XML Data in (Object-) Relational Databases

RNDr. Irena Mlýnková irena.mlynkova@mff.cuni.cz

Charles University Faculty of Mathematics and Physics Department of Software Engineering Prague, Czech Republic

September 24, 2007

1. Introduction

- 2. Analysis of Related Work
- 3. Hybrid User Driven Acaptive Method
- 4. Similarity Function
- 5. Statistical Analysis of Real-World XML Data
- 6. Query Evaluation
- 7 Condusion
- 8. Summary

September 24, 2007 I. Mlýnková - Doctoral thesis defense

Motivation

XML = a standard for data representation and manipulation

 \Rightarrow Growing demand for efficient managing and processing of XML data

Current approaches

File system

- Inability of querying without additional data pre-processing
- Pure object-oriented approach
 - No efficient and comprehensive tool
- Native methods
 - No need to adapt structures to a new purpose \Rightarrow most efficient
- (O)RDBMS
 - Mature and verified technology ⇒ most practically used
 °°

Database-Based XML Processing Methods

Key concern: Choice of the optimal XML-to-relational mapping

- How XML data are stored into relations
- Exploitation of various types of supplemental information
 - XML schema, sample XML documents, expected query workload, user interaction, etc.
- Generic vs. schema-driven omitting / exploiting XML schema
- Fixed vs. adaptive the amount of input data
 - Data model vs. sample XML documents and XML queries
- **User-defined** vs. user-driven the amount of user involvement
 - User defines both schema and mapping vs. user specifies local changes of a default mapping
 - User-driven: schema is adapted to the annotations
- Which of the XML-to-relational mappings is the best? Can the existing approaches be enhanced? If so, how?

Outline of the Thesis

1. Analysis of related work

- Classification and evaluation of existing approaches
- Identification of open problems and possible solutions
- 2. Proposal of a hybrid user-driven adaptive method
 - Solution of several identified open issues
- 3. Proposal of similarity function
 - Schema-level structural similarity
 - Tuning of weights of the function
 - Exploitation of results of analysis of real-world data
- 4. Statistical analysis of real-world XML data
 - New findings, detailed characteristics of real-world data
- 5. Query evaluation over resulting system
 - Correction of the set of annotations, types of annotations
 - Problems related to query evaluation

Analysis of Related Work Hybrid User-Driven Adaptive Method Similarity Function Statistical Analysis of Real-World XML Data Query Evaluation Conclusion Summary

September 24, 2007 I. Mlýnková - Doctoral thesis defense

Adaptive Methods

Not a straightforward mapping, adapt to a current application Cost-driven

- Choose the most efficient storage strategy automatically
 - 1. Search a space of possible mappings of initial schema S_{init}
 - Set of XML-to-XML schema transformations $T = \{t_1, t_2, ..., t_n\}$
 - 2. Choose the optimal one for given sample
 - XML documents $D = \{d_1, d_2, ..., d_k\}$ valid against S_{init}
 - Query workload $Q = \{q_1, q_2, ..., q_l\}$ over S_{init}
- Infinite space of mappings ⇒ approaches differ in search heuristics
 User-driven
- Optimization of user-defined methods
- User can influence default fixed mapping f_{def} of S_{init} using a set of annotations A
 - Predefined set of fixed XML-to-relational mappings {fⁱ_{map}}_{i=1,...,n}
 - Approaches differ in f_{def} and $\{f_{map}^i\}_{i=1,...,n}$
 - Highly restricted

•

•

•

۲

Open Problems

Problems of missing input data

- $S_{init} \Rightarrow$ derivation of schema from sample XML documents D
- $D \Rightarrow$ analyses of real XML data
- $Q \Rightarrow$ dynamic adaptability

Efficient solution of subproblems

- Numerous simplifications (omitting of mixed contents, recursion, ...)
- f_{def} is always fixed \Rightarrow combination with cost-driven idea
- **Deeper exploitation of user-given information**
 - Idea: Schema annotations = "hints" how to store particular XML patterns
 ⇒ similar fragments should be stored similarly
- Theoretical analysis of the problem
 - No theoretic study of XML-to-XML transformations + NP-hardness

Dynamic adaptability

Changes of queries or data \Rightarrow crucial worsening of efficiency \Rightarrow dynamic changes of the schema

•

•

Publications

Mlýnková, I. – Pokorný, J.: Adaptability of Methods for Processing XML Data using Relational Databases – the State of the Art and Open Problems. RCIS '07: Proceedings of the 1st International Conference on Research Challenges in Information Science, pages 183 – 194, Ouarzazate, Morocco, April 2007. Ecole Marocaine des Sciences de l'Ingenieur, 2007.

Note: The Best Paper Award

Note: Selected for publishing in Special Issue of the International Journal of Computer Science and Applications, ISSN 0972-9038, Volume 4, Issue 2, pages 43 – 62, Technomathematics Research Foundation, July 2007.

Mlýnková, I. – Pokorný, J.: XML in the World of (Object-)Relational Database Systems. ISD '04: Proceedings of the 13th International Conference on Information Systems Development, pages 63 – 76, Vilnius, Lithuania, September 2004. Springer Science+Business Media Inc., 2005. ISBN 978-0-387-25026-7.

September 24, 2007

I. Introduction

- 2. Analysis of Related Work
- 3. Hybrid User-Driven Adaptive Method
- 4. Similarity Function
- 5. Statistical Analysis of Real-World XVIE Data
- 6. Query Evaluation
- 7. Conclusion
- 8. Summary

September 24, 2007 I. Mlýnková - Doctoral thesis defense

User-Driven Methods:

Shortcomings and Improvements

- Default mapping strategy *f*_{def} is always fixed
 - Systems are able to store schema fragments in various ways
 - Weak exploitation of user-given information
 - Annotations from A are just directly applied
 - Idea: Annotations = "hints" how a user wants to store XML patterns
- ⇒ General idea: Emphasis on user-given information
 - Searching for similar fragments in the not annotated schema parts
 - The user is not forced to annotate all schema fragments
 - The system can reveal new structural similarities
 - Searching for optimal mapping strategy for the remaining fragments
 - Adaptive strategy
 - Another exploitation of similarity

Schema of the Mapping Process

September 24, 2007

I. Mlýnková - Doctoral thesis defense

12

Adaptive Strategy

Key operations:

- Contraction = replaces each annotated fragment with an auxiliary node
- Expansion = all auxiliary nodes are expanded to original schema fragments
- Algorithm:

•

•

•

•

- 1. The searching for similar fragments and operation contraction repeats until there are no identified candidates for annotating
- 2. The resulting schema is expanded
- Assumption: Reliable similarity function
- Open Issues:
 - Can we find similar schema fragments?
 - Can we find any in contracted graphs?
 - How many contractions can be applied, if any?
 - \Rightarrow Experiments

September 24, 2007

Results

The percentage of annotated nodes

	0.0.0	5	011	4 ° P	1
Average number	2.7	3.9	2.9	4.1	4.3
of iterations					
Average % of not	2.1	53.4	13.5	25.6	31.1
annotated nodes	5		\sim		
% of fully con-	93.7	22.2	81.1	0.0	28.6
tracted schemes					

September 24, 2007

Publications

Mlýnková, I.: A Journey towards More Efficient Processing of XML Data in (O)RDBMS. To appear in CIT '07: Proceedings of the 7th IEEE International Conference on Computer and Information Technology, Fukushima, Japan, October 2007. IEEE Computer Society, 2007.

Note: Nomination to the Excellent Paper Award

Mlýnková, I.: An XML-to-Relational User-Driven Mapping Strategy Based on Similarity and Adaptivity. SYRCoDIS '07: Proceedings of the 4th Spring Young Researchers Colloquium on Databases and Information Systems, pages 9 – 20, Moscow, Russian Federation, May 2007. CEUR Workshop Proceedings, ISSN 1613-0073, Vol. 256, Moscow State University, 2007.

1. Introduction 2. Analysis of Related Work

4. Similarity Function

5. Statistical Analysis of Real-World XML Data

- 6. Query Evaluation
- 7. Conclusion
- 8. Summary

September 24, 2007

Similarity Function (1)

- No suitable existing approach \Rightarrow proposal of a new one
- Focus on:
 - Schema-level similarity
 - Structural similarity
 - Existing works: semantic similarity
 - Aspects influencing the XML-to-relational mapping
 - e.g. omitting of element context
 - Reasonable tuning of parameters
 - Existing works usually omit
- Idea: Precise description and comparison of structure of schema fragments ⇒ exploitation of statistical analysis of real-world XML data
 - Analyzed characteristics describe data structure in detail
 - Results can be exploited for realistic tuning

Similarity Function (2)

Matcher = similarity of a particular aspect

- e.g. number of elements/attributes, depth, fan-out, etc.
- Similarity of parameters = value ∈ [0,1]
- Composite similarity function = aggregation of results of matchers
 - Weighted sum ⇒ tuning of weights?
 - Existing works: average of results of matchers
- Idea: Tuning the weights so that the function can identify similar number of given patterns as the analysis
 - Tuning process = constraints optimization problem
 - Can be solved using respective approaches
 - Genetic algorithms, simulated annealing, etc.

•

•

Tuning Process - Average vs. Tuned Weights

- R = manually determined matches, P = matches determined by algorithm
- I = true positives, F = false matches

.

- Precision = | I | / | P | = reliability of the function
- Recall = | I | / | R | = share of real matches that is found
- Overall = (| I | | F |) / |R| = post-match effort

Publications

Mlynkova, I.: UserMap – an Enhancing of User-Driven XML-to-Relational Mapping Strategies. Technical report 2007/3. Charles University, Prague, Czech Republic, April 2007, 38 pages.

Mlýnková, I. – Pokorný, J.: Similarity and XML Technologies. To appear in ICWI '07: Proceedings of the 6th IADIS International Conference WWW/Internet, Vila Real, Portugal, October 2007. International Association for Development of the Information Society, 2007.

Mlýnková, I.: Similarity of XML Schema Fragments Based on XML Data Statistics.

Note: Paper under review

September 24, 2007

. Introduction

- 2. Analysis of Related Work
- 3. Hybrid User-Driven Adaptive Method
- 4. Similarity Function
- 5. Statistical Analysis of Real-World XML Data
- 6. Query Evaluation
- 7. Conclusion
- 8, Summary

Analyzed Data

- Semiautomatically collected
 - Removal of damaged, artificial, too simple, or useless XML data

September 24, 2007

Statistics	$\mathbf{Results}$
Number of XML documents	$16,\!534$
Number of XML collections	133
Number of DTDs/XSDs	98
Total size of documents (MB)	20,756
Minimum size of a document (B)	61
Maximum size of a document (MB)	1,971
Average size of a document (MB)	1.3
Documents with DTD (%)	74.6
Documents with XSD (%)	38.2
Documents without DTD/XSD (%)	7.4

Testing collections – Shakespeare's plays, XMark, Inex, ...

- Standard XML schemes XHTML, SVG, RDF, DocBook, ...
- Database exports FreeDB, IMDb, …
- Known document types OpenOffice, …
- Randomly crawled data novels in XML, RNAdb, …

Contributions

More detailed classification of XML data

- 6 categories = 2 classical + 4 new \Rightarrow finer division
 - Data-centric, document-centric
 - Report, research, exchange, semantic web
 - ⇒ Tests performed within the categories

Confirmation or refutation of results of existing papers

- Focus on often omitted constructs
- Findings: Semi-automatically collected data have schema more often, recursion and mixed contents are not uncommon, etc.
- New findings and conclusions

- Brand-new constructs ⇒ more detailed characteristics
 - New types of element fan-out and recursion, DNA patterns, relational patterns, etc.
- Detailed characteristics of real-world data per category ⇒ Tuning of similarity function

Publications

Mlynkova, I. – Toman, K. – Pokorny, J.: Statistical Analysis of Real XML Data Collections. Technical report 2006/5. Charles University, Prague, Czech Republic, June 2006, 43 pages.

Mlýnková, I. – Toman, K. – Pokorný, J.: Statistical Analysis of Real XML Data Collections. COMAD '06: Proceedings of the 13th International Conference on Management of Data, pages 20 – 31, New Delhi, India, December 2006. Tata McGraw-Hill Publishing Co. Ltd., 2006. ISBN 0-07-063374-6.

Note: The Best Student Paper Award

Toman, K. – Mlýnková, I.: XML Data – The Current State of Affairs. Proceedings of XML Prague '06 conference, pages 87 – 102, Prague, Czech Republic, June 2006.

Note: An invited talk

September 24, 2007

Content

Introduction Analysis of Related Work Hybrid User-Driven Adaptive Metho Similarity Eulection

5. Statistical Analysis of Real-World XML Data

6. Query Evaluation

8. Summary

September 24, 2007

Open Issues of Query Evaluation

- Correction of the candidate set of annotations proposed by the algorithm
 - Annotations can be meaningless ⇒ automatic identification
 - Not all combinations can be applied or are required by the user
 - Multiple choices \Rightarrow user interaction + default settings
- Annotated fragments can intersect
 - General problem of user-driven approaches
 - Existing works: the allowed mapping strategies are too simple
 - Interface between storage strategies
 - Processing of parts of a query using different storage strategies
 - How to cope with redundancy
 - A single fragment can be stored using multiple strategies ⇒ which of them should be used?

Correction of Annotations

Types of annotation intersections:

- **Redundant** = both storage strategies are applied
 - e.g. XHTML fragments ⇒ CLOB + shredding into tables
- Overriding = only one of the storage strategies is applied
 - Classical situation of default mapping + annotations
- Influencing = storage strategies are combined
 - e.g. shredding into tables + additional numbering schema

Sample set of annotations + experimental system

- Demonstration of meaningless and multiple-choice combinations
 - e.g. simple numbering schema must be always combined with a kind of shredding
 - e.g. storing into CLOB can be redundant or overriding

	1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	- Core of Total To		1015021-8814		1112 10 11 11 12 10 12 10 10 10 10 10 10 10 10 10 10 10 10 10	The second s	ANNAL SETTIMATING TRANSPORT	214-5314-67144		1 HI 21542H 83	COMPANY OF THE OWNER	the second second
Attrib INOUT GENERI SCHEMA TOCLOE INTERV		Attribute		Va	lue	Function							
		INOUT			inl	ine,	Specifies who	ether the	anne	otate	d f	ragn	nent
				outline		should be inlined or outlined to/from parent ta-							
							ble.						
		GENERIC		edge,		The annotated fragment is stored using the spec-							
					attribute,		ified type of generic-tree mapping strategy,						
					universal		i.e. Edge, Attribute, or Universal mapping.						
		SCHEMA		basic,		The annotated fragment is stored using the spec-							
				shared,		ified type of schema-driven mapping strategy,							
				hybrid		i.e. Basic, Shared, or Hybrid mapping.							
		TOCLOB		true		The annotated fragment is stored to a CLOB							
						column.							
		ERVA	ΑL	true		The annotated fragment is indexed using the In-							
						terval encoding.							
					New Yorking								
	INOUT	GENERIC	SCHEMA	TOCLOB	INTERVAL	Overri r(ding + edundant		TUONI	GENERIC	SCHEMA	TOCLOB	INTERVAL
INOUT	Ø	\times	\times	\times	\times			INOUT	Ø	\checkmark	\checkmark	\times	\times
GENERIC	×	Ø	\checkmark	×	\times			GENERIC	×	Ø	\times	\times	\times
SCHEMA	×	\checkmark	Ø	\times	\times			SCHEMA	\times	\times	Ø	\times	\times
		-		-			Hard College and College and States and States	TOGLOD				ø	~
TOCLOB	\times	\checkmark	\checkmark	Ø	\times		nfluencing	TUCLUB	×	\times	×	Ø	X

Interface and Redundancy

- Interface depends on the supported set of mapping strategies
 General types of annotations:
 - **Early binding = processed before the XML schema is mapped**
 - Modify the structure of the relational schema e.g. INOUT, TOCLOB
 - Late Binding = exploited as late as a query is evaluated
 - Enhances a storage strategy with additional information e.g. INTERVAL
- - Evaluation graph

- Edges = storage strategies
- Vertices = interfaces among storage strategies
- Length of an edge = cost of evaluating of part of a query with a possible strategy + cost of interface between the strategy and the previous one
- \Rightarrow shortest path search

Publications

Mlynkova, I. – Pokorny, J.: UserMap – an Exploitation of User-Specified XMLto-Relational Mapping Requirements and Related Problems. Technical report 2007/8. Charles University, Prague, Czech Republic, August 2007, 26 pages.

Mlýnková, I. – Pokorný, J.: UserMap – an Adaptive Enhancing of User-Driven XML-to-Relational Mapping Strategies.

Note: Paper under review

September 24, 2007

Content

. Introduction

- Analysis of Related Work
- B. Hybrid User-Driven Adaptive Method
- Similarity Function
- 5. Statistical Analysis of Real-World XML Data
- 6. Query Evaluatio
- 7. Conclusion
- 8. Summary

Conclusion and Future Work

Main contributions of the thesis

- Detailed analysis of existing works and possible improvements
- Proposal of a hybrid user-driven adaptive XML-to-relational mapping strategy
- Proposal of a schema-level structural similarity function
 - Tuning process
- Statistical analysis of real-world XML data

Current research

- Elaborate implementation of the proposed system
 - Currently: prototype implementation
 - Emphasis: "Side" aspects, improvement of query evaluator
- Extending of annotations with expected queries
- Possible future work
 - Combination with true cost-driven approaches
 - Dynamic adaptation of the relational schema •••••

Content

- . Introduction
- 2. Analysis of Related Work
- 3. Hybrid User-Driven Adaptive Method
- 4 Similarity Function
- 5. Statistical Analysis of Real-World XML Data
- 6. Query Evaluation
- 8. Summary

September 24, 2007

Summary

8 refereed papers:

7 international conferences

- IEEE Computer Society, Springer, McGraw-Hill, 2x International Association for Development of the Information Society, 2x local proceedings
 - 2 best (student) paper awards, 1 nomination to excellent award
- 1 journal: International Journal of Computer Science and Applications

4 nonrefereed papers:

- 2 invited talks (EurOpen '04, XML Prague '06)
- 6 technical reports
 - 191 pages in total

Textbook:

•

- Mlýnková, I. Pokorný, J. Richta, K. Toman, K. Toman, V.: XML: Technologies. Textbook – chapters 3, 6, and 9. Charles University, 2006.
 - 38 pages
- Citations:
 - 5 international conferences (ACM, 2x IEEE Computer Society), 3 local journals and conferences, 5 theses (Masaryk University, University of West Bohemia, Czech Technical University, 2x Charles University)