An XML-to-Relational User-Driven Mapping Strategy Based on Similarity and Adaptivity

Irena Mlynkova irena.mlynkova@mff.cuni.cz

Charles University
Faculty of Mathematics and Physics
Department of Software Engineering
Prague, Czech Republic

Introduction

- XML = a standard for data representation and manipulation
 - Growing demand for efficient managing and processing of XML data
- ⇒ A natural alternative: To exploit tools and functions of (object-)relational database management systems ((O)RDBMS)
 - (-) XML trees vs. flat relations ⇒ inefficiency
 - (+) Long theoretical and practical history, mature technology
- ⇒ The techniques should be further enhanced

Goals of This Presentation

Proposal of improvement of XML processing based on (O)RDBMS

- Overview and classification of existing approaches
- Motivation for improvements
- Proposal of improvement of user-driven methods
- Related open issues
- Conclusion

Content

- 1. Overview of existing approaches

- 4 mag a companista de la companista de l
- GINCOMO (ISTOIN

Managing XML Data

- File system
 - (-) Inability of querying without additional preprocessing of data
- Pure object-oriented approach
 - (-) No efficient and comprehensive tool
- Native methods
 - (+) No need to adapt structures to a new purpose
- (O)RDBMS 📛
 - (+) Most practically used

Database-Based XML Processing Methods (1)

Key concern: Choice of the most efficient XML-torelational mapping strategy

- Fixed predefined set of mapping rules and heuristics
 - Generic vs. schema-driven
- Adaptive adapt the target schema to intended usage
 - Cost-driven
- User-involving storage decisions in hands of users
 - User-defined vs. user-driven

Database-Based XML Processing Methods (2)

- Generic vs. schema-driven omitting / exploiting XML schema
 - Straightforward mapping
- Cost-driven search a space of possible mappings and choose the one which conforms the target application most = the least "expensive"
 - Application: sample XML data, XML queries
- User-defined vs. user-driven the amount of user involvement
 - User-driven = a type of adaptivity
 - Schema is adapted to the annotations

User-Driven Methods: Shortcomings and Improvements

- Default mapping strategy is always fixed
 - Systems are able to store schema fragments in various ways ⇒ adaptive enhancing is natural
- Weak exploitation of user-given information
 - Annotations are just directly applied
 - Idea: Annotations = "hints" how a user wants to store particular XML patterns ⇒
 - We search for similar fragments
 - We use the knowledge in adaptive enhancing
- ⇒ General idea: Emphasis on user-given information

Content

- 2. Motivation for improvements

- Let a Country Usafe in

Why User-Given Information? (Example 1)

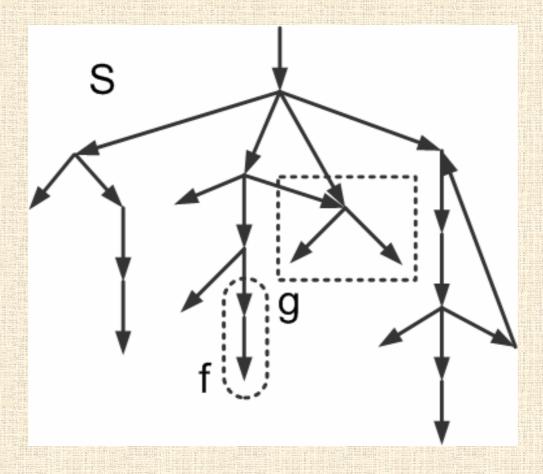
- Situation: Documents with XHTML fragments
- Problem: Shredding into tables = inefficient fragment reconstructions
 - XHTML DTD contains complete graphs on up to 10 nodes
- What if the real complexity is much simpler?
 - Statistical analysis: Yes, it is <u>much</u> simpler!
 - ⇒ Simpler storage strategy (CLOB)

Why User-Given Information? (Example 2)

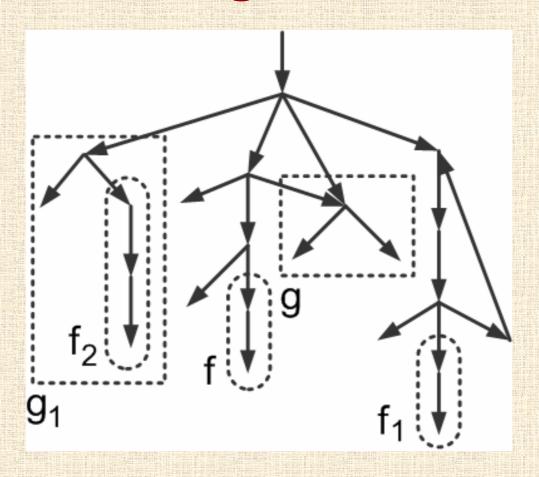
- Situation: Updatability of data vs. fast query evaluation
- Problem: Amount of mutual relationships information
 - Fast querying ⇒ additional indices, numbering schemes
 - Fast updates ⇒ the simplest information of mutual relationships
 - Fast querying, fast updates ⇒ compromise

Why User-Given Information? (Example 3)

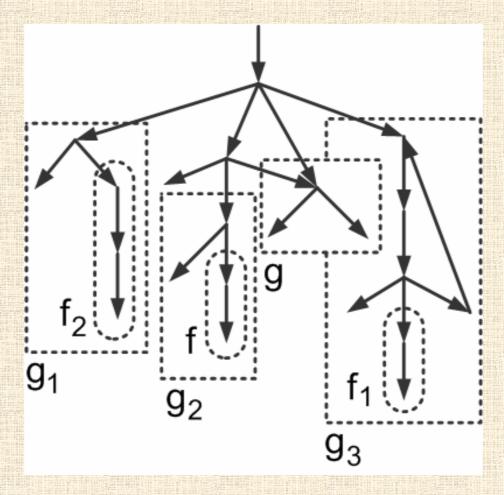
- Situation: Data redundancy
- Question: Is it always necessary to strictly follow the rules of normal forms?
 - No, it is not.
 - Optimal XML-to-relational storage strategy = 4NF
 - No null values, no redundancy
- ⇒ In all the cases we need additional information given by <u>a user</u>
 - XML data, XML queries, annotations...

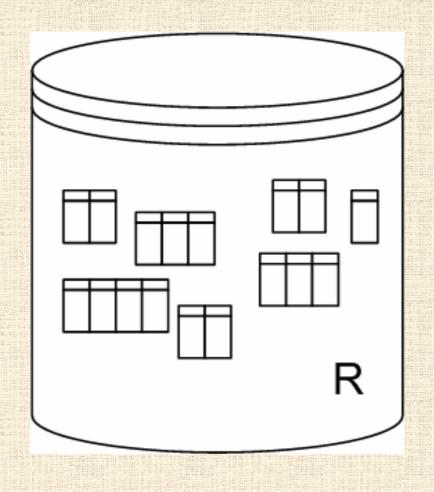

Content

- E-LOVEWELVIOUS OF CASTING REPORTS CITES
- 24. Modvation for improvements
- 3. Proposed improvement
- Let a Country Usafe in


Basic Ideas

- Searching for similar fragments in the not annotated schema parts
 - The user is not forced to annotate all schema fragments
 - The system can reveal new structural similarities
- Searching for optimal mapping strategy for the remaining schema fragments
 - Adaptive strategy


Step 1. Annotated Schema


Step 2. Searching for Similar Fragments

Step 3. Adaptive Strategy

Step 4. Mapping to Relations

Open Issues

- What types of annotations, i.e. fixed mapping strategies, are supported? How are they combined?
- What similarity measure is used? Can we optimize the exhaustive search for similar fragments?
- Should we use a classical adaptive strategy?

Types of Annotations

- Particular mapping methods influence versatility of implementation
 - CLOB, shredding to tables, indices, numbering schemes...
- Key aspect: Intersection of annotated fragments
 - Redundant both methods are applied on intersection
 - XHTML fragments ⇒ shredding + CLOB
 - Overriding only one of the methods is applied
 - Classical user-driven strategies
 - Influencing both methods are combined into one storage strategy
 - Shredding + indices/numbering schemes

Similarity Measure and Search Algorithm (1)

- Closely related
 - No knowledge of measure
 - ⇒ Few ways how to avoid exhaustive search
 - Clustering (expensive preprocessing)
- Idea: Exploit knowledge of the similarity measure
- Modification of a classical approach:
 - A set of matchers = partial similarity measures
 - Similarity of a particular feature
 - Depth, number of nodes, complexity of content...
 - A composite similarity measure = combines the results
 - Weighted sum

Similarity Measure and Search Algorithm (2)

- Features of matchers ⇒ a bottom-up strategy
 - Knowledge for child nodes ⇒ knowledge for parent node
 - e.g. depth, number of nodes
- Heuristics: Searching can terminate if reasonable amount of matchers exceed their only optimum within the current root path
 - Not possible for the composite measure
 - e.g. similarity of depths
 - With growing number of nodes the depth grows until it reaches the depth of the searched schema fragment
- Note: Formally described in the paper

Adaptive Strategy (1)

- Classical approach: Target DB schema is adapted to sample XML data and queries
 - + annotations = too much information
- Idea:
 - Queries = How the data are typically manipulated
 - Data = How complex are XML documents
 - ⇒ How to store the data
 - Annotations = How particular schema fragments should be stored
 - ⇒ Annotations can be reused ⇒ no need for additional information

Adaptive Strategy (2)

- Key operations:
 - Contraction = replaces each annotated fragment with an auxiliary node
 - Expansion = all auxiliary nodes are expanded to original schema fragments
- Algorithm:
 - 1. The searching for similar fragments and operation contraction repeats until there are no identified candidates for annotating
 - 2. The resulting schema is expanded
- Intersection of original and new annotations: Newly defined are overridden

Content

- 24 Motivetto reforming to venteris
- 4. Related open issues

Features of Implementation

- Determine the usability and versatility of system
 - The set of annotations and their intersection
 - Partial matchers
 - Composite similarity measure
 - Key problem: Tuning of parameters
 - Similarity threshold(s)
 - Side effects:
 - User intervention when more possibilities occur
 - Support for forbidden intersection of annotations
 - Support for fixed fragments
 - ...

Behavior on Real-World Data

- We know typical characteristics of realworld data - where is the problem?
- The behavior of more complex similarity measure cannot be predicted
 - Tuning process
- The behavior of the search algorithm on contracted graph cannot be predicted
 - No research on contracted graphs
 - Of course...

Content

- E-LOVEWENDONOS STINE E POR ESCRES
- 2 Motivation for this wertents
- ZPERZELETE EN EXELESTRES
- 5. Conclusion

Currently Solved Issues

- Plenty of open issues = lots of work
- "Finished" research (under reviewing process)
 - Similarity measure focusing on structure of fragments
 - Tuning based on statistical analysis of real-world data
 - Experimental evaluation of behavior of the adaptive strategy
 - Number of detected similar fragments, number of contractions, is the graph always contracted totally?
- Current research
 - Efficient querying over the resulting schema (query plans vs. intersecting annotations)
 - Combination with classical adaptive methods

Thank you