
XML Data – The Current State of Affairs

Kamil Toman and Irena Mlynkova

{kamil.toman,irena.mlynkova}@mff.cuni.cz

Charles University
Faculty of Mathematics and Physics
Department of Software Engineering

Malostranske nam. 25
118 00 Prague 1, Czech Republic

Abstract. At present the eXtensible Markup Language (XML) is used
almost in all spheres of human activities. Its popularity results especially
from the fact that it is a self-descriptive metaformat that allows to define
the structure of XML data using other powerful tools such as DTD or
XML Schema. Consequently, we can witness a massive boom of tech-
niques for managing, querying, updating, exchanging, or compressing
XML data.
On the other hand, for majority of the XML processing techniques we can
find various spots which cause worsening of their time or space efficiency.
Probably the main reason is that most of them consider XML data too
globally, involving all their possible features, though the real data are
often much simpler. If they do restrict the input data, the restrictions
are often unnatural.
In this contribution we discuss the level of complexity of real XML col-
lections and their schemes, which turns out to be surprisingly low. We
involve and compare results and findings of existing papers on similar
topics as well as our own analysis and we try to find the reasons for these
tendencies and their consequences.

1 Introduction

Currently XML and related technologies [7] have already achieved the leading
role among existing standards for data representation and are used almost in all
spheres of human activities. They are popular for various reasons, but especially
because they enable to describe the allowed structure of XML documents using
powerful tools such as DTD [7] or XML Schema [9, 20, 6]. Thus we can witness a
massive boom of various XML techniques for managing, processing, exchanging,
querying, updating, and compressing XML data that mutually compete in speed,
efficiency, and minimum space and/or memory requirements.

On the other hand, for majority of the techniques we can find various critical
spots which cause worsening of their time and/or space efficiency. In the worst
and unfortunately quite often case such bottlenecks negatively influence directly
the most interesting features of a particular technique.

If we study the bottlenecks further, we can distinguish two typical problem-
atic situations. Firstly, we can distinguish a group of general techniques that
take into account all possible features of input XML data – an approach that is
at first glance correct. Nevertheless the standards were proposed as generally as
possible enabling future users to choose what suits them most, whereas the real
XML data are usually not as “rich” as they could be – they are often surprisingly
simple. Thus the effort spent on every possible feature is mostly useless and it
can even be harmful.

Secondly, there are techniques that do restrict features of input XML data in
some way. Hence it is natural to expect the bottlenecks to occur only in situations
when given data do not correspond to the restrictions. The problem is that such
restrictions are often “unnatural”. They do not result from inherent features
of real XML data collections but from other, more down-to-earth, reasons, e.g.
limitations of the basic proposal of a particular technique, complexity of such
solution etc.

A solution to the given problems could be a detailed analysis of real XML
data and their classification. Up to now, there are several works which analyze
real XML collections from various points of view. All the papers have the same
aim – to describe typical features and complexity of XML data – and all conclude
that the real complexity is low indeed. In this paper we briefly describe, discuss,
and compare results and findings of the papers as well as our own analysis. We
try to find the reasons for these tendencies, their consequences and influence on
future processing.

The paper is structured as follows: The first section introduces the considered
problems. The following, second, section contains a brief overview of formalism
used throughout the paper. Section 4 classifies, describes, and discusses XML
data analyses. The last, fifth, section provides conclusions.1

2 Formal Definitions

For structural analysis of XML data it is natural to view XML documents as
ordered trees and DTDs or XSDs (i.e. XML Schema definitions) as sets of regular
expressions over element names. Attributes are often omitted for simplicity. We
use notation and definitions for XML documents and DTDs from [8] and [5].
(For XSDs are often used the same or similar ones – we omit them for the paper
length.)

Definition 1. An XML document is a finite ordered tree with node labels from
a finite alphabet Σ. The tree is called Σ-tree.

Definition 2. A DTD is a collection of element declarations of the form e →
α where e ∈ Σ is an element name and α is its content model, i.e. regular

1 We will not describe neither the basics of XML, DTD, or XML Schema. We suppose
that XML and DTD have already become almost a common knowledge whereas
description of XML Schema is omitted for the paper length.

expression over Σ. The content model α is defined as α := ε | pcdata | f |
α1, α2, ..., αn | α1|α2|...|αn | β* | β+ | β?, where ε denotes the empty content
model, pcdata denotes the text content, f denotes a single element name, “,” and
“|” stand for concatenation and union (of content models α1, α2, ...αn), and “*”,
“+”, and “?” stand for zero or more, one or more, and optional occurrence(s)
(of content model β). One of the element names s ∈ Σ is called a start symbol.

Definition 3. A Σ-tree satisfies the DTD if its root is labeled by start symbol s
and for every node n and its label e, the sequence e1, e2, ...ek of labels of its child
nodes matches the regular expression α, where e → α.

Basic analyses of XML data usually focus on depth of content models and/or
XML documents, reachability of content models and/or elements, types of re-
cursion, types of paths and cycles, fan-ins and fan-outs. They are usually similar
for both XML documents and XML schemes (regardless the used language).

Definition 4. Depth of a content model α is inductively defined as follows:
depth(ε) = 0;
depth(pcdata) = depth(f) = 1;
depth(α1, α2, ..., αn) = depth(α1|α2|...|αn) = max(depth(αi)) + 1; 1 ≤ i ≤ n
depth(β*) = depth(β+) = depth(β?) = depth(β) + 1.

Definition 5. Distance of elements e1 and e2 is the number of edges in Σ-tree
separating their corresponding nodes.

Level of an element is distance of its node from the root node. The level of
the root node is 0.

Depth of an XML document is the largest level among all the elements.

Definition 6. An element name e′ is reachable from e, denoted by e ⇒ e′, if
either e → α and e′ occurs in α or ∃ e′′ such that e ⇒ e′′ and e′′ ⇒ e′.

A content model α is derivable, denoted by e ⇒ α, if either e → α or e ⇒ α′,
e′ → α′′, and α = α′[e′/α′′], where α′[e′/α′′] denotes the content model obtained
by substituting α′′ for all occurrences of e′ in α′.

An element name e is reachable, if r ⇒ e, where r is the name of root
element. Otherwise it is called unreachable.

Definition 7. An element e is recursive if there exists at least one element d
in the same document such that d is a descendant of e and d has the same label
as e.

The element-descendant association is called an ed-pair.

Definition 8. An element e is called trivially recursive if it is recursive and for
every α such as e ⇒ α e is the only element that occurs in α and neither of its
occurrences is enclosed by “*” or “+”.

An element e is called linearly recursive if it is recursive and for every α
such as e ⇒ α e is the only recursive element that occurs in α and neither of its
occurrences is enclosed by “*” or “+”.

An element e is called purely recursive if it is recursive and for every α such
as e ⇒ α e is the only recursive element that occurs in α.

An element that is not purely recursive is called generally recursive element.

Definition 9. Simple path (in a non-recursive DTD) is a list of elements e1,
e2,... ek, where ei → αi and ei+1 occurs in αi for 1 ≤ i < k. Parameter k is
called length of a simple path.

Simple cycle is a path in the form e1, e2,... ek, e1, where e1, e2,... ek are
distinct element names.

Chain of stars is a a simple path of elements e1, e2,... ek+1, where ei+1 is
in the corresponding αi followed by “*” or “+” for 1 ≤ i ≤ k. Parameter k is
called length of a chain of stars.

Definition 10. Fan-in of an element e is the cardinality of the set {e′ | e′ → α′

and e occurs in α′}. An element name with large fan-in value is called hub.

Definition 11. Element fan-out of element e is the cardinality of the set {e′ |
e → α and e′ occurs in α}.

Minimum element fan-out of element e is the minimum number of elements
allowed by its content model α.

Maximum element fan-out of element e is the maximum number of elements
allowed by content model α.

Attribute fan-out of element e is the number of its attributes.

There are also XML constructs, that can be called advanced, such as types
of mixed content, DNA patterns, or relational patterns.

Definition 12. An element is called trivial if it has an arbitrary amount of
attributes and its content model α := ε | pcdata.

A mixed content of element is called simple if it consist only of trivial ele-
ments. Otherwise it is called complex.

Definition 13. An nonrecursive element e is called DNA pattern if its content
model α is not mixed and consists of a nonzero amount of trivial elements and
just one nontrivial and nonrecursive element which is not enclosed by “*” or
“+”. The nontrivial subelement is called degenerated branch.

Depth of a DNA pattern e is the maximum depth of its degenerated branch.

Definition 14. A nonrecursive element e is called relational pattern if it has
an arbitrary amount of attributes and its content model α := (e1, e2, ..., en)∗ |
(e1, e2, ..., en)+ | (e1|e2|...|en)∗ | (e1|e2|...|en)+ and it is not mixed.

A nonrecursive element e is called shallow relational pattern if it has an
arbitrary amount of attributes and its content model α := f∗ | f+ and it is not
mixed.

3 Analyses and Results

Up to now several papers have focused on analysis of real XML data. They ana-
lyze either the structure of DTDs, the structure of XSDs, the structure of XML
data regardless their schema, or the structure of XML documents in relation to
corresponding schema. The sample data usually essentially differ.

3.1 DTD Analysis

Probably the first attempt to analyze the structure of XML data can be found in
[18]. The paper is relatively old (especially with regard to the fast development
of XML standards) and it contains a quantitative analysis of 12 DTDs and a
general discussion of how they are (mis)used.

The analysis involves:

– the size of DTDs, i.e. the number of elements, attributes, and entity refer-
ences,

– the structure of DTDs, i.e. the number of root elements and depth of content
models, and

– some specific aspects, i.e. the use of mixed-content, ANY, IDs and IDREFs, or
the kind of attribute decorations used (i.e. implied, required, and fixed
attributes).

The discussion of current (mis)using of DTDs brings various conclusions, in-
volving especially shortcomings of DTD. Most of them have already been over-
come in XML Schema – e.g. the necessity to use XML itself for description of
the structure of XML data, the missing operator for unordered sequences, insuf-
ficient tools for inheritance and modularity, the requirement for typed IDREFs
(i.e. those which cannot refer to any ID) etc.

There are also interesting observations concerning structure of the data, es-
pecially the finding that content models have the depth less than 6 and that
IDs and IDREFs are not used frequently (probably due to the above mentioned
problem with typing). According to the author the most important conclusion is
that DTDs are usually incorrect (both syntactically and semantically) and thus
are not a reliable source of information.

Second paper [8] that also focuses on DTDs describes analyses which are more
statistical than in the previous case. It analyzes 60 DTDs further divided ac-
cording to their intended future use into three categories:

– app, i.e. DTDs designed for data interchange,
– data, i.e. DTDs for data that can easily be stored in a database, and
– meta, i.e. DTDs for describing the structure of document markup.

The statistics described in the paper focus on graph theoretic properties of
DTDs and can be divided into:

– local, i.e. describing kinds of content models found at individual element
declarations (e.g. the number of mixed-content elements) and

– global, i.e. describing graph structure of the DTD (e.g. the maximum path
length allowed by the DTD).

Local properties focus on four types of features – content model classifica-
tions, syntactic complexity, non-determinism, and ambiguity. The classification

of content models involves pcdata, ε, any, mixed content, “|” only (but not mixed)
content, “,” only content, complex content (i.e. with both “|”s and “,”s), list con-
tent (i.e. the usage of “+” or“*” for one element), and single content (i.e. the
optional usage of “?” for one element); the syntactic complexity is expressed by
the previously defined depth function. The question of both non-determinism
and ambiguity (i.e. a special case of non-determinism) of content models is a bit
controversial since non-deterministic content models are not allowed by the XML
standards. The most important findings for local properties are that the content
model of DTDs is usually not complex (the maximum depth is 9, whereas its
mode is even 3) and that despite the standards, there are both non-deterministic
and ambiguous content models.

Global properties discussed in the paper involve reachability, recursions, sim-
ple paths and cycles, chains of stars and hubs. The most important findings are
listed below.

– Unreachable elements are either root elements or useless, whereas the mode
of their number is 1, i.e. the root element is usually stated clearly.

– There are no linear recursive elements, whereas the number of non-linear
recursive elements is significant (i.e. they occur in 58% of all DTDs).

– The maximum length of simple path is surprisingly small (mostly less than
8), whereas on the other hand the number of simple paths as well as simple
cycles is either small (less than 100) or large (more than 500).

– The length of the longest chain of stars is usually small (its mode is 3).
– Hubs exist in all categories od DTDs and their number is significant.

Last found paper [12] which focuses on DTD analysis is trying to adapt software
metrics to DTDs. It defines five metrics, also based on their graph representa-
tion – i.e. size, complexity, depth, fan-in, and fan-out, whereas all of them were
already defined and discussed. Regrettably, there are just 2 DTD examples for
which the statistics were counted.

3.2 DTD vs. XML Schema

With the arrival of XML Schema, as the extension of DTD, has arisen a natural
question: Which of the extra features of XML Schema not allowed in DTD are
used in practise? Paper [5] is trying to answer it using analysis of 109 DTDs and
93 XSDs. Another aim of the paper is to analyze the real structural complexity
for both the languages, i.e. the degree of sophistication of regular expressions
used.

The former part of the paper focuses on analysis of XML Schema features.
The features and their resulting percentage are:

– extension2 (27%) and restriction (73%) of simple types,
– extension (37%) and restriction (7%) of complex types,

2 Extension of a simple type means adding attributes to the simple type, i.e. creating
a complex type with simple content.

– final (7%), abstract (12%), and block (2%) attribute of complex type
definitions,

– substitution groups (11%),
– unordered sequences of elements (4%),
– unique (7%) and key/keyref (4%) features,
– namespaces (22%), and
– redefinition of types and groups (0%).

As it is evident, the most exploited features are restriction of simple types,
extension of complex types, and namespaces. The first one reflects the lack of
types in DTD, the second one confirms the naturalness of object-oriented ap-
proach (i.e. inheritance), whereas the last one probably results from mutual
modular usage of XSDs. The other features are used minimally or are not used
at all.

Probably the most interesting finding is, that 85% of XSDs define so called
local tree languages [17], i.e. languages that can be defined by DTDs as well, and
thus that the expressiveness beyond local tree grammars is needed rarely.

3.3 XML Schema Analysis

Paper [5] mentioned in the previous section analyzed the properties of DTDs and
XSDs together. Nevertheless its first part focused only on statistical analysis of
real usage of new XML Schema features. Paper [14] has a similar aim – it defines
11 metrics of XSDs and two formulae that use the metrics to compute complexity
and quality indices of XSDs. The metrics are:

– the number of (both globally and locally defined) complex type declarations,
which can be further divided into text-only, element-only, and mixed-content,

– the number of simple type declarations,
– the number of annotations,
– the number of derived complex types,
– the average number of attributes per complex type declaration,
– the number of global (both simple and complex) type declarations,
– the number of global type references,
– the number of unbounded elements,
– the average bounded element multiplicity size, where multiplicity size is de-

fined as (maxOccurs - minOccurs + 1),
– the average number of restrictions per simple type declaration,
– element fanning, i.e. the average fan-in/fan-out.

On the basis of the experience in analyzing many XSDs the authors define
two indices for expressing their quality and complexity.

Definition 15. Quality Index = (Ratio of simple to complex type declarations)
* 5 + (Percentage of annotations over total number of elements) * 4 + (Average
restrictions per simple type declarations) * 4 + (Percentage of derived complex
type declarations over total number of complex type declarations) * 3 (Average

bounded element multiplicity size) * 2 (Average attributes per complex type
declaration) * 2

Complexity Index = (Number of unbounded elements) * 5 + (Element fan-
ning) * 3 + (Number of complex type declarations) + (Number of simple type
declarations) + (Number of attributes per complex type declaration)

Unfortunately, there is just 1 XSD example for which the statistics were
counted.

3.4 XML Document Analysis

Previously mentioned analyses focused on descriptions of the allowed structure
of XML documents. By contrast paper [15] (and its extension [2]) analyzes di-
rectly the structure of their instances, i.e. XML documents, regardless eventually
existing DTDs or XSDs.3 It analyzes about 200 000 XML documents publicly
available on the Web, whereas the statistics are divided into two groups – statis-
tics about the Web and statistics about the XML documents.

The Web statistics involve:

– clustering of the source web sites by zones consisting of Internet domains
(e.g. .com, .edu, .net etc.) and geographical regions (e.g. Asia, EU etc.),

– the number and volume (i.e. the sum of sizes) of documents per zone,
– the number of DTD (48%) and XSD (0.09%) references,
– the number of namespace references (40%),
– distribution of files by extension (e.g. .rdf, .rss, .wml, .xml etc.), and
– distribution of document out-degree, i.e. the number of href, xmlhref, and

xlink:href attributes.

Obviously most of them describe the structure of the XML Web and cate-
gories of the source XML documents.

Statistics about the structure of XML documents involve:

– the size of XML documents (in bytes),
– the amount of markup, i.e. the amount of element and attribute nodes versus

the amount of text nodes and the size of text content versus the size of the
structural part,

– the amount of mixed content elements,
– the depth of XML documents and the distribution of node types (i.e. element,

attribute, or text nodes) per level,
– element and attribute fan-out
– the number of distinct strings, and
– recursion.

The most interesting findings of the research are as follows:
3 The paper just considers whether the document does or does not reference a DTD

or an XSD.

– The size of documents varies from 10B to 500kB; the average size is 4,6kB.
– For documents up to 4kB the number of element nodes is about 50%, the

number of attribute nodes about 30%. Surprisingly, for larger documents
the number of attribute nodes rises to 50%, whereas the number of element
nodes declines to 38%. The structural information still dominates the size of
documents.

– Although there are only 5% of all elements with mixed content, they were
found in 72% of documents.

– Documents are relatively shallow – 99% of documents have fewer than 8
levels, whereas the average depth is 4.

– The average element fan-out for the first three levels is 9, 6, and 0.2; the
average attribute fan-out for the first four levels is 0.09, 1, 1.5, and 0.5.
Surprisingly, 18% of all elements have no attributes at all.

A great attention is given to recursion which seems to be an important aspect
of XML data. The authors mention the following findings:

– 15% of all XML documents contain recursive elements.
– Only 260 distinct recursive elements were found. In 98% of recursive docu-

ments there is only one recursive element used.
– 95% of recursive documents do not refer to any DTD or XSD.
– Most elements in ed pairs have the distance up to 5.
– The most common average fan-outs are 1 (60%) and 2 (37%), the average

recursive fan-out is 2.2.

Lastly, paper [13] that focuses on analysis of XML documents consists of two
parts – a discussion of different techniques for XML processing and an analysis
of real XML documents. The sample data consists of 601 XHTML web pages,
3 documents in DocBook format4, an XML version of Shakespeare’s plays5 (i.e.
37 XML documents with the same simple DTD) and documents from XML
Data repository project6. The analyzed properties are the maximum depth, the
average depth, the number of simple paths, and the number of unique simple
paths; the results are similar to previous cases.

3.5 XML Documents vs. XML schemes

The work initiated in the previously mentioned articles is taken up recently by
paper [16]. It enhances the preceding analyses and defines several new constructs
for describing the structure of XML data (e.g. DNA or relational patterns). It
analyzes XML documents together with their DTDs or XSDs eventually that
were collected semi-automatically with interference of human operator. The rea-
son is that automatic crawling of XML documents generates a set of documents
that are unnatural and often contain only trivial data which cause misleading
4 http://www.docbook.org/
5 http://www.ibiblio.org/xml/examples/shakespeare/
6 http://www.cs.washington.edu/research/xmldatasets/

results. The collected data consist of about 16 500 XML documents of more than
20GB in size, whereas only 7.4% have neither DTD nor XSD. Such low ratio is
probably caused by the semi-automatic gathering.

The data were first divided into following six categories:

– data-centric documents, i.e. documents designed for database processing (e.g.
database exports, lists of employees etc.),

– document-centric documents, i.e. documents which were designed for human
reading (e.g. Shakespeare’s plays, XHTML [1] documents etc.)

– documents for data exchange (e.g. medical information on patients etc.),
– reports, i.e. overviews or summaries of data (usually of database type),
– research documents, i.e. documents which contain special (scientific or tech-

nical) structures (e.g. protein sequences, DNA/RNA structures etc.), and
– semantic web documents, i.e. RDF [4] documents.

The statistics described in the paper are also divided into several categories.
They were computed for each category and if possible also for both XML docu-
ments and XML schemes and the results were compared. The categories are as
follows:

– global statistics, i.e. overall properties of XML data (e.g. number of elements
of various types such as empty, text, mixed, recursive etc., number of at-
tributes, text length in document, paths and depths etc.),

– level statistics, i.e. distribution of elements, attributes, text nodes, and mixed
contents per each level,

– fan-out statistics, i.e. distribution of branching per each level,
– recursive statistics, i.e. types and complexity of recursion (e.g. exploitation

rates, depth, branching, distance of ed-pairs etc.),
– mixed-content statistics, i.e. types and complexity of mixed contents (e.g.

depth, percentage of simple mixed contents etc.),
– DNA statistics, i.e. statistics focussing on DNA patterns (e.g. number of

occurrences, width, or depth), and
– relational statistics, i.e. statistics focussing on both relational and shallow

relational patterns (e.g. number of occurrences, width, or fan-out).

Most interesting findings and conclusions for all categories of statistics are
as follows:

– The amount of tagging usually dominates the size of document.
– The lowest usage of mixed-content (0.2%) and empty (26.8%) elements can

be found in data-centric documents.
– The highest usage of mixed-content elements (77%) can be found in document-

centric documents.
– Documents of all categories are typically shallow. (For 95% of documents

the maximum depth is 13, the average depth is about 5.)
– The highest amounts of elements, attributes, text nodes, and mixed con-

tents as well as fan-outs are always at first levels and then their number of
occurrences rapidly decreases.

– Recursion occurs quite often, especially in document-centric (43%) and ex-
change (64%) documents, although the number of distinct recursive elements
is typically low (for each category less than 5).

– Recursion, if used, is rather simple – the average depth, branching as well
as distance of ed-pairs is always less than 10.

– The most common types of recursion are linear (20% for document-centric
and 33% for exchange documents) and pure (19% for document-centric and
23% for exchange documents).

– Unlike document instances almost all schemes specify usually only the most
general type of recursion.

– The percentage of simple mixed contents is relatively high (e.g. 79% for
document-centric or even 99% for exchange documents) and thus the depth
of mixed contents is generally low (on the average again less than 10).

– The number of occurrences of DNA patterns is rather high, especially for
research, document-centric, and exchange documents. On the other hand the
average depth and width is always low (less than 7).

– The number of occurrences of relational patterns is high, especially for
semantic-web, research, and exchange documents. The complexity (i.e. depth
and width) is again quite low.

– XML schemes usually provide too general information, whereas the instance
documents are much simpler and more specific.

3.6 Discussion

The previous overview of existing analyses of XML data brings various inter-
esting information. In general, we can observe that the real complexity of both
XML documents and their schemes is amazingly low.

Probably the most surprising findings are that recursive and mixed-content
elements are not as unimportant as they are usually considered to be. Their
proportional representation is more than significant and in addition their com-
plexity is quite low. Unfortunately, effective processing of both the aspects is
often omitted with reference to their irrelevancy. Apparently, the reasoning is
false whereas the truth is probably related to difficulties connected with their
processing.

Another important discovery is that the usual depth of XML documents
is small, the average number is always less than 10. This observation is already
widely exploited in techniques which represent XML documents as a set of points
in multidimensional space and store them in corresponding data structures, e.g.
R-trees [11], UB-trees [3], BUB-trees [10] etc. The effectiveness of these tech-
niques is closely related to the maximum depth of XML documents or maximum
number of their simple paths. Both of the values should be of course as small as
possible.

Next considerable fact is that the usage of schemes for expressing allowed
structures of XML documents is not as frequent as it is expected to be. The
situation is particularly wrong for XSDs which seem to appear sporadically.
And even if they are used, their expressive power does not exceed the power of

DTDs. The question is what is the reason for this tendency and if we can really
blame purely the complexity of XML Schema. Generally, the frequent absence of
schema is of course a big problem for methods which are based on its existence,
e.g. schema-driven database mapping methods [19].

Concerning the XML schemes there is also another important, though not
surprising finding, that XML documents often do not fully exploit the generality
allowed by schema definitions. It is striking especially in case of types of recur-
sion but the statement is valid almost generally. Extreme cases are of course
recursion that theoretically allows XML documents with infinite depth or com-
plete subgraphs typical for document-centric XML documents. This observation
shows that although XML schemes provide lots of structural information on
XML documents they can be too loose or even inaccurate.

The last mentioned analysis indicates, that there are also types of constructs
(such as simple mixed contents, DNA patterns, or relational patterns etc.), that
are quite common and can be easily and effectively processed using, e.g., re-
lational databases. Hence we can expect that a method that focuses on such
constructs would be much more effective than the general ones.

Last but not least, we must mention the problem of both syntactic and se-
mantic incorrectness of analyzed XML documents, DTDs, and XSDs. Authors
of almost all previously mentioned papers complain of huge percentage of use-
less sample data – an aspect which unpleasantly complicates the analyses. A
consequent question is whether we can include schema non-determinism and
ambiguity into this set of errors or if it expresses a demand for extension of
XML recommendations.

4 Conclusion

The main goal of this paper was to briefly describe, discuss, and classify papers
on analyses of real XML data and particularly their results and findings. The
whole overview shows that the real data show lots of regularities and pattern
usages and are not as complex as they are often expected to be. Thus there exists
plenty of space for improvements in XML processing based on this enhanced
categorization.

Acknowledgement

This work was supported in part by the National Programme of Research (In-
formation Society Project 1ET100300419).

References

1. The Extensible HyperText Markup Language (Second Edition). W3C Recommen-
dation, August 2002. http://www.w3.org/TR/xhtml1/.

2. D. Barbosa, L. Mignet, and P. Veltri. Studying the XML Web: Gathering Statistics
from an XML Sample. In World Wide Web, pages 413–438, Hingham, MA, USA,
2005. Kluwer Academic Publishers.

3. R. Bayer. The Universal B-Tree for Multidimensional Indexing: General Concepts.
In WWCA ’97, Worldwide Computing and Its Applications, International Confer-
ence, pages 198–209, Tsukuba, Japan, 1997. Springer.

4. D. Beckett. RDF/XML Syntax Specification (Revised). W3C Recommendation,
February 2004. http://www.w3.org/TR/rdf-syntax-grammar/.

5. G. J. Bex, F. Neven, and J. Van den Bussche. DTDs versus XML Schema: a
Practical Study. In WebDB ’04, Proceedings of the 7th International Workshop on
the Web and Databases, pages 79–84, New York, NY, USA, 2004. ACM Press.

6. P. V. Biron and A. Malhotra. XML Schema Part 2: Datatypes Second Edition.
W3C Recommendation, October 2004. www.w3.org/TR/xmlschema-2/.

7. T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensible
Markup Language (XML) 1.0 (Third Edition). W3C Recommendation, February
2004. http://www.w3.org/TR/REC-xml/.

8. B. Choi. What are real DTDs like? In WebDB ’02, Proceedings of the 5th Inter-
national Workshop on the Web and Databases, pages 43–48, Madison, Wisconsin,
USA, 2002. ACM Press.

9. D. C. Fallside and P. Walmsley. XML Schema Part 0: Primer Second Edition.
W3C Recommendation, October 2004. www.w3.org/TR/xmlschema-0/.

10. R. Fenk. The BUB-Tree. In VLDB ’02, Proceedings of 28th International Con-
ference on Very Large Data Bases, Hong Kong, China, 2002. Morgan Kaufman
Publishers.

11. A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In
SIGMOD’84, Proceedings of Annual Meeting, pages 47–57, Boston, Massachusetts,
1984. ACM Press.

12. M. Klettke, L. Schneider, and A. Heuer. Metrics for XML Document Collections.
In XMLDM Workshop, pages 162–176, Prague, Czech Republic, 2002.

13. J. Kosek, M. Kratky, and V. Snasel. Struktura realnych XML dokumentu a metody
indexovani. In ITAT 2003 Workshop on Information Technologies Applications
and Theory, High Tatras, Slovakia, 2003. (in Czech).

14. A. McDowell, C. Schmidt, and K. Yue. Analysis and Metrics of XML Schema. In
SERP ’04, Proceedings of the International Conference on Software Engineering
Research and Practice, pages 538–544. CSREA Press, 2004.

15. L. Mignet, D. Barbosa, and P. Veltri. The XML Web: a First Study. In WWW
’03, Proceedings of the 12th international conference on World Wide Web, Volume
2, pages 500–510, New York, NY, USA, 2003. ACM Press.

16. I. Mlynkova, K. Toman, and J. Pokorny. Statistical Analysis of Real XML Data
Collections. Technical report 2006/5, Charles University, June 2006.

17. M. Murata, D. Lee, and M. Mani. Taxonomy of XML Schema Languages using
Formal Language Theory. In Extreme Markup Languages, Montreal, Canada, 2001.

18. A. Sahuguet. Everything You Ever Wanted to Know About DTDs, But Were
Afraid to Ask (Extended Abstract). In Selected papers from the 3rd International
Workshop WebDB 2000 on The World Wide Web and Databases, pages 171–183,
London, UK, 2001. Springer-Verlag.

19. J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt, and J. F.
Naughton. Relational Databases for Querying XML Documents: Limitations and
Opportunities. In VLDB’99, Proceedings of 25th International Conference on Very
Large Data Bases, pages 302–314, Edinburgh, Scotland, UK, 1999. Morgan Kauf-
mann.

20. H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema Part
1: Structures Second Edition. W3C Recommendation, October 2004. www.w3.org/
TR/xmlschema-1/.

