XML Benchmarking

Irena Mlynkova irena.mlynkova@mff.cuni.cz

Charles University
Faculty of Mathematics and Physics
Department of Software Engineering
Prague, Czech Republic

Introduction

- XML = a standard for data representation and manipulation
 - A number of methods for efficient managing, processing, exchanging, querying, updating, compressing, ... of XML documents
- ⇒ Question: How to find the optimal one for a particular application?
- Problems:
 - Methods are tested on distinct data
 - The implementations are not always available
 - Gathering testing data is not easy

Goals of the Presentation

- Overview, classification and evaluation of existing approaches to XML benchmarking
- Identification of the most striking open issues
- Discussion of possible solutions

Purpose?

 First step towards proposal and implementation of a robust and comprehensive XML benchmark

Content

- 1. Overview and classification of existing approaches
- 2 Diseusion of open saics
- sk condusion

Classification of Existing Methods

- Type of data
 - Real-world vs. synthetic
 - Realistic, but too simple, contain errors
 - Fixed vs. dynamic data sets/operations
- Tested application
 - XML parsers, validators, management systems, query engines, XSL processors, XML compressors, ...
- Tested technology
 - DTD vs. XML Schema, XPath vs. XQuery, XPath 1.0 vs. XPath 2.0, ...

Testing Sets of XML Data

- Typical approach: fixed sets of (real-world) XML data
 - Rather interesting than useful
 - The Bible in XML, Shakespeare's plays, ...
 - XML exports of databases most common
 - IMDb (movies and actors), DBLP (scientific papers), Medical Subject Headings (medical terms), ...
 - Repositories of real-world XML some not originally in XML format
 - INEX, Ibiblio, ...
 - Special real-world XML data uncommon structure
 - Protein sequences, RNAs, astronomical NASA data, linguistic trees, ...
- Problem: Simple, without respective operations

Benchmark Projects for XML Parsers and Validators (1)

- Primary application for XML data processing
- W3C: XML Conformance Test Suites
 - XML 1.0, XML 1.1 and Namespaces in XML 1.1
 - 2.000 XML documents
 - Valid, invalid and non-well-formed documents
 - Well-formed errors tied to external entity
 - Documents with optional errors
 - Binary tests:
 - Parser must accept/reject the document correctly
 - Output tests:
 - Parser must report information as required

Benchmark Projects for XML Parsers and Validators (2)

- Types of parsers
 - Event-driven while reading they return data fragments
 - Push reading cannot be influenced
 - Pull read the next data only if they are "asked" to
 - Object-model read the document and built it completely in memory
 - Various combinations
- ⇒ Need to be compared and tested
- ⇒ Number of papers which evaluate efficiency of subsets of known implementations
 - Compare same/different types of parsers
 - All the related data are available
- Problem: No true benchmarking project for parsers/validators

Benchmark Projects for XML MS and QE (1)

- The biggest set of benchmarks
- Test the amount of supported query constructs + efficiency of evaluation
 - Assumption: correct results ⇒ not tested
- Classification: query language, amount of users, ...
- W3C:
 - XML Query Use Cases not a benchmark, a set of examples of XML query applications
 - XML Query Test Suite 15.000 test cases (queries and expected results), test support of XML Query constructs
- Best known representatives: XMark, XOO7, XMach 1, MBench, XBench, XPathMark, TPoX

Benchmark Projects for XML MS and QE (2)

	XMark	XOO7	XMach-1	MBench	XBench	XPathMark	TPoX
Type of benchmark	Application- level	Application- level	Application- level	Micro	Application- level	Application- level	Application- level
# of users	Single	Single	Multiple	Single	Single	Single	Multiple
# of applications	1	1	1	1	4	1	1 but complex
Documents in data set	Single	Single	Multiple	Single	Single/ multiple	Single	Multiple
Schema of documents	DTD of an Internet auction database	DTD derived from OO7 relational schema	DTD of a document with chapters, paragraphs and sections	DTD / XSD of the recursive element	DTD / XSD	DTD	XSD
# of schemes	1	1	Multiple	9	1	2	1 consisting of multiple
Data generator	✓	✓	✓	√	✓	√	✓
Key parameters of testing data	Size	Depth, fan- out, size of textual data	Number of documents / elements / words in a sentence, probability of phrases / links	Size	Size	Size	Size + number of users

Benchmark Projects for XML MS and QE (3)

	XMark	XOO7	XMach-1	MBench	XBench	XPathMark	TPoX
Default data	Single	3 documents	4 data sets of	Single	Small	1 XMark	XS (3.6
set	100MB	(small,	10.000 /	document	(10MB) /	document	millions of
	document	medium,	100.000 /	with	normal	and 1 sample	documents, 10
		large) with	1.000.000 /	728.000	(100MB)/	document	users), S, M, L,
		pre-defined	10.000.000	nodes	large (1GB)	from a book	XL, XXL (360
		parameters	documents		/ huge		billions of
					(10GB)		documents, 1
					document		million users)
# of queries	20	23	8	49	19,17,14,16	47 + 12	7
Query	XQuery	XQuery	XQuery	SQL,	XQuery	XPath	XQuery
language				XPath			
# of updates	0	0	3	7	0	0	10

Type of benchmark:

- Application-level compare and contrast distinct applications ⇒ queries are highly different
- Micro evaluate performance of a single system in distinct situations ⇒ similar queries, differentiate, e.g., in selectivity
 - MBench

Benchmark Projects for XML MS and QE (4)

- Purpose of benchmark:
 - Number of users, applications, documents
 - Most: single-user, single-application, with single document
 - XBench 4 classes of XML applications
 - Text-centric/single document, data-centric/multiple documents, ...
 - XMach-1, TPoX multi-user, test other XML management aspects
 - Indexing, schema validation, concurrency control, transaction processing, network characteristics, ...
- Data sets:
 - All projects involve DTD/XSD and a simple data generator
 - Typical parameter: size of data
- Operations:
 - All projects involve a set of XQuery queries
 - XMach-1, MBench, TPoX involve update operations
 - XMach-1, TPoX (multi-user benchmarks) ⇒ additional, less XMLlike operations

Benchmark Projects for XML MS and QE (5)

Analysis of benchmarks

- Only 1/3 of papers use a kind of benchmark
- 38% of benchmark queries are incorrect/out-dated
 - 29% of the queries are XPath 1.0 queries
 - 61% are XPath 2.0 queries
 - Only 10% cannot be expressed in XPath
- XMark most popular, simple ⇒ users do not want to bother with complex application

Benchmark repository

- Observation: A fixed set of queries ⇒ cannot test various aspects of applications
- ⇒ MemBeR repository of micro-benchmarks
 - New micro-benchmark/new result set must be specified as an XML document
 - Categories of benchmarks: XPath, query stability and XQuery

Other XML Technologies

- Basic: parsing, validating, querying
- Advanced: transformations, compressing, ... ⇒ need for special purpose benchmarks
 - Problem: low number, representatives are obsolete
- Example: XSLT
 - XSLTMark from 2000, not maintained, constructs of version 1.0 (from 1999, obsolete)
 - Analyses of implementations use XSLTMark
- Do we need special-purpose benchmarks?
 - NO: They are based on basic operations
 - YES: Exploitation of basic operations can differ

Content

- 2. Discussion of open issues
- **34 Condusion**

1. General Requirements for Benchmarks

- 5 recommended requirements for DB benchmarks
- Are they necessary for XML MS benchmarks?
- Portability and scalability are natural
 - Do not restrict OS and/or HW
- Simplicity is user-friendly
 - The most popular benchmark: XMark
 - A fixed set of XML queries, single data parameter: size
- Domain-specificity and relevancy are arguable
 - XML technologies have plenty of usages ⇒ hard to specify a benchmark covering all
 - Benchmark restricted to a single use case cannot have much usage
 - ⇒ Solution: Versatile benchmark, highly parameterized, but with pre-defined settings of the parameters

Simplicity

2. More Sophisticated Data Generator

- First step towards the versatile XML benchmark
- Existing benchmarks:
 - Simple data generator/complex data generator + fixed parameters
 - Deal with marginal problems
 - e.g. where to get the textual data
 - For some applications (e.g., XML full-text operations or XML compression) important, but for XML querying not
- Parameters:
 - Structure of XML document trees
 - Semantic of the data
 - DTD: ID, IDREF(S)
 - XSD: unique/key/keyref, assert/report, functional dependencies
- Collides with simplicity requirement ⇒ predefined settings of parameters

3. Schema Generator

- Natural requirement: provide XML data with XML schema
- Two perspectives:
 - Data ⇒ schema
 - Techniques for automatic inference of an XML schema
 - Idea: Generalization of a trivial schema
 - "if there are more than three occurrences of an element, it is probable that it can occur arbitrary times"
 - Multiple possibilities how to generalize ⇒ user-specified parameters
 - Schema ⇒ data
 - Characteristics of XML documents are restricted
 - Remaining vague constructs ⇒ user-specified parameters
 - Operator *, recursion
 - Exploited in current data generators
 - XSD + predefined set of annotations
 - e.g. ToXgene generator

4. Query Generator

- Existing works: fixed set of queries ⇒ highly restricted data
- Idea: User knows characteristics of queries
 - Constructs that can be used in the query
 - e.g. axes, predicates, constructors, update operations, ...
 - What kind of data the query should access
 - e.g. attributes, keys and foreign keys, mixed-content elements, recursive elements, ...
 - Where the data are located
 - e.g. at what levels
 - What amount of data is required
 - e.g. elements with specified structure

5. Theoretic Study of Data Characteristics

- Aim: To support as much data characteristics as possible
- Problem: Subsets of the data are correlated
 - Not all possible settings are available
 - e.g. length of element contents vs. size of the document / number of elements vs. size of the document
 - e.g. depth of the document vs. element fan-out vs. size of the document
- MemBeR generator: brute force
 - Specifying depth, fan-out and size at the same time is not allowed
- Open issue: a theoretic study of the data characteristics
 - Classification, mutual influence and correlation

Content

- THOMORING CESSINGUICA HEXISTROCCOCCESINGUICA
- 2, Decisiono o coreste
- 3. Conclusion

Conclusion

Contributions

- Study on the state of the art and open issues of XML benchmarking projects
- Aims:
 - To show that XML benchmarking is an up-to-date problem
 - Provide a reasonable source of information for researchers and analysts

Current and future work:

- Implementation of sophisticated data generator
 - Present: Huge amount of data characteristics, analysis of correlation, pre-defined sets of settings based on real world statistics
 - Future: Query generator

Thank you