## Similarity of XML Schema Fragments Based on XML Data Statistics

Irena Mlynkova, Jaroslav Pokorny {irena.mlynkova,jaroslav.pokorny}@mff.cuni.cz



Charles University Faculty of Mathematics and Physics Department of Software Engineering Prague, Czech Republic

November 18 - 20, 2007

### Introduction

- XML = a standard for data representation and manipulation
  - Growing demand for efficient managing and processing of XML data
- ⇒ Possible optimization: To exploit similarity of XML data
  - We can manage similar data in a similar way
  - We can extend verified approaches to all similar cases
- The amount of approaches is significant
  - A space for further improvements

November 18 - 20, 2007

## **Goals of This Presentation**

Proposal of a similarity function designed for enhancing of XML-to-relational mappings

- Overview of existing approaches
- Proposal of improvement focus on:
  - Structural similarity
  - Realistic tuning of weights and parameters
- Experiments
- Conclusion

November 18 - 20, 2007



Overview of existing approaches
 Proposed improvement
 Experiments
 Conclusion

November 18 - 20, 2007

Innovations 2007 - Dubai, United Arab Emirates 4

# Approaches to XML Similarity (1)

- Similarity of documents D<sub>1</sub> and D<sub>2</sub>
- How difficult is to transform D<sub>1</sub> into D<sub>2</sub>
  - Tree edit distance
- A simple representation of  $D_1$  and  $D_2$  enabling easier comparison
  - e.g. set of paths, document signal
- Similarity of document D and schema S
  - Number of documents which appear in D but not in S and vice versa
    - Common, plus, minus elements
  - The closest tree edit distance between *D* and all documents valid against *S* 
    - Construction of automaton / grammar of S

# Approaches to XML Similarity (2)

#### Similarity of schemes S<sub>1</sub> and S<sub>2</sub>

- Exploitation and combination of supplemental information
  - Predefined similarity rules, similarity of element / attribute names, equality of data types, schema instances, thesauri, previous results, ...
- Emphasis on semantic similarity
  - Exploitation: schema-integration systems, dissemination based systems, ...
  - Problem: For XML-to-relational mapping is semantic of element / attribute names insignificant
  - $\Rightarrow$  we need a more suitable approach

Mlynkova, Pokorny: Similarity and XML Technologies. ICWI '07, Vila Real, Portugal. International Association for Development of the Information Society, 2007. ISBN 978-972-8924-44-7.



# Overview of existing approache Proposed improvement Experiments Conclusion

November 18 - 20, 2007

#### **Basic Ideas**

- XML-to-relational mapping focuses on data structure
  - Complexity, data types, used constructs, ...
- Aim: similarity function  $sim(f_x, f_y) \in [0,1]$ 
  - Schema fragments  $f_x$  and  $f_y$
  - 1 = strong similarity, 0 = strong dissimilarity
  - Matcher = evaluates similarity of a particular feature of  $f_x$  and  $f_y$ 
    - e.g. similarity of depths, number of elements / attributes, data types, ...
  - Composite similarity function = aggregates results of matchers
    - Verified approach: weighted sum

November 18 - 20, 2007

## **Structural Aspects (1)**

- Idea: Each matcher describes a structural aspect
  - Problem: How to state matchers?
- Idea: Exploitation of characteristics from statistical analyses of real-world data
  - Analyses: To analyze the data from various points of view
  - Our aim: To describe the data from various points of view
- **Classification:** 
  - Root = characteristics of root node of schema fragment
    - e.g. type of content, element / attribute fan-out, ...
  - **Subtree = characteristics of the whole fragment** 
    - e.g. number of elements, depths, ...
  - Level = characteristics of each level of fragment
    - e.g. number of attributes, minimum / maximum fan-outs, ...

Mlynkova, Toman, Pokorny: Statistical Analysis of Real XML Data Collections. COMAD '06, New Delhi, India. Tata McGraw-Hill Publishing Co. Ltd., 2006. ISBN 0-07-063374-6.

### **Structural Aspects (2)**

Transformation of values of matchers to [0,1]

- **Feature matchers** inequality of features
  - e.g. type of content

$$m_i^{fea}(f_x, f_y) = \begin{cases} 1 & fea_i(f_x) = fea_i(f_y) \\ 0 & otherwise \end{cases}$$

- Single value matchers difference of values
  - e.g. element fan-out

$$m_j^{single}(f_x, f_y) = \frac{1}{|value_j(f_x) - value_j(f_y)| + 1}$$

November 18 - 20, 2007

#### **Structural Aspects (3)**

- Multi value matchers difference of sequences
  - e.g. allowed depths of fragments

$$m_j^{multi}(f_x, f_y) = \frac{\sum_{k=1}^m \frac{1}{|s_j(f_x)[k] - s_j(f_y)[k]| + 1}}{m}$$

Level matchers – difference of values per levels
 e.g. minimum and maximum fan-out per level

$$m_j^{lev}(f_x, f_y) = \sum_{k=1}^l m_j^{single/multi}(f_x, f_y) \cdot (\frac{1}{2})^k$$

November 18 - 20, 2007

Innovations 2007 - Dubai, United Arab Emirates 11

# **Tuning of Parameters (1)**

- Problem: How to set the weights of composite similarity function?
  - Existing approaches: no care, average of values, machine learning
    - For semantic-based approaches suitable
    - For structure-based approaches not
- Idea: Exploitation of experience from the statistical analysis
  - 1. Use the same real-world data used in the analysis
  - 2. Prepare sample schema fragments with known representation in the data
  - 3. Compute occurrence of similar fragments in the data using the similarity function
  - 4. Tune the weights so that the results correspond to the results of the analysis

•

## **Tuning of Parameters (2)**

#### Theoretical view of the problem

$$\Delta = \sum_{i=1}^{K} \sum_{j=1}^{P} |M^{rep}[i, j] - rep_{i, j}|$$

- Analysis:
  - $C_1, C_2, ..., C_K$  = categories of real-world schemes
  - $p_1, p_2, ..., p_P =$ sample schema patterns
  - $(M_{ij}^{rep})_{KxP}$  = real-world representation of pattern  $p_i$  in category  $C_i$

#### Search algorithm:

- Parameters  $par_1$ ,  $par_2$ , ...,  $par_R$ , where  $\forall i : par_i \in [0,1]$
- With a setting of parameters returns calculated representation rep<sub>ij</sub> of pattern p<sub>j</sub> in category C<sub>i</sub>
- Aim: Optimal setting of parameters s.t.  $\Delta$  is minimal
- ⇒ A kind of constraints optimization problem (COP)
- Solution:

•

- One of classical COP approaches
- Genetic algorithms, simulated annealing, ...

November 18 - 20, 2007



# Overview of existing approaches Proposed improvement Experiments Conclusion

November 18 - 20, 2007

Innovations 2007 - Dubai, United Arab Emirates 14

# **Average and Tuned Weights**



- R = manually determined matches, P = matches determined by algorithm
- I = true positives, F = false matches
- Precision = | I | / | P | = reliability of the function
- Recall = | I | / | R | = share of real matches that is found
  Overall = (| I | | F |) / |R| = post-match effort

November 18 - 20, 2007

.



# Overview of existing approaches Proposed improvement Experiments Conclusion

November 18 - 20, 2007

#### **Conclusions and Future Work**

#### **Our contributions:**

- A similarity function focusing on structural level
- An approach for finding reasonable tuning of weights
  - A compromise between machine learning and straightforward setting
- Both ideas can be simply extended to any appropriate similarity problem
- Future work:
  - Exploitation of semantic
    - Not a key aspect for XML-to-relational mapping, but can help in finding more reasonable mapping

Mlynkova: A Journey towards More Efficient Processing of XML Data in (O)RDBMS. CIT 2007, Aizu-Wakamatsu City, Fukushima, Japan. IEEE Computer Society Press, 2007. ISBN 0-7695-2983-6.

### Thank you

November 18 - 20, 2007