XML Benchmarking

Irena Mlynkova
irena.mlynkova@mff.cuni.cz

Charles University
Faculty of Mathematics and Physics
Department of Software Engineering
Prague, Czech Republic
Introduction

- XML = a standard for data representation and manipulation
 - A number of methods for efficient managing, processing, exchanging, querying, updating, compressing, … of XML documents

⇒ Question: How to find the optimal one for a particular application?

- Problems:
 - Methods are tested on distinct data
 - The implementations are not always available
 - Gathering testing data is not easy
Goals of the Presentation

- Overview, classification and evaluation of existing approaches to XML benchmarking
- Identification of the most striking open issues
- Discussion of possible solutions

Purpose?
- First step towards proposal and implementation of a robust and comprehensive XML benchmark
Content

1. Overview and classification of existing approaches
2. Discussion of open issues
3. Conclusion
Classification of Existing Methods

- **Type of data**
 - Real-world vs. synthetic
 - Realistic, but too simple, contain errors
 - Fixed vs. dynamic data sets/operations

- **Tested application**
 - XML parsers, validators, management systems, query engines, XSL processors, XML compressors, ...

- **Tested technology**
 - DTD vs. XML Schema, XPath vs. XQuery, XPath 1.0 vs. XPath 2.0, ...
Testing Sets of XML Data

• Typical approach: fixed sets of (real-world) XML data
 • Rather interesting than useful
 • The Bible in XML, Shakespeare's plays, ...
 • XML exports of databases – most common
 • IMDb (movies and actors), DBLP (scientific papers), Medical Subject Headings (medical terms), ...
 • Repositories of real-world XML – some not originally in XML format
 • INEX, Ibiblio, ...
 • Special real-world XML data – uncommon structure
 • Protein sequences, RNAs, astronomical NASA data, linguistic trees, ...

• Problem: Simple, without respective operations
Benchmark Projects for XML Parsers and Validators (1)

- Primary application for XML data processing
- W3C: XML Conformance Test Suites
 - XML 1.0, XML 1.1 and Namespaces in XML 1.1
 - 2,000 XML documents
 - Valid, invalid and non-well-formed documents
 - Well-formed errors tied to external entity
 - Documents with optional errors
- Binary tests:
 - Parser must accept/reject the document correctly
- Output tests:
 - Parser must report information as required
Benchmark Projects for XML Parsers and Validators (2)

• Types of parsers
 • Event-driven – while reading they return data fragments
 • Push – reading cannot be influenced
 • Pull – read the next data only if they are “asked” to
 • Object-model – read the document and built it completely in memory
 • Various combinations

⇒ Need to be compared and tested
⇒ Number of papers which evaluate efficiency of subsets of known implementations
 • Compare same/different types of parsers
 • All the related data are available
• Problem: No true benchmarking project for parsers/validators
Benchmark Projects for XML MS and QE (1)

- The biggest set of benchmarks
- Test the amount of supported query constructs + efficiency of evaluation
 - Assumption: correct results \Rightarrow not tested
- Classification: query language, amount of users, ...
- W3C:
 - XML Query Use Cases – not a benchmark, a set of examples of XML query applications
 - XML Query Test Suite – 15,000 test cases (queries and expected results), test support of XML Query constructs
- Best known representatives: XMark, XOO7, XMach-1, MBench, XBench, XPathMark, TPoX
Benchmark Projects for XML MS and QE (2)

<table>
<thead>
<tr>
<th>Type of benchmark</th>
<th>XMark</th>
<th>XOO7</th>
<th>XMach-1</th>
<th>MBench</th>
<th>XBench</th>
<th>XPathMark</th>
<th>TPoX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Application-level</td>
<td>Application-level</td>
<td>Application-level</td>
<td>Micro</td>
<td>Application-level</td>
<td>Application-level</td>
<td>Application-level</td>
</tr>
<tr>
<td># of users</td>
<td>Single</td>
<td>Single</td>
<td>Multiple</td>
<td>Single</td>
<td>Single</td>
<td>Single</td>
<td>Multiple</td>
</tr>
<tr>
<td># of applications</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1 but complex</td>
</tr>
<tr>
<td>Documents in data set</td>
<td>Single</td>
<td>Single</td>
<td>Multiple</td>
<td>Single</td>
<td>Single</td>
<td>Single/multiple</td>
<td>Multiple</td>
</tr>
<tr>
<td>Schema of documents</td>
<td>DTD of an Internet auction database</td>
<td>DTD derived from OO7 relational schema</td>
<td>DTD of a document with chapters, paragraphs and sections</td>
<td>DTD / XSD of the recursive element</td>
<td>DTD / XSD</td>
<td>DTD</td>
<td>XSD</td>
</tr>
<tr>
<td># of schemes</td>
<td>1</td>
<td>1</td>
<td>Multiple</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>1 consisting of multiple</td>
</tr>
<tr>
<td>Data generator</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Key parameters of testing data</td>
<td>Size</td>
<td>Depth, fan-out, size of textual data</td>
<td>Number of documents / elements / words in a sentence, probability of phrases / links</td>
<td>Size</td>
<td>Size</td>
<td>Size</td>
<td>Size + number of users</td>
</tr>
</tbody>
</table>

July 22 - 27, 2008

IADIS MCCSIS - Informatics 2008, Amsterdam, The Nederlands
Benchmark Projects for XML MS and QE (3)

<table>
<thead>
<tr>
<th></th>
<th>XMark</th>
<th>XOO7</th>
<th>XMach-1</th>
<th>MBench</th>
<th>XBench</th>
<th>XPathMark</th>
<th>TPoX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default dataset</td>
<td>Single</td>
<td>3 documents</td>
<td>4 data sets of 10,000 / 100,000 / 1,000,000 / 10,000,000 documents</td>
<td>Single document</td>
<td>Small (10MB) with 728,000 nodes</td>
<td>1 XMark document</td>
<td>XS (3.6 millions of documents, 10 users), S, M, L, XL, XXL (360 billions of documents, 1 million users)</td>
</tr>
<tr>
<td># of queries</td>
<td>20</td>
<td>23</td>
<td>8</td>
<td>49</td>
<td>19,17,14,16</td>
<td>47 + 12</td>
<td>7</td>
</tr>
<tr>
<td>Query language</td>
<td>XQuery</td>
<td>XQuery</td>
<td>XQuery</td>
<td>SQL, XPath</td>
<td>XQuery</td>
<td>XPath</td>
<td>XQuery</td>
</tr>
<tr>
<td># of updates</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>

- **Type of benchmark:**
 - **Application-level** – compare and contrast distinct applications ⇒ queries are highly different
 - **Micro** – evaluate performance of a single system in distinct situations ⇒ similar queries, differentiate, e.g., in selectivity
 - **MBench**
Benchmark Projects for XML MS and QE (4)

- Purpose of benchmark:
 - Number of users, applications, documents
 - Most: single-user, single-application, with single document
 - XBench – 4 classes of XML applications
 - Text-centric/single document, data-centric/multiple documents, ...
 - XMach-1, TPoX – multi-user, test other XML management aspects
 - Indexing, schema validation, concurrency control, transaction processing, network characteristics, ...

- Data sets:
 - All projects involve DTD/XSD and a simple data generator
 - Typical parameter: size of data

- Operations:
 - All projects involve a set of XQuery queries
 - XMach-1, MBench, TPoX – involve update operations
 - XMach-1, TPoX (multi-user benchmarks) ⇒ additional, less XML-like operations
Benchmark Projects for XML MS and QE (5)

- **Analysis of benchmarks**
 - Only 1/3 of papers use a kind of benchmark
 - 38% of benchmark queries are incorrect/out-dated
 - 29% of the queries are XPath 1.0 queries
 - 61% are XPath 2.0 queries
 - Only 10% cannot be expressed in XPath
 - XMark – most popular, simple ⇒ users do not want to bother with complex application

- **Benchmark repository**
 - Observation: A fixed set of queries ⇒ cannot test various aspects of applications
 - MemBeR repository of micro-benchmarks
 - New micro-benchmark/new result set must be specified as an XML document
 - Categories of benchmarks: XPath, query stability and XQuery
Other XML Technologies

• Basic: parsing, validating, querying
• Advanced: transformations, compressing, … ⇒ need for special purpose benchmarks
 • Problem: low number, representatives are obsolete
• Example: XSLT
 • XSLTMark – from 2000, not maintained, constructs of version 1.0 (from 1999, obsolete)
 • Analyses of implementations use XSLTMark
• Do we need special-purpose benchmarks?
 • NO: They are based on basic operations
 • YES: Exploitation of basic operations can differ
Content

1. Overview and classification of existing approaches
2. Discussion of open issues
3. Conclusion
1. General Requirements for Benchmarks

- 5 recommended requirements for DB benchmarks
- Are they necessary for XML MS benchmarks?
- **Portability and scalability** are natural
 - Do not restrict OS and/or HW
- **Simplicity** is user-friendly
 - The most popular benchmark: XMark
 - A fixed set of XML queries, single data parameter: size
- **Domain-specificity and relevancy** are arguable
 - XML technologies have plenty of usages ⇒ hard to specify a benchmark covering all
 - Benchmark restricted to a single use case cannot have much usage
 ⇒ **Solution:** Versatile benchmark, highly parameterized, but with pre-defined settings of the parameters

⇒ **Simplicity**
2. More Sophisticated Data Generator

- First step towards the versatile XML benchmark
- Existing benchmarks:
 - Simple data generator/complex data generator + fixed parameters
 - Deal with marginal problems
 - e.g. where to get the textual data
 - For some applications (e.g., XML full-text operations or XML compression) important, but for XML querying not
- Parameters:
 - Structure of XML document trees
 - Semantic of the data
 - DTD: ID, IDREF(S)
 - XSD: unique/key/keyref, assert/report, functional dependencies
- Collides with simplicity requirement \(\Rightarrow\) predefined settings of parameters
3. Schema Generator

- Natural requirement: provide XML data with XML schema
- Two perspectives:
 - **Data \Rightarrow schema**
 - Techniques for automatic inference of an XML schema
 - Idea: Generalization of a trivial schema
 - “if there are more than three occurrences of an element, it is probable that it can occur arbitrary times”
 - Multiple possibilities how to generalize \Rightarrow user-specified parameters
 - **Schema \Rightarrow data**
 - Characteristics of XML documents are restricted
 - Remaining vague constructs \Rightarrow user-specified parameters
 - Operator \ast, recursion
 - Exploited in current data generators
 - XSD + predefined set of annotations
 - e.g. ToXgene generator
4. Query Generator

• Existing works: fixed set of queries \Rightarrow highly restricted data
• Idea: User knows characteristics of queries
 • **Constructs** that can be used in the query
 • e.g. axes, predicates, constructors, update operations, …
 • **What kind of data** the query should access
 • e.g. attributes, keys and foreign keys, mixed-content elements, recursive elements, …
 • **Where the data are located**
 • e.g. at what levels
 • **What amount of data** is required
 • e.g. elements with specified structure
5. Theoretic Study of Data Characteristics

- **Aim:** To support as much data characteristics as possible
- **Problem:** Subsets of the data are **correlated**
 - Not all possible settings are available
 - e.g. length of element contents vs. size of the document / number of elements vs. size of the document
 - e.g. depth of the document vs. element fan-out vs. size of the document
- **MemBeR generator:** brute force
 - Specifying depth, fan-out and size at the same time is not allowed
- **Open issue:** a theoretic study of the data characteristics
 - Classification, mutual influence and correlation
Content

1. Overview and classification of existing approaches
2. Discussion of open issues
3. Conclusion
Conclusion

• **Contributions**
 • Study on the state of the art and open issues of XML benchmarking projects
 • **Aims:**
 • To show that XML benchmarking is an up-to-date problem
 • Provide a reasonable source of information for researchers and analysts

• **Current and future work:**
 • Implementation of sophisticated data generator
 • Present: Huge amount of data characteristics, analysis of correlation, pre-defined sets of settings based on real world statistics
 • Future: Query generator
Thank you