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Introduction

• XML = a standard for data representation and 
manipulation

⇒
 

used in most areas of IT
• Possible optimization: exploitation of similarity of 

XML data
• Structural/semantic similarity
• Typical applications: clustering, dissemination-based 

applications, schema integration systems, data 
warehousing, e-commerce, semantic query processing, …
⇒

 
Amount of approaches to similarity evaluation is high

• Problem: persisting open issues to be solved
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Goals of the Paper

• Our focus: similarity of XML schemas
• XML documents = trees
• XML schemas = regular expressions

• More complex problem
• Disadvantage to be solved:

• Emphasis on semantic similarity
• Structural similarity is analyzed trivially

• Comparison of leaf nodes / direct child nodes
• Our aims:

• Emphasis on structural similarity
• Preservation of exploitation of semantic similarity
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Motivation
• Structural similarity of XML documents = minimum tree edit 

distance
• XML documents DA and DB = labelled trees TA and TB
• Number of operations to transform TA to TB

• Basic tree edit operations: Relabeling, InsertNode, 
DeleteNode

• XML data: sharing, repetitions, recursion, …
⇒

 
XML documents with the same DTD can have different structure

• XML tree edit operations: InsertTree, DeleteTree
• Problem: 

• XML schema = general graph (cycles, shared fragments)
• How to incorporate semantics of element/attribute names?
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Main Body of Algorithm

• Classical tree edit approach
1. DTDs are parsed + their trees are constructed
2. Costs for inserting/deleting subtrees are computed 
3. Resulting minimal edit distance is evaluated

• Dynamic programming
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DTD Tree Construction (1)
• DTD content models can be complex

• Arbitrary combinations of operators (| , ( )) and cardinality 
constraints (? * +)

• Simplification rules:

• Cardinality constraints are connected to single elements, no 
usage of | operator

• A slight information loss
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DTD Tree Construction (2)

• DTD = general directed graph
• Shared elements

• Undirected cycles
• Solution: Creating of a separate copy of shared fragment 

for each sharer
• Repeatable elements

• Directed cycles
• The same approach would lead to infinitely deep trees

• Solution: Statistical analyses of XML data (“the depth of 
real-world XML data is < 10 on average”) 
⇒

 
∞

 
can be modelled with a constant
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Example:

type

label

cardinality
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Tree Edit Operations

• Same as for XML trees: Relabeling, InsertNode, 
DeleteNode, InsertTree, DeleteTree

• Transformation of TA to TB : various sequences of 
operations

• Optimization: allowable sequences
• Tree T may be inserted only if tree similar to T occurs in TB
• Tree T may be deleted only if tree similar to T occurs in TA
• Tree that has been inserted via the InsertTree may not 

subsequently have additional nodes inserted 
• Tree that has been deleted via the DeleteTree may not 

previously have had nodes deleted

relaxed
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Similarity of 
Element/Attribute 
Names
Sim(e1 , e2 ) = 

Max(SemanticSim(e1 , e2 ), 
SyntacticSim(e1 , e2 )) × α +

CardinalitySim(e1 , e2 ) × β

• α
 

+ β
 

= 1 and α, β ≥ 0
• SemanticSim: distance of labels of e1 , e2 in thesaurus
• SyntacticSim: edit distance of labels of e1 , e2
• CardinalitySim: cardinality compatibility table
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Cost of Tree Edit Operations

• Inserting/deleting tree T:
• Single InsertTree/DeleteTree … a combination of 

InsertTree/DeleteTree and Insert/Delete
• Which is the best?

• Idea:
• Pre-computed: CostGraft (T), CostPrune (T) for each subtree T
• Dynamic programming: finds the optimal sequence of edit 

operations
• Classical approach for tree edit distance 

• See the paper for details…
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Complexity

• Classical edit distance: O(|TA ||TB |)
• Construction of DTD tree TA : O(|TA |)
• SyntacticSim: O(|TA ||TB ||Ω|)

• Evaluated for each pair of element/attribute names
• Ω

 
= maximum length of element/attribute label

• CardinalitySim: O(|TA ||TB |)
• SemanticSim: O(|TA ||TB ||Σ|) 

• Σ
 

= size of the thesaurus

⇒ O(|TA ||TB ||Σ|)
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Experiments (1): 
Real-World Data

c1, … c5 = customer
tv = TV schedule
np = newspaper

• Expectable results:
• Customers have higher similarity (0.44 on average) than 

distinct objects
• c1 and np are structurally similar ⇒ have higher similarity

• If we set α
 

= 0 (switch off the semantic evaluation) 
the values are less precise

• The trend between same and distinct objects is the same
• Not surprising – real-world data are simple
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Experiments (2): 
Semantic Similarity

• Motivation: Synthetic data ⇒ better demonstration 
of results

• Testing set: 3 DTDs with the same structure 
(PERSON, USER, AAA)

• PERSON and USER have similar meaning of 
element/attribute names

• AAA has no meaning of element/attribute names

⇒
 

More precise 
results

• At the cost of 
searching the 
thesaurus
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Experiments (3): 
Edit Operations

• Question: Are InsertTree, DeleteTree useful also 
for DTDs?

• Testing set: 2 similar DTDs with shared fragments

⇒
 

The DTDs were correctly identified as similar only 
when the costs were set sufficiently low, i.e. the 
operations were used
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Conclusion
• Algorithm for evaluating XML schema similarity 

• Emphasis on structural level
• Exploitation of semantics

• Combination of edit distance and semantic similarity
• Experiments:

• Edit distance: Describes the structure more precisely
• Semantic similarity: More precise results

• At the cost of searching a thesaurus
• Future work:

• Other edit operations 
• Moving a node or adding/deleting a non-leaf node

• XML Schema constructs and “syntactic sugar”
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Thank you
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