently, the majority of indexing
and querying techniques like twig joins [67] are limited to the
child/descendant axes.

Note that we introduced the observation with the clause ‘it
is often believed’; indeed, it was probably never confirmed by
any statistically significant study. Such a study was among our
goals in this project. However, some of the tools required by this
study were at least as interesting as the study itself. So, due to
space limitations, similarly to the case of structural analysis we
have decided to involve only an example of the query analysis,
leaving a detailed version to future work and a separate paper.

In this section, we describe XQAnalyzer—a tool designed to
support studies that include analysis of a collection of XQuery
programs. Since it is a novel and unique part of the framework
assumed to be widely used by the researchers, it can be used
both as a standalone application and a plugin of Analyzer.
XQAnalyzer consumes a set of XQuery programs, converts
them into a kind of intermediate code and stores this internal
representation in a repository (see Section 7.2). Subsequently,
various analytical queries (see Section 7.1) may be placed on
the repository to determine the presence or frequency of various

language constructs in the collection, including complex queries
focused on particular combinations of constructs or classes of
constructs.

The architecture of the XQAnalyzer is shown in Fig. 15. Each
document from a given collection of XQuery programs is parsed
and converted to the internal representation by the XQConverter
component. The XQEvaluator component evaluates analytical
queries and obtains statistical results.

7.1. Analytical queries

In the XQAnalyzer, the term analytical query denotes a pattern
or a condition placed on an XQuery program, usually a search
for a feature. Each XQuery program in the collection is
evaluated independently, producing either a boolean value or
a hit count representing the presence or number of occurrences
in the program, respectively. The XQEvaluator then returns
various statistical results like the percentage of programs that
contain the searched feature or the histogram of hit counts over
the repository.

The Computer Journal, Vol. 55 No. 5, 2012

 at U
niverzita K

arlova v Praze on O
ctober 9, 2012

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

Analyzer: A Complex System for Data Analysis 607

FIGURE 15. The architecture of the XQAnalyzer.

The language in which analytical queries are placed shall be
powerful enough to allow sophisticated patterns like ‘call to a
user-defined function placed inside a FLWOR statement whose
arguments are independent of the FLWOR control variable’. At
the same time, the potential users of the system must be able to
learn the language quickly.

Given the fact that the tool is designed for research in the area
of XML and, in particular, XQuery, the best choice would be
a query language derived from XPath. XPath is naturally well
known in the community and it is designed to place pattern-
like queries on tree structures—in our case, a tree is a typical
representation of a program during early stages of its analysis.

With the choice of XPath, the only remaining question in
the design of the query language is the structure of the tree
representing an XQuery program and its mapping to XML. In
this representation, an analytical query is just an XPath query
over the XML representation of query programs. The XML
representation is discussed in the following section.

7.2. Internal representation of XQuery programs

The key issue in the design of XQAnalyzer is the internal
representation of XQuery programs. In our approach, we do not
want to limit the nature of the analytical queries; therefore, the
internal representation must store any XQuery program without
loss of any feature (perhaps except for comments). Furthermore,
the internal representation is exposed to the user via the
query interface; therefore, it should be as simple as possible.
Finally, the internal representation affects the performance of
the XQEvaluator. Since we already decided to use a tree-based
representation queried through XPath, our freedom of choice is
in the following issues:

(i) The depth of the analysis performed before generating
the internal representation.

(ii) The ‘information density’of the tree, i.e. the number and
the degrees of nodes assigned to an individual language
feature and, consequently, the size of the tree assigned
to an input program.

(iii) The representation of repeated components—either
by recursion or by nodes with unlimited number of
children.

(iv) The names and attributes of nodes, including technical
details regarding their mapping to the XML.

The W3C standards related to XQuery define at least the
following two formalisms that might be used as a basis for our
internal representation:

(i) The XQuery Grammar defined in [5] using Extended
Backus-Naur Form [68].

(ii) The Normalized XQuery Core Grammar defined in [69]
(also using EBNF).

Note that the XQuery formal semantics [69] is defined
in terms of static/dynamic evaluation rules that may be
considered as a kind of internal representation too. However,
their application in our analytical environment would be
impractically difficult.

There is also a number of formalisms defined in scientific
literature. Among them, algebraic systems like XAT [70] might
be easily adapted for our tree-based internal representation.
However, these systems are always skewed toward a particular
evaluation strategy (usually relational) and their use for other
strategies would be difficult. For the same reason, we did not
try to use twig patterns [67] in our representation.

Finally, it was proved [71] that each XQuery program may
be translated to XSLT 2.0 [72]. Since each XSLT program
is technically an XML document, the result of the translation
may be used as an internal representation of the input XQuery
program. Unfortunately, the conversion from XQuery to XSLT
is not straightforward due to minor differences in the semantics
of similar constructs (FLWOR vs. <xsl:for>). Furthermore,
only a part of the XSLT syntax is expressed in terms of XML;
the rest is hidden as XPath expressions inside the text of some
XML attributes.

Among the existing formalisms mentioned so far, we have
chosen the Normalized XQuery Core Grammar. The following
reasons are behind this decision:

(i) It is a part of the standard, and therefore is well known
and not skewed toward any evaluation strategy.

(ii) It is smaller than the full XQuery Grammar and it hides
the redundant features of the XQuery language.

The Computer Journal, Vol. 55 No. 5, 2012

 at U
niverzita K

arlova v Praze on O
ctober 9, 2012

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

608 J. Stárka et al.

With respect to the depth of the analysis, the Normalized
XQuery Core Grammar requires only parsing and normaliza-
tion. In the canonical XQuery-processing chain, it would be
followed by the optional static type analysis and the dynamic
evaluation phase. Since static type analysis produces only addi-
tional information to augment the existing tree, it does not influ-
ence our selection of internal representation.

Of course, in real-world XQuery processors, normalization
is followed by conversion to an algebra or other representation.
As we have discussed above, these representations, if ever
published, are hardly suitable for a strategy-independent tool.

The Normalized XQuery Core Grammar defines the concrete
syntax of the XQuery Core. Therefore, it must define
syntactic properties like priority and associativity of operators.
Consequently, derivation trees constructed from this grammar
have long branches containing semantically useless levels.

For analytical purposes, a more abstract representation is
required, in a form of an abstract syntax tree (AST) [73].
An AST is present in almost every compiler; however, the
corresponding abstract syntax grammar is rarely published or
even standardized. In our case, we need an abstract grammar
as close to the Normalized XQuery Core Grammar as possible.
Therefore, we decided to start with the Normalized XQuery
Core Grammar and to remove a part of the non-terminals
corresponding to semantically useless levels that served only
to define concrete syntax, collapsing the surrounding rules
together. In a few cases we renamed the remaining non-
terminals to more appropriate names (like Operator). The final
set of non-terminals is listed in Table 3. When our internal
representation is presented in the form of an XML document,
these non-terminals become XML elements.

The rest of the semantic information is enclosed in XML
attributes attached to the elements. These attributes contain
either data extracted from the source text (like names of
variables or contents of literals) or additional semantic
information (like the axis used in an XPath axis step). In addition
to these data required to preserve the semantics, we also added
attributes that may help in recovering the original syntax before
the normalization to XQuery Core (e.g. whether the abbreviated
or the full syntax was used in axis step).

For example the XPath/XQuery expression

//car[@type="SUV"]

is normalized to the following XQuery Core expression

/descendant-or-self::*/child::car
[attribute::type="SUV"]

and then converted to the internal representation shown (in the
XML form) in Fig. 16.

The original form before normalization is described using
the attribute abbreviated="true" in the Axis elements.
The internal representation then may be queried using XPath
expression like

TABLE 3. The elements of the internal representation.

Element Use cases (%) Test suite (%)
AtomicType 0.27 2.49
Axis 14.28 4.79
BaseURIDecl 0.04
BindingSequence 3.62 1.11
BoundarySpaceDecl 0.07
CData 0.01
CaseClauses 0.02 0.03
CharRef 0.02
CommaOperator 0.04 2.04
ConstructionDecl 0.04
Constructor 3.36 2.07
Content 4.03 2.11
ContextItem 0.22 0.11
CopyNamespacesDecl 0.02
DefaultCase 0.02 0.03
DefaultCollationDecl 0.01
DefaultNamespaceDecl 0.12
ElseExpression 0.07 0.08
EmptyOrderDecl 0.03
EmptySequence 0.02 0.63
EntityRef 0.01
Extension 0.03
FLWOR 1.97 0.79
ForClause 2.10 0.59
FunctionBody 0.40 0.16
FunctionCall 5.77 17.11
FunctionDecl 0.40 0.16
Hint 0.38 0.01
IfExpr 0.07 0.08
InClauses 0.27 0.15
KindTest 4.83 0.80
LetClause 1.25 0.32
Literal 4.61 20.32
ModuleDecl 0.07 0.00
ModuleImport 0.07 0.03
Name 4.21 2.14
NameTest 10.14 4.08
NamespaceDecl 0.20 0.18
OperandExpression 0.02 0.03
Operator 3.85 8.43
OptionDecl 0.01
OrderedExpr 0.01
OrderingModeDecl 0.02
Path 10.02 2.51
PragmaList 0.03
QuantifiedExpr 0.27 0.15
QueryBody 1.83 10.70
ReturnClause 2.04 0.90
SchemaImport 0.38 0.17
String 6.82 2.12
TestExpression 0.34 0.23

The Computer Journal, Vol. 55 No. 5, 2012

 at U
niverzita K

arlova v Praze on O
ctober 9, 2012

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

Analyzer: A Complex System for Data Analysis 609

TABLE 3. Continued.

Element Use cases (%) Test suite (%)
ThenExpression 0.07 0.08
TupleStream 1.97 0.79
Type 0.98 2.62
Typeswitch 0.02 0.03
UnorderedExpr 0.01
ValidateExpr 0.02
VarDecl 2.42
VarRef 8.68 3.47
VarValue 2.42

FIGURE 16. Internal representation of an XPath expression.

//Step[Axis[@kind="child"] and
Predicates/Operator[@name="equals" and

Path and Literal]],

which finds any child-axis step combined with a predicate based
on equality between a path expression and a literal.

7.3. Results

Since there is no standardized collection of real-world XQuery
programs yet (except for small benchmarks like XMark [74]),
we have chosen two artificial collections associated to the W3C
XQuery language specification: the XQuery Use Cases [75] and
the XQuery Test Suite [76]. The Use Cases collection consists
of 85 ‘text-book’ XQuery programs prepared to demonstrate
the most important features of the language; the Test Suite
collection contains 14 869 small XQuery programs created
to cover all features (the remaining 252 files in the original
collection contain intentional parse errors). Although the Test
Suite collection is more than 100 times larger in terms of the
number of files, the real ratio of sizes (in terms of the number
of AST nodes) is 31:1 because the Use Cases files are larger.

TABLE 4. Axis usage.

Element Use cases (%) Test suite (%)
Child 71.63 82.67
Descendant 0.21
Attribute 5.33 3.70
Self 0.36
Descendant-or-self 23.04 10.40
Following 0.44
Parent 0.50
Ancestor 0.44
Preceding-sibling 0.42
Preceding 0.42
Ancestor-or-self 0.44

In Table 3 we show the frequency of core elements of
the language, named according to the abstract grammar non-
terminals derived from the Normalized XQuery Core Grammar.
The percentages are defined by the number of occurrences
divided by the total number of AST nodes in the collection
(which was 4469 for the Use Cases and 138 949 for the
Test Suite).

Besides the obvious difference between the two collections,
corresponding to their purpose, there are the following notice-
able observations: The frequency of quantified expressions
(some or every) is about eight times smaller than the fre-
quency of for-expressions. The if-expression is quite rare—
once per 30 for-expressions or 50 operators. The number of
features like ordered/unordered-expressions are omitted
in the Use Cases. While frequent in the Test Suite, the comma
operator is surprisingly rare in the Use Cases.

Table 4 shows the use of the twelve XPath axes. The
percentages represent the frequency of individual axes among
all axis step operators in the collection (which was 638 for
the Use cases and 6623 for the Test suite). Note that the
results correspond to the traditional belief that many axes are
extremely rare.

8. RELATED WORK

As we have mentioned in the introduction, Analyzer is a quite
a unique tool in the area of analyses of both XML data and
general data types. Not to mention the area of query analyses,
where there currently exists neither such a framework, not even
results of a respective analysis.

Considering the area of XML data analysis, we can find
several papers which involve the results of various types of
statistical data analyses. However, in all the cases the respective
tool (or a set of tools) is not available, so the analyses are
neither extensible, nor repeatable. The papers analyze either
the structure of DTDs, the structure of XSDs, the structure
of XML documents (regardless their schema), or the structure

The Computer Journal, Vol. 55 No. 5, 2012

 at U
niverzita K

arlova v Praze on O
ctober 9, 2012

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

610 J. Stárka et al.

of XML documents in comparison with XML schemas. The
sample data usually differ, whereas, since the authors did not use
an advanced crawler, the set is usually quite small and unnatural.

DTD analyses. For the first time an analysis of the structure
of DTDs, in particular 12 real-world DTDs, probably occurred
in paper [25] and it was further extended in papers [63] (60
DTDs) and [77] (2 DTDs). They focused especially on the
number of (root) elements and attributes, the depth of content
models, the use of mixed content, IDs/IDREFs and attribute
optionality (i.e. #IMPLIED, #REQUIRED and #FIXED), non-
determinism and ambiguity. A side aim of the papers was a
discussion of shortcomings of DTDs, since the XML Schema
was only in the status of a preliminary working draft. The most
important findings are that real-world content models are quite
simple (the depth is always <10), the number of non-linear
recursive elements is high (they occur in 58% of all DTDs), the
number of shared elements is significant, and that IDs/IDREFs
are not used frequently.

XML schema analyses. With the arrival of XML Schema, as
the extension of DTD, a natural question has arisen: Which
of the extra features of XML Schema not allowed in DTD
are used in practice? Paper [21] is trying to answer it using
statistical analysis of real-world XML schemas, in particular
109 DTDs and 93 XSDs. The most exploited features seem
to be restriction of simple types (found in 73% of schemas),
extension of complex types (37%) and namespaces (22%). The
first finding reflects the lack of types in DTD, the second one
confirms the naturalness of object-oriented approach, whereas
the last one probably results from mutual modular use of XSDs.
The other features are used minimally or are not used at all.
The concluding finding is that 85% of XSDs define local-tree
languages that can be defined by DTD as well. Paper [64],
which also focuses directly on structural analysis of XSDs,
defines 11 metrics of XSDs and two formulae that use the
metrics to compute complexity and quality indices of XSDs.
Unfortunately, there is only a single XSD example for which
the statistics were computed.

XML data analyses. Paper [20] (and its extension [78])
analyzes the structure of about 200 000 XML documents
directly, regardless of the eventually existing schema. The
statistics are divided into two groups—statistics about the XML
Web (e.g. clustering of the source websites by zones and
geographical regions, the number and volume of documents per
zone, the number of DTD/XSD references etc.) and statistics
about the XML documents (e.g. the size and depth, the amount
of markup and mixed-content elements, fan-out, recursion etc.).
The most interesting findings of the research are that the
structural information always dominates the size of documents,
both mixed-content elements (found in 72% of documents) and
recursion (found in 15% of documents) are important, and that
documents are quite shallow (they have always fewer than eight
levels in average).

A much simpler document analysis performed in paper [79]
consists of two parts—a discussion of different techniques

for XML processing and an analysis of real-world XML
documents. The sample data consists of 601 XHTML [80]
web pages, three documents in the DocBook format,8 an XML
version of Shakespeare’s plays9 (i.e. 37 XML documents with
a common simple DTD) and documents from the XML Data
Repository project.10 The analyzed properties are the maximum
depth, the average depth, the number of simple paths and the
number of unique simple paths; the results are similar to the
previous cases.

XML data vs. XML schema analyses. The work initiated
in the previously mentioned articles is taken up by probably
the latest paper in this field [11]. It enhances the preceding
analyses and defines several new constructs for describing
the structure of XML data (e.g. so-called DNA or relational
patterns) and analyzes XML documents together with their
eventual DTDs/XSDs that were collected semi-automatically,
i.e. with interference of the human operator. The reason is
that automatic crawling of XML documents generates a set
of documents that are unnatural and often contain only trivial
data which cause misleading results. The collected data consist
of about 16 500 XML documents of more than 20GB in size
divided into 133 collections, whereas only 7.4% have neither a
DTD nor an XSD. Such a low ratio is probably caused by the
semi-automatic gathering.

The data were divided into five categories—data-centric,
document-centric, exchange, report and research. The first
two categories correspond to classical categories [81], the
other three are introduced to enable a finer division. The
statistics described in the paper are also divided into several
categories—global (e.g. number of various constructs), level
(i.e. distribution of various constructs per level), fan-out (i.e.
branching), recursive (i.e. types and complexity of recursion),
mixed-content (i.e. types and complexity of mixed contents),
DNA (i.e. types and complexity of DNA patterns) and relational
(i.e. types and complexity of relational patterns). They were
computed for each document category and, if possible, also for
both XML documents and XML schemas, and the results were
compared.

Most interesting findings and conclusions for all categories of
statistics are partly expected (e.g. that tagging usually dominates
the size of document or that mixed-content elements are used
in 77% of document-centric documents) and partly similar
to the previous results (e.g. that the average depth of XML
documents is about 5). However, there are also some very
interesting observations and conclusions. For example recursion
statistics show that despite the typical assumptions recursion
occurs quite often, especially, in document-centric (43%) and
exchange (64%) documents; the number of distinct recursive
elements is typically low (for each category <5); and that the
type of recursion commonly used is very simple.

8http://www.docbook.org/.
9http://www.ibiblio.org/xml/examples/shakespeare/.
10http://www.cs.washington.edu/research/xmldatasets/.

The Computer Journal, Vol. 55 No. 5, 2012

 at U
niverzita K

arlova v Praze on O
ctober 9, 2012

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

Analyzer: A Complex System for Data Analysis 611

As we can see, the performed analyses reflect the
development of XML technologies and use of XML data in
various applications. The problem is that all the papers are
relatively old (the first paper is from 2001, the last one is
from 2006), and so the results are obsolete. At the same time,
there occur new XML technologies, data types and applications,
whose analysis would be very useful.And a similar study would
be even more useful in the area of XML operations.

9. OPEN PROBLEMS

Even though the current version of Analyzer is a fully functional
system that can be applied on analyses of real-world XML data
(as partially shown in Sections 6.5 and 7.3), there are naturally
various open problems to be focussed on.

Advanced crawling. Apart from classical crawling strategies
on the basis of URLs used in HTML or XHTML linking
constructs, and detection of file types using file extensions or
MIME types etc., we can exploit properties of the particular
type of data more deeply. For instance XML documents involve
references to respective XML schemas that they are supposed
to be valid against; XQuery queries refer to the the documents
they are posed over, whereas XSDs can refer to other schemas
they consist of using constructs such as import, include or
redefine. Also more advanced linking XML technologies,
such as XPointer [82] or XLink [83] can be used to mutually
refer the data.

Even a more advanced crawler can deal with typical situations
when the referenced data are not present directly in the given
address, but ‘close’ to it, i.e. in a neighboring directory, in a
file with a slightly modified name etc. In this case the search
strategy cannot be exact, but some kind of fuzzy searching and
‘guessing’ must be incorporated. A similar situation occurs in
case of, e.g., XQuery queries, where we usually know the exact
name of the queried document, but not the path.

The last situation to be solved occurs in situations when a
given file type (e.g. a script with XPath queries) does not have
a specific extension or a user does not know and use it. So
the crawler cannot rely on the extensions and/or other simple
types of identification and must analyze directly the content
of the file. Naturally, such analysis cannot be detailed since it
would highly worsen the efficiency of crawling, but a kind of
reasonable heuristics for particular file types must be proposed
and, in particular, tested.

Improvements of analytical plugins. The current analytical
plugins are able to analyze basic structural aspects of XML
documents and XML schemas. Naturally, they can be further
extended so that they cover most of the statistics used in
the related work (see Section 8). However, since the current
approaches are relatively old, we can go even further and
analyze new, not considered or advanced features. An example
can be new constructs of XML Schema 1.1 [84, 85] such as,
e.g. assert and report that enable to express advanced

integrity constraints using XPath, XSLT scripts and their
constructs, complexity and expressive power, or advanced
schema languages, such as Schematron [86] or RELAX NG [53].

Detailed analysis of current real-world data. Having such
a robust tool for analysis of real-world data, a natural next
step is to perform a detailed analysis of the current real-world
data. Considering the XML data we have focussed on in our
first use case implemented in the plugins, we can proceed in
several steps. First, a detailed analysis that would cover all
the metrics and observations from the existing papers on data
analyses (as described in Section 8) can be performed, whereas
the found differences would bear highly useful and interesting
information.

In the second step, and in combination with the previous open
issue of advanced crawling, we can focus on analysis of real-
world XML operations, in particular XPath and XQuery queries.
To our knowledge, there exist no such results, while, on the other
hand, the knowledge of typical queries used in the real-world
applications would highly help in the respective optimization
strategies. An interesting target analysis would also be use of
the queries within other XML technologies, e.g. XPath queries
in XSLT scripts or XSDs, XSDs in Web Services [7] etc.

And, last but not least, an important aspect of statistical
analyses of real-world data, not just that of XML one, is
analysis of their evolution. A periodical, e.g. monthly, report of
results and their aggregation would bear even more important
information on evolution and tendencies of XML applications
and, hence, could be used for more advanced optimization
purposes.

Analysis of other kinds of data. Despite the fact that XML
data still keep a leading role in data representation and the
related XML technologies are robust and mature, there exist
other important formats and data types that are becoming more
popular. A classical example are data types related to the
Semantic Web [87], such as RDF triples [9], ontologies [88],
Linked Data [39] etc. In this case we need to solve similar issues,
i.e. crawling, correction and analyses, whereas other aspects,
namely evolution, are even more important.

10. CONCLUSION

The main aim of this paper was to introduce a complex, open and
extensible system calledAnalyzer and to describe several related
research problems, which we have focussed on. Analyzer allows
for performing the full process of data analysis that consists of
the following steps:

(i) data crawling,
(ii) data correction,

(iii) application of analyses and
(iv) aggregation and visualization of results.

As a first use case we implemented and tested modules for
analyses of real-world XML documents, XML schemas and

The Computer Journal, Vol. 55 No. 5, 2012

 at U
niverzita K

arlova v Praze on O
ctober 9, 2012

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

612 J. Stárka et al.

XQuery queries. In the first three steps of the process we
focussed in more detail especially on issues of efficient crawling
of XML data, re-validation of invalid XML documents,
exploitation of the similarity of XML data in data analysis and
XML query analysis.

Despite our original motivations related to XML technolo-
gies, we finally implemented an application that is completely
capable of performing analyses over documents of whatever
types. Analyzer represents a framework that gives a user an
environment for gathering documents, configuring analyses,
managing and scheduling computations, permanent storage for
files and computed data, and a browser for presenting generated
reports. The key advantages of Analyzer are as follows:

(i) multiple versions of the same document are supported,
(ii) documents can be described by multiple types

concurrently,
(iii) automatic attempts to download referenced documents

are performed,
(iv) projects can be forced to process only documents of

selected types,
(v) all analytical logic is implemented separately in plugins,

(vi) executing scheduled tasks in multi-threaded environ-
ment is exploited,

(vii) started computations can be interrupted and resumed
later and

(viii) computed data are permanently stored and available for
browsing.

Our future plans will primarily be targeted to issues discussed
in Section 9. First, we will focus on further improvements
of existing plugins related to XML data analyses and their
exploitation in throughout analysis of both current state of
real-world XML documents and evolution of XML data in the
following months. We plan to repeat the analysis monthly and
publish the new as well as aggregated results on the Web. We
believe that such a unique analysis will provide the research
community with important results useful for both optimization
purposes as well as development of brand new approaches.
Concurrently, we shall shift our target area to the new types
of data such as RDF triples, Linked Data, ontologies etc.

ACKNOWLEDGEMENTS

This work was partially supported by the Czech Science
Foundation (GAČR), grants number P202/10/0573 (J. Stárka),
201/09/P364 (I. Mlýnková), 201/09/0990 (D. Bednárek) and the
Grant Agency of the Charles University (GAUK), grant number
410511 (M. Svoboda).

REFERENCES

[1] Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E. and
Yergeau, F. (2008) Extensible Markup Language (XML) 1.0 (5th
edn). W3C. http://www.w3.org/TR/xml/.

[2] Thompson, H.S., Beech, D., Maloney, M. and Mendelsohn,
N. (2004) XML Schema Part 1: Structures (2nd edn). W3C.
http://www.w3.org/TR/xmlschema-1/.

[3] Biron, P.V. and Malhotra, A. (2004) XML Schema
Part 2: Datatypes (2nd edn). W3C. http://www.w3.org/
TR/xmlschema-2/.

[4] Clark, J. and DeRose, S. (1999) XML Path Language (XPath)
Version 1.0. W3C. http://www.w3.org/TR/xpath.

[5] Boag, S., Chamberlin, D., Fernandez, M.F., Florescu, D., Robie,
J. and Simeon, J. (2010) XQuery 1.0: An XML Query Language
(2nd edn). W3C. http://www.w3.org/TR/xquery/.

[6] Clark, J. (1999) XSL Transformations (XSLT) Version 1.0. W3C.
http://www.w3.org/TR/xslt.

[7] Booth, D. and Liu, C.K. (2007) Web Services Descrip-
tion Language (WSDL) Version 2.0 Part 0: Primer. W3C.
http://www.w3.org/TR/wsdl20-primer/.

[8] Dahlstrom, E., Dengler, P., Grasso, A., Lilley, C., McCormack,
C., Schepers, D., Watt, J., Ferraiolo, J., Jun, F. and Jackson, D.
(2011) Scalable Vector Graphics (SVG) 1.1 (2nd edn). W3C.
http://www.w3.org/TR/SVG/.

[9] Beckett, D. (2004) RDF/XML Syntax Specification (Revised edn).
W3C. http://www.w3.org/TR/rdf-syntax-grammar/.

[10] Oracle (2010) OpenOffice.org Project. Oracle. http://www.
openoffice.org/.

[11] Mlýnková, I., Toman, K. and Pokorný, J. (2006) Statistical
Analysis of Real XML Data Collections. Proc. 13th Int. Conf.
Management of Data, New Delhi, India, December 14–16, pp.
20–31. Tata McGraw-Hill Publishing, New Delhi, India.

[12] Stárka, J., Svoboda, M., Sochna, J. and Schejbal, J. (2010)
Analyzer 1.0. Charles University in Prague, Czech Republic.
http://analyzer.kenai.com/.

[13] Svoboda, M., Stárka, J., Sochna, J., Schejbal, J. and Mlýnkova, I.
(2010) Analyzer: A Framework for File Analysis. Proc. 2nd Int.
Workshop on Benchmarking of Database Management Systems
and Data-Oriented Web Technologies of the 15th Int. Conf.
Database Systems for Advanced Applications, Tsukuba, Japan,
April 1–4, Lecture Notes in Computer Science 6193, pp. 227–
238. Springer, Berlin/Heidelberg.

[14] Sochna, J. (2010) Collecting XML data and meta-data
from the internet (in Czech). Master Thesis, Charles
University in Prague, Czech Republic. http://www.ksi.mff.
cuni.cz/∼bednarek/dp/Sochna.pdf.

[15] Svoboda, M. (2010) Processing of incorrect XML data.
Master Thesis, Charles University in Prague, Czech Republic.
http://www.ksi.mff.cuni.cz/∼mlynkova/dp/Svoboda.pdf.

[16] Stárka, J. (2010) Similarity of XML data. Master Thesis,
Charles University in Prague, Czech Republic. http://www.ksi.
mff.cuni.cz/∼mlynkova/dp/Starka.pdf.

[17] Schejbal, J. (2010) A system for analysis of collec-
tions of XML queries. Master Thesis, Charles Univer-
sity in Prague, Czech Republic. http://www.ksi.mff.cuni.
cz/∼bednarek/dp/Schejbal.pdf.

[18] Shanmugasundaram, J., Tufte, K., Zhang, C., He, G., DeWitt,
D.J. and Naughton, J.F. (1999) Relational Databases for Querying
XML Documents: Limitations and Opportunities. Proc. 25th Int.
Conf. Very Large Data Bases, Edinburgh, Scotland, September
7–10, pp. 302–314. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA.

The Computer Journal, Vol. 55 No. 5, 2012

 at U
niverzita K

arlova v Praze on O
ctober 9, 2012

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

Analyzer: A Complex System for Data Analysis 613

[19] Runapongsa, K. and Patel, J.M. (2002) Storing and Query-
ing XML Data in Object-Relational DBMSs. Proc. Work-
shops XMLDM, MDDE, and YRWS on XML-Based Data
Management and Multimedia Engineering-Revised Papers,
Prague, Czech Republic, March 25–27, pp. 266–285. Springer,
London, UK.

[20] Mignet, L., Barbosa, D. and Veltri, P. (2003) The XML
Web: A First Study. Proc. 12th Int. Conf. World Wide Web,
Budapest, Hungary, May 20–24, pp. 500–510. ACM, New York,
NY, USA.

[21] Bex, G.J., Neven, F. and den Bussche, J.V. (2004) DTDs Versus
XML Schema: A Practical Study. Proc. 7th Int. Workshop on
the Web and Databases: Collocated with ACM SIGMOD/PODS
2004, Paris, France, June 16–17, pp. 79–84. ACM, New York,
NY, USA.

[22] Murata, M., Lee, D. and Mani, M. (2005) Taxonomy of XML
schema languages using formal language theory. ACM Trans.
Internet Technol., 5, 660–704.

[23] Bex, G.J., Neven, F. and Vansummeren, S. (2007) Inferring XML
Schema Definitions from XML Data. Proc. 33rd Int. Conf. Very
Large Data Bases, Vienna, Austria, September 23–27, pp. 998–
1009. ACM, New York, NY, USA.

[24] Vošta, O., Mlýnková, I. and Pokorný, J. (2008) Even an Ant
can Create an XSD. Proc. 13th Int. Conf. Database Systems for
Advanced Applications, New Delhi, India, March 19–21, pp. 35–
50. Springer, Berlin/Heidelberg.

[25] Sahuguet, A. (2001) Everything you Ever Wanted to Know about
DTDs, but were Afraid to Ask (Extended Abstract). Selected
Papers from the 3rd Int. Workshop WebDB 2000 on The World
Wide Web and Databases, Dallas, TX, USA, May 18–19, pp.
171–183. Springer, Berlin/Heidelberg.

[26] Krátký, M., Pokorný, J. and Snášel,V. (2002) Indexing XML Data
with Ub-Trees. Proc. Advances in Databases and Information
Systems, Bratislava, Slovakia, September 8–11, pp. 155–164.
Springer, Berlin/Heidelberg.

[27] Krátký, M., Pokorný, J. and Snášel, V. (2004) Implementation
of XPath Axes in the Multi-dimensional Approach to Indexing
XML Data. Proc. EDBT 2004 Workshops on Current Trends in
Database Technology, Heraklion, Crete, Greece, March 14–18,
pp. 46–60. Springer, Berlin/Heidelberg.

[28] Bayer, R. (1997) The Universal B-Tree for Multidimensional
Indexing: General Concepts. Proc. Int. Conf. Worldwide
Computing and Its Applications, Tsukuba, Japan, March 10–11,
pp. 198–209. Springer, Berlin/Heidelberg.

[29] Fenk, R. (2002) The Bub-tree. Proc. 28th Int. Conf. Very
Large Data Bases, Hong Kong, China. Morgan Kaufman
Publishers.

[30] Gold, E.M. (1967) Language Identification in the Limit. Inf.
Control, 10, 447–474.

[31] Bex, G.J., Gelade, W., Neven, F. and Vansummeren, S. (2008)
Learning Deterministic Regular Expressions for the Inference of
Schemas from XML Data. Proc. 17th Int. Conf. World Wide Web,
Beijing, China, April 21–25, pp. 825–834. ACM, New York, NY,
USA.

[32] Bex, G.J., Neven, F., Schwentick, T. and Vansummeren, S. (2010)
Inference of concise regular expressions and DTDs. ACM Trans.
Database Syst., 35, 1–47.

[33] Rahm, E. and Bernstein, P.A. (2001) A survey of approaches to
automatic schema matching. VLDB J., 10, 334–350.

[34] Wojnar, A., Mlýnková, I. and Dokulil, J. (2010) Structural and
semantic aspects of similarity of document type definitions and
XML schemas. Inform. Sci., 180, 1817–1836.

[35] Yi, S., Huang, B. and Chan, W.T. (2005) XML application schema
matching using similarity measure and relaxation labeling.
Inform. Sci., 169, 27–46.

[36] Bohannon, P., Freire, J., Roy, P. and Simeon, J. (2002) From
XML Schema to Relations: A Cost-Based Approach to XML
Storage. Proc. 18th Int. Conf. Data Engineering, San Jose, CA,
USA, February 26–March 1, p. 64. IEEE Computer Society,
Washington, DC, USA.

[37] Klettke, M. and Meyer, H. (2001) XML and Object-Relational
Database Systems—Enhancing Structural Mappings Based on
Statistics. Selected Papers from the 3rd Int. Workshop WebDB
2000 on The World Wide Web and Databases, London, UK, pp.
151–170. Springer, Berlin/Heidelberg.

[38] NetBeans 6.8 Platform. http://platform.netbeans.org/.

[39] Bizer, C., Heath, T. and Berners-Lee, T. (2009) Linked data—the
story so far. Semant. Web Inform. Syst., 5, 1–22.

[40] Raggett, D., Hors, A.L. and Jacobs, I. (December 1999) HTML
4.01 Specification. W3C. http://www.w3.org/TR/html401/. (7
May 2011, date online accessed).

[41] Sun Microsystems Java 6 Standard Edition. http://java.sun.
com/javase/6/. (7 May 2011, date online accessed).

[42] MySQL Connector 5.1.7. http://dev.mysql.com/downloads/
connector/j/. (7 May 2011, date online accessed).

[43] Apache Derby 10.5.1.1 Database. http://db.apache.org/derby/. (7
May 2011, date online accessed).

[44] H2 Database 1.1.117. http://www.h2database.com/. (7 May 2011,
date online accessed).

[45] Galamboš, L. (2006). Egothor 1.0, Java Search Engine.
http://www.egothor.org/. (7 May 2011, date online accessed).

[46] (2008) ISO 32000-1:2008: Document management-portable
document format. Adobe. http://www.iso.org/iso/iso_catalogue/
catalogue_tc/catalogue_detail.htm?csnumber=51502. (7 May
2011, date online accessed).

[47] Xyle, L. (2001) Xyleme: A Dynamic Warehouse for XML Data of
the Web, Grenoble, France, July 16–18, pp. 3–7. IEEE Computer
Society, Washington, DC, USA.

[48] Ailleret, S. (2009). Larbin: Multi-purpose Web crawler.
http://larbin.sourceforge.net/. (7 May 2011, date online
accessed).

[49] Cafarella, M. and Cutting, D. (2004) Building Nutch: open source
search. Queue, 2, 54–61.

[50] Judd, D. and Groschupf, S. (2009). Bixo—A Webcrawler Toolkit.
http://bixo.101tec.com/wp-content/uploads/2009/05/bixo-
intro.pdf. (7 May 2011, date online accessed).

[51] Mayr, P. andTosques, F. (2005) GoogleWebAPIs—an Instrument
for Webometric Analyses? Proc. 10th Int. Conf. Int. Society
for Scientometrics and Informetrics, Stockholm, Sweden, July
24–28.

[52] Apache Software Foundation (2010). Xerces Java parser.
http://xerces.apache.org/xerces2-j/. (7 May 2011, date online
accessed).

The Computer Journal, Vol. 55 No. 5, 2012

 at U
niverzita K

arlova v Praze on O
ctober 9, 2012

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

614 J. Stárka et al.

[53] Murata, M. (2002) RELAX (Regular Language Description for
XML). http://www.xml.gr.jp/relax/. (7 May 2011, date online
accessed).

[54] Svoboda, M. and Mlynkova, I. (2011) Correction of Invalid XML
Documents with Respect to Single Type Tree Grammars. In Fong,
S. (ed.), Networked Digital Technologies, Communications in
Computer and Information Science 136, pp. 179–194. Springer,
Berlin, Heidelberg.

[55] Bouchou, B., Cheriat, A., Alves, M.H.F. and Savary, A.
(2006) Integrating Correction into Incremental Validation.
22emes Journées Bases de Données Avancées, BDA (informal
proceedings), Lille, France, October 17–20.

[56] S. Staworko, J.C. (2006) Validity-Sensitive Querying of XML
Databases. Proc. EDBT 2006 Workshops on Current Trends
in Database Technology, Munich, Germany, March 26–31,
Lecture Notes in Computer Science 4254, pp. 164–177. Springer,
Berlin/Heidelberg.

[57] Boobna, U. and de Rougemont, M. (2004) Correctors for
XML Data. Proc. EDBT 2004 Workshops on Current Trends
in Database Technology, Toronto, Canada, August 29–30,
Lecture Notes in Computer Science 3186, pp. 69–96. Springer,
Berlin/Heidelberg.

[58] Flesca, S., Furfaro, F., Greco, S. and Zumpano, E. (2005)
Querying and Repairing Inconsistent XML Data. Proc.
6th Int. Conf. Web Information Systems Engineering, New
York, NY, USA, November 20–22, Lecture Notes in
Computer Science 3806, pp. 175–188. Springer, Berlin/
Heidelberg.

[59] Tan, Z., Zhang, Z., Wang, W. and Shi, B. (2007) Computing
Repairs for Inconsistent XML Document using Chase. Proc. Int.
Conf. Advances in Data and Web Management, Huang Shan,
China, June 16–18, Lecture Notes in Computer Science 4505,
pp. 293–304. Springer, Berlin/Heidelberg.

[60] Corrector prototype implementation. http://www.ksi.mff.
cuni.cz/∼svoboda/. (7 May 2011, date online accessed).

[61] Levenshtein, V.I. (1966) Binary codes capable of correcting
deletions, insertions and reversals. Soviet Physics Doklady, 10,
707–710.

[62] SAX Project. http://www.saxproject.org/. (7 May 2011, date
online accessed).

[63] Choi, B. (2002) What are Real DTDs Like? Proc. 5th Int.
Workshop on the Web and Databases, Madison, WI, USA, June
6–7, pp. 43–48. ACM, New York, NY, USA.

[64] McDowell, A., Schmidt, C. and Yue, K. (2004) Analysis and
Metrics of XML Schema. Proc. Int. Conf. Software Engineering
Research and Practice, Las Vegas, NV, USA, July 12–15, pp.
538–544. CSREA Press, Las Vegas, NV, USA.

[65] Hosoya, H. and Pierce, B.C. (2003) XDuce: a statically typed
XML processing language. ACM Trans. Internet Technol., 3,
117–148.

[66] Onder, R. and Bayram, Z. (2006) XSLT version 2.0 is Turing-
complete: A Purely Transformation Based Proof. In Ibarra, O.H.
and Yen, H.-C. (eds), Proc. 11th Int. Conf. Implementation
and Application of Automata, Taipei, Taiwan, August 21–23,
Lecture Notes in Computer Science 4094, pp. 275–276. Springer,
Berlin/Heidelberg.

[67] Bruno, N., Koudas, N. and Srivastava, D. (2002) Holistic
Twig Joins: Optimal XML Pattern Matching. Proc. 2002 ACM

SIGMOD Int. Conf. Management of Data, Madison, WI, USA,
June 3–6, pp. 310–321. ACM, New York, NY, USA.

[68] ISO (1996) ISO/IEC 14977:1996(E), Information technology—
Syntactic metalanguage—Extended BNF.

[69] Draper, D., Fankhauser, P., Fernández, M., Malhotra, A.,
Rose, K., Rys, M., Siméon, J. and Wadler, P. (2010) XQuery
1.0 and XPath 2.0 Formal Semantics. W3C. http://www.w3.
org/TR/xquery-semantics/. (7 May 2011, date online accessed).

[70] Zhang, X., Pielech, B. and Rundesnteiner, E.A. (2002) Honey, I
Shrunk the XQuery!: An XML Algebra Optimization Approach.
Proce. 4th Int. Workshop on Web Information and Data
Management, McLean, VA, USA, November 4–9, pp. 15–22.
ACM, New York, NY, USA.

[71] Fokoue,A., Rose, K., Siméon, J. andVillard, L. (2005) Compiling
XSLT 2.0 into XQuery 1.0. In Ellis,A. and Hagino, T. (eds), Proc.
14th Int. Conf. World Wide Web, Chiba, Japan, May 10–14, pp.
682–691. ACM, New York, NY, USA.

[72] Kay, M. (2007) XSL Transformations (XSLT) Version 2.0.
http://www.w3.org/TR/xslt20/. (7 May 2011, date online
accessed).

[73] Merlo, E., Kontogiannis, K. and Girard, J. (1992) Structural
and Behavioral Code Representation for Program Understand-
ing. Proc. 5th Int. Workshop on Computer-Aided Software Engi-
neering, Montreal, QC, Canada, July 6–10, pp. 106–108. IEEE
Computer Society, Washington, DC, USA.

[74] Afanasiev, L. and Marx, M. (2008) An analysis of XQuery
benchmarks. Inform. Syst., 33, 155–181.

[75] Chamberlin, D., Fankhauser, P., Florescu, D., Marchiori,
M. and Robie, J. (2007) XML Query Use Cases. W3C.
http://www.w3.org/TR/xquery-use-cases/. (7 May 2011, date
online accessed).

[76] W3C (2006) XML Query Test Suite. http://dev.w3.org/2006/
xquery-test-suite/PublicPagesStagingArea/. (7 May 2011, date
online accessed).

[77] Klettke, M., Schneider, L. and Heuer, A. (2002) Metrics for
XML Document Collections. Proc. Workshops XMLDM, MDDE,
and YRWS on XML-Based Data Management and Multimedia
Engineering-Revised Papers, Prague, Czech Republic, March
25–27, pp. 15–28. Springer, London, UK.

[78] Barbosa, D., Mignet, L. and Veltri, P. (2006) Studying the XML
Web: Gathering statistics from an XML sample. World Wide Web,
9, 187–212.

[79] Kosek, J., Kratký, M. and Snášel, V. (2003) Struktura Realnych
XML Dokumentu a Metody Indexovani. Proc. 2003 Workshop on
Information Technologies—Applications and Theory (Informal
Proceedings), High Tatras, Slovakia, September 21. Czech.

[80] W3C (August 2002) The Extensible HyperText Markup Language
(2nd edn). W3C. http://www.w3.org/TR/xhtml1/. (7 May 2011,
date online accessed).

[81] Bourret, R. (2005) XML and databases. http://www.rpbourret.
com/xml/XMLAndDatabases.htm. (7 May 2011, date online
accessed).

[82] DeRose, S., Daniel, R., Grosso, P., Maler, E., Marsh, J. and
Walsh, N. (2002) XML Pointer Language (XPointer). W3C.
http://www.w3.org/TR/xptr/. (7 May 2011, date online accessed).

[83] DeRose, S., Maler, E. and Orchard, D. (2001) XML Linking Lan-
guage (XLink) Version 1.0. W3C. http://www.w3.org/TR/xlink/.
(7 May 2011, date online accessed).

The Computer Journal, Vol. 55 No. 5, 2012

 at U
niverzita K

arlova v Praze on O
ctober 9, 2012

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

Analyzer: A Complex System for Data Analysis 615

[84] Gao, S., Sperberg-McQueen, C.M. and Thompson, H.S. (2009)
W3C XML Schema Definition Language (XSD) 1.1 Part 1:
Structures. W3C. http://www.w3.org/TR/xmlschema11-1/. (7
May 2011, date online accessed).

[85] Peterson, D., Biron, P.V., Malhotra, A. and Sperberg-
McQueen, C.M. (2009) W3C XML Schema Definition
Language (XSD) 1.1 Part 2: Datatypes. W3C. http://www.w3.
org/TR/xmlschema11-2/. (7 May 2011, date online accessed).

[86] Jelliffe, R. (2001) The Schematron—an XML structure val-
idation language using patterns in trees. http://xml.ascc.
net/resource/schematron/. (7 May 2011, date online accessed).

[87] W3C (since 1994) The Semantic Web Homepage. W3C.
www.w3.org/2001/sw/. (7 May 2011, date online accessed).

[88] Smith, M.K., Welty, C. and McGuinness, D.L. (2004)
OWL Web Ontology Language. http://www.w3.org/TR/
owl-guide/. (7 May 2011, date online accessed).

The Computer Journal, Vol. 55 No. 5, 2012

 at U
niverzita K

arlova v Praze on O
ctober 9, 2012

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

Chapter 7

Conclusion

We have presented selected results of author’s research, carried out through
years 2007–2012 in cooperation with members of the XML and Web En-
gineering Research Group. Its core lies in proposal and implementation of
a five-level evolution management framework which enables to design and
maintain XML data structures which are processed within a complex appli-
cation. In Chapter 2 we have described the architecture of the framework
and focussed on its PIM and PSM levels (first in general, then from the XML
perspective), their mutual mapping, respective operations and their propaga-
tion. In Chapter 3 we have moved to lower schema and intensional level and
we have dealt with an approach for adapting XML documents with regard
to changes in their XML schema. The output of the approach is and XSLT
script which enables to re-validate the XML documents.

The following two sections have focussed on the process of reverse engi-
neering, i.e., integration of an existing XML schema to the framework. First,
in Chapter 4 we have described a set of improvements of a classical heuris-
tic approach to XML schema inference for a sample set of XML documents,
using exploitation of other input information, optimization of the inference
process, or inferring new constructs. Hence, in Chapter 5 we can assume that
we have an XML schema and we deal with structural and semantic similarity
of XML schemas (expressed either in DTD or XML Schema). The similarity
evaluation strategy is the core algorithm exploited further in the process of
mapping of PSM of an XML schema to an existing PIM.

Last but not least, in Chapter 6 we introduce a “side” result of our
research that has been exploited during several previous steps – an extensible
framework for statistical analyses of real-world data. Its primary aim was

179

an analysis of real-world XML data and XML operations (queries); however,
the tool is general and using plug-ins it can be extended for any kind of data.

7.1 Current and Future Research

The provided description may indicate, that the evolution management frame-
work is finished and all the related problems are solved. As we have men-
tioned, papers forming Chapters 2 and 3 provide the common core of the
proposal which can be further extended, generalized and optimized. In XRG
we currently focus on several such improvements and extensions. Here we
mention only a few of them, especially those on which the author of this
thesis cooperates.

From the point of view of Figure 1.3 on page 7 in this thesis we have
described the blue part of the framework – XML view – except for the oper-
ational level. However, as we have indicated in the introduction, a change in
a particular data structure can affect not only other data structures, but also
related operations, storage strategies, business-process models or, in general,
any kind of related data model and/or operation. Hence, currently we are
dealing with extension of the basic idea towards a more general tool.

Regarding the missing part of XML view – operational level – we have
recently proposed a preliminary approach [39] which deals with the problem
of adaptation of XML queries, in particular a subset of XPath (denoted in
Figure 1.5 (d) on page 11 with the red color). This approach is a part of
a new, more general implementation of the five-level evolution management
framework, called DaemonX [13], which does not cover only the XML view,
but in general any kind of view. It is implemented as a general framework,
where new plug-ins can be added for new types of data. Currently it supports
XML modeling, ER modeling and business-process modeling and we focus
on its extending towards the full expected functionality. For instance, in [12]
the framework is extended with a basic approach for adaptation of relational
schemas, whereas in [23] change propagation to business process models is
solved. On the other hand, in [38] the system is extended with integrity
constraints, while in [18] efficient management of undo and redo operations
in the environment of multiple schemas of different type is designed and
implemented.

Another important current and future research direction covers the prob-
lem of inference of XML schemas. Also in this case we have recently provided

180

an implementation of a general framework called jInfer [20]. It supports the
general inference process described in Section 1.3; however, using plug-ins
it can be modified and extended so that different types of steps of the pro-
cess can be applied and compared. So far we have extended the framework
towards various optimization strategies of the inference process [21], exploita-
tion of the knowledge of XML operations [27] or inference of integrity con-
straints [43,44].

Our general aim in all the cases is still the same – to provide robust
tools with real-world motivation, rich formal background, and user-friendly
interface which can be easily extended with new, more efficient techniques.

181

182

Bibliography

[1] Service Oriented Architecture – SOA. IBM. http://www-01.ibm.com/
software/solutions/soa/.

[2] HTML 4.01 Specification. W3C, 1999. http://www.w3.org/TR/html4/.

[3] ISO/IEC 9075-14:2003 Part 14: XML-Related Specifications
(SQL/XML). ISO, 2006.

[4] SOAP Version 1.2 Part 0: Primer. W3C, 2007. http://www.w3.org/

TR/soap12-part0/.

[5] Web Services Business Process Execution Language (WSBPEL) TC.
OASIS, 2007. http://www.oasis-open.org/committees/tc_home.

php?wg_abbrev=wsbpel.

[6] Web Services Description Language (WSDL) Version 2.0 Part 0:
Primer. W3C, 2007. http://www.w3.org/TR/wsdl20-primer/.

[7] Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C, 2008.
http://www.w3.org/TR/REC-xml.

[8] Web Services Activity. W3C, 2009. http://www.w3.org/2002/ws/.

[9] S. Boag, D. Chamberlin, M. F. Fernndez, D. Florescu, J. Robie, and
J. Simon. XQuery 1.0: An XML Query Language. W3C, 2007.

[10] A. Boronat, J. A. Carśı, and I. Ramos. Algebraic Specification of a
Model Transformation Engine. In FASE ’06: Proc. of the 9th Int. Conf.
Fundamental Approaches to Software Engineering, Vienna, Austria, vol-
ume 3922 of LNCS, pages 262–277. Springer, 2006.

183

[11] P.P. Chen. The Entity-Relationship Model: Toward a Unified View of
Data. ACM Transactions on Database Systems, 1(1):9–36, 1976.

[12] M. Chytil. Adaptation of Relational Database Schema. Master Thesis,
Charles University in Prague, Czech Republic, 2012. http://www.ksi.
mff.cuni.cz/~mlynkova/dp/Polak.pdf.

[13] M. Chytil, K. Jakubec, V. Kudelas, P. Piják, M. Polák, M. Nečaský, and
I. Mlýnková. DaemonX – Design Adaptation Evolution and Managment
of Native XML, 2011. http://daemonx.codeplex.com/.

[14] A. Cicchetti, D. Di Ruscio, and A. Pierantonio. Managing Depen-
dent Changes in Coupled Evolution. In Proc. of the 2nd Int. Conf.
on Model Transformations, ICMT 2009, Zurich, Switzerland, volume
5563 of LNCS, pages 35–51. Springer, 2009.

[15] K. Czarnecki and S. Helsen. Feature-Based Survey of Model Transfor-
mation Approaches. IBM Syst. J., 45(3):621–645, 2006.

[16] E. M. Gold. Language Identification in the Limit. Information and
Control, 10(5):447–474, 1967.

[17] ISO/IEC 9075-1:2008. Part 1: Framework (SQL/Framework). ISO,
2008.

[18] K. Jakubec. Management of Undo/Redo Operations in Complex Envi-
ronments. Master Thesis, Charles University in Prague, Czech Republic,
2012. http://www.ksi.mff.cuni.cz/~mlynkova/dp/Jakubec.pdf.

[19] M. Kay. XSL Transformations (XSLT) Version 2.0. W3C, 2007. http:
//www.w3.org/TR/xslt20/.

[20] M. Klempa, M. Mikula, R. Smetana, M. Švirec, and M. Vitásek. jIn-
fer XML Schema Inference Framework. http://jinfer.sourceforge.
net/.

[21] M. Klempa, J. Stárka, and I. Mlýnková. Optimization and refine-
ment of xml schema inference approaches. Procedia Computer Science,
10(0):120–127, 2012.

184

[22] J. Kĺımek, I. Mlýnková, and M. Nečaský. A Framework for XML Schema
Integration via Conceptual Model. In Web Information Systems Engi-
neering WISE 2010 Workshops, WISS’10, pages 84–97, Berlin, Heidel-
berg, 2011. Springer-Verlag.

[23] V. Kudelas. Adapting Service Interfaces when Business Processes
Evolve. Master Thesis, Charles University in Prague, Czech Republic,
2012.

[24] J. Malý, M. Nečaský, and I. Mlýnková. Efficient Adaptation of XML
Data Using a Conceptual Model. Information Systems Frontiers, 2012.
(in press).

[25] T. Mens and P. Van Gorp. A Taxonomy of Model Transformation.
Electron. Notes Theor. Comput. Sci., 152:125–142, 2006.

[26] L. Mignet, D. Barbosa, and P. Veltri. The XML Web: a First Study. In
WWW ’03: Proc. of the 12th Int. Conf. on World Wide Web, Volume
2, pages 500–510, New York, NY, USA, 2003. ACM Press.

[27] M. Mikula, J. Stárka, and I. Mlýnková. Inference of an XML Schema
with the Knowledge of XML Operations. In SITIS ’12: Proceedings
of the 8th International Conference on Signal-Image Technology and
Internet-Based Systems, Naples, Italy, 2012. IEEE Computer Society
Press. (in press).

[28] J. Miller and J. Mukerji. MDA Guide Version 1.0.1. OMG, 2003. http:
//www.omg.org/docs/omg/03-06-01.pdf.

[29] I. Mlýnková. An Analysis of Approaches to XML Schema Inference.
In Int. IEEE Conf. on Signal-Image Technologies and Internet-Based
System, pages 16–23, Los Alamitos, CA, USA, 2008. IEEE Computer
Society.

[30] I. Mlýnková and M. Nečaský. Heuristic Methods for Inference of XML
Schemas: Lessons Learned and Open Issues. Informatica – an Interna-
tional Journal, 2012. (in press).

[31] I. Mlýnková, K. Toman, and J. Pokorný. Statistical Analysis of Real
XML Data Collections. In COMAD ’06: Proc. of the 13th Int. Conf.

185

on Management of Data, pages 20–31, New Delhi, India, 2006. Tata
McGraw-Hill Publishing Company Limited.

[32] M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy of XML
Schema Languages using Formal Language Theory. ACM Trans. Inter-
net Techn., 5(4):660–704, 2005.

[33] M. Nečaský. Conceptual Modeling for XML, volume 99 of Dissertations
in Database and Information Systems. IOS Press, Amsterdam, Nether-
lands, 2009.

[34] M. Nečaský, J. Kĺımek, J. Malý, and I. Mlýnková. Evolution and Change
Management of XML-based Systems. Journal of Systems and Software,
85(3):683–707, 2012.

[35] OMG. MOF QVT Final Adopted Specification. Object Modeling Group,
June 2005. http://fparreiras/papers/mof_qvt_final.pdf.

[36] OMG. UML Infrastructure Specification 2.1.2, nov 2007. http://www.

omg.org/spec/{UML}/2.1.2/Infrastructure/PDF/.

[37] OMG. UML Superstructure Specification 2.1.2, nov 2007. http://www.
omg.org/spec/{UML}/2.1.2/Superstructure/PDF/.

[38] V. Piják. Universal Constraint Language. Master Thesis, Charles Uni-
versity in Prague, Czech Republic, 2011.

[39] M. Polák. XML Query Adaptation. Master Thesis, Charles Univer-
sity in Prague, Czech Republic, 2011. http://www.ksi.mff.cuni.cz/

~mlynkova/dp/Polak.pdf.

[40] J. Stárka, I. Mlýnková, J. Kĺımek, and M. Nečaský. Integration of Web
Service Interfaces via Decision Trees. In Proc. of the 7th Int. Symposium
on Innovations in Information Technology, pages 47–52, Washington,
DC, USA, 2011. IEEE Computer Society.

[41] J. Stárka, M. Svoboda, J. Sochna, J. Schejbal, I. Mlýnková, and
D. Bednárek. Analyzer: A Complex System for Data Analysis. Comput.
J., 55(5):590–615, 2012.

186

[42] H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML
Schema Part 1: Structures (Second Edition). W3C, October 2004.
http://www.w3.org/TR/xmlschema-1/.

[43] M. Vitásek and I. Mlýnková. Inference of XML Integrity Constraints.
In Advances in Databases and Information Systems, volume 186 of Ad-
vances in Intelligent Systems and Computing, pages 285–296. Springer
Berlin Heidelberg, 2013.

[44] M. Švirec and I. Mlýnková. Efficient Detection of XML Integrity Con-
straints Violation. In Networked Digital Technologies, volume 293 of
Communications in Computer and Information Science, pages 259–273.
Springer Berlin Heidelberg, 2012.

[45] A. Wojnar, I. Mlýnková, and J. Dokulil. Structural and Semantic As-
pects of Similarity of Document Type Definitions and XML Schemas.
Information Sciences, 180(10):1817–1836, 2010. Special Issue on Intel-
ligent Distributed Information Systems.

187

