Current Trends in Testing XMLMSs

Irena Mlynkova irena.mlynkova@mff.cuni.cz

Charles University Faculty of Mathematics and Physics Department of Software Engineering Prague, Czech Republic

August 25 - 27, 2008

ISD 2008, Paphos, Cyprus

14

Introduction (1)

- XML = a standard for data representation and manipulation
- Huge amount of XML processing tools / XML management systems (XMLMS)
 - Parsing, validating, storing, querying, transforming, updating, exchanging, compressing, ...
- \Rightarrow Questions / tasks arise:
 - User: the most sufficient XMLMS for my application
 - Vendor: testing correctness / performance of my XMLMS, comparison with competing SW
 - Analyst: comparison of various aspects of existing XMLMSs from different points of view

August 25 - 27, 2008

•

Introduction (2)

- Solution: to find results of appropriate analysis
 - A huge amount of related papers exists
- Problems:
 - Development of XMLMSs is fast ⇒ results soon become obsolete
 - We find reasonably up-to-date analytical results ⇒ however the testing scenarios usually do not fit well to all our use cases
- ⇒ Mostly we need to prepare own testing scenarios that represent our particular application

Goals of this presentation

- Overview of possibilities how to acquire / prepare XML testing scenarios
 - Conformance test suites, repositories of real-world XML data, XML benchmarking projects, data generators, ...
- Limitations of the current approaches
- Overview of the key findings and related recommendations

Purpose?

- Useful source of information
- Based on throughout analysis done for current research
 - Proposal of a comprehensive benchmark

Overview and classification of existing approaches Key findings and recommendations Conclusion

What is a Benchmark?

- A set of testing scenarios / test cases = data + related operations
- Empty (apparent) set of operations: compression
- Enables to compare versatility / efficiency / behavior of system(s) under test (SUT)

• Our case:

- Data = XML documents
 - With / without XML schemes
- Operations = any kind of XML-related data operations

Classification of Existing Methods

Type of data

- Real-world vs. synthetic
 - Realistic, but too simple, contain errors
- Fixed vs. dynamic data sets/operations
- Type of operation
 - Parsing, validating, querying, updating, transforming, ...
- Tested technology
 - DTD vs. XML Schema, XPath vs. XQuery, XPath 1.0 vs. XPath 2.0, ...

XML Data Sets

- Typical approach: fixed sets of (real-world) XML data
- Rather interesting than useful
 - The Bible in XML, Shakespeare's plays, ...
 - XML exports of databases most common
 - IMDb (movies and actors), DBLP (scientific papers), Medical Subject Headings (medical terms), ...
- Repositories of real-world XML some not originally in XML format
 - INEX, Ibiblio, ...
 - Special real-world XML data uncommon structure
 - Protein sequences, RNAs, astronomical NASA data, linguistic trees,
- Problem: Mostly simple, without respective operations

•

•

Data Generators

- Solution: to generate synthetic testing data sets
 - Schema-unaware generators
 - General structural parameters
 - Depth of XML tree, numbers of subelements, ...
- Template-based generators
 - Input: annotated XML schema
 - Schema = precise description of structure
 - Annotations = more specific information
 - e.g. distributions of occurrences of attributes/lengths of texts, ...
- Aim: to generate as realistic structure as possible
 - Zip's law, Markov chains, statistical distributions, …
 - (Dis)advantage: huge amount of parameters

Parsing and Validating (1)

- Primary application for XML data processing W3C: XML Conformance Test Suites
 - XML 1.0, XML 1.1 and Namespaces in XML 1.1
 - 2.000 XML documents
 - Binary tests:
 - Parser must accept/reject the document correctly
 - Output tests:
 - Parser must report information as required

August 25 - 27, 2008

ISD 2008, Paphos, Cyprus

Parsing and Validating (2)

Types of parsers

- **Event-driven** while reading they return data fragments
 - Push reading cannot be influenced
 - Pull read the next data only if they are "asked" to
- Object-model read the document and built it completely in memory
 - Various combinations
- Number of papers which evaluate efficiency of subsets of known implementations
 - Compare same / different types of parsers
 - All the related data are available
 - Problem: No true benchmarking project for parsers / validators

•

Querying (1)

W3C:

- XML Query Use Cases not a benchmark, a set of examples of XML query applications
- XML Query Test Suite 15.000 test cases (queries and expected results), tests support of XML Query constructs
- The biggest set of true benchmarks
- Test the amount of supported query constructs + efficiency of evaluation
 - Assumption: correct results ⇒ not tested
- Best known representatives: XMark, XOO7, XMach-1, MBench, XBench, XPathMark, TPoX

Querying (2)

	XMark	X007	XMach-1	MBench	XBench	XPathMark	TPoX
Type of benchmark	Application- level	Application- level	Application- level	Micro	Application- level	Application- level	Application- level
# of users	Single	Single	Multiple	Single	Single	Single	Multiple
# of	1	1	1	1	4	1	1 but complex
applications							
Documents in	Single	Single	Multiple	Single	Single/	Single	Multiple
data set					multiple		
Schema of	DTD of an	DTD derived	DTD of a	DTD /	DTD / XSD	DTD	XSD
documents	Internet	from OO7	document with	XSD of the			
	auction	relational	chapters,	recursive			
	database	schema	paragraphs	element			
			and sections				
# of schemes	1	1	Multiple	9	1	2	1 consisting of multiple
Data	√	√	√	~	√	√	√
generator							
Key parameters of testing data	Size	Depth, fan- out, size of textual data	Number of documents / elements / words in a sentence, probability of phrases / links	Size	Size	Size	Size + number of users
August 25	- 27, 2008		ISD 2008, Paphos, Cyprus				13

Querying (3)

	XMark	X007	XMach-1	MBench	XBench	XPathMark	TPoX
Default data	Single	3 documents	4 data sets of	Single	Small	1 XMark	XS (3.6
set	100MB	(small,	10.000 /	document	(10MB)/	document	millions of
	document	medium,	100.000 /	with	normal	and 1 sample	documents, 10
		large) with	1.000.000 /	728.000	(100MB)/	document	users), S, M, L,
		pre-defined	10.000.000	nodes	large (1GB)	from a book	XL, XXL (360
		parameters	documents		/ huge		billions of
					(10GB)		documents, 1
					document		million users)
# of queries	20	23	8	49	19,17,14,16	47 + 12	7
Query	XQuery	XQuery	XQuery	SQL,	XQuery	XPath	XQuery
language				XPath			
# of updates	0	0	3	7	0	0	10

Type of benchmark:

- Application-level compare and contrast distinct applications ⇒ queries are highly different
- Micro evaluate performance of a single system in distinct situations ⇒ similar queries, differentiate, e.g., in selectivity
 - MBench

Querying (4)

Purpose of benchmark:

- Number of users, applications, documents
- Most: single-user, single-application, with single document
 - XBench 4 classes of XML applications
 - Text-centric/single document, data-centric/multiple documents, ...
 - XMach-1, TPoX multi-user, test other XML management aspects
 - Indexing, schema validation, concurrency control, transaction processing, network characteristics, ...

Data sets:

•

All projects involve DTD/XSD and a simple data generator

- Typical parameter: size of data
- **Operations:**
 - All projects involve a set of XQuery queries
 - XMach-1, MBench, TPoX involve update operations
 - XMach-1, TPoX (multi-user benchmarks) ⇒ additional, less XMLlike operations

August 25 - 27, 2008

Querying (5)

Analysis of benchmarks

- Only 1/3 of papers use a kind of benchmark
- 38% of benchmark queries are incorrect/out-dated
- XMark most popular, simple ⇒ users do not want to bother with complex application

Benchmark repository

- Observation: A fixed set of queries ⇒ cannot test various aspects of applications
- ⇒ MemBeR repository of micro-benchmarks
 - New micro-benchmark/new result set must be specified as an XML document

Other XML Technologies

- Basic: parsing, validating, querying
- Advanced: transformations, compressing, ... ⇒ need for special purpose benchmarks
 - Problem: low number, representatives are obsolete
- Example 1: XSLT
 - XSLTMark from 2000, not maintained, constructs of version 1.0 (from 1999, obsolete)
 - Analyses of implementations use XSLTMark
- Example 2: XML update
 - New technology, not much supported
 - First proposal of a benchmark from 2008

Overview and classification of existing approaches Key findings and recommendations Conclusion

August 25 - 27, 2008

ISD 2008, Paphos, Cyprus

Summary (1)

- 1. The most typical source of testing XML data: repositories of fixed, real-world XML data
 - Realistic, but too simple, without respective operations.
- 2. Solution of simplicity: generators of synthetic XML data
 - Precise specification of structure of data
 - Require a skilled user
- 3. Key XML operations: parsing and validating
 - W3C: conformance test suites
 - Well covered
- 4. Key users' interest in parsing: efficiency / space overhead
 - Several analytical papers and projects dealing with it
 - No true test suite covering key aspects, bottlenecks, ...

Summary (2)

- 5. Second key XML operation: querying
 - W3C: XML Query Test Suite, XML Query Use Cases
 - Enable to test the full support of language
 - Provide a set of typical application of XML querying
 - Several well-known and verified benchmarking projects
 - Different purposes, features, advantages, ...
 - Area is wide, well covered
- 6. All query benchmarks involve a data generator, however the most popular are of simple usage
 - XMark: Only few parameters to specify ⇒ users do not want to bother with complex applications
- 7. Other XML technologies require special benchmark projects
 - The amount of respective benchmarks is low

Overview and classification of existing approaches Key findings and recommendations Conclusion

August 25 - 27, 2008

ISD 2008, Paphos, Cyprus

21

Conclusion

General observations:

- Basic XML data operations are well covered with test suites and benchmarking projects
 - Parsing, validating, querying
- Other XML technologies = problem
 - We can always exploit either real-world / synthetic XML data + hand-made operations
 - Advantage: wide research areas of proposing specialpurpose benchmarking projects, performing respective analyses of existing implementations, ...

Thank you

August 25 - 27, 2008

ISD 2008, Paphos, Cyprus