An Analysis of Approaches to XML Schema Inference

Irena Mlynkova

irena.mlynkova@mff.cuni.cz

Nov 30 - Dec 3, 2008

Charles University Faculty of Mathematics and Physics Department of Software Engineering Prague, Czech Republic

SITIS 2008 - Bali, Indonesia

1

Overview

Introduction Existing approaches Open issues Conclusion

Nov 30 - Dec 3, 2008

SITIS 2008 - Bali, Indonesia

Introduction

- XML = a standard for data representation and manipulation
- XML documents + XML schema
 - Allowed data structure
 - W3C recommendations: DTD, XML Schema (XSD)
 - ISO standards: RELAX NG, Schematron, ...
- Why schema?

•

•

- Known structure, valid data, limited complexity of processing, ...
 - \Rightarrow Optimization of XML processing
 - Storing, querying, updating, compressing, …

Real-World XML Schemas

Statistical analyses of real-word XML data:

- 52% of randomly crawled / 7.4% of semi-automatically collected documents: no schema
- 0.09% of randomly crawled / 38% of semi-automatically collected documents with schema: use XSD
- 85% of randomly crawled XSDs: equivalent to DTDs

Problem:

- Users do not use schemas at all
 - Extreme opinion: I do not want to follow the rules of an XML schema in my XML data.
 - Schema = a kind of documentation
 - Documents are not valid, schemas are not correct

Mlynkova, Toman, Pokorny: Statistical Analysis of Real XML Data Collections. In COMAD '06, pages 20 – 31, New Delhi, India, 2006. Tata McGraw-Hill Publishing Co. Ltd.

Inference of XML Schemas

Solution:

- Automatic inference of XML schema S_D for a given set of documents D
 - \Rightarrow Multiple solutions
 - Too general = accepts too many documents
 - Too restrictive = accepts only D

Advantages:

- $S_D = a$ good initial draft for user-specified schema
- S_D = a reasonable representative when no schema is available
- User-defined XML schemas are too general (*, +, recursion, ...) \Rightarrow S_D can be more precise

XML Schemas and Grammars

An <u>extended context-free grammar</u> is quadruple G = (N,T,P,S), where N and T are finite sets of nonterminals and terminals, P is a finite set of productions and S is a non terminal called a start symbol. Each production is of the form $A \rightarrow \alpha$, where $A \in N$ and α is a regular expression over alphabet N \cup T.

Given the alphabet Σ , a <u>regular expression</u> (RE) over Σ is inductively defined as follows:

- \oslash (empty set) and ε (empty string) are REs
- $\forall \mathbf{a} \in \Sigma$: a is a RE
- If r and s are REs over Σ, then (rs) (concatenation), (r|s) (alternation) and (r*) (Kleene closure) are REs

DTD adds: (s|ε) = (s?), (s s*) = (s+), concatenation = ','
 XML Schema adds: unordered sequence

Nov 30 - Dec 3, 2008

Overview

Introduction Existing approaches Open issues Conclusion

Nov 30 - Dec 3, 2008

SITIS 2008 - Bali, Indonesia

Classification of Approaches

Type of the result (DTD vs. XSD)

- DTDs are most common
 - Some works infer XSDs, but with expressive power of DTD
- Key aim: Inference of REs (content models)
- The way we construct the result
 - Heuristic = no theoretic basis
 - Generalization of a trivial schema
 - Rules: "If there are > 3 occurrences of E, it can occur arbitrary times" ⇒ E* or E+
 - Inferring a grammar = inference of a set of regular expressions
 - Gold's theorem: Regular languages are not identifiable in the limit only from positive examples (valid XML documents)
 - ⇒ Inference of subclasses of regular languages

Nov 30 - Dec 3, 2008

Classical Steps

- 1. Derivation of initial grammar (IG)
 - For each element E and its subelements $E_1, E_2, ..., E_n$ we create production $E \rightarrow E_1 E_2 ... E_n$
- 2. Clustering of rules of IG
 - According to element names vs. broader context
- 3. Construction of prefix tree automaton (PTA) for each cluster
- 4. Generalization of PTAs
 - Merging state algorithms
- 5. Inference of simple data types and integrity constraints
 - Often ignored
- 6. Refactorization
 - Correction and simplification of the derived REs
- 7. Expressing the inferred REs in target XML schema language
 - Most common: Direct rewriting of REs to content models

Step 1: Initial Grammar

```
<person id="123">
<name>
  <first>lrena</first>
  <surname>Mlynkova</surname>
 </name>
<email>irena.mlynkova@gmail.com</email>
 <email>irena.mlynkova@mff.cuni.cz</email>
</person>
<person id="456" holiday="yes">
 <name>
  <surname>Necasky</surname>
  <first>Martin</first>
</name>
one>123-456-789
 <email>martin.necasky@mff.cuni.cz</email>
</person>
. . .
```

 $\begin{array}{l} \mbox{person} \rightarrow \mbox{name email email} \\ \mbox{name} \rightarrow \mbox{first surname} \\ \mbox{first} \rightarrow \mbox{PCDATA} \\ \mbox{surname} \rightarrow \mbox{PCDATA} \\ \mbox{email} \rightarrow \mbox{PCDATA} \\ \mbox{email} \rightarrow \mbox{PCDATA} \\ \mbox{person} \rightarrow \mbox{name phone email} \\ \mbox{name} \rightarrow \mbox{PCDATA} \\ \mbox{first} \rightarrow \mbox{PCDATA} \\ \mbox{first} \rightarrow \mbox{PCDATA} \\ \mbox{phone} \rightarrow \mbox{PCDATA} \\ \mbox{email} \rightarrow \mbox{PCDATA} \\ \mbox{email} \rightarrow \mbox{PCDATA} \end{array}$

<book>

<name>Sherlock Holmes</name> </book>

person \rightarrow name email email person \rightarrow name phone email

name \rightarrow first surname name \rightarrow surname first

 $\text{first} \rightarrow \text{PCDATA}$

surname \rightarrow PCDATA

 $\text{email} \rightarrow \text{PCDATA}$

 $phone \rightarrow PCDATA$

<author>
<name>
<first>Arthur</first>
<middle>Conan</middle>
<last>Doyle</last>
</name>
</author>

Step 2: Clustering

Nov 30 - Dec 3, 2008

Step 3: Construction of PTA

person \rightarrow name email email person \rightarrow name phone email

person:

Step 4. PTA Generalization

person \rightarrow name email address person \rightarrow name phone address

person \rightarrow name email address person \rightarrow name address

Heuristic Approaches

Various generalization rules

 Observations of real-world data, common prefixes, suffixes, ...

Generalization process

- Generalize IG until a satisfactory solution is reached
 - Problem: wrong step
- Generate a set of candidates and choose the optimal one
 - Problem: space overhead
- How to generalize
 - Until any rule can be applied
 - Until a better schema can be found
 - Problems:
 - Evaluation of quality of schemas (MDL principle)
 - Efficient search strategy (greedy search vs. ACO heuristics)

Nov 30 - Dec 3, 2008

Conciseness = bits required to describe schema Preciseness = bits required for description of input data using schema

Approaches Inferring a Grammar

- Common idea: regular languages are not identifiable in the limit from positive examples
 - \Rightarrow inferring a subclass that can be
 - Difference: The selected class of languages
 - k-contextual, (k,h)-contextual = having a limited context
 - f-distinguishable = having a distinguishing function
 - single-occurrence REs, chain REs, k-local single-occurrence = simple types of REs occurring in real-world XML schemas
- Approaches: Merging state algorithms
 - Merging criteria are given by the language class directly
- Note: Necessary requirement of W3C = 1-unambiguity
 - Deterministic content models
 - Example: (A,B) | (A,C) vs. A, (B | C)
 - Often ignored

Nov 30 - Dec 3, 2008

SITIS 2008 - Bali, Indonesia

Overview

Introduction Existing approaches

Open issues Conclusion

Nov 30 - Dec 3, 2008

1. User Interaction

- Existing approaches: Automatic inference of an XML schema Problem: How to find the optimal generalization?
 - MDL principle: Good schema = tightly represents data, concise, compact
 - User's preferences can be different ⇒ resulting schema may be unnatural
- Bex et al. (VLDB'06, VLDB'07): Let us infer only schema constructs that occur in real-world XML data
- Natural improvement: user interaction
 - Refining the clustering, preferred merging, preferred schema constructs, refining the REs, ...
- Problem:

•

•

•

- A user may not be skilled in specifying complex REs
- A user is not able to make too many decisions

2. Other Input Information

- Input in existing works: a set of positive examples
- Problem: Gold's theorem
- \Rightarrow Question: Are there any other ways?
- Input 1: An obsolete XML schema
 - Typical situation: a user creates an XML schema ⇒ updates only the data ⇒ schema is obsolete
 - Idea: The schema contains partially correct information
 - Note: XML schema evolution = opposite problem
- **Input 2: XML queries**
 - Idea: partial information on the structure
- Input 3 ... : Negative examples, user requirements, statistical analysis of XML documents, ...

Mlynkova: On Inference of XML Schema with the Knowledge of an Obsolete One. In ADC'09 (to appear), volume 92, Wellington, New Zealand, 2009. ACS.

Necasky, Mlynkova: Enhancing XML Schema Inference with Keys and Foreign Keys. In SAC'09 (to appear), Honolulu, Hawaii, USA, 2009. ACM.

3. XML Schema Simple Data **Types**

- Advantage of XML Schema: wide support of simple data types
 - 44 built-in data types
- User-defined data types derived from existing simple types • Natural improvement: precise inference of simple data types Current approaches:
 - Omit simple data types at all
 - Two exceptions: selected built-in data types
 - Do we need simple data types?
 - Inferring within an XML editor: yes
 - Inferring for optimization purposes: not always necessary
 - Schema-driven XML-to-relational mapping methods
 - Ideas: exploitation of additional information
 - Queries, semantics of element names, obsolete schema, ...

Nov 30 - Dec 3, 2008

•

•

4. XML Schema Advanced Constructs

- Advantage of XML Schema: object-oriented features
 - User-defined data types, inheritance, substitutability of both data types and elements, ...
- Disadvantage: Do not extend the expressive power
 - "syntactic sugar"
- Advantages:
 - More user-friendly and realistic schemas
 - Can carry more precise information for optimization
 - Inheritance, shared globally defined items, …
- Problem: constructs are equivalent ⇒ how to find the optimal expression?
 - User-interaction
 - Additional information

Vosta, Mlynkova, Pokorny. Even an Ant Can Create an XSD. In DASFAA'08, LNCS 4947, pages 35–50. New Delhi, India, 2008. Springer-Verlag.

Mlynkova, Necasky: Towards Inference of More Realistic XSDs. In SAC'09 (to appear), Honolulu, Hawaii, USA, 2009. ACM.

5. Integrity Constraints (ICs)

- DTD: ID, IDREF, IDREFS = keys and foreign keys
 XML Schema:
 - XML Schema:
 - ID, IDREF, IDREFS
 - unique, key, keyref
 - More precise expression of keys and foreign keys + uniqueness
 - assert, report
 - Special constraints expressed using XPath
- More powerful ICs: Cannot be expressed in XML Schema but can be inferred
- Aim of ICs
 - Optimization of XML processing approaches
- Existing works:
 - Restricted cases of ICs in special situations (applications)
 - No general/universal approach

Necasky, Mlynkova: Enhancing XML Schema Inference with Keys and Foreign Keys. In SAC'09 (to appear), Honolulu, Hawaii, USA, 2009. ACM.

6. Other Schema Definition Languages

- W3C: DTD, XML Schema
 - Most popular ones
- There are other languages
- RELAX NG

•

•

•

•

- Similar strategy as XML Schema and DTD
- Describes the structure of XML documents using content models
- Simpler syntax than XSDs, richer set of simple data types than DTD
- Schematron
 - Different strategy
 - Specifies a set of conditions (ICs) the documents must follow
 - Expressed using XPath
 - \Rightarrow A brand new method
 - A first step towards inference of general ICs

7. XML Data Streams

Data streams

- Special type of XML data
- Recently became popular

⇒ Special processing

- Parsing, validation, querying, transforming, ...
- Inference of XML schema?

Features:

- Cannot be kept in a memory
- Cannot be read more than once
- Processing cannot "wait" for the last portion
- The situation is complicated
 - No inference method for XML data streams

Overview

Introduction Existing approaches Open issues Conclusion

Nov 30 - Dec 3, 2008

SITIS 2008 - Bali, Indonesia

24

Conclusion

 Almost any approach can benefit from XML schemas = knowledge of data structure

Currently

•

- Data-exchange: inferred schema = candidate for further improving
- Optimization: inferred schema = the only option
 - May be more precise
- Main observations:
 - Basic aspects (inference of REs) are solved
 - Advanced aspects are still waiting for solutions
 - Aim of this study:
 - A good starting point for researchers searching a solution or a research topic

Thank you

Nov 30 - Dec 3, 2008

SITIS 2008 - Bali, Indonesia

26