
FlexBench: A Flexible XML Query Benchmark?

Maroš Vranec and Irena Mlýnková

Department of Software Engineering, Charles University in Prague, Czech Republic
maros.vranec@gmail.com,mlynkova@ksi.mff.cuni.cz

Abstract. In this paper we propose a new approach to XML bench-
marking – a flexible XML query benchmark called FlexBench. The flex-
ibility is given by two aspects. Firstly, FlexBench involves a large set
of testing data characteristics so that a user can precisely describe the
application. And, secondly, FlexBench is able to adapt the set of testing
query templates to the particular set of synthesized testing data. Hence,
contrary to the existing works, the testing is not limited by the fixed set
of queries and basic data characteristics (usually only size) to a single
(and often simple) application. We depict the advantages of the proposed
system using a set of preliminary experiments.

1 Introduction

Since XML [11] has become a de-facto standard for data representation and
manipulation, there exists a huge amount of so-called XML Management Sys-
tems (XMLMSs) that enable one to store and query XML data. Hence, being
users, we need to know which of the existing XMLMSs is the most sufficient
for our particular application. On the other hand, being vendors, we need to
test correctness and performance of our system and to compare its main advan-
tages with competing SW. And, being analysts, we are especially interested in
comparison of various aspects of existing systems from different points of view.
Consequently the area of benchmarking XMLMSs has opened as well.

In general, a benchmark or a test suite is a set of testing scenarios or test
cases, i.e. data and related operations which enable one to compare versatility,
efficiency or behavior of system(s) under test (SUT). In our case the set of data
involves XML documents, possibly with their XML schema(s), whereas the set of
operations can involve any kind of XML-related data operations. Nevertheless,
the key operations of an XMLMS are usually XML queries. Currently, there
exist several XML query benchmarks which provide a set of testing XML data
collections and respective XML operations that are publicly available and well-
described. However, although each of the existing benchmarks brings certain
interesting ideas, there are still open issues to be solved.

In this paper we focus especially on the key persisting disadvantage of all
the existing approaches – the fact that the sets of both data and queries are

? This work was supported in part by the Czech Science Foundation (GAČR), grant
number 201/09/P364.

fixed or the only parameter that can be specified is the size or the number of
XML documents. We propose a new approach to XML benchmarking – a flex-
ible XML query benchmark called FlexBench. The flexibility is given by two
aspects. Firstly, FlexBench involves a large set of testing data characteristics so
that a user can precisely describe the tested application. But, to ensure user-
friendliness and simplicity (i.e. one of the key requirements for a benchmark)
we also provide a set of predefined settings which correspond to classical types
of XML documents identified in an analysis of real-world XML data. And, sec-
ondly, FlexBench is able to adapt the set of testing queries to the particular set
of synthesized testing data. Hence, contrary to the existing works, the bench-
marking is not limited by the fixed set of queries and basic data characteristics
to a single simple application. We depict the advantages of the proposed system
using a set of preliminary experiments.

The paper is structured as follows: Section 2 overviews existing XML bench-
marks, their classification and (dis)advantages. Section 3 describes FlexBench in
detail. Section 4 involves the results of preliminary tests made using FlexBench.
And, finally, Section 5 provides conclusions and outlines possible future work
and open issues.

2 Related Work

In general, there exists a large set of XML query benchmarks. The seven best
known representatives are XMark [13], XOO7 [17], XMach-1 [10], MBench [16],
XBench [24], XPathMark [18] and TPoX [21].

From the point of view of purpose we can differentiate so-called application-
level and micro benchmarks. While an application-level benchmark is created
to compare and contrast various applications, a micro-benchmark should be
used to evaluate performance of a single system in various situations. In the
former case the queries are highly different trying to cover all the key situations,
whereas in the latter case they can contain subsets of highly similar queries which
differentiate, e.g., in selectivity. Most of the seven benchmarks are application-
level; the only representative of micro-benchmarks is MBench.

Another set of benchmark characteristics involves the number of users it is in-
tended for, the number of applications it simulates and the number of documents
within its data set. Most of the benchmarks are single-user, single-application
and involve only a single document. The only exception, XBench, involves (a
fixed set of) four classes of XML applications with different requirements. On the
other hand, XMach-1 and TPoX are multi-user benchmarks and enable one to
test other XML management aspects, such as, e.g., indexing, schema validation,
concurrency control, transaction processing, network characteristics, communi-
cation costs, etc.

Another important aspect of XML benchmarks are characteristics of the data
sets. All the representatives involve a data generator, but in most cases the only
parameter that can be specified is the size of the data. Most of the benchmarks
involve own simple data generator, some of them (i.e. XBench and TPoX) exploit

a more complex data generator, but pre-set most of its parameters. Expectably,
all the benchmarks involve also one or more schemas of the data representing
the simulated applications.

The last important set of characteristics describes the operation set of the
benchmarks. All the benchmarks involve a set of queries, some of them (i.e.
XMach-1, MBench and TPoX) also a set of update operations. The two multi-
user benchmarks also support additional, less XML-like operations with the data.
The most popular operations are XQuery [8] queries, whereas the benchmarks
try to cover various aspects of the language, such as, e.g., ordering, casting,
wildcard expressions, aggregations, references, constructors, joins, user-defined
functions, etc. However, in all the cases the sets of queries are fixed.

3 FlexBench Benchmark

As we have mentioned in the Introduction, the aim of FlexBench is to deal with
the problem of fixed parameters of the existing benchmarks. From one point of
view it is an advantage since one of the general requirements for benchmarking
is simplicity [9]. It is even proven by the analysis of existing XQuery benchmarks
[5] that the most popular benchmark is XMark – a single-application and single-
user benchmark with a fixed set of queries and a single data characteristic, i.e.
size in bytes. On the other hand, such a simple fixed benchmark enables one
to test only one specific situation, however according to statistical analysis of
real-world XML data [20] there are multiple types of XML data, i.e. multiple
applications. And, naturally, new ones occur every day.

Consequently, we state the following two aims of FlexBench:

1. We want to support as much characteristics of the tested application as
possible.

2. The benchmark system should still be simple and easy-to-use.

To fulfill the first condition the FlexBench involves three parts – a data
generator, a schema generator and a query generator. In general the synthesis of
a benchmark can start with any of the three generators. An overview of possible
strategies can be seen in Table 2.

All of the existing benchmarks exploit a restricted combination of the second
and third approach, where the schema and the queries are fixed and the data
are synthesized according to the schema. In FlexBench we use the first approach
– the XML documents are synthesized first, then the schemas and, finally, the
queries on top of them. In our opinion it is the most user-friendly approach and,
in addition, it enables us to exploit XML data characteristics1 from a statistical
analysis of real-world XML data [20]. Not only do their characteristics describe
the data from various points of view and very precisely, but the strategy enables
1 Due to space limitations we will not repeat the definitions of the characteristics.

Most of them (such as depth or fan-out) are quite common, whereas the definitions
of the less known ones (such as relational or DNA patterns) can be found in [20].

Strategy Description

data → schema & queries XML documents are synthesized/provided first. Schema
and queries are then synthesized on the top of them. It
is also possible to synthesize the queries on top of the
schema (instead of the XML documents). The schema
can be synthesized by an external tool as well, since many
suitable ones already exist.

schema → data → queries The schema is synthesized/provided first. XML docu-
ments valid against it are synthesized next (possibly by
an external tool). Queries are then synthesized on top of
the XML documents or the schema.

queries → schema → data Queries are synthesized (or provided by a user) first.
Then the respective XML documents and their schemas
are created on top of them.

Table 1. Three possible strategies when synthesizing a benchmark

us to exploit the particular results for pre-setting FlexBench (see Section 3.4).
Since most of these characteristics cover properties of XML documents, not their
schemas, mainly because not all XML documents have a schema, when deciding
whether to synthesize XML documents on top of their schemas or vice versa,
this fact convinced us to synthesize the documents first.

On the other hand, supporting a wide set of data characteristics may lead
to some conflicts. There are many dependencies between them and a user may
specify contradicting properties. For instance, the size (in bytes) of a document
and the number of its elements are correlated and particular values may be in
conflict. A related important aspect is that the generator never respects the
specified values accurately. For example, the output files usually have a little
percentage of bytes higher (or lower) than a user originally specified. However,
these deviations have a minimum impact on the quality of synthesized data and
it is a common feature of most of the existing data generators.

3.1 Data Generator

FlexBench data generator supports basic data types of its parameters, i.e. data
characteristics (e.g. strings, integers, floating point numbers, etc.) as well as
advanced ones – discrete statistical distributions. The supported data character-
istics are listed in Table 2 which involves their classification, data types and the
most important aspect – conflicting parameters.

The first set of so-called basic parameters involves the output directory and
the amount of documents to be synthesized. Naturally they have no conflict with
the other parameters and they can be specified as a constant value.

The set of structural parameters describes the structure of the document
tree. In particular its depth, fan-out (i.e. a kind of width), number of attributes
and total size in bytes. All these characteristics can be specified as a statistical
distribution. The important aspects are their conflicts with other parameters.

Type Parameter name Conflicts with Type

Basic Output directory None Constant
Number of documents None Constant

Structural Size (in bytes) Number of elements,
fan-out, depth, per-
centage of text, at-
tribute values

Statistical
distribution

Fan-out Depth, size Statistical
distribution

Depth Fan-out, size Statistical
distribution

Number of attributes Size, percentage of
text

Statistical
distribution

Textual Percentage of text Size Constant
Percentage of mixed-content el-
ements

Percentage of text Constant

Depth of mixed-content Depth Statistical
distribution

Percentage of simple mixed-
content elements

Percentage of text Constant

Patterns Percentage of pure recursions Other recursions Constant
Percentage of trivial recursion Other recursions Constant
Percentage of linear recursion Other recursions Constant
Percentage of general recursion Other recursions Constant
Percentage of DNA patterns None Constant
Percentage of relational pat-
terns

None Constant

Percentage of shallow relational
patterns

None Constant

Schema Percentage of DTDs None Constant
Percentage of XSDs None Constant

Table 2. Parameters of the benchmark generator and their relations

Naturally, the worst situation is for the size in bytes which is correlated with
almost all other characteristics. On the other hand, it is the most common pa-
rameter in all the existing benchmarks and it is also the most natural parameter
to be specified by a user. Almost the same information would be specified by
the number of elements, however, for the previously specified reasons, we have
decided to support the total size instead. As for the fan-out and depth which
specify the “shape” of the tree, they are correlated mutually as well as with the
size. Also note that instead of depth and fan-out, we could use the distribution of
levels of the document tree. However, similarly to the previous case, our choice
seems to be more natural and user-friendly. Finally, the number of attributes
deals with the special type of nodes of the document tree which are correlated
only with size and textual parameters.

The third set of data characteristics – the textual ones – do not influence the
shape of the document tree but the particular textual values. These may occur
in three situations: as attribute values, within textual contents of elements or
within mixed contents of elements. The most important and natural parame-
ter is undoubtedly the total percentage of text in the XML document which
is correlated with size. On the other hand, the remaining parameters specify
the number of mixed-content and simple-mixed content elements, as well as the
depth of mixed-content elements, i.e. their complexity. Naturally, they are cor-
related with respective characteristics, i.e. percentage of text or depth of the
document.

The fourth set of data characteristics involves various types of data pat-
terns as were defined in [20]. Since recursion is related to element names, there
are almost no conflicts with other data characteristics for all its four types; they
may conflict only mutually. Similarly, since the remaining patterns, i.e. relational
patterns, shallow relational patterns and DNA patterns, specify pre-defined sub-
trees of the synthesized tree, they are not in direct conflict with any of the other
parameters as well.

The last set of characteristics involves the percentage of XML documents for
which a schema (a DTD [11] or an XSD [7,22]) should be inferred. Typically this
will be 0% or 100%, however for special applications, such as those dealing with
schema inference or schema evolution, it may be useful to infer a schema only
for a subset of the synthesized XML documents. Naturally, these parameters are
in no conflict with others.

3.2 Schema Generator

According to the statistical analysis [20], XML schemas of XML documents are
used quite often. As long as some XMLMSs use schemas as an information how
to create the internal representation of XML documents, FlexBench involves
a schema generator as well. However, for the sake of simplicity it involves a
third-party implementation, since there exists a plenty of suitable solutions [19].
Hence, since this is not the key aspect of FlexBench, we will omit further details.

3.3 Query Generator

Having synthesized a set of XML documents and having inferred their XML
schema if required, the next important component of FlexBench is a query gen-
erator. Since, in general, it can have on input any kind of XML data, it must
be able to synthesize queries over them, so that we can get reasonable results.
Hence, the question is what kind of queries it should synthesize and how.

FlexBench query generator is based on the idea of exploitation of a set of
XQuery templates with empty parts that are filled with XML document names
and respective element/attribute names according to the given XML data.

For instance, consider the following query template:

for $a in doc("input.xml")//elem

order by $a

return <result>{$a}</result>

Its instance is created as follows: The input.xml is replaced with name of a
synthesized XML document and the element name elem with any of its elements.

The apparent problem is that we need to tight the data with the queries, i.e.
to enable a user to specify which of the elements/attributes should be used in the
templates and, hence, queried. Under a closer observation we can see that most
of them are directly represented by data generator parameters. For example, if
the user tends to synthesize many mixed-content elements, the query generator
can “guess” that (s)he wants to synthesize queries involving these elements as
well. In general, the user may specify which of the elements should be queried.
However, since this approach is useful only in case the user is acquainted with
the data in detail, the FlexBench data generator outputs elements with “inter-
esting” features (such as the most common element, the mostly used element
in recursion, the mostly used mixed-content element, the mostly used trivial
element, etc.) of which a user may choose.

The second question is how to select the query templates. As we have men-
tioned, the choice of the particular queries depends on the type of the bench-
mark. Since FlexBench is an application-level benchmark, our aim is to support
as many distinct types of queries as possible. In [5] the queries used in the ex-
isting benchmarks are divided into several categories as depicted in Table 3.

Category MBench XMark XOO7 XMach XBench

Core XPath 12 3 1 0 1

XPath 1.0 4 3 8 3 12

Navigational XPath 2.0 22 5 6 1 22

XPath 2.0 5 8 6 2 23

Sorting 1 1 1 1 9

Recursive functions 2 0 0 1 0

Intermediate results 0 0 0 0 0
Table 3. Categories and numbers of queries in existing benchmarks

In the following sections we will go through all the categories, define them
briefly and discuss the respective characteristics. As we have mentioned, the
FlexBench query synthesis is based on the idea of query templates and creating
their instances suitable for the given data. Hence, the characteristics are related
mainly to the amount of synthesized queries. For the space limitations we do not
list all the currently supported templates – the whole set can be found in [23].

Core XPath Queries These queries test XMLMS performance when finding
an XML element specified by the navigational part of the XPath [14]. The usage
of position information, all functions and general comparisons are excluded.

FlexBench distinguishes between two special cases – the queried element at
the first level and a nested element. From the point of view of the query generator
it is useful to let the user specify how deep the queried element should occur.
Hence, FlexBench enables one to specify the number of the queries and statistical
distribution of levels of queried elements.

Text Queries Preserving the order of a text is one of the most important
aspects of XMLMSs. The text queries test the performance of an XMLXS when
searching for a text. They also belong to the category of Core XPath. FlexBench
enables one to specify the number of these queries.

XPath 1.0 Queries When storing a document-centric XML document, an
XMLMS must store the elements in their original order (otherwise the meaning
of the text would be lost). That is why there exist ways to query the ordered
access. In general, there are two possibilities:

– Absolute order – queries that retrieve elements according to their absolute
position in the XML tree

– Relative order – queries that return elements according to their neighboring
elements in the XML tree

FlexBench enables one to specify the number of absolute and relative order
access queries. Besides these obvious parameters, more customizable absolute
ordered queries are useful, e.g. a user can specify what index should be used.

Navigational XPath 2.0 Queries From navigational XPath 2.0 [6] the us-
age of position information and all aggregation and arithmetic functions are
excluded. However, we include queries with some and every clauses to construct
quantified expressions as well. A user is able to specify the amount of such
queries; some and every versions of a query are synthesized randomly in rate
50:50.

XPath 2.0 Queries An instance of this category can be queries which apply an
aggregation function on the data. Examples of such functions are a sum of some
set of numbers, an average value, etc. The aggregation-function queries suppose
that there exist similar elements which can be used as a source for the aggre-
gation. FlexBench enables one to specify the number of particular aggregate-
function queries.

Sorting Queries These queries use sorting of a set of the given attributes to
get an ordered list of elements/attributes. FlexBench enables users to specify
their amount.

Queries with Recursive Functions XQuery enables a user to define own
functions, possibly recursive. Since such a function is highly related to the data,
as a template we have chosen a simple recursive function so generic that it can
be used on any XML document. It computes the depth of an XML document.

declare function local:depth ($root as node()?) as xs:integer?

{

if ($root/*)

then max($root/*/local:depth(.)) + 1

else 1

};

local:depth(doc("input.xml"))

Similarly to the previous cases, FlexBench enables users to specify the num-
ber of synthesized recursive queries.

Queries with Intermediate Results Intermediate result queries contain let
clause of XQuery. A user can specify the amount of such queries.

Currently, FlexBench supports a set of simple query templates for each of the
previously described query class (see [23]). Naturally, there are much more com-
plex constructs and queries that can be expressed in XQuery, such as various
joins, complex user-defined functions, etc. As for the future work, we intent to
involve them in FlexBench as well and to deal with their more precise binding
with the synthesized data. Such complex queries will require looser XQuery tem-
plates and a kind of data analyzer capable of creating their correct instances.
The current implementation of FlexBench is a preliminary version that enables
one to demonstrate the basic advantages of the chosen approach. Hence, the
templates were selected so that no complex data analysis was necessary.

3.4 Pre-defined Settings of Parameters

To fulfill the second aim of FlexBench stated at the beginning of this chapter, we
provide a set of its predefined settings. Since we have created the set of supported
data parameters on the basis of characteristics analyzed in [20], we can exploit
the data categories and their real-world characteristics stated in the analysis as
well. In particular, the XML data are divided into these six classes:

– data-centric documents, i.e. documents designed for database processing
(e.g. database exports, lists of employees, lists of IMDb movies, etc.),

– document-centric documents, i.e. documents which were designed for hu-
man reading (e.g. Shakespeare’s plays, XHTML documents, novels in XML,
DocBook documents, etc.),

– documents for data exchange, e.g. medical information on patients and ill-
nesses, etc.,

– reports, i.e. overviews or summaries of data (usually of database type),
– research documents, i.e. documents which contain special (scientific or tech-

nical) structures (e.g. protein sequences, DNA/RNA structures, etc.) and
– semantic web documents, i.e. RDF documents.

A user can use these pre-defined categories through command-line parame-
ters. For instance, specifying:

java -jar flexbench.jar -data-exchange

is equivalent to specifying all the parameters like:

java -jar flexbench.jar NumberOfGeneratedFiles=9

PercentageOfTextGen=uniform(31,40)

PercentageOfFilesWithDTD=100 ...

4 Preliminary Experiments

To depict advantages of the proposal we have chosen basic typical use cases of
FlexBench. We describe them and their results in this section.

4.1 Comparing XMLMSs

We start with a typical aim of XML benchmarking – to compare performance
of several XMLMSs. We use the six pre-defined sets of parameters specified in
Section 3.4 and three simple XMLMSs Qizx [3], Qexo [1] and Saxon [4].

First of all, the total execution times of all benchmark queries are depicted
in Table 4.

Qizx (s) Qexo (s) Saxon (s)

Data-centric 3.268 4.942 11.423

Document-centric 10.564 19.919 61.767
(but failed on
text queries)

Exchange 8.116 15.438 18.290

Reports 55.324 failed failed

Research 3.945 5.050 7.139

Semantic web 7.430 9.874 27.902
Table 4. Total execution time on six different types of applications

As we can see, Qizx and Qexo XMLMSs performed almost equally in data-
centric, data exchange, research and semantic web scenarios, whereas Qizx sus-
tained superior performance. Remaining two categories output more interesting
results. Both Qexo and Saxon failed in case of reports – the cause of failure

was low heap space available. (We will describe the scalability of FlexBench in
Section 4.2 to determine maximum XML document size which Qexo can work
with.) Saxon has the worst efficiency in general.

Interesting ones are also the document-centric results. It seems that Qizx is
much faster than Qexo when querying document-centric documents. Moreover,
Qexo does not support text queries because of function usage which it does not
support. Note that such experiments could not be performed using any of the
existing benchmarks, because they do not support so wide characteristics of the
data to specify different applications.

To analyze the document-centric application more precisely we synthesized
55 absolute ordered queries, 70 aggregate function queries, 137 exact match
queries, 12 intermediate result queries, 9 quantification queries, 14 recursive
function queries, 31 relative order queries, 9 sorting queries and 72 text queries
for the document-centric category. As we can see in Table 5, Qexo needs twice
the time of Qizx and even fails in some of the cases. None of the categories
shows extra deviation from this pattern, so we can conclude that Qexo has
overall problems when working with the document-centric documents. On the
other hand, Saxon has problems with basic queries (especially in exact match
queries), but outperforms Qexo in more complex ones. And, finally, eXist [2] was
added to depict how complex recursive function queries are.

Query category Number of Average time for query (ms)
of queries Saxon Qizx Qexo eXist

Core XPath (exact match) queries 137 328 25 67 405

XPath 1.0 (absolute and relative or-
der) queries

86 157 26 52 250

Navigational XPath 2.0 (quantifica-
tion) queries

9 109 64 failed 289

XPath 2.0 (aggregate function)
queries

70 55 38 75 301

Sorting queries 9 873 437 failed 274

Recursive function queries 14 failed failed failed 1549

Intermediate result queries 12 170 162 234 413
Table 5. Comparing XMLMSs in query categories of document-centric benchmark

4.2 Scalability of Benchmark Generator

FlexBench capabilities can be also used to detect the limits of an XMLMS.
As we have seen in Table 4, Qexo has some problems with large files and its
default allocated heap space. We will keep its default setting of heap space
considering Qexo as an unconfigurable black box and we will try to determine
the approximate size of the XML file that Qexo can process successfully. Firstly,
we synthesize XML documents with various sizes ranging from 1MB to 13MB.

Then we perform the respective tests. Finally, as we have seen from a log file,
Qexo has problems with XML files bigger than 7MB.

Naturally, such testing can be done using any data generator. The advantage
of FlexBench is that we can find the limits for distinct applications, i.e. data
collections and operations.

4.3 Modifying Parameters

In the following tests we will show the advantage of the various parameters
of FlexBench. We can use any of the parameters (or their combination) and
selected type(s) of queries to study their impact on the selected XMLMSs. For
illustration we choose influence of recursion and text queries on Saxon and Qizx.

Figure 1 shows how the percentage of recursion correlates with corresponding
total execution times for text queries. As we can see, in both the selected cases
the systems behave quite naturally – the more the percentage of recursion is,
the higher the execution times are. However, Saxon overcomes Qizx in all three
cases.

Fig. 1. Effect of percentage of recursion on text queries

4.4 Consistency of FlexBench Output

Last but not least, we will discuss the consistency of the results. One might
argue why results over data and queries that are completely synthetic should be
trustworthy. How big is the chance that the results will not be entirely different
with the same parameters passed to FlexBench again? For the sake of result
consistency, multiple tries were made when benchmarking. Each time the whole
benchmark was re-synthesized and applied to Qizx. The results can be seen in
Table 6.

As we can see, the average total execution time for synthesized document-
centric benchmark is 27.413s and the standard deviation is 1.333s. In case of
synthesized semantic web benchmark, the average total time is 30.509s and stan-
dard deviation is 5.190s. Considering total randomness of synthesized data and
queries (even the amount of queries is more-or-less randomized) the results are
convincing.

Total execution time Qizx

Document-centric benchmark #1 (s) 26.592

Document-centric benchmark #2 (s) 29.871

Document-centric benchmark #3 (s) 25.948

Document-centric benchmark #4 (s) 27.358

Document-centric benchmark #5 (s) 27.297

Semantic web benchmark #1 (s) 30.117

Semantic web benchmark #2 (s) 27.550

Semantic web benchmark #3 (s) 28.579

Semantic web benchmark #4 (s) 33.579

Semantic web benchmark #5 (s) 32.718
Table 6. Stability of results of a randomly synthesized benchmark

5 Conclusion and Future Work

There are several major achievements of this paper. Firstly, the XML data gen-
erator supports numerous interesting parameters of XML documents, in fact so
many that no third-party solution was suitable to be exploited and utilized. It
is also a notable fact that the parameters were taken from available statistics
about real-world XML data sets and, hence, the realistic results could be used
for reasonable pre-setting. Secondly, the query generator can synthesize queries
so that they can be applied on the given data. Every other XML benchmark has
its query workload fixed and consequently, the respective data generators are
highly restricted. Thus, in general, the main advantage of our approach is that
we are much more flexible when synthesizing data, since we are not bound to
any pre-defined queries.

Experimental results showed us how easy is to determine interesting insights
about tested XML databases. Thanks to our different kinds of data and various
queries we were able to show different behaviors of the benchmarked XMLMSs.
This would not be possible with a fixed set of data and XQuery queries. More-
over, we have created pre-defined sets of benchmark parameters corresponding
to the real use-cases of XML data.

Authors of [9] state that every benchmark should have the following four
basic properties:

– relevance: FlexBench synthesizes XML queries that cover most constructs of
XQuery.

– portability : FlexBench is implemented in Java and outputs portable XML
format.

– scalability : FlexBench is scalable through lots of data/query parameters.
– simplicity : No parameter of FlexBench is mandatory and we provide a set

of pre-defined data sets.

Another way to evaluate the quality of an XQuery workload was stated in
[12]:

1. Is there a restriction on XML document structure?
2. Is there a database size and load volume scalability?
3. Is there a query type variability?
4. Is there an ad hoc and open interface for schema input and operation input?

FlexBench’s answers are:

1. No, there are no restrictions. XML documents and their schemas are syn-
thesized and a user can specify numerous parameters of the result.

2. Yes, there is. Moreover, every other parameter of synthesized XML docu-
ments is scalable as well (not only the size parameter).

3. Yes, there is. FlexBench supports more categories of queries than the rest of
benchmarks.

4. If we consider FlexBench parameters as a form of a schema, then yes,
FlexBench is also easily extensible by new parameters and new templates
for synthesized queries.

Naturally, there is also a plenty of possible future improvements of FlexBench.
Firstly, we intent to perform more elaborate experiments with various types of
XMLMSs from XML-enabled to native XML ones and, especially, with com-
mercial solutions. Secondly, we plan to extend the proposed idea as much as
possible. In particular we will focus on the set of XML query templates that can
be much wider and enable one to test various aspects of an XML application. As
we have mentioned, this task opens a wide research area for creating reasonable
instances of the templates. At the same time, we need to tighten the relation
between the synthesized data and the queries so that the user can specify more
precisely which items should be queried and how. Side but still important tasks
involve implementation of a user-friendly interface for specifying the character-
istics as well as a repository for their predefined settings. And, last but not least,
we want to focus on benchmarking of stream processing [15], where the various
characteristics of synthetic data can be widely exploited as well.

References

1. Qexo – The GNU Kawa implementation of XQuery. Kawa, 2007. http://www.

gnu.org/software/qexo/.

2. eXist-db: Open Source Native XML Database. exist-db.org, 2008. http://exist.

sourceforge.net/.

3. Qizx/db. Pixware, 2008. http://www.xmlmind.com/qizx/.

4. Saxon: The XSLT and XQuery Processor. SourceForge.net, 2008. http://saxon.

sourceforge.net/.

5. L. Afanasiev and M. Marx. An Analysis of the Current XQuery Benchmarks. In
ExpDB’06: Proc. of the 1st Int. Workshop on Performance and Evaluation of Data
Management Systems, pages 9–20, Chicago, Illinois, USA, 2006. ACM.

6. A. Berglund, S. Boag, D. Chamberlin, M. F. Fernndez, M. Kay, J. Robie, and
J. Simeon. XML Path Language (XPath) 2.0. W3C, January 2007.

7. P. V. Biron and A. Malhotra. XML Schema Part 2: Datatypes (Second Edition).
W3C, October 2004.

8. S. Boag, D. Chamberlin, M. F. Fernndez, D. Florescu, J. Robie, and J. Simeon.
XQuery 1.0: An XML Query Language. W3C, January 2007.

9. T. Bohme and E. Rahm. Benchmarking XML Database Systems – First Experi-
ences. In HPTS’01: Proc. of 9th Int. Workshop on High Performance Transaction
Systems, Pacific Grove, California, 2001.

10. T. Bohme and E. Rahm. XMach-1: A Benchmark for XML Data Management.
Database Group Leipzig, 2002. http://dbs.uni-leipzig.de/en/projekte/XML/

XmlBenchmarking.html.
11. T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensible

Markup Language (XML) 1.0 (Fourth Edition). W3C, September 2006.
12. S. Bressan, M.-L. Lee, Y. G. Li, Z. Lacroix, and U. Nambiar. The XOO7 Bench-

mark. In Proc. of the VLDB’02 Workshop EEXTT and CAiSE’02 Workshop
DTWeb – Revised Papers, pages 146–147, London, UK, 2003. Springer-Verlag.

13. R. Busse, M. Carey, D. Florescu, M. Kersten, I. Manolescu, A. Schmidt, and
F. Waas. XMark – An XML Benchmark Project. Centrum voor Wiskunde en
Informatica (CWI), Amsterdam, 2003. http://www.xml-benchmark.org/.

14. J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0. W3C, Novem-
ber 1999.

15. J. Dvorakova and F. Zavoral. Using Input Buffers for Streaming XSLT Process-
ing. In GlobeNet/DB’09: Proc. of the 1st Int. Conf. on Advances in Databases,
Guadeloupe, French Caribbean, 2009. IEEE.

16. K. Runapongsa et al. The Michigan Benchmark. Department of Electrical
Engineering and Computer Science, The University of Michigan, 2006. http:

//www.eecs.umich.edu/db/mbench/.
17. S. Bressan et al. The XOO7 Benchmark. 2002. http://www.comp.nus.edu.sg/

~ebh/XOO7.html.
18. M. Franceschet. XPathMark. University of Udine, Italy, 2005. http://users.

dimi.uniud.it/~massimo.franceschet/xpathmark/.
19. I. Mlynkova. An Analysis of Approaches to XML Schema Inference. In SITIS’08:

Proc. of the 4th Int. Conf. on Signal-Image Technology and Internet-Based Sys-
tems, Bali, Indonesia, 2008. IEEE.

20. I. Mlynkova, K. Toman, and J. Pokorny. Statistical Analysis of Real XML Data
Collections. In COMAD’06: Proc. of the 13th Int. Conf. on Management of Data,
pages 20–31, New Delhi, India, 2006. Tata McGraw-Hill Publishing Ltd.

21. M. Nicola, I. Kogan, R. Raghu, A. Gonzalez, M. Liu, B. Schiefer, and G. Xie.
Transaction Processing over XML (TPoX). http://tpox.sourceforge.net/.

22. H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema Part
1: Structures (Second Edition). W3C, October 2004.

23. M. Vranec and I. Mlynkova. FlexBench: A Flexible XML Query Benchmark.
September 2008. http://urtax.ms.mff.cuni.cz/~vranm3bm/dp/flexbench/.

24. B. B. Yao and M. T. Ozsu. XBench – A Family of Benchmarks for XML DBMSs.
University of Waterloo, School of Computer Science, Database Research Group,
2003. http://se.uwaterloo.ca/~ddbms/projects/xbench/.

