A Journey towards More Efficient Processing of XML Data in (O)RDBMS

Irena Mlynkova irena.mlynkova@mff.cuni.cz

Charles University Faculty of Mathematics and Physics Department of Software Engineering Prague, Czech Republic

16. - 19. October 2007

Introduction

- XML = a standard for data representation and manipulation
 - Growing demand for efficient managing and processing of XML data
- ⇒ A natural alternative: To exploit tools and functions of (object-)relational database management systems ((O)RDBMS)

(-) XML trees vs. flat relations \Rightarrow inefficiency

(+) Long theoretical and practical history, mature technology

 \Rightarrow The techniques should be further enhanced

16. - 19. October 2007

Goals of This Presentation

Proposal of improvement of XML processing based on (O)RDBMS

- Overview and classification of existing approaches
- Motivation for improvements
- Proposal of improvement of user-driven methods
- Experiments
- Conclusion

Content

Overview of existing approaches
 Motivation for improvements
 Proposed improvement
 Experiments
 Conclusion

16. - 19. October 2007

Database-Based XML Processing Methods (1)

- Key concern: Choice of the most efficient XML-torelational mapping strategy
- Fixed predefined set of mapping rules and heuristics
 - Generic vs. schema-driven
- Adaptive adapt the target schema to intended usage
 - Cost-driven
- User-involving storage decisions in hands of users
 - User-defined vs. user-driven

Database-Based XML Processing Methods (2)

- Generic vs. schema-driven omitting / exploiting XML schema
 - Straightforward mapping
- Cost-driven search a space of possible mappings and choose the one which conforms the target application most = the least "expensive"
 - Application: sample XML data, XML queries
- User-defined vs. user-driven the amount of user involvement
 - User-driven = a type of adaptivity
 - Schema is adapted to the annotations

16. - 19. October 2007

•

User-Driven Methods: Shortcomings and Improvements

- Default mapping strategy is always fixed
 - Systems are able to store schema fragments in various ways ⇒ adaptive enhancing is natural
- Weak exploitation of user-given information
 - Annotations are just directly applied
 - Idea: Annotations = "hints" how a user wants to store particular XML patterns ⇒
 - We search for similar fragments
 - We use the knowledge in adaptive enhancing
- ⇒ General idea: Emphasis on user-given information

Mlynkova, Pokorny: Adaptability of Methods for Processing XML Data using Relational Databases - the State of the Art and Open Problems. IJCSA, volume 4, issue 2, 2007. ISSN 0972-9038.

Content

Overview of existing approaches Motivation for improvements Proposed improvement Experiments Experiments Conclusion

16. - 19. October 2007

Why User-Given Information? (Example 1)

Situation: Documents with XHTML fragments

•

•

- Problem: Shredding into tables = inefficient fragment reconstructions
 - XHTML DTD contains complete graphs on up to 10 nodes
- What if the real complexity is much simpler?
 - Statistical analysis: Yes, it is <u>much</u> simpler!
 ⇒ Simpler storage strategy (CLOB)

Mlynkova, Toman, Pokorny: Statistical Analysis of Real XML Data Collections. COMAD 2006. Tata McGraw-Hill Publishing Co. Ltd., 2006. ISBN 0-07-063374-6.

Why User-Given Information? (Example 2)

- Situation: Updatability of data vs. fast query evaluation
- Problem: Amount of mutual relationships information
 - Fast querying ⇒ additional indices, numbering schemes
 - Fast updates ⇒ the simplest information of mutual relationships
 - Fast querying, fast updates ⇒ compromise

•

Why User-Given Information? (Example 3)

- Situation: Data redundancy
- Question: Is it always necessary to strictly follow the rules of normal forms?
 - No, it is not.

•

- Optimal XML-to-relational storage strategy = 4NF
 - No null values, no redundancy

⇒ In all the cases we need additional information given by <u>a user</u>

XML data, XML queries, annotations...

16. - 19. October 2007

Content

Overview of existing approaches
 Motivation for improvements
 Proposed improvement
 Experiments
 Conclusion

16. - 19. October 2007

Basic Ideas

- Searching for similar fragments in the not annotated schema parts
 - The user is not forced to annotate all schema fragments
 - The system can reveal new structural similarities
 - Searching for optimal mapping strategy for the remaining schema fragments
 - Adaptive strategy

Step 1. Annotated Schema

16. - 19. October 2007

Step 2. Searching for Similar Fragments

16. - 19. October 2007

Step 3. Adaptive Strategy

16. - 19. October 2007

Step 4. Mapping to Relations

16. - 19. October 2007

Open Issues

- What similarity function is used? Can we optimize the exhaustive search for similar fragments?
- What types of annotations, i.e. fixed mapping strategies, are supported? How are they combined?
 - Should we use a classical adaptive strategy?

•

Similarity Function and Search Algorithm (1)

- Closely related
 - No knowledge of function
 - ⇒ Few ways how to avoid exhaustive search
 - Clustering (expensive preprocessing)
- Idea: Exploit knowledge of the similarity function
- Modification of a classical approach:
 - A set of matchers = partial similarity functions
 - Similarity of a particular feature
 - e.g. depth, number of nodes, complexity of content...
 - A composite similarity function = aggregates the results
 - Weighted sum

16. - 19. October 2007

Similarity Function and Search Algorithm (2)

- Features of matchers \Rightarrow a bottom-up strategy
 - Knowledge for child nodes \Rightarrow knowledge for parent node
 - e.g. depth, number of nodes
- Idea: Searching can terminate if the similarity function reaches its optimum
 - Hard to define a function having a single optimum
- Heuristics: Searching can terminate if reasonable amount of matchers exceed their <u>single optimum</u>
 - e.g. similarity of depths
 - With growing number of nodes the depth grows until it reaches the depth of the searched schema fragment

Mlynkova, Pokorny: Similarity of XML Schema Fragments Based on XML Data Statistics. Innovations 2007, Dubai, United Arab Emirates, November 2007. IEEE Computer Society Press.

Types of Annotations

- Particular mapping methods influence versatility of implementation
 - CLOB, shredding to tables, indices, numbering schemes...
- Key aspect: Intersection of annotated fragments
 - Redundant both methods are applied on intersection
 - XHTML fragments ⇒ shredding + CLOB
 - Overriding only one of the methods is applied
 - Classical user-driven strategies

•

- Influencing both methods are combined into one storage strategy
 - Shredding + indices/numbering schemes

Mlynkova, Pokorny: UserMap - an Adaptive Enhancing of User-Driven XML-to-Relational Mapping Strategies. ADC 2008, Wollongong, Australia, January 2008. Australian Computer Society, Inc.

Adaptive Strategy (1)

- Classical approach: Target DB schema is adapted to sample XML data and queries
 - + annotations = too much information
- Idea:

•

•

- Queries = How the data are typically manipulated
- Data = How complex are XML documents
- \Rightarrow How to store the data
- Annotations = How particular schema fragments should be stored

\Rightarrow Annotations can be reused \Rightarrow no need for additional information

16. - 19. October 2007

Adaptive Strategy (2)

Key operations:

- Contraction = replaces each annotated fragment with an auxiliary node
- Expansion = all auxiliary nodes are expanded to original schema fragments

• Algorithm:

- 1. The searching for similar fragments and operation contraction repeats until there are no identified candidates for annotating
- 2. The resulting schema is expanded
- Intersection of original and new annotations: Newly defined are overridden

Content

Overview of existing approaches Motivation for improvements Proposed improvement Experiments Conclusion

16. - 19. October 2007

Experiments

Experimental implementation UserMap

•

•

- First idea: Analysis of efficiency of the resulting mapping? Useless.
 - Basic idea: user assigns a mapping strategy to a schema fragment suitable for the actual application
 - Can be highly inefficient in the general case
- Aim: Analysis of behaviour of the strategy on realworld data
 - Can we find similar schema fragments?
 - Can we find any in contracted graphs?
 - How many contractions can be applied, if any?
 - Assumption: Reliable and tuned similarity function

Mlynkova, Pokorny: Similarity of XML Schema Fragments Based on XML Data Statistics. Innovations 2007, Dubai, United Arab Emirates, November 2007. IEEE Computer Society Press.

Real-World Data

- 99 real-world XML schemes used in statistical analysis
 - Divided into 5 categories database, document, exchange, report, research
 - Classical data and document centric + finer division
- Testing set of real-world schema fragments
 - 5 data-centric, 5 document-centric, 3 relational, 3 DNA
- Modification of algorithm: Testing set represents annotations, used for all 5 categories of schemes

Mlynkova, Toman, Pokorny: Statistical Analysis of Real XML Data Collections. COMAD 2006. Tata McGraw-Hill Publishing Co. Ltd., 2006. ISBN 0-07-063374-6.

Results (1)

Characteristic	dat	doc	ex	rep	res
Average number	2.7	3.9	2.9	4.1	4.3
of iterations					
Average % of not	2.1	53.4	13.5	25.6	31.1
annotated nodes					
% of fully con-	93.7	22.2	81.1	0.0	28.6
tracted schemes					

Number of iterations is reasonable

- Multiple contractions are performed
- No extreme values
 - Results correspond to depth of documents
- Schemes are usually not fully contracted
 - Default mapping is necessary
 - More information should be used

16. - 19. October 2007

- The percentage of annotated nodes is usually highest in the first iteration
- Exception: Report, research low number of sample data, irregular structure
- No relation between types of schema fragments and iterations \Rightarrow no degenerated schemes

16. - 19. October 2007

.

Content

Overview of existing approaches
 Notivation for improvements
 Proposed improvement
 Proposed improvement
 Experiments
 Conclusion

16. - 19. October 2007

Conclusions and Future Work

- Experiments \Rightarrow user-given information can and should be further exploited
- Current and future research
 - Combination with classical adaptive methods
 - Exploitation of sample data and queries
 - Too many input data vs. fully contracted schemes and better results
 - Efficient querying over the resulting schema
 - Query plans vs. intersecting annotations

Thank you

16. - 19. October 2007