
Standing on the Shoulders of Ants:
Towards More Efficient XML-to-Relational Mapping Strategies∗

Irena Mlýnková
Charles University, Faculty of Mathematics and Physics, Department of Software Engineering

Malostranské nám. 25, 118 00 Prague 1, Czech Republic
irena.mlynkova@mff.cuni.cz

Abstract

As XML has become a standard for data represen-
tation, it is inevitable to propose and implement tech-
niques for efficient managing of XML data. A natu-
ral alternative is to exploit features and functions of
(O)RDBMSs, i.e. to rely on their long theoretical and
practical history. The main concern of such techniques
is the choice of an appropriate XML-to-relational map-
ping strategy. In this paper we propose an enhancing
of so-called adaptive mapping methods which evaluate
several mapping possibilities and choose the one which
suits the current application the most. We optimize
the process of searching the optimal strategy using a
heuristic called Ant Colony Optimization and we en-
hance the adaptivity using similarity of XML data and
ideas of user-driven techniques.

1 Introduction

Since XML [5] has become an acknowledged stan-
dard for data representation, it has invoked a
boom of implementations of W3C recommendations
based on various storage strategies. Currently, the
most practically used ones exploit robust and ma-
ture (object-)relational database management systems
((O)RDBMSs). Although the scientific world has
proven that native XML strategies perform much bet-
ter, they still lack a reliable and robust implementation
verified by years of both theoretical and practical effort.

At present, there exists a plenty of works concerning
database-based1 XML data management. All major
database vendors support XML and even the SQL stan-
dard has been extended with a new part (SQL/XML)

∗This work was supported in part by Czech Science Founda-
tion (GAČR), grant number 201/06/0756.

1In the rest of the paper the term “database” represents an
(O)RDBMS.

which introduces operations on XML data. The main
concern of the techniques is the choice of the way
XML data are stored into relations – so-called XML-
to-relational mapping. On the basis of exploitation of
information from XML schema we distinguish schema-
oblivious (e.g. [7]) and schema-driven (e.g. [10]) meth-
ods. From the point of view of the input data we distin-
guish fixed methods (e.g. [7, 10]) which store the data
on the basis of their model and adaptive methods (e.g.
[4, 8, 11, 12]), where also additional information on the
future application are taken into account. And there
are also techniques based on user involvement which
can be divided to user-defined (see [1]) and user-driven
(e.g. [2, 3, 9]), where in the former case a user defines
both the relational schema and the required mapping,
whereas in the latter case a user specifies just local
mapping changes of a default storage strategy.

In this paper we introduce an enhancing of the adap-
tive mapping strategies which seem to be the most ef-
ficient ones, since they evaluate several mappings and
choose the one which suits the target application (spec-
ified via sample set of XML documents and query work-
load) the most. We improve the strategy in three ways.
Firstly, we improve the process of searching the opti-
mal strategy using a heuristic called Ant Colony Op-
timization. This heuristic is based on a simple obser-
vation of nature and enables to find the suboptimal
solution more efficiently than simple heuristics used in
the existing papers. Secondly, we enhance the adapta-
tion process using similarity of XML data. And finally,
we combine it with the idea of user-driven techniques,
i.e. the techniques where a user instead of queries and
sample data provides information on required mapping
strategies for selected data fragments.

The paper is structured as follows: Section 2
overviews the related works. In Section 3 we describe
the proposed improvements and in Section 4 the ar-
chitecture of the enhanced system. Finally, Section 5
provides conclusions and outlines future work.

2 Related Work

Probably the first proposal of an adaptive method
can be found in [8]. It is based on the idea of stor-
ing well structured parts of XML documents into re-
lations and semi-structured parts using an XML data
type which supports path queries and XML-aware full-
text operations. Hence, the main concern is to iden-
tify the structured and semi-structured parts. For
this purpose a sample set of XML documents, their
XML schema and sample XML queries are analyzed.
The other existing, so-called cost-driven, approaches
[4, 11, 12] use a different strategy. They define a set of
XML-to-XML transformations (e.g. inlining/outlining
of an element/attribute, associativity, commutativity
etc.), a fixed XML-to-relational mapping and a cost
function which evaluates a relational schema against
a given sample set of XML data and queries. Using
a search algorithm, a space of possible mappings is
searched and the optimal one is selected.

In case of user-driven strategies there seem to be
just three representatives – ShreX [2], XCacheDB [3]
and UserMap [9]. The first two approaches can be
classified as direct since the user-specified annotations
are just directly applied on the respective schema frag-
ments; the remaining schema parts are stored using a
fixed mapping strategy. The last mentioned approach
can be specified as indirect, since it further exploits the
user provided annotations in the adaptive strategy ap-
plied on the not annotated schema parts. The adaptive
strategy is based on exploitation of similarity of XML
schema fragments.

3 Proposed Algorithm

A general idea of fixed schema-driven XML-to-
relational mapping methods is to decompose (shred or
map) the given XML schema Sinit into a set of relations
R = {r1, r2, ..., r|R|} using a mapping strategy fmap.
An extreme case is when Sinit is decomposed into a
single relation resulting in many null values. Other ex-
treme is when for each element e ∈ Sinit a single rela-
tion is created resulting in numerous join operations.2

For the purpose of mapping Sinit using fmap to R,
the cost-driven mapping techniques exploit the follow-
ing additional information:

1. a set of XML schema transformations T = {t1, t2,
..., t|T |}, where ∀i : ti transforms a given XML
schema S into an XML schema ti(S),

2Note that since schema-oblivious mapping methods view an
XML document as general directed tree with several types of
nodes, we can speak about schema decomposition too.

2. a set of sample data Dsample characterizing the
future application, which consists of:

(a) a set of XML documents D = {d1, d2, ...,
d|D|} valid against Sinit,

(b) a set of XML queries Q = {q1, q2, ..., q|Q|}
over Sinit and

3. a cost function fcost which evaluates the cost of the
given relational schema R with regard to Dsample.

The required result is an optimal relational
schema Ropt = fmap(Sopt), i.e. a schema, where
fcost(Ropt, Dsample) is minimal. Sopt is the optimal
XML schema derived from Sinit using a particular se-
quence of transformations from T .

A typical example of schema transformations is in-
lining (tin) or outlining (tout) of an element into/out
of its parent element or denoting a whole schema frag-
ment as a single attribute – so-called unshredding (tun).
For instance, considering the following example of Sinit

fragment (assuming that the undeclared elements have
#PCDATA data type):

<!ELEMENT employee (name, address)>

<!ELEMENT name (first, middle?, last)>

<!ELEMENT address (city, country, zip)>

the natural target schema3 R would involve relation:

empl1(name_first, name_middle, name_last,

address_city, address_country, address_zip)

But if we knew that Q involves queries of
the form //employee/name, but not of the form
//employee/name/first, //employee/name/middle
or //employee/name/last, i.e. that the user always
retrieves a employee’s name as a whole, a more effi-
cient relation would be:

empl2(name,

address_city, address_country, address_zip)

i.e. we would apply unshredding on element name.
But, since the complexity of Sinit and Q can be high,

it is not possible to determine the optimal relational
schema so easily. Hence, the key problem of cost-driven
approaches is how to find Sopt, resp. Ropt.

A naive but illustrative search strategy can be based
on using a “brute force”. It first generates the set Σ
of results of all possible sequences of transformations
from T applied on Sinit. Then it searches for schema
S ∈ Σ with minimal cost fcost(fmap(S), Dsample), i.e.
Sopt, and returns the corresponding optimal relational

3For simplicity we omit obvious keys and foreign keys.

schema Ropt = fmap(Sopt). The complexity of the
naive algorithm obviously strongly depends on the set
T . It can be proven that even a simple set T causes the
problem of finding the optimal schema to be NP-hard
[12]. We can even view the search problem as a kind
of combinatorial optimization problem.

Definition 1 A model P = (Σ, Ω, φ) of a combinato-
rial optimization problem (COP) consists of a search
space Σ of possible solutions to the problem, a set Ω of
constraints over the solutions and an objective func-
tion φ : Σ → R+

0 to be minimized.

In our case Ω is given by the general require-
ments of mapping strategies such as, e.g., com-
pleteness, correctness, losslessness etc., and φ(S) =
fcost(fmap(S), Dsample) for ∀S ∈ Σ. With this view of
the problem, almost any respective heuristic for COPs
can be used. Surprisingly, all the existing works use
one of the simplest approaches – the greedy search al-
gorithm or its variations. Analyzing three generally
efficient initial schemes, the authors of paper [12] have
experimentally proven that a good choice of an initial
schema is crucial and can lead to better results. But,
together with the main disadvantage of greedy search
strategies – the fact that they get stuck in local subop-
timums – the existing approaches may not be able “to
leave” Sinit. Hence, the first enhancing we propose is
optimization of the search strategy.

3.1 Ant Colony Optimization (ACO)

For the purpose of searching Sopt we use a modifi-
cation of more efficient ACO heuristic [6]. It is based
on observations of nature, in particular the way ants
exchange information they have learnt. A set of artifi-
cial “ants” A = {a1, a2, ..., a|A|} iteratively search the
space Σ trying to find the optimal solution Sopt ∈ Σ s.t.
φ(Sopt) 6 φ(S) for ∀S ∈ Σ. In i-th iteration each a ∈ A
searches a subspace of Σ for a local suboptimum until
it “dies” after performing Nant steps. While searching,
an ant a spreads a certain amount of “pheromone”, i.e.
a positive feedback which denotes how good solution
it has found so far using the used transformation se-
quence. This information is exploited by ants from the
following iterations to choose more promising search
steps. The algorithm terminates either after Niter it-
erations or if S′opt ∈ Σ is reached s.t. φ(S′opt) 6 Tmax,
where Tmax is a required threshold.

Each step of an ant consists of generating of candi-
date steps and execution of one of them. The executed
step is selected randomly, but on the basis of probabil-
ity given by φ and feedback (i.e. pheromone) spread
by other ants. (Note that the greedy search is a special

case of ACO, where |A| = 1, Niter = 1 and only the
best possible candidate step is always executed.)

3.1.1 Generating a Set of Possible Steps

The set of possible steps should consist only of relevant
transformations and, at the same time, it should not
omit a step which leads to the optimum. The most
complex set of transformations has been proposed in
paper [4] and consists of the following operations:

• Inlining/outlining of elements/attributes

• Splitting/merging of elements: Storing shared ele-
ments into a common table/separate tables.

• Associativity/commutativity

• Union distribution/factorization:
(a, (b|c)) = ((a, b)|(a, c))

• Splitting/merging repetitions: (a+) = (a, a∗)
• Simplifying unions: (a|b) ⊆ (a?, b?)

However, the existing systems [4,11,12] support only
inlining/outlining or splitting/merging of elements. In
general, the ACO heuristic does not depend on the way
the steps are generated, but, since the aim of this pa-
per is to optimize different aspects of the approach,
we will further assume only three types of transforma-
tions – inlining, outlining and unshredding, i.e. our
T = {tin, tout, tun}.

3.1.2 Evaluation of Steps

Having a schema S ∈ Σ and a transformation t ∈ T ,
the cost of applying t on S, which determines the prob-
ability of executing this step is defined as:

step(S, t(S)) = φ(S)− φ(t(S)) + ph(S, t(S)) (1)

where φ is the objective function and ph(S, t(S)) > 0
is the amount of pheromone assigned to this step from
other ants. Hence, the key aspect is how to evaluate
function φ. A naive approach would require:

• construction of relational schema R = fmap(S),

• loading documents D ∈ Dsample into R and

• evaluation of queries Q ∈ Dsample over R.

But, naturally, such operation is quite time consum-
ing and expensive. The existing papers [4, 11,12] opti-
mize the naive approach using various strategies which
estimate the costs of the queries. For the purpose of
demonstration of main features of the proposed im-
provements and with regard to the specified set T , we
use a simple metric which evaluates the number of join
operations necessary to evaluate queries in Q.

3.1.3 Main Advantages of Using ACO

The main advantages of the idea to use ACO instead
of simple greedy search are as follows:

1. ACO enables to perform multiple searches through
the space Σ. Since the ants move pseudo-
randomly, they search larger subspace of Σ.

2. Since the randomized search enables to move from
S to t(S) s.t. φ(S) 6 φ(t(S)), the ACO heuristic
does not “get stuck” in a local optimum. How-
ever, since we still keep the best-so-far schema,
also ACO ensures that φ(Sinit) > φ(Sopt).

3.2 Exploitation of Similarity

The aim of cost-driven methods is to find the rela-
tional schema optimal for queries in Q which represent
the future application. But Sinit may involve elements
which occur on no access path of queries in Q. Obvi-
ously, in this case the strategies are not able to find
the optimal mapping, because they have no efficiency
feedback. For instance, if the previous sample Sinit

involves also the following declarations:

<!ELEMENT company (co-name, address)>

<!ELEMENT co-name (title, type?)>

and Q = {//employee/name}, we cannot exploit the
adaptive strategy for element company and we would
store it, e.g., in the following way:

co1(co-name_title, co-name_type,

address_city, address_country, address_zip)

But since elements name and co-name are seman-
tically and structurally similar, we may assume that
they should be stored in a similar way, because they
are likely to be processed similarly:

co2(co-name,

address_city, address_country, address_zip)

Hence, in our second improvement we result from
approach proposed for system UserMap [9], where the
user-provided annotations are firstly directly applied
on specified schema fragments and, then, regarded as
“hints” how to store particular XML patterns. The
adaptive enhancing of the system iteratively searches
for schema fragments similar to these patterns in the
rest of the schema and maps them in the same way.

For the purpose of our approach we can only slightly
modify the idea used in UserMap. Obviously, we do not
have any user-provided annotated schema fragments.

But, we are able to find the optimal mapping strate-
gies for schema fragments involved in access paths of
queries in Q. Hence, we may view these schema frag-
ments as fragments annotated by a user and reuse the
whole approach proposed for UserMap without com-
plex changes.

3.3 Exploitation of Schema Annotations

In the previous section we have described a way
how to exploit an idea proposed for user-driven strate-
gies for the purpose of cost-driven strategies. But we
can go even further. Our motivation is that for some
schema fragments a user is able to provide sample data
D and queries Q (similarly to the previous examples),
but for others (e.g. XHTML fragments) it is easier to
directly specify the mapping strategy (e.g. unshred-
ding). Hence, we need to use partly cost-driven and
partly user-driven strategies. However, since both are
able to store distinct schema fragments using different
strategies, their combination is quite natural.

From the point of view of previous proposals, we
get another input information – the schema annota-
tions. To exploit it, we use the following observation:
The set T involves only simple schema transformations,
but using a sequence of them we can produce various
complex storage strategies. However, having an anno-
tated schema, for selected schema fragments the com-
plex storage strategies are directly specified by a user.
For instance, if we consider the element employee, the
relational schema empl2 can be derived from fully out-
lined Sinit using various sequences of inlining and un-
shredding, such as, e.g.

s1 = [tin(city), tin(country), tin(zip),
tin(address), tin(first), tin(middle),
tin(last), tin(name), tun(name)]

s2 = [tun(name), tin(name), tin(city),
tin(country), tin(zip), tin(address)]

But if a user annotates element employee e.g. with
the Hybrid mapping strategy [10] which ensures inlin-
ing of all non-repeatable subelements, the respective
sequence of transformations simplifies to:

s3 = [tun(name)]

If we generalize this idea, we can extend the set of
possible steps of an ant with composite transforma-
tions representing the user-specified annotations and
hence speed-up the search process. The only obvi-
ous limitation is that the composite transformations
can be applied only schema schema fragments struc-
turally/sematically similar to the original annotated
ones.

4 System Architecture

The proposed improvements can be applied to any
user-driven or cost-driven system. However, we have
enhanced system UserMap, because it has most suit-
able features. Figure 1 depicts the extensions.

Figure 1. Architecture of extended UserMap

The dotted box involves a classical part of any XML-
to-relational system: Mapper creates tables of schema
R in a data repository and stores supplemental infor-
mation in a mapping repository. Document shredder is
responsible for shredding the incoming XML data into
tables of R. And query evaluator transforms an input
XML query into SQL query, evaluates it, and trans-
forms the returned data back into XML format.

The remaining white modules are original modules
of UserMap: Annotation processor checks correctness
of schema annotations and provides them to a module
responsible for UserMap adaptation which searches for
similar fragments. The similarity (of the given schema
fragments) is evaluated using similarity evaluator.

The grey modules cover our proposed improvements:
Cost estimator estimates the cost of a given XML-to-
relational mapping using sample XML data and query
workload. The module responsible for ACO adapta-
tion performs the ACO search strategy (see Section
3.1). For this purpose it exploits the information on
user-specified annotations (see Section 3.3) from an-
notation processor and similarity of schema fragments
(see Section 3.2, 3.3) evaluated using similarity eval-
uator. The ACO adaptation provides its results to
UserMap adaptation, i.e. it extends the set of anno-
tated schema fragments with the newly identified ones.

5 Conclusion

The aim of this paper was to illustrate that since the
idea of database-based XML processing methods is still
up-to-date, the techniques should and can be further
enhanced. We have proposed an enhancing of adaptive
mapping strategies using ACO heuristic, similarity of
XML data and ideas of user-driven methods. These

improvements enable to avoid getting stuck in local op-
timums, to find an optimal mapping for greater subset
of source schema and to speed up the search process.

Our future work will focus mainly on the idea of
dynamic adaptability. It will solve the two persist-
ing disadvantages of adaptive approaches – the user-
unfriendly requirement to provide plenty of informa-
tion on the future application beforehand and the fact
that the efficiency can worsen even with minor changes
in the application, i.e. changes in queries. Since the
ACO heuristic can be modified for dynamic systems as
well, it seems that the choice of this approach is correct
and promising.

References

[1] S. Amer-Yahia. Storage Techniques and Mapping
Schemas for XML. Technical Report TD-5P4L7B,
AT&T Labs-Research, 2003.

[2] S. Amer-Yahia, F. Du, and J. Freire. A Comprehensive
Solution to the XML-to-Relational Mapping Problem.
In WIDM’04. ACM, 2004.

[3] A. Balmin and Y. Papakonstantinou. Storing and
Querying XML Data Using Denormalized Relational
Databases. The VLDB Journal, 14(1), 2005.

[4] P. Bohannon, J. Freire, P. Roy, and J. Simeon. From
XML Schema to Relations: A Cost-based Approach
to XML Storage. In ICDE’02. IEEE, 2002.

[5] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler,
and F. Yergeau. Extensible Markup Language (XML)
1.0 (Fourth Edition). W3C, 2006.

[6] M. Dorigo, M. Birattari, and T. Stutzle. An Introduc-
tion to Ant Colony Optimization. Technical Report
2006-010, IRIDIA, 2006.

[7] D. Florescu and D. Kossmann. Storing and Querying
XML Data Using an RDMBS. IEEE Data Eng. Bull.,
22(3), 1999.

[8] M. Klettke and H. Meyer. XML and Object-Relational
Database Systems – Enhancing Structural Mappings
Based on Statistics. In Selected papers from WebDB’00
Workshop. Springer, 2001.

[9] I. Mlynkova. A Journey towards More Efficient Pro-
cessing of XML Data in (O)RDBMS. In CIT’07.
IEEE, 2007.

[10] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He,
D. J. DeWitt, and J. F. Naughton. Relational
Databases for Querying XML Documents: Limita-
tions and Opportunities. In VLDB’99. Morgan Kauf-
mann, 1999.

[11] W. Xiao-ling, L. Jin-feng, and D. Yi-sheng. An Adapt-
able and Adjustable Mapping from XML Data to Ta-
bles in RDB. In VLDB’02 Workshop EEXTT and
CAiSE’02 Workshop DTWeb. Springer, 2003.

[12] S. Zheng, J. Wen, and H. Lu. Cost-Driven Storage
Schema Selection for XML. In DASFAA’03. IEEE,
2003.

