
September 18 - 19 IDC 2008, Catania, Italy 1

Similarity of DTDs Based on
Edit Distance and Semantics

Ales Wojnar, Irena Mlynkova, Jiri Dokulil
ales.wojnar@gmail.com, irena.mlynkova@mff.cuni.cz,

jiri.dokulil@mff.cuni.cz

Charles University
Faculty of Mathematics and Physics
Department of Software Engineering

Prague, Czech Republic

September 18 - 19 IDC 2008, Catania, Italy 2

Introduction

• XML = a standard for data representation and
manipulation

⇒

used in most areas of IT
• Possible optimization: exploitation of similarity of

XML data
• Structural/semantic similarity
• Typical applications: clustering, dissemination-based

applications, schema integration systems, data
warehousing, e-commerce, semantic query processing, …
⇒

Amount of approaches to similarity evaluation is high

• Problem: persisting open issues to be solved

September 18 - 19 IDC 2008, Catania, Italy 3

Goals of the Paper

• Our focus: similarity of XML schemas
• XML documents = trees
• XML schemas = regular expressions

• More complex problem
• Disadvantage to be solved:

• Emphasis on semantic similarity
• Structural similarity is analyzed trivially

• Comparison of leaf nodes / direct child nodes
• Our aims:

• Emphasis on structural similarity
• Preservation of exploitation of semantic similarity

September 18 - 19 IDC 2008, Catania, Italy 4

Motivation
• Structural similarity of XML documents = minimum tree edit

distance
• XML documents DA and DB = labelled trees TA and TB
• Number of operations to transform TA to TB

• Basic tree edit operations: Relabeling, InsertNode,
DeleteNode

• XML data: sharing, repetitions, recursion, …
⇒

XML documents with the same DTD can have different structure

• XML tree edit operations: InsertTree, DeleteTree
• Problem:

• XML schema = general graph (cycles, shared fragments)
• How to incorporate semantics of element/attribute names?

September 18 - 19 IDC 2008, Catania, Italy 5

Main Body of Algorithm

• Classical tree edit approach
1. DTDs are parsed + their trees are constructed
2. Costs for inserting/deleting subtrees are computed
3. Resulting minimal edit distance is evaluated

• Dynamic programming

September 18 - 19 IDC 2008, Catania, Italy 6

DTD Tree Construction (1)
• DTD content models can be complex

• Arbitrary combinations of operators (| , ()) and cardinality
constraints (? * +)

• Simplification rules:

• Cardinality constraints are connected to single elements, no
usage of | operator

• A slight information loss

September 18 - 19 IDC 2008, Catania, Italy 7

DTD Tree Construction (2)

• DTD = general directed graph
• Shared elements

• Undirected cycles
• Solution: Creating of a separate copy of shared fragment

for each sharer
• Repeatable elements

• Directed cycles
• The same approach would lead to infinitely deep trees

• Solution: Statistical analyses of XML data (“the depth of
real-world XML data is < 10 on average”)
⇒

∞

can be modelled with a constant

September 18 - 19 IDC 2008, Catania, Italy 8

Example:

type

label

cardinality

September 18 - 19 IDC 2008, Catania, Italy 9

Tree Edit Operations

• Same as for XML trees: Relabeling, InsertNode,
DeleteNode, InsertTree, DeleteTree

• Transformation of TA to TB : various sequences of
operations

• Optimization: allowable sequences
• Tree T may be inserted only if tree similar to T occurs in TB
• Tree T may be deleted only if tree similar to T occurs in TA
• Tree that has been inserted via the InsertTree may not

subsequently have additional nodes inserted
• Tree that has been deleted via the DeleteTree may not

previously have had nodes deleted

relaxed

September 18 - 19 IDC 2008, Catania, Italy 10

Similarity of
Element/Attribute
Names
Sim(e1 , e2) =

Max(SemanticSim(e1 , e2),
SyntacticSim(e1 , e2)) × α +

CardinalitySim(e1 , e2) × β

• α

+ β

= 1 and α, β ≥ 0
• SemanticSim: distance of labels of e1 , e2 in thesaurus
• SyntacticSim: edit distance of labels of e1 , e2
• CardinalitySim: cardinality compatibility table

September 18 - 19 IDC 2008, Catania, Italy 11

Cost of Tree Edit Operations

• Inserting/deleting tree T:
• Single InsertTree/DeleteTree … a combination of

InsertTree/DeleteTree and Insert/Delete
• Which is the best?

• Idea:
• Pre-computed: CostGraft (T), CostPrune (T) for each subtree T
• Dynamic programming: finds the optimal sequence of edit

operations
• Classical approach for tree edit distance

• See the paper for details…

September 18 - 19 IDC 2008, Catania, Italy 12

Complexity

• Classical edit distance: O(|TA ||TB |)
• Construction of DTD tree TA : O(|TA |)
• SyntacticSim: O(|TA ||TB ||Ω|)

• Evaluated for each pair of element/attribute names
• Ω

= maximum length of element/attribute label

• CardinalitySim: O(|TA ||TB |)
• SemanticSim: O(|TA ||TB ||Σ|)

• Σ

= size of the thesaurus

⇒ O(|TA ||TB ||Σ|)

September 18 - 19 IDC 2008, Catania, Italy 13

Experiments (1):
Real-World Data

c1, … c5 = customer
tv = TV schedule
np = newspaper

• Expectable results:
• Customers have higher similarity (0.44 on average) than

distinct objects
• c1 and np are structurally similar ⇒ have higher similarity

• If we set α

= 0 (switch off the semantic evaluation)
the values are less precise

• The trend between same and distinct objects is the same
• Not surprising – real-world data are simple

September 18 - 19 IDC 2008, Catania, Italy 14

Experiments (2):
Semantic Similarity

• Motivation: Synthetic data ⇒ better demonstration
of results

• Testing set: 3 DTDs with the same structure
(PERSON, USER, AAA)

• PERSON and USER have similar meaning of
element/attribute names

• AAA has no meaning of element/attribute names

⇒

More precise
results

• At the cost of
searching the
thesaurus

September 18 - 19 IDC 2008, Catania, Italy 15

Experiments (3):
Edit Operations

• Question: Are InsertTree, DeleteTree useful also
for DTDs?

• Testing set: 2 similar DTDs with shared fragments

⇒

The DTDs were correctly identified as similar only
when the costs were set sufficiently low, i.e. the
operations were used

September 18 - 19 IDC 2008, Catania, Italy 16

Conclusion
• Algorithm for evaluating XML schema similarity

• Emphasis on structural level
• Exploitation of semantics

• Combination of edit distance and semantic similarity
• Experiments:

• Edit distance: Describes the structure more precisely
• Semantic similarity: More precise results

• At the cost of searching a thesaurus
• Future work:

• Other edit operations
• Moving a node or adding/deleting a non-leaf node

• XML Schema constructs and “syntactic sugar”

September 18 - 19 IDC 2008, Catania, Italy 17

Thank you

	Similarity of DTDs Based on Edit Distance and Semantics
	Introduction
	Goals of the Paper
	Motivation
	Main Body of Algorithm
	DTD Tree Construction (1)
	DTD Tree Construction (2)
	Example:
	Tree Edit Operations
	Similarity of �Element/Attribute �Names
	Cost of Tree Edit Operations
	Complexity
	Experiments (1): �Real-World Data
	Experiments (2): �Semantic Similarity
	Experiments (3): �Edit Operations
	Conclusion
	Thank you

