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Summary. In this paper we propose a technique for evaluating similarity of XML
schema fragments. Contrary to existing works we focus on structural level in com-
bination with semantic similarity of the data. For this purpose we exploit the idea
of edit distance utilized to constructs of DTDs which enables to express the struc-
tural differences of the given data more precisely. In addition, in combination with
the semantic similarity it provides more realistic results. Using various experiments
we show the behavior and advantages of the proposed approach.

1 Introduction

The eXtensible Markup Language (XML) [3] has already become a standard
for data representation and manipulation and, thus, it appears in most areas
of information technologies. A possible optimization of XML-based methods
can be found in exploitation of similarity of XML data. The most common
areas of exploitation of data similarity are clustering, dissemination-based
applications (e.g. [1]), schema integration systems (e.g. [7]), data warehous-
ing, e-commerce, semantic query processing etc. But despite the amount of
existing similarity-based approaches is significant, there is still a space for
both improvements and new ways of similarity exploitation.

In this paper we focus on similarity of XML schema fragments expressed
in DTD language [3] and, in particular, on persisting disadvantages of the
existing approaches. The key emphasis is currently put on the semantic
similarity of schema fragments reflecting the requirements of corresponding
applications. And if the approaches consider DTD structure, they usually an-
alyze only simple aspects such as, e.g., leaf nodes or child nodes of roots of
the fragments. Therefore, we focus on more precise analysis of the structure,
but, on the other hand, we still preserve the exploitation of semantic similar-
ity. For this purpose we combine and adapt to DTD constructs two verified
approaches – edit distance and semantics of element/attribute names.
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The paper is structured as follows: Section 2 overviews the related works.
Section 3 describes the proposed approach and Section 4 results of related
experiments. Section 5 provides conclusions and outlines future work.

2 Related Work

The number of existing works in the area of XML data similarity evaluation
is nontrivial. We can search for similarity among XML documents, XML
schemes, or between the two groups. We can distinguish several levels of
similarity, such as, e.g., structural level, semantic level or constraint level.
Or we can require different precision of the similarity.

In case of document similarity we distinguish techniques expressing sim-
ilarity of two documents DA and DB using edit distance, i.e. by measuring
how difficult is to transform DA into DB (e.g. [10]) and techniques which
specify a simple and reasonable representation of DA and DB , such as, e.g.,
using a set of paths, that enables their efficient comparison and similarity
evaluation (e.g. [12]). In case of similarity of a document D and a schema S
there are also two types of strategies – techniques which measure the number
of elements which appear in D but not in S and vice versa (e.g. [2]) and tech-
niques which measure the closest distance between D and “all” documents
valid against S (e.g. [9]). And finally, methods for measuring similarity of
two XML schemes SA and SB combine various supplemental information
and similarity measures such as, e.g., predefined similarity rules, similarity
of element/attribute names, equality of data types, similarity of schema in-
stances or previous results (e.g. [4, 5]). But, in general, the approaches focus
mostly on semantic aspects of the schema fragments, whereas structural ones
are of marginal importance.

3 Proposed Algorithm

The proposed algorithm is based mainly on the work presented in [10] which
focuses on expressing similarity of XML documents DA and DB using tree
edit distance, i.e. the amount of operations necessary to transform DA to
DB . The main contribution of the algorithm is in introducing two new edit
operations InsertTree and DeleteTree which allow manipulating more com-
plex structures than a single node. And repeated structures can be found in
a DTD as well if it contains shared or recursive elements. But, contrary to
XML documents that can be modeled as trees, DTDs can, in general, form
general cyclic graphs. Hence, procedures for computing edit distance of trees
need to be utilized to DTD graphs. In addition, not only the structural, but
also the semantic aspect of elements is very important. Therefore, we will
also concern semantic similarity of element/attribute names.

The method can be divided into three parts depicted in Algorithm 1,
where the input DTDs are firstly parsed (line 1 and 2) and their tree rep-
resentations are constructed. Next, costs for tree inserting (line 3) and tree
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Algorithm 1 Main body of the algorithm
Input: XSDA, XSDB

Output: Edit distance between XSDA and XSDB

1: TA = ParseXSD(XSDA);
2: TB = ParseXSD(XSDB);
3: CostGraft = ComputeCost(TB);
4: CostPrune = ComputeCost(TA);
5: return EditDistance(TA, TB , CostGraft, CostPrune);

deleting (line 4) are computed. And in the final step (line 5) we compute the
resulting edit distance, i.e. similarity, using dynamic programming.

3.1 DTD Tree Construction

The key operation of our approach is tree representation of the given DTDs.
Nevertheless, the structure of a DTD can be quite complex – the specified
content models can contain arbitrary combinations of operators (i.e. “|” or
“,”) and cardinality constraints (i.e. “?”, “*” or “+”). Therefore, we firstly
simplify the complex regular expressions using a set of transformation rules.

Simplification of DTDs. For the purpose of simplification of DTD content
models we can use various transformation rules. Probably the biggest set
was defined in [11], but these simplifications are for our purpose too strong.
Hence, we use only a subset of them as depicted in Figures 1 and 2.

I-a) (e1|e2)
∗ → e∗1, e

∗
2

I-b) (e1, e2)
∗ → e∗1, e

∗
2

I-c) (e1, e2)? → e1?, e2?
I-d) (e1, e2)

+ → e+
1 , e+

2

I-e) (e1|e2) → e1?, e2?

Fig. 1. Flattening rules

II-a) e++
1 → e+

1 II-b) e∗∗1 → e∗1
II-c) e∗1? → e∗1 II-d) e1?

∗ → e∗1
II-e) e+∗

1 → e∗1 II-f) e∗+1 → e∗1
II-g) e1?

+ → e∗1 II-h) e+
1 ? → e∗1

II-i) e1?? → e?
1

Fig. 2. Simplification rules

The rules ensure that each cardinality constraint operator is connected
to a single element and avoid usage of “|” operator, though at the cost of a
slight information loss.

DTD Tree. Having a simplified DTD, its tree representation is defined as:

Definition 1. A DTD Tree is an ordered rooted tree T = (V, E), where

1. V is a finite set of nodes, s.t. for ∀v ∈ V , v = (vType, vName, vCardinality),
where vType is the type of a node (i.e. attribute, element or #PCDATA),
vName is the name of an element/attribute, and vCardinality is the car-
dinality constraint operator of an element/attribute,
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2. E ⊆ V × V is a set of edges representing relationships between elements
and their attributes or subelements.

An example of a DTD and its tree representation (after simplification)
is depicted in Figure 3.

Fig. 3. An example of a DTD and its tree representation

Shared and Repeatable Elements. The structure of a DTD does not
have to be purely tree-like. There can occur both shared elements which
invoke undirected cycles and recursive elements which invoke directed cycles.
In case of a shared element we easily create its separate copy for each sharer.
But, in case of recursive elements the same idea would invoke infinitely deep
trees. However, we exploit the observation of a statistical analysis of real-
world XML data [8] that the amount of repetitions is in general very low –
less than 10. Actually, for our method it is not important exactly how many
occurrences we use because each of them can be transformed using a single
edit operation.

3.2 Tree Edit Operations

Having the above described tree representation of a DTD, we can now easily
utilize the tree edit algorithm proposed in [10]. For a given tree T with a
root node r of degree m and its first-level subtrees T1, T2, ..., Tm, the tree
edit operations are defined as follows:

Definition 2. SubstitutionT (rnew) is a node substitution operation applied
to T that yields the tree T ′ with root node rnew and first-level subtrees
T1, ..., Tm.

Definition 3. Given a node x with degree 0, InsertT (x, i) is a node inser-
tion operation applied to T at i that yields the new tree T ′ with root node r
and first-level subtrees T1, ..., Ti, x, Ti+1, ..., Tm.

Definition 4. If the first-level subtree Ti is a leaf node, DeleteT (Ti) is a
delete node operation applied to T at i that yields the tree T ′ with root node
r and first-level subtrees T1, ..., Ti−1, Ti+1, ..., Tm.
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Definition 5. Given a tree Tj, InsertTreeT (Tj , i) is an insert tree operation
applied to T at i that yields the tree T ′ with root node r and first-level subtrees
T1, ..., Ti, Tj , Ti+1, ..., Tm.

Definition 6. DeleteTreeT (Ti) is a delete tree operation applied to T at i
that yields the tree T ′ with root node r and first-level subtrees T1, ..., Ti−1,
Ti+1, ..., Tm.

Transformation of a source tree TA to a destination tree TB can be done
using various sequences of the operations. But, we can only deal with so-
called allowable sequences, i.e. the relevant ones. For the purpose of our
approach we only need to modify the original definition [10] as follows:

Definition 7. A sequence of edit operations transforming a source tree TA to
a destination tree TB is allowable if it satisfies the following two conditions:

1. A tree T may be inserted only if tree similar to T already occurs in the
source tree TA. A tree T may be deleted only if tree similar to T occurs
in the destination tree TB.

2. A tree that has been inserted via the InsertTree operation may not sub-
sequently have additional nodes inserted. A tree that has been deleted via
the DeleteTree operation may not previously have had nodes deleted.

While the original definition requires exactly the same nodes and trees,
we relax the requirement only to similar ones. The exact meaning of the sim-
ilarity is explained in the following text and enables to combine the tree edit
distance with other approaches. Also note that each of the edit operations
is associated with a non-negative cost.

3.3 Costs of Inserting and Deleting Trees

Inserting (deleting) a subtree Ti can be done with a single operation In-
sertTree (DeleteTree) or with a combination of InsertTree (DeleteTree)
and Insert (Delete) operations. To find the optimal variant the algorithm
uses pre-computed cost for inserting Ti, CostGraft(Ti), and deleting Ti,
CostPrune(Ti). The procedure can be divided into two parts: In the first
part ContainedIn list is created for each subtree of Ti; in the second part
CostGraft and CostPrune are computed for Ti. For our purpose we modify
procedure defined in [10] to involve similarity.

Similarity of Elements/Attributes. Similarity of elements/attributes
can be evaluated using various criteria. Since the structural similarity is
solved via the edit distance, we focus on semantic, syntactic and cardinality-
constraint similarity.

Semantic similarity is a score that reflects the semantic relation between
the meanings of two words. We exploit procedure SemanticSim described in
[5] which determines ontology similarity between two words w1 and w2 by
iterative searching a thesaurus and comparing w1 with synonyms of w2.
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Syntactic similarity of element/attribute names is determined by com-
puting the edit distance between their labels. For our purpose the classical
Levenshtein algorithm [6] is used that determines the edit distance of two
strings using inserting, deleting or replacing single characters.

And finally, we consider similarity of cardinality constraints of elements
specified by the cardinality compatibility table depicted in Table 1.

Table 1. Cardinality compatibility table

* + ? none

* 1 0.9 0.7 0.7
+ 0.9 1 0.7 0.7
? 0.7 0.7 1 0.8
none 0.7 0.7 0.8 1

The overall similarity of elements/attributes e1 and e2 is computed
as Sim(e1, e2) = Max(SemanticSim(e1, e2), SyntacticSim(e1, e2)) × α +
CardinalitySim(e1, e2)× β, where α + β = 1 and α, β > 0.

ContainedIn Lists. The procedure for determining element/attribute sim-
ilarity is used for creating ContainedIn lists which are then used for com-
puting CostGraft and CostPrune. The list is created for each node of the
destination tree and contains pointers to similar nodes in the source tree.

The procedure for creating ContainedIn lists is shown in Algorithm 2.
Since creating of lists starts from leaves and continues to root, there is re-
cursive calling of procedure at line 2. At line 4 we find all similar nodes of
n in tree TA and add them to a temporary list. If n is a leaf node, the Con-
tainedIn list is created. For a non-leaf node we have to filter the list with
lists of its descendants (line 6). At this step each descendant of n has to
be found at corresponding position in descendants of nodes in the created
ContainedIn list. More precisely, let vA ∈ nContainedIn, childrenvA

is the set
of vA descendants, and c is a child of n. Then cContainedIn∩ childrenvA 6= ∅,
otherwise vA is removed from nContainedIn.

Costs of Inserting Trees. When the ContainedIn list with corresponding
nodes is created for node r, the cost for inserting the tree rooted at r can be
assigned. The procedure is shown in Algorithm 3. The foreach loop computes
sum, sumd0 , for inserting node r and all its subtrees. If InsertTree operation
can be applied (ContainedIn list of r is not empty), sumd1 , is computed for
this operation at line 8. The minimum of these costs are finally denoted as
CostGraft for node r.

Costs of Deleting Trees. Since the rules for deleting a subtree from source
are same as rules for inserting a subtree into destination tree, costs for delet-
ing trees are obtained by the same procedures. We only switch tree TA with
TB in procedures CreateContainedInLists and ComputeCost.
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Algorithm 2 CreateContainedInLists(TA, n)
Input: tree TA, root n of TB

Output: CointainedIn lists for all nodes in TB

1: for all child of n do
2: CreateContainedInLists(TA, child);
3: end for
4: nContainedIn = FindSimilarNodes(TA, n);
5: for all child of n do
6: nContainedIn = FilterLists(nContainedIn, childContainedIn);
7: end for
8: Sort(nContainedIn);

Algorithm 3 ComputeCost(r)
Input: root r of TB

Output: CostGraft for TB

1: sumd0 = 1;
2: for all child of r do
3: ComputeCost(child);
4: sumd0 += CostGraft(child);
5: end for
6: sumd1 = ∞;
7: if rContainedIn is not empty then
8: sumd1 = ComputeInsertTreeCost(r);
9: end if

10: CostGraft(r) = Min(sumd0 ,sumd1);

3.4 Computing Edit Distance

The last part of the algorithm, i.e. computing the edit distance, is based on
dynamic programming. At this step the procedure decides which of the op-
erations defined in Section 3.2 will be applied for each node to transforming
source tree TA to destination tree TB . This part of algorithm does not have
to be modified for DTDs so the original procedure presented in [10] is used.
(We omit the formal algorithm for the paper length.)

3.5 Complexity

In [10] it was proven that the overall complexity of transforming tree TA into
tree TB is O(|TA||TB |). In our method we have to consider procedures for
constructing DTD trees and for evaluating similarity. Constructing a DTD
tree can be done in O(|TA|) for tree TA. Complexity of finding similarity
depends on procedures SemanticSim, SyntacticSim and CardinalitySim.
SyntacticSim is computed for each pair of elements in trees TA and TB ,
so its complexity is O(|TA||TB ||ω|), where ω is maximum length of an el-
ement/attribute label. CardinalitySim is also computed for each pair of
elements, however, with constant complexity, i.e. in O(|TA||TB |). Complex-
ity of SemanticSim depends on the size of the thesaurus, so the overall



8 Aleš Wojnar et al.

complexity is O(|TA||TB ||Σ|), where Σ is the set of words in the thesaurus.
And it also determines the complexity of the whole algorithm.

4 Experiments

To analyze the behavior of the proposal we have performed various experi-
ments with both real-world and synthetic XML data.

Real-World XML Data. In the first test we have used seven different real-
world DTDs. First five DTDs (c1, c2, ..., c5) represent an object CUSTOMER,
but in more or less different ways. Next two DTDs represent different objects
– TVSCHEDULE (tv) and NEWSPAPER (np). The parameters have been set
to default values and both structural and semantic similarities have been
exploited. The resulting similarities are depicted in Table 2.

Table 2. Structural and semantic simi-
larity of real-world DTDs

c1 c2 c3 c4 c5 tv np

c1 1 0.57 0.43 0.19 0.71 0.08 0.42
c2 0.57 1 0.57 0.45 0.48 0.10 0.11
c3 0.43 0.57 1 0.39 0.36 0.01 0.13
c4 0.19 0.45 0.39 1 0.21 0.00 0.00
c5 0.71 0.48 0.36 0.21 1 0.00 0.11
tv 0.08 0.10 0.01 0.00 0.00 1 0.00
np 0.42 0.11 0.13 0.00 0.11 0.00 1

Table 3. Similarity of real-world DTDs
without semantic similarity

c1 c2 c3 c4 c5 tv np

c1 1 0.45 0.23 0.09 0.57 0.00 0.13
c2 0.45 1 0.50 0.42 0.32 0.00 0.00
c3 0.23 0.50 1 0.30 0.15 0.00 0.00
c4 0.09 0.42 0.30 1 0.20 0.00 0.00
c5 0.57 0.32 0.15 0.20 1 0.00 0.00
tv 0.00 0.00 0.00 0.00 0.00 1 0.00
np 0.13 0.00 0.00 0.00 0.00 0.00 1

Expectably, DTDs representing the same object, i.e. CUSTOMER, have
higher mutual similarities (the average similarity is 0.44) than similarities
among DTDs representing different objects (the average for NEWSPAPER DTD
is 0.13 and average for TVSCHEDULE DTD is only 0.03). The only one excep-
tion is between CUSTOMER1 and NEWSPAPER due to their structural similarity.

In the second test we have used the same DTDs, but we have evaluated
their similarities regardless semantic similarity. As we can see in Table 3,
the resulting values are lower, however, the trend between same and differ-
ent objects is same as in the first test.

Semantic Similarity. In the next set of tests we have focused on various
parameters of the similarity measure using synthetic data. Firstly, we have
dealt with semantic similarity. For this purpose, we defined three DTDs (see
Figure 4) with exactly the same structure, but different element names. In
addition, element names of the first and second DTD have similar meaning
while the element names of the third DTD have no lexical meaning. The
results are depicted in Table 4.
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Fig. 4. Synthetic DTDs for analysis of semantic similarity

As we can see, there is a significant difference in comparing the first
two DTDs – they were correctly identified as almost similar when we used
semantic similarity. Consequently, despite the semantic similarity is a time-
consuming task due to necessary searching through thesaurus, it is enables
to acquire more precise similarity values.

Table 4. Influence of semantic similarity

Semantic similarity X ×
PERSON x USER 0.92 0.40
PERSON x AAA 0.33 0.33

Table 5. Comparing different
costs of edit operations

Cost 1 5 10 100

USER1 x USER2 0.92 0.74 0.52 0.52

Edit Distance Operations. In the last test we have focused on two key
edit operations used for transforming DTD trees, InsertTree and DeleteTree,
proposed for transforming repeating structures of a tree. For the purpose of
the test we have defined two similar DTDs depicted in Figure 5, whereas
one of them involves shared elements. We have performed their similarity
evaluation with different costs of edit operations InsertTree and DeleteTree.

Fig. 5. Synthetic DTDs for analysis of edit operations

As we can see in Table 5, in first two cases the operations were really
used, but in the last two comparisons the costs for the operations were too
high and the repeating tree structures were transformed using a sequence
of single-node edit operations. Hence, the DTDs were correctly identified as
similar only when the costs of the operations were set sufficiently low. This
observation is similar to the observation made for edit distance algorithms
used for XML documents.
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5 Conclusion

The aim of this paper was a proposal of an algorithm for evaluating XML
schema similarity on structural level. In particular, we have focused on DTDs
which are still more popular than other languages for schema specification.
We have combined two approaches and adapted them to DTD-specific struc-
ture – edit distance and semantic similarity. The exploitation of edit distance
enables to analyze the structure of DTDs more precisely, whereas the se-
mantic similarity enables to get more precise results, though at the cost of
searching a thesaurus.

In our future work we will focus mainly on further improvements of our
approach, such as other edit operations (e.g. moving a node or adding/dele-
ting a non-leaf node) or XML Schema definitions that involve new constructs
(e.g. unordered sequences of elements) as well as plenty of syntactic sugar.
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