
Equivalence of XSD Constructs and its
Exploitation in Similarity Evaluation

Irena Mlýnková

Department of Software Engineering, Charles University
Malostranské nám. 25, 118 00 Prague 1, Czech Republic

irena.mlynkova@mff.cuni.cz

Abstract. In this paper we propose a technique for evaluating similarity
of XML Schema fragments. Firstly, we define classes of structurally and
semantically equivalent XSD constructs. Then we propose a similarity
measure that is based on the idea of edit distance utilized to XSD con-
structs and enables one to involve various additional similarity aspects.
In particular, we exploit the equivalence classes and semantic similarity
of element/attribute names. Using preliminary experiments we show the
behavior and advantages of the proposal.

1 Introduction

The eXtensible Markup Language (XML) [3] has become a standard for data
representation and, thus, it appears in most of areas of information technologies.
A possible optimization of XML-based methods can be found in exploitation of
similarity of XML data. In this paper we focus on similarity of XML schemas
that can be viewed from two perspectives. We can deal with either quantitative
or qualitative similarity measure. In the former case we are interested in the
degree of difference of the schemas, in the latter one we also want to know how
the schemas relate, e.g. which of the schemas is more general. In this paper we
deal with quantitative measure that is the key aspect of schema mapping [4, 5],
i.e. searching for (sub)schemas that describe the same reality.

In this area the key emphasis is currently put on the semantic similarity of
element/attribute names reflecting the requirements of corresponding applica-
tions. And if the approaches consider schema structure, they usually analyze
only simple aspects such as, e.g., leaf nodes or child nodes. In addition, most of
the approaches deal with XML schemas expressed in simple DTD language [3].
Hence, in this paper we focus on similarity of XML schema fragments expressed
in XML Schema language [11, 2]. In particular, we cover all key XML Schema
constructs and we deal with their structural and semantic equivalence. We pro-
pose a similarity measure that is based on the idea of classical edit distance
utilized to XSD1 constructs and enables one to involve various additional simi-
larity aspects. In particular, we exploit the equivalence classes of XML constructs

1 XML Schema Definition

and semantic similarity of element/attribute names. Using various experiments
we show the behavior and advantages of the proposed approach.

The paper is structured as follows: Section 2 describes the related works.
In Section 3 we overview possible XML Schema constructs and we define their
structurally and semantically equivalent classes. In Section 4 we describe the
proposed approach and in Section 5 we overview results of related experiments.
Finally, Section 6 provides conclusions and outlines future work.

2 Related Work

The number of existing works in the area of XML data similarity is nontrivial.
We can search for similarity among XML documents, XML schemas or between
the two groups. We can distinguish several levels of similarity, such as, e.g.,
structural level, semantic level or constraint level. Or we can require different
precision of the similarity.

In case of document similarity we distinguish techniques expressing similar-
ity of two documents Dx and Dy using edit distance, i.e. by measuring how
difficult is to transform Dx into Dy (e.g. [9]) and techniques which specify a
simple and reasonable representation of Dx and Dy, such as, e.g., using a set of
paths, that enables efficient comparison and similarity evaluation (e.g. [12]). In
case of similarity of a document D and a schema S there are also two types of
strategies – techniques which measure the number of elements which appear in
D but not in S and vice versa (e.g. [1]) and techniques which measure the closest
distance between D and “all” documents valid against S (e.g. [8]). And finally,
methods for measuring similarity of two XML schemas Sx and Sy combine var-
ious supplemental information and similarity measures such as, e.g., predefined
similarity rules, similarity of element/attribute names, equality of data types,
similarity of schema instances or previous results (e.g. [4, 5]). But, in general,
the approaches focus mostly on semantic aspects, whereas structural ones are
of marginal importance. And what is more, most of the existing works consider
only DTD constructs, whereas if the XML Schema language is supported, the
constructs beyond DTD expressive power are often ignored.

3 XML Schema Constructs and their Equivalence

The most popular language for description of the allowed structure of XML
documents is currently the Document Type Definition (DTD) [3]. For simple
applications it is sufficient, but more complex ones the W3C proposed a more
powerful tool – the XML Schema language [11, 2]. A self-descriptive example of
an XSD is depicted in Figure 1.

The constructs of XML Schema can be divided into basic, advanced and
auxiliary. The basic constructs involve simple data types (simpleType), com-
plex data types (complexType), elements (element), attributes (attribute),
groups of elements (group) and groups of attributes (attributeGroup). Sim-
ple data types involve both built-in data types (except for ID, IDREF, IDREFS),

Fig. 1. An example of an XSD of employees I

such as, e.g., string, integer, date etc., as well as user-defined data types
derived from existing simple types using simpleType construct. Complex data
types enable one to specify both content models of elements and their sets of at-
tributes. The content models can involve ordered sequences (sequence), choices
(choice), unordered sequences (all), groups of elements (group) or their al-
lowable combinations. Similarly, they enable one to derive new complex types
from existing simple (simpleContent) or complex types (complexContent). El-
ements simply join simple/complex types with respective element names and,
similarly, attributes join simple types with attribute names. And, finally, groups
of elements and attributes enable one to globally mark selected schema frag-
ments and exploit them repeatedly in various parts using so-called references. In
general, basic constructs are present in almost all XSDs.

The set of advanced constructs involves type substitutability and substitu-
tion groups, identity constraints (unique, key, keyref) as well as related simple
data types (ID, IDREF, IDREFS) and assertions (assert, report). Type substi-
tutability and substitution groups enable one to change data types or allowed
location of elements. Identity constraints enable one to restrict allowed values of
elemets/attributes to unique/key values within a specified area and to specify
references to them. Similarly, assertions specify additional conditions that the

values of elements/attributes need to satisfy, i.e. they can be considered as an
extension of simple types.

The set of auxiliary constructs involves wildcards (any, anyAttribute), ex-
ternal schemas (include, import, redefine), notations (notation) and annota-
tions (annotation). Wildcards and external schemas combine data from various
XML schemas. Notations bear additional information for superior applications.
And annotations can be considered as a kind of advanced comments. Conse-
quently, since these constructs do not have a key impact on schema structure or
semantics, we will not deal with them in the rest of the text.

3.1 Structural Equivalence

As it is obvious from the above overview, there are sets of XML Schema con-
structs that enable one to generate XSDs that have different structure but are
structurally equivalent.

Definition 1. Let Sx and Sy be two XSD fragments. Let I(S) = {D s.t. D is
an XML document fragment valid against S}. Then Sx and Sy are structurally
equivalent, Sx ∼ Sy, if I(Sx) = I(Sy).

Consequently, having a set X of all XSD constructs, we can specify the
quotient set X/ ∼ of X by ∼ and respective equivalence classes – see Table 1.

Class Constructs Canonical
representative

CST globally defined simple type, locally defined
simple type

locally defined simple type

CCT globally defined complex type, locally defined
complex type

locally defined complex
type

CEl referenced element, locally defined element locally defined element

CAt referenced attribute, locally defined attribute,
attribute referenced via an attribute group

locally defined attribute

CElGr content model referenced via an element
group, locally defined content model

locally defined content
model

CSeq unordered sequence of elements e1, e2, ..., el,
choice of all possible ordered sequences of
e1, e2, ..., el

choice of all possible
ordered sequences of e1, e2,
..., el

CCTDer derived complex type, newly defined complex
type

newly defined complex type

CSubSk elements in a substitution group G, choice of
elements in G

choice of elements in G

CSub data types M1, M2, ..., Mk derived from type
M , choice of content models defined in
M1, M2, ..., Mk, M

choice of content models
defined in
M1, M2, ..., Mk, M

Table 1. XSD equivalence classes of X/ ∼

Classes CST and CCT specify that there is no difference if a simple or a
complex type is defined globally or locally as depicted in Figure 2.

Fig. 2. Locally and globally defined data types

Similarly, classes CEl and CAt determine that locally defined elements/attri-
butes and globally defined referenced elements/attributes are equivalent as de-
picted in Figure 3.

Fig. 3. Locally and globally defined elements and attributes

In addition, CAt determines that also attributes referenced via attribute
groups are equivalent to all other types of attribute specifications. And a similar
meaning has also CElGr class for content models referenced via groups or defined
locally. Both situations are depicted in Figure 4.

Class CSeq expresses the equivalence between an unordered sequence of el-
ements e1, e2, ..., el and a choice of its all possible ordered permutations as de-
picted in Figure 5.

Class CInh determines equivalence between a complex type derived from an
existing one or a complex type that is defined newly as depicted in Figure 6.

Class CSubSk expresses that the mechanism of substitution groups is equiva-
lent to the choice of respective elements, i.e. having elements e1 and e2 that are in
substitution group of element e3, it means that everywhere where e3 occurs, also
elements e1 and e2 can occur. The only exception is if e3 is denoted as abstract

Fig. 4. Element and attribute groups

Fig. 5. Unordered and ordered sequences

(using attribute abstract="true") and, hence, it must be always substituted.
The structure of a substitution group can be also influenced via attributes final
and block that disable substitution for a particular element anywhere it occurs
or only at particular positions. An example of respective equivalent schemas is
depicted in Figure 7, where we assume that types typeBook and typeJournal
are derived from typePublication.

Similarly, class CSub expresses the fact that having an element e with type
M , using the attribute xsi:type we can substitute M with any of data types
M1,M2, ...,Mk derived from M . Consequently, the content model of e is equiv-
alent to choice of content models defined in M1,M2, ..., Mk,M . The only excep-
tion is when the type substitutability is blocked using the block attribute. An
example of the equivalent schemas is depicted in Figure 8.

Each of the remaining XML Schema constructs not mentioned in Table 1
forms a single class. We will denote these classes as C1, C2, ..., Cn.

3.2 Semantic Equivalence

Apart from XSD constructs that restrict the allowed structure of XML data,
we can find also constructs that express various semantic constraints. They in-
volve identity constrains and simple data types ID and IDREF(S). (Note that
ID, IDREF(S) can be expressed using key and keyref.) The idea of semantic
similarity is based on the following observation: A keyref construct refers to
a particular part of the XSD – e.g. having an XSD containing a list of books

Fig. 6. Derived complex types

Fig. 7. Substitution groups

and a list of authors, each author can refer to his best book. And this situa-
tion described in a semantically equivalent manner occurs when the referenced
fragment, i.e. the element describing the best book, is directly present within
element author. Hence, these constructs enable one to generate XSDs that have
different structure but are semantically equivalent.

Definition 2. Let Sx and Sy be two XSD fragments. Then Sx and Sy are se-
mantically equivalent, Sx ≈ Sy, if they abstract the same reality.

Having a set X of all XSD constructs, we can specify the quotient set X/ ≈
of X by ≈ and respective equivalence classes – see Table 2. Classes C ′IdRef

and C ′KeyRef express the fact that both IDREF(S) and keyref constructs, i.e.
references to schema fragments, are semantically equivalent to the situation when
we directly copy the referenced schema fragments to the referencing positions.
An example of the equivalent schemas is depicted in Figure 9.

Since every key/keyref constraint must contain one reference (selector)
to a set of elements and at least one reference (field) to their subelements
(descendants) and/or attributes expressed in the following grammar [11, 2]:

Selector ::= PathS (’|’ PathS)*

Field ::= PathF (’|’ PathF)*

PathS ::= (’.//’)? Step (’/’ Step)*

Fig. 8. Type substitutability

Class Constructs Canonical
representative

C′IdRef locally defined schema fragment, schema
fragment referenced via IDREF attribute

locally defined schema
fragment

C′KeyRef locally defined schema fragment, schema
fragment referenced via keyref element

locally defined schema
fragment

Table 2. XSD equivalence classes of X/ ≈

PathF ::= (’.//’)? (Step ’/’)* (Step | ’@’ NameTest)

Step ::= ’.’ | NameTest

NameTest ::= QName | ’*’ | NCName ’:’ ’*’

the referenced fragments can be always easily copied to particular positions.
Similar to the previous case, each of the remaining XML Schema constructs

not mentioned in Table 2 forms a single class. We will denote these classes as
C ′1, C

′
2, ..., C

′
m.

Each of the previously defined classes of ∼ or ≈ equivalence can be represented
using any of its elements. Since we want to simplify the specification of XSD for
the purpose of analysis of its similarity, we have selected respective canonical
representatives listed in Tables 1 and 2 as well. They enable one to simplify the
structure of the XSD only to core constructs. (Note that since C1, C2, ..., Cn and
C ′1, C

′
2, ..., C

′
m are singletons, the canonical representatives are obvious.)

4 Similarity Evaluation

The proposed algorithm is based mainly on the work presented in [9] which
focuses on expressing similarity of XML documents Dx and Dy using tree edit
distance. The main contribution of the algorithm is in introducing two new edit
operations InsertTree and DeleteTree which allow manipulating more complex
structures than only a single node. But, repeated structures can be found in an
XSD as well, if it contains shared fragments or recursive elements.

Fig. 9. Identity constraints

On the other hand, contrary to XML documents that can be modeled as
trees, XSDs can, in general, form general cyclic graphs. Hence, procedures for
computing edit distance of trees need to be utilized to XSD graphs. In addition,
not only the structural, but also the semantic aspect is very important. There-
fore, we will also concern both semantic equivalence of XSD fragments as well
as semantic similarity of element/attribute names.

The whole method can be divided into three parts depicted in Algorithm 1.

Algorithm 1 Main body of the algorithm
Input: XSDs Sx and Sy

Output: Edit distance between Sx and Sy

1: Tx = ParseXSD(Sx);
2: Ty = ParseXSD(Sy);
3: CostGraft = ComputeCost(Ty);
4: CostPrune = ComputeCost(Tx);
5: return EditDistance(Tx, Ty, CostGraft, CostPrune);

Firstly, the input XSDs Sx and Sy are parsed (line 1 and 2) and their tree
representations are constructed. Next, costs for tree inserting (line 3) and tree
deleting (line 4) are computed. And in the final step (line 5) we compute the
resulting edit distance, i.e. similarity, using classical dynamic programming.

4.1 XSD Tree Construction

The key operation of our approach is tree representation of the given XSDs. How-
ever, since the structure of an XSD can be quite complex, we firstly normalize
and simplify it.

Normalization of XSDs Firstly, we normalize the given XSDs using the equiv-
alence classes. In the first step we exploit structural equivalence ∼ and we it-
eratively replace each non-canonical construct (naturally except for the root
element) with the respective canonical representative until there can be found

any. At the same time, for each element v of the schema (i.e. XSD construct) we
keep the set veq∼ of classes it originally belonged to.

In the second step we exploit semantic equivalence ≈ and we again replace
each non-canonical construct with its canonical representative and we construct
sets veq≈ . Now the resulting schema involves elements, attributes, operators
choice and sequence, intervals of allowed occurrences, simple types and as-
sertions.

Simplification of XSDs Next we simplify the remaining content models. For
this purpose we can use various transformation rules. Probably the biggest set
was defined in [10] for DTD constructs, but these simplifications are for our
purpose too strong. Hence, we use only a subset of them as depicted in Figures
10 and 11. They are expressed for DTD constructs, where “|” represents choice,
“,” represents sequence, “?” represents interval [0, 1], “+” represents intervals
[vlow, vup], where vlow > 0 and vup > 1, “*” represents intervals [vlow, vup], where
vlow > 0 and vup > 1 and empty operator represents interval [1, 1].

I-a) (e1|e2)
∗ → e∗1, e

∗
2

I-b) (e1, e2)
∗ → e∗1, e

∗
2

I-c) (e1, e2)? → e1?, e2?
I-d) (e1, e2)

+ → e+
1 , e+

2

I-e) (e1|e2) → e1?, e2?

Fig. 10. Flattening rules

II-a) e++
1 → e+

1 II-b) e∗∗1 → e∗1
II-c) e∗1? → e∗1 II-d) e1?

∗ → e∗1
II-e) e+∗

1 → e∗1 II-f) e∗+1 → e∗1
II-g) e1?

+ → e∗1 II-h) e+
1 ? → e∗1

II-i) e1?? → e?
1

Fig. 11. Simplification rules

The rules enable one to convert all element definitions so that each cardinality
constraint operator is connected to a single element. The second purpose is to
avoid usage of choice construct. Note that some of the rules do not produce
equivalent XML schemes and cause a kind of information loss. But this aspect
is common for all existing XML schema similarity measures – it seems that the
full generality of the regular expressions cannot be captured easily.

XSD Tree Having a normalized and simplified XSD, its tree representation is
defined as follows:

Definition 3. An XSD tree is an ordered tree T = (V,E), where

1. V is a set of nodes of the form v = (vType, vName, vCardinality, veq∼ , veq≈),
where vType is the type of a node (i.e. attribute, element or particular simple
data type), vName is the name of an element or an attribute, vCardinality is
the interval [vlow, vup] of allowed occurrence of v, veq∼ is the set of classes
of ∼ v belongs to and veq≈ is the set of classes of ≈ v belongs to,

2. E ⊆ V ×V is a set of edges representing relationships between elements and
their attributes or subelements.

An example of tree representation of XSD in Figure 1 (after normalization
and simplification) is depicted in Figure 12.

Fig. 12. An example of an XSD tree

Shared and Recursive Elements As we have mentioned, the structure of an XSD
does not have to be purely tree-like. There can occur both shared elements
which invoke undirected cycles and recursive elements which invoke directed
cycles. The shared elements are eliminated in XSD normalization using canonical
representatives, where all globally defined schema fragments are replaced with
their locally defined copy. But, in case of recursive elements we cannot repeat
the same idea since the recursion would invoke infinitely deep tree branches.
However, in this case we exploit the observation of an analysis of real-world
XML data [7] that the amount of recursive inclusions is on average less than 10.
So we approximate the infinite amount with the constant one. Naturally, this is
a kind of information loss, but based on the knowledge of real-world data.

4.2 Tree Edit Operations

Having the above described tree representation of an XSD, we can now easily
utilize the tree edit algorithm proposed in [9]. For a given tree T with a root node
r of degree t and its first-level subtrees T1, T2, ..., Tt, the tree edit operations are
defined formally as follows:

Definition 4. SubstitutionT (rnew) is a node substitution operation applied to
T that yields the tree T ′ with root node rnew and first-level subtrees T1, ..., Tt.

Definition 5. Given a node x with degree 0, InsertT (x, i) is a node insertion
operation applied to T at i that yields the new tree T ′ with root node r and
first-level subtrees T1, ..., Ti, x, Ti+1, ..., Tt.

Definition 6. If the first-level subtree Ti is a leaf node, DeleteT (Ti) is a delete
node operation applied to T at i that yields the tree T ′ with root node r and
first-level subtrees T1, ..., Ti−1, Ti+1, ..., Tt.

Definition 7. Given a tree Tx, InsertTreeT (Tx, i) is an insert tree operation
applied to T at i that yields the tree T ′ with root node r and first-level subtrees
T1, ..., Ti, Tx, Ti+1, ..., Tt.

Definition 8. DeleteTreeT (Ti) is a delete tree operation applied to T at i that
yields the tree T ′ with root node r and first-level subtrees T1, ..., Ti−1, Ti+1, ..., Tt.

Transformation of a source tree Tx to a destination tree Ty can be done using
a number of sequences of the operations. But, we can only deal with so-called
allowable sequences, i.e. the relevant ones. For the purpose of our approach we
only need to modify the original definition as follows:

Definition 9. A sequence of edit operations transforming a source tree Tx to a
destination tree Ty is allowable if it satisfies the following two conditions:

1. A tree T may be inserted only if tree similar to T already occurs in Tx. A
tree T may be deleted only if tree similar to T occurs in Ty.

2. A tree that has been inserted via the InsertTree operation may not subse-
quently have additional nodes inserted. A tree that has been deleted via the
DeleteTree operation may not previously have had nodes deleted.

While the original definition requires exactly the same nodes and trees, we
relax the requirement only to similar ones. The exact meaning of the similarity is
explained in the following text and enables one to combine the tree edit distance
with other approaches. Also note that each of the edit operations is associated
with a non-negative cost.

4.3 Costs of Inserting and Deleting Trees

Inserting (deleting) a subtree Ti can be done with a single operation Insert-
Tree (DeleteTree) or with a combination of InsertTree (DeleteTree) and Insert
(Delete) operations. To find the optimal variant the algorithm uses pre-computed
cost for inserting Ti, CostGraft(Ti) and deleting tree Ti, CostPrune(Ti). The pro-
cedure can be divided into two parts: In the first part ContainedIn list is created
for each subtree of Ti. In the second part CostGraft and CostPrune are computed
for Ti. The procedure is described in [9], but in our approach it is modified to
involve similarity of elements/attributes and their respective parameters.

Similarity of Elements/Attributes Similarity of two elements/attributes v and
v′ can be evaluated using various criteria. Since the structural similarity is
solved via the edit distance, we focus on semantic and syntactic similarity of
element/attribute names, cardinality-constraint similarity, structural/semantic
similarity of schema fragments and similarity of simple data types.

Semantic similarity of element/attribute names is a score that reflects the
semantic relation between the meanings of two words. We exploit procedure
described in [5] which determines ontology similarity between two words vName

and v′Name by comparing vName with synonyms of v′Name.
Syntactic similarity of element/attribute names is determined by computing

the edit distance between vName and v′Name. For our purpose the classical Lev-
enshtein algorithm [6] is used that determines the edit distance of two strings
using inserting, deleting or replacing single characters.

Similarity of cardinality constraints is determined by similarity of intervals
vCardinality = [vlow, vup] and v′Cardinality = [v′low, v′up]. It is defined as follows:

CardSim(v, v′) = 0 ; (vup < v′low) ∨ (v′up < vlow)
= 1 ; vup, v

′
up = ∞∧ vlow = v′low

= 0.9 ; vup, v
′
up = ∞∧ vlow 6= v′low

= 0.6 ; vup = ∞∨ v′up = ∞
= min(vup,v′up)−max(vlow,v′low)

max(vup,v′up)−min(vlow,v′low) ; otherwise

Structural/semantic similarity of schema fragments rooted at v and v′ is de-
termined by the similarity of sets veq∼ , v′eq∼ and veq≈ , v′eq≈ as follows:

StrFragSim(v, v′) = 1 ; veq∼ , v′eq∼ = ∅
= |veq∼∩v′eq∼ |

|veq∼∪v′eq∼ |
; otherwise

SemFragSim(v, v′) = 1 ; veq≈ , v′eq≈ = ∅
=

|veq≈∩v′eq≈ |
|veq≈∪v′eq≈ |

; otherwise

And, finally, similarity of data types is determined by similarity of simple
types vType and v′Type. It is specified by type compatibility matrix that deter-
mines similarity of distinct simple types. For instance, similarity of string and
normalizedString is 0.9, whereas similarity of string and positiveInteger
is 0.5. Similarly, the table involves similarity of restrictions of simple types speci-
fied either via derivation of data types or assertions as well as similarity between
element and attribute nodes. (We omit the whole table for the paper length.)

The overall similarity, Sim(v, v′) is computed as follows:

Sim(v, v′) = Max(SemanticSim(v, v′), SyntacticSim(v, v′))× α1

+ CardSim(v, v′)× α2

+ StrFragSim(v, v′)× α3

+ SemFragSim(v, v′)× α4

+ DataTypeSim(v, v′)× α5

where
∑5

i=1 αi = 1 and ∀i : αi > 0.

Construction of ContainedIn Lists The procedure for determining element/attri-
bute similarity is used for creating ContainedIn lists which are then used for
computing CostGraft and CostPrune. The list is created for each node of the
destination tree Ty and contains pointers to similar nodes in the source tree Tx.
The procedure for creating ContainedIn lists is shown in Algorithm 2.

Since creating of lists starts from leaves and continues to root, there is recur-
sive calling of procedure at line 2. At line 4 we find all similar nodes of r in tree
Tx and add them to a temporary list. If r is a leaf node, the ContainedIn list is
created. For a non-leaf node we have to filter the list with lists of its descendants
(line 6). At this step each descendant of r has to be found at corresponding
position in descendants of nodes in the created ContainedIn list. More precisely,
let u ∈ rContainedIn, childrenu is the set of u descendants and v is a child of r.
Then vContainedIn ∩ childrenu 6= ∅, otherwise u is removed from rContainedIn.

Costs of Inserting Trees When the ContainedIn list with corresponding nodes
is created for node r, the cost for inserting the tree rooted at r can be assigned.

Algorithm 2 CreateContainedInLists(Tx, r)
Input: tree Tx, root r of tree Ty

Output: CointainedIn lists for all nodes in tree Ty

1: for all child of r do
2: CreateContainedInLists(Tx, child);
3: end for
4: rContainedIn = FindSimilarNodes(Tx, r);
5: for all child of r do
6: rContainedIn = FilterLists(rContainedIn, childContainedIn);
7: end for
8: Sort(rContainedIn);

The procedure is shown in Algorithm 3. The forall loop computes sum sum0

for inserting node r and all its subtrees. If InsertTree operation can be applied
(ContainedIn list of r is not empty), sum1 is computed for this operation at line
8. The minimum of these costs is finally denoted as CostGraft for node r.

Algorithm 3 ComputeCost(r)
Input: root r of tree Ty

Output: CostGraft for tree Ty

1: sum0 = 1;
2: for all child of r do
3: ComputeCost(child);
4: sum0 += CostGraft(child);
5: end for
6: sum1 = ∞;
7: if rContainedIn is not empty then
8: sum1 = ComputeInsertTreeCost(r);
9: end if

10: CostGraft(r) = Min(sum0,sum1);

Costs of Deleting Trees Since the rules for deleting a subtree from the source
tree Tx are the same as rules for inserting a subtree into the destination tree
Ty, costs for deleting trees are obtained by the same procedures. We only switch
tree Tx with Ty in procedures CreateContainedInLists and ComputeCost.

4.4 Computing Edit Distance

The last part of the algorithm, i.e. computing the edit distance, is based on dy-
namic programming. At this step the procedure decides which of the operations
defined in Section 4.2 will be applied for each node to transform source tree Tx

to destination tree Ty. This part of algorithm does not have to be modified for
XSDs so the original procedure presented in [9] is used.

4.5 Complexity

In [9] it was proven that the complexity of transforming tree Tx into tree Ty

is O(|Tx||Ty|). In our method we have to consider procedures for constructing
XSD trees and mainly for evaluating similarity. Constructing an XSD tree can
be done in O(|Tx|) for tree Tx. Complexity of similarity evaluation depends
on procedures SemanticSim, SyntacticSim, CardSim, StrFragSim, SemFragSim
and DataTypeSim. Syntactic similarity is computed for each pair of elements in
Tx and Ty, so its complexity is O(|Tx||Ty||ω|), where ω is maximum length of
an element/attribute label. Similarity of cardinality, similarity of simple types
and structural/semantic similarity of schema fragments is also computed for
each pair of elements, however, it is an operation with constant complexity,
i.e. their complexity is O(|Tx||Ty|). Complexity of finding semantic similarity
depends on the size of the thesaurus and on the number of iterations of searching
synonyms. Since it is reasonable to search synonyms only for a few steps, the
overall complexity is O(|Tx||Ty||Σ|), where Σ is the set of words in the thesaurus.
And it also determines the overall complexity of the algorithm.

5 Experiments

For the purpose of experimental evaluation of the proposal we have created next
two synthetic XSDs that are from various points of view more or less similar to
the XSD depicted in Figure 1. They are depicted in Figures 13 and 14.

At first glance the XSD II is structurally highly different from the original
XSD (denoted as XSD I). But, under a closer investigation, we can see that
the difference is only within classes of ∼ equivalence. On the other hand, XSD
III differs in more aspects, such as, e.g., simple types, allowed occurrences, glob-
ally/locally defined data types, exploitation of groups, element/attribute names,
attributes vs. elements with simple types etc.

As we can see in Table 3 which depicts the results in case we set α3 =
α4 = 0, i.e. we ignore the information on original constructs of XML Schema,
the similarity of XSD I and XSD II is 1.0, because they are represented using
identical XSD trees. Similarity between XSD I vs. XSD III and XSD II vs. XSD
III are for the same reason equivalent, though naturally lower.

XSD I XSD II XSD III

XSD I 1.00 1.00 0.82

XSD II 1.00 1.00 0.82

XSD III 0.82 0.82 1.00
Table 3. Similarity for α3 = α4 = 0

XSD I XSD II XSD III

XSD I 1.00 0.89 0.66

XSD II 0.89 1.00 0.70

XSD III 0.66 0.70 1.00
Table 4. Similarity for α3 6= 0

If we set α3 6= 0 (according to our experiments it should be > 0.2 to influence
the algorithm), the resulting similarity is influenced by the difference between

Fig. 13. An example of an XSD of em-
ployees II Fig. 14. An example of an XSD of em-

ployees III

the used XML Schema constructs. The results are depicted in Table 4, where
we can see more precise results. In particular, the similarity of XSD I and II is
naturally 6= 1.0, and similarity of XSD II and III is higher due to the respective
higher structural similarity of constructs.

On the other hand, if we set α4 6= 0 and α3 = 0, i.e. we are interested
in semantic similarity of schema fragments, the results have the same trend as
results in Table 3, because we again omit structural similarity of XSD constructs,
but in this case the semantic similarity of schema fragments relationships and
connections is high.

As we have mentioned in Section 4.5, the most time consuming operation
of the approach which determines the overall complexity of the algorithm is
searching the thesaurus. Hence, in the last test we try to omit evaluation of
SemanticSim. If we consider the first situation, i.e. when α3 = α4 = 0, it influ-
ences similarity with XSD III (which drops to 0.33), whereas similarity of XSD
I and II remains the same because the respective element/attribute names are
the same. The results in case α3 6= 0 are depicted in Table 5. As we can see, the
similarity of XSD I and II remains the same again, whereas the other values are
much lower.

XSD I XSD II XSD III

XSD I 1.00 0.89 0.24

XSD II 0.89 1.00 0.255

XSD III 0.24 0.255 1.00
Table 5. Similarity without SemanticSim

In general, the experiments show that various parameters of the similarity
measure can highly influence the results. On the other hand, we cannot simply
analyze all possible aspects, since some applications may not be interested, e.g.,
in semantic similarity of used element/attribute names or the “syntactic sugar”
(i.e. structurally equivalent constructs) XML Schema involves. Consequently,
a reasonable approach should enable one to exploit various aspects as well as
temporarily omit the irrelevant ones.

6 Conclusion

The aim of this paper was a proposal of an algorithm for evaluating similarity of
XML Schema constructs which enable one to specify the structure and semantics
of XML data more precisely. For this purpose we have defined structural and
semantic equivalence of XSD constructs and we have proposed similarity mea-
sure based on classical edit distance strategy that enables one to analyze their
structure more precisely and to involve additional similarity aspects. In particu-
lar, we have exploited the proposed equivalence classes and semantic similarity
of element/attribute names.

In our future work we will focus mainly on further improvements of our ap-
proach. We will deal with other edit operations (e.g. moving a node or adding/de-
leting a non-leaf node), improvements of efficiency of supplemental algorithms,
especially the semantic similarity, and on problems related to reasonable setting
of involved weights. We will also deal with more elaborate experimental test-
ing. In particular, we will focus on implementing a simulator that would provide
distinct XSDs.

7 Acknowledgement

This work was supported in part by the National Programme of Research (In-
formation Society Project 1ET100300419).

References

1. E. Bertino, G. Guerrini, and M. Mesiti. A Matching Algorithm for Measuring the
Structural Similarity between an XML Document and a DTD and its Applications.
Inf. Syst., 29(1):23–46, 2004.

2. P. V. Biron and A. Malhotra. XML Schema Part 2: Datatypes (Second Edition).
W3C, 2004.

3. T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensible
Markup Language (XML) 1.0 (Fourth Edition). W3C, 2006.

4. H. H. Do and E. Rahm. COMA – A System for Flexible Combination of Schema
Matching Approaches. In VLDB’02: Proc. of the 28th Int. Conf. on Very Large
Data Bases, pages 610–621, Hong Kong, China, 2002. Morgan Kaufmann.

5. M. L. Lee, L. H. Yang, W. Hsu, and X. Yang. XClust: Clustering XML Schemas
for Effective Integration. In CIKM’02: Proc. of the 11th Int. Conf. on Information
and Knowledge Management, pages 292–299, New York, NY, USA, 2002. ACM.

6. V. I. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and
Reversals. Soviet Physics Doklady, 10:707, 1966.

7. I. Mlynkova, K. Toman, and J. Pokorny. Statistical Analysis of Real XML Data
Collections. In COMAD’06: Proc. of the 13th Int. Conf. on Management of Data,
pages 20–31, New Delhi, India, 2006. Tata McGraw-Hill Publishing.

8. P. K.L. Ng and V. T.Y. Ng. Structural Similarity between XML Documents and
DTDs. In ICCS’03: Proc. of the Int. Conf. on Computational Science, pages 412–
421. Springer-Verlag, 2003.

9. A. Nierman and H. V. Jagadish. Evaluating Structural Similarity in XML Docu-
ments. In WebDB’02: Proc. of the 5th Int. Workshop on the Web and Databases,
pages 61–66, Madison, Wisconsin, USA, 2002.

10. J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt, and J. F.
Naughton. Relational Databases for Querying XML Documents: Limitations and
Opportunities. In VLDB’99: Proc. of 25th Int. Conf. on Very Large Data Bases,
pages 302–314, San Francisco, CA, USA, 1999. Morgan Kaufmann.

11. H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema Part
1: Structures (Second Edition). W3C, 2004.

12. Z. Zhang, R. Li, S. Cao, and Y. Zhu. Similarity Metric for XML Documents. In
FGWM’03: Proc. of Workshop on Knowledge and Experience Management, Karl-
sruhe, Germany, 2003.

